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Analysis and optimization of a diffuse photon optical tomography of turbid media

David L. Everitt, Sung-po Wei, and X. D. ZKu
Department of Physics, University of California at Davis, One Shields Avenue, Davis, California 95616-8677
(Received 28 June 1999; revised manuscript received 15 May) 2000

In a numerical study, we investigate a diffuse-photon computed tomography of a turbid medium. Using a
perturbation approach, we relate through a maria bulk heterogeneous distribution of the optical absorption
coefficientu, that characterizes the heterogeneity in an otherwise homogeneous turbid medium to the diffuse
photon flux that emerges from its surface. By studying ¢bedition number(A¢) of the matrixK as a
function of illumination-detection schemes and choices of reconstruction grids, we explore strategies that
optimize the fidelity and spatial resolution of the computed tomography.

PACS numbeg(s): 02.60.Pn, 87.59.Fm

I. INTRODUCTION perturbatively[7,8,13,14,16—1B The latter are suitable for
potential applications irarly breast cancer detection. There
In recent years, the optical computed tomography of are other advantages that we will get to very shortly. Despite
turbid medium based upon the measurement and analysis tfese extensive efforts, there has beersystematievalua-
the diffuse photon flux that emerges from the surface of theion of the overall performance or the “cost and benefit” of
medium has drawn considerable research attention in thearious illumination-detection schemes and choices of recon-
fields of optical physics and biomedical imagifig-3]. This  struction grids. An important question to ask is, given the
is motivated by the potential applications of such a nonintruprecision and accuracy of the diffuse photon flux measure-
sive tomographic imaging technique in breast cancer deteenent and the model description, what is the achievable im-
tion and other biomedical imagirld—4]. To realize such a age quality(in terms of sensitivity, contrast, fidelity, and
potential, one needs to address the issue of sensitivity, imaggpatial and temporal resolutigth The present paper is an
contrast, image fidelity, and spatial and temporal resolutionsffort toward such a systematic analysis.
The last three are the primary subjects of this investigation. We report a numerical study of a diffuse-photon com-
A typical configuration of a diffuse-photon computed to- puted tomography with a continuous-wave(cw)
mography is the following: one illuminates a turbid me- illumination-detection scheme. The cw scheme is advanta-
dium with a continuous-wave or amplitude-modulated lightgeous as it enables simultaneous measurements of the diffuse
source and measures the transmitted or reflected diffuse phphoton flux at a large number of surface positions and re-
ton flux that emerges from the surface of the medium. Byduces the measurement error close to the statistical photon
establishing numerically the relation between the diffusecounting limit. For the analysis, we adopt a perturbation ap-
photon flux and the heterogeneity in the medium as charagroach[7,14]. It has the following advantagesi(1) it lin-
terized by the distribution of appropriate optical constantsgearly relates the variation in the diffuse photon density or the
one reconstructs the heterogeneity. flux emerging from the surface through a matkxto the
There are numerous reports of numerical and experimereptical absorption coefficients of the interrogated heteroge-
tal studies of this subject in which a large variety of meth-neity in a turbid medium, and as a result, the computational
odologies have been explored, and the quality of reconprocedure and optimization of image reconstruction are
structed images varies substantiallb—15. Generally straightforward;(2) it renders the image reconstruction sim-
speaking, the reported illumination-detection schemes falply a form of an inversion of the matrix multiplied by a set
into two categories: one is of continuous wave, in whichof flux values; (3) it provides aconvenientand effective
case the amplitude of the illuminating light source does noineans to assess the mutual independence or sufficiency of a
change in timg13-15; the other is of alternating wavee.,  set of flux measurements for image reconstruction and in
ac or frequency domajnin which case the amplitude of the turn enables the optimization of the illumination-detection
illuminating light source is modulated at a frequency in theschemes and the choices of reconstruction grids.
range of 10 Hz, and both the amplitude and phase lag of the The essence of our study is a systematic analysis of the
alternating part of the diffuse photon density or flux are meamatrix K. Since the diffusion description of diffuse photons
sured[5—-12. The analysis methodologies also fall into two has a limited numerical accuracy and diffuse photon flux
categories: one involves nonperturbation approaches sugheasurements have finite precision and accuracy, the quality
that the effect of the heterogeneity in a turbid medium on theof the reconstructed image is subject to these errors. The
diffuse photon distribution is treated exactly in essence byeffect of these errors is determined by the conditioning of the
solving the diffusion equation with nite-differencd11] or  matrix K. Through a standard singular value decomposition,
finite-elementechniqud 12]; the other involves perturbation K can be expressed as a product of three matriées,
approaches where the effect of the heterogeneity is treated UWV 1, whereU andV are two orthogonal matrices and
W is a positive-definite diagonal matr[¢9,20. According
to Golub and Van Loan, the relative error in the recon-
*Electronic address: xdzhu@physics.ucdavis.edu structed image is proportional to those in the flux measure-
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ments and in the model approximatigimcluding the nu- AY

merical computation and the proportionality constant Li

equals the ratio of the largest to the smallest diagonal ele- > —

ments ofW [21]. This ratio is defined as theondition num- ey <«

ber (NV¢) of K. i(0y) = u(x,y) -—
Using the condition number df as the measure, we in- = ! < L.

vestigate(1) the optimal number of diffuse photon flux mea- >N <

surements beyond which one obtains no new information to i (>_

improve the image reconstructiof?) the relative effective- O L x

ness of different illumination-detection schemds) the FIG. 1. Sketch of an illumination-detection arrangement for a

I|m|_tat.|on_ on t?ehachrlleyable %'spatlal resolgtlon, g(m th_e diffuse-photon-computed tomography of a two-dimensional square
optimization of the choices of reconstruction grids. Using Zurbid medium. One side of the medium is uniformly illuminated

partiqular illumination-detection SChe.me and a recor‘s,truc“OQvith a continuous-wave light. The normal component of the diffuse
algorithm, we demonstrate numerically the feasibility 10 ppoton fluxj, that emerges from the opposite side is detected with
achieve a spatial resolution of 2.4 mm when reconstructing, imaging opticgnot shown.

objects in a 6 cnx6 cmx6 cm volume. We have achieved

such a resolution using experimental data very recd@®.  Herev=c/n is the mean velocity of the diffuse photons in
Finally, we remark on the issue of the uniqueness of theyetween scattering events ands the average index of re-

reconstructed images as sought in the present work and fiaction of the medium. In additiord(r) and®(x,y) satisfy
the works of others. Fick's law

Il. PERTURBATION METHOD OF A Jo(X,y) +j(X,y)=—DV[Dy(x,y)+ d(x,y)], (3)

DIFFUSE-PHOTON COMPUTED TOMOGRAPHY . . . .
with D= (1/3)vl,, being the diffusion constant for the pho-

A. Perturbation treatment tons inside the mediunh,= 1/x. is the reduced scattering or

For the purpose of this study, we assume that a turbidransport mean free patj is the reduced scattering coef-
medium of interest is strongly scattering and yet nonabsorbficient. The lowest-order perturbation dey(x,y) is given by
ing except for regions where the heterogeneity is located.

The absorbing heterogeneity or the objects of interest are (X,y)=— ij j dx'dy’ ®o(x',y")
characterized by a distribution of the optical absorption co- D

efficient u,(r) in the medium. The medium is illuminated NN r o
with a suitable arrangement that will be specified shortly. We XGOGY XY palXy")- @)

use the diffusion approximation of radiative transport theoryyere G(x,y;x',y’) is the Green function for the two-
[23] to establish thg diffuse photon densttgl(r) in the me-  gimensional Laplacian operatdf?= a2 ax2+ d?/dy? with
dium and the relation between the emerging diffuse photoRyanishing boundary conditions. For example, let the side at
flux J(r) at the surface of the medium anpd,(r). Specifi-  y—| pe uniformly illuminated as shown in Fig. 1. The un-
cally, we assume thab(r) in the interior of the medium pertyrhed diffuse photon densitfp(x,y) satisfies the
satisfies the diffusion equation and a set of approprlat%oundary conditions®o(x=L,y) =l ind /D and ®o(x,y)
boundary conditions. We treat the effect @f(r) on ®(r)  —q gt the other three sides. The normal component of the

and onJ(r) as a perturbation. Lely(r) be the flux at the gitfyse photon flux perturbation emerging from the opposite
surface in the absence of the absorbing objects. We defingye aix=0

the flux perturbatiorn(r) as the change in the flux caused by

ma(r). The total flux is then given by ) Loofe o
; inx=0y) = | ax | aywagxyn

J(r)=Jo(r) +j(r). ()
In our numerical calculation, we consider a square turbid XaG(xzo,y;x 24 )Ma(X',Y'), (5)
medium in two dimensions with a side equalltoOne side X

's illuminated with a continuous-wave lighf,, (number of forms one set of diffuse photon flux data. We can similarly
photons per second per unit lengihive measure the normal obtain three additional sets of flux data by sequentially illu-

component of the diffuse photon flux that emerges from the

opposite side. Objects of interest in the medium are charac,n-qinatir.]g each O.f the othe_r th(ee sides and measuring thg flux
terized by a spatially varying optical absorption coefficientEMer9N9 from its opposite side. We reconstruct the objects

_ . Lo . . by calculating u,(r’) from the flux perturbation datd,
mag;;gja(?ﬁy)ﬁi;hi_IlIl‘f'l;?énaé:?fzs(jeetgﬁg?gnagzzgﬁ;(??t 'S [7,14]. For image reconstruction our present illumination-

—®(x,y) within the medium is expressed a®(x.y) detection scheme sufficientandeffectivewhen all four sets

: of the flux data are used. The four flux data sgisas a
=dy(X,y)+ d(X,y). Heredy(x,y) is the unperturbed den- ) . . - ,
sity in the absence of the objects arx,y) is the pertur- function the optical absorption coefficients,(r’) can be

bation caused by the objects. In steady state, we have combined into by a single integral equation

V- [3006Y) +106Y) T+ 0 sa(X Y Bo(X,y) + $(x,y)]=0. (1= f “dx’ j Ay Kt (6)
(2) 0 0
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We user to represent the coordinates along the edge of théhe relative variations in the norms &f and7, with the

H ! H H H . . .
medium andr’ to represent the interior coordinates. The proportionality constant equal to the ratio of the largest to the
kernel functionK(rs;r") varies depending upon on which smallest diagonal element W [21]. Let oy,05,...,0 be

side of the medium the fluk,(rs) is detected. the diagonal elements & in decreasing order. They are
called the singular values of matrik. The ratio ofo; to oy
B. Matrix equation is defined as the condition number &% of matrix K [21],

The numerical analysis df(rg;r’) is at the heart of the
present work. UsuallyK(rg;r’) is in a form that does not
afford an analytical transformation thairectly solves for  The A of K is thus the parameter that characterizes the
wa(r’). One resorts to a numerical solution where the distri-sensitivity of the reconstructéd, to the variations irk and
butions of bothu,(r') andj,(rs) are represented by discrete § . The variation ik comes from the model approximation,
sets of numbers. In our case the medium is represent@d by jnc|uding the errors in the boundary conditions, the discreti-

discrete pixels. The centers of these pixels form, for exyaiion of the original integral equation, and the actual nu-
ample, a square lattice as an image reconstruction grid,

() are measured at selectsti points along the edge of merical calculation. The variation i, comes from the finite

. . ; _ signal-to-noise ratio in the flux measurements.
:ir:)enmedlum. As a result, EE) is reduced to a matrix equa The condition numberA;. depends on choices of

illumination-detection arrangements and reconstruction
N grids. Optimizing these choices to reduce the condition num-
(in)p= > Kpg(ia)g (7a  ber and in turn to achieve the best image resolution is the
q=1 goal of this paper.
) ] ] It is noteworthy that the sensitivity of the image recon-
or, in matrix equation form, struction to the errors in the data and in the computation is
_ ubiquitous in all forms of diffuse-photon computed tomog-
In=KLa, (7b)  raphy. Such a sensitivity has not been analyzed systemati-
cally and quantitatively.
with P=1,2,... M. Here (u,)q is the optical absorption
coefficient at the center of thgth pixel. (j,,), is the normal D. Regularization
component of the flux emerging at tip¢h point (r¢), along
the edgeK, is the product ofK((r),;r") with an appro-
priate area elemertx Ay. Since the matrixX in Eq. (7b) is
of orderM X N and is usually not a square matfis will be

NCEO']_/(TN. (9)

Because of the high sensitivity to finite numerical preci-
sion and accuracy iK and in the measured flu,, a direct
application of Eq{(8) usually yields images that are plagued

clear shortly, solving Eq.(7b) for %, can be done by the by erroneous backgrounds, including artifacts. In reality,

standard method cfingular value decompositiof6VD) of such a hig.h sensitivity is contained by seeking an approxi-
K [19,20. As described by Presat al. [20], a rectangular mate solution to Eq(7b) through, for example, the method

matrix K can be decomposed into a product of a column-(?f regularizatior{25,26. The Iatt_er referg to maki'ng assump-
orthogonal matrixU of order M XN, a positive-definite di- tions about the expected solution and introducaagitional
agonal matrixW of orderNx N, and the inverse of an or- constraining parameters in the reconstruction that hopefully

thogonal matrixV of order NXN, namely, K=UWV 1 yields a reasonable, approximate solution. The SVD ap-
From Eq.(7b) or T, — UWV 1% ;/ve find ' ' proach enables one to apply the regularization in a controlled
. n: Maa

and quantified way.

- The process of regularization introduces a form of “spa-
Ra=VW U™, (8 tial” filtering such that the contribution from small diagonal
elements in the matrixV is reduced or eliminated. We use
the zeroth-order regularization of Tikhon¢25,26], which

_ defines a regularized solutich!®) as that minimizes the
It is well known that Eq.(6) has the form of a Fredholm f,ctional

integral equation of the first kind where the kernel function
K(rg;r’) is strongly smoothing[24]. As a Lesult, large a?| T2+ K@% —T 0% (10)
changes irn, are mapped into small changesjipnand con- . N _ . _
sequently small uncertainties j and numerical errors iK Herea is a pOSIt!Ve_ Con_stanw(“) is a d|a_gon_a| matrix of
produce large variations ., upon inversion. In other Order N2><N and itsith diagonal element is given by;(1
words, the matriX is ill conditioned[20]. The large sensi- + o?laf). pl? is given by[27]

tivity of the reconstructed, to the errors inj,, andK re-
flects on the insufficiency of the flux measurements for fully

characterizing the heterogeneity in the interior of a turbid () .
medium. The solutionu,™ compromises between the smoothness and

Since bothU andV are orthogonal matrices, the ill con- &ccuracy and approximates the original - solutigh,
ditioning of K is characterized by the diagonal matiX.  =VW U1}, . The smoothness is measured by the norm
Golub and van Loan showed that the upper limit of the rela-of the approximate solutiofiz{*|? and weighted by the
tive change in the norm g, is proportional to the sum of positive constan?. The accuracy is measured by the norm

C. Sensitivity of fi, to variations in K and J ,

B =V(W )T, (1D
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S B S N B B combination of an illumination-detection scheme and an im-
age reconstruction grid that minimizes the condition number
Nc. Even if the regularization may be needed after all,
may be chosen as close as possibler{pof the optimized

W. In the following numerical calculation, we address the
following questions based upon an analysis of the condition
number.

(1) Given a reconstruction grid, is there an optimal num-
ber of flux perturbation measurements beyond which the
quality of the image reconstruction is no longer improved?

(2) How do different illumination-detection schemes com-
pare with one another?

TETereer s e s e e e (3) What is the limit on the spatial resolution in a diffuse-

FIG. 2. Sketch of a square turbid medium that is uniformly photon computed tomography?. . . .
discretized intoN=36 pixels. The centers of the pixels form a 6 (4 Can and how do we optimize the choices of image

X6 square lattice. The outgoing diffuse photon flux is detected af€CcoNSstruction grids to obtain the best overall spatial resolu-
18 uniformly distributed points from each side. There are a total oftioN?
M=18x4=72 flux measurement points.

S & 5 0 5 & 0 4 6 T s S S S B s
¢ ¢ 0 ¢ o + 0 ¢ % 8 @ & 0 0 0 8 oo

Ill. DEPENDENCE OF AN ON THE NUMBER OF FLUX
of the residual defined dKﬁga) _’]’n|2_ Equation(11) effec- MEASUREMENTS, ILLUMINATION-DETECTION

tively imposes upon the matri/ a low-pass filter by replac- SCHEMES, AND CHOICES OF

ing o; with o;(1+ azlaiz). Upon inversion, such a filter RECONSTRUCTION GRIDS

smoothly cuts off the effects of those diagonal elements that Our numerical calculation is performed on a square turbid
are less tham. If @ is much smaller than the smallest diag- medium in two dimensions. In our coordinate system, the
onal elementry, the regularized solution will be very close medium occupies a region defined by=@<L and O<y

to the original solution. Ife is close to or large than the <| . As illustrated in Fig. 1, we illuminate one side of the
largest elementr;, the regularized solution no longer re- medium uniformly and detect the flux that emerges from the
sembles the original solution. A regularized solutififf" opposite side. Specifically, let the sidexat L be illuminated
has a reduced sensitivity to the uncertainties in the kernekith an incident photon fluX;,.. The unperturbed diffuse
and in the flux measurements at the expense of spatial resphoton density inside the medium is given by

lution and fidelity of the reconstructed image. .
Dy(x,y) = Lind s 4 sinmary/L)sinh(marx/L)
ot%Y D /m=T3s.. mar sinh(mr)

(12

E. Issues at hand

Given the precision and accuracy in the flux measurement
and in the kernel, a sensible approach is to seek an optimaind the Green function is given by

L ” 2 sinmary/L)sin(mary’/L)sinn(max_ /L)sinf mar(L —Xx<)/L]
G(xyix'y )= > ,

=1 mar sinh(mar) (13

wherex_(x-) refers to the lessdigreatey of x andx’. Us-  points uniformly distributed along the sides of the medium.
ing Eq. (5), ua(x',y’) is mapped onto the normal compo- Our detection scheme and the image reconstruction grid are
nent of the diffuse photon flux perturbatigp(x=0)y) that illustrated in Fig. 2 where optical absorption coefficients at
emerges from the opposite sidexat 0. We repeat the pro- centers ofN=236 pixels are to be determined from the flux
cedure for each of the other three sides and obtain thregerturbation obtained aM =72 points uniformly along
additional equations forj,(x=L,y), jn,(X,y=0), and theedge of the medium. Using Eqg})—(7) together with
in(x,y=L) as functions ofu,(x',y’). Egs.(12) and(13), we compute the matriK and the condi-

To proceed with the numerical computation, we uni-tion number[20,21].
formly discretize the interior of the square turbid medium
into N=nXn pixels. The centers of these pixels form a
square-lattice reconstruction grid. The discrete set of the op-
tical absorption coefficientgs, at these grid points is to be We ask the following question: Is it best to use as many
computed from the diffuse photon flux perturbation measurediffuse photon flux perturbation data as possible? This is
ments. Withouta priori knowledge ofu,(x’,y’), it is sen-  important as for a given reconstruction grid using more flux
sible to make use of the flux perturbation data takeMat data involves a longer data acquisition time and leads to a

A. Optimal number of flux perturbation measurements
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FIG. 3. Condition number\ versus the number of diffuse FIG. 4. Condition numberVe versus the number of diffuse

photon flux perturbation measurements for a square-lattice recorphoton flux perturbation data as illustrated in Fig. 2. Solid squares:
struction grid with 36 grid points as shown in Fig. 2. The flux the data taken from the measurements made on two adjacent sides,
measurements are made at points evenly distributed along the fowfith one-half of the measurements from each side. Open circles: the
sides of the square turbid medium. data taken from the measurements made on two opposite sides, with
one-half of the measurements from each side. Open triangles: the

larger matrixK that takes a longer time to compute. It would data taken from the measurements made on three sides, with one-
be undesirable in real-time imaging applications. Given ahird of the measurements from each side. Solid circles: the data
reconstruction grid and errors in the matrix computation andaken from the measurements made on all four sides, with one-
in the flux perturbation measurements, whether the quality ofuarter of the measurements from each side.
the signal-to-noise ratio of the reconstrucfegis improved
by increasing the number of the flux measurements is deter-
mined by whethe\ is further reduced. There have been numerous studies of diffuse-photon com-

In Fig. 3, we displayN versus the number of the flux puted tomography where various source-detector configura-
perturbation measurements fo¢f=36 reconstruction grid tions or illumination-detection arrangements were used
points. The data are taken from all four sides. We first find6,11,12,14. We show that the optimization of illumination-
that if the number of measuremenits, equals the number of detection arrangements can be made quantitatively through
reconstruction grid pointsy, then . is prohibitively large, the evaluation of\ .
indicating that the matriXX is indeed badly conditioned so Our analysis is again performed on a square turbid me-
that N flux perturbation measurements are grossly insuffi-dium as illustrated in Fig. 1. The medium is uniformly dis-
cient to reconstruciN optical absorption coefficientsVe  cretized intoN=6Xx 6= 36 pixels as illustrated in Fig. 2. We
sharply decreases and levels off to an asymptotic value whestudy the following illumination-detection arrangement: one
the number of the flux measuremeMss roughlytwicethat  side of the medium is uniformly illuminated, and the outgo-
of the reconstruction grid pointd. A/ no longer changes ing diffuse photon flux is measured on the opposite side, as
significantly whenM =2N. We have performed the calcula- shown in Fig. 1. By repeating the procedure for each of the
tions for N=16, 25, 49, and 144; the findings remain the other three sides, we arrive at four sets of flux perturbation
same: (i) N is prohibitively large forM=N, and(ii) Nz  data. We ask the following questions{1) Will N settle to
sharply levels off forM=2N. Our calculations for three an asymptotic value if fewer than all four sets are us@l?
dimensions indicate that the sufficiencyMf~2N measure- How does the asymptotid/c change when more data sets
ments is also a good rule. are used rather than more data from the sam@)8et

This result indicates that for a given reconstruction grid In Fig. 4, we displayM¢ as a function of the number of
there exists an optimal number of diffuse photon flux perturthe flux measurements with the data taken fr@ntwo ad-
bation measurements beyond which one can no longer injacent sides(b) two opposite sidegg) three sides, ofd) all
prove the quality of the image. For a uniform reconstructionfour sides. We find thatV; always reaches an asymptotic
grid with N grid points, the optimal numbe¥ ,,; of flux  value when the number of the flux perturbation measure-
measurements is roughly twice the number of the grid pointsnents exceeds twice the number of the reconstruction grid
or Moy=2N. This is most important in applications where points, regardless of whether the data are taken from just
real-time imaging is desired. Excessive measurements do none, two, three, or all four sets. If we use the flux perturba-
improve the quality of the image and yet can drasticallytion data from only one side)¢ settles down to an ex-
lengthen the image acquisition and processing time. Even itremely large number, & The asymptotic\. improves
cases when the image acquisition time is not a limiting fac-dramatically when we use the data from more than one side.
tor, one is better off improving the precision of the flux mea-When we use the data taken from two sides that are adjacent
surements and the accuracy of the model than increasing the each other, the asymptotit; is reduced from 1% to
number of the flux measurements. 10" by 27 orders of magnitude. By using the data from two

B. Benefit of multiple illumination-detection arrangements
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sides that are opposite to each other, the asymptdgids 0 ————
reduced from 1% to 1 by 31 orders of magnitude. If we -

15
use the flux data taken from three sidd§; is reduced fur- 10 i
ther from 18 to 1. If we use the data from all four sides, o 113
N¢ drops to 3x 10%. % L
These findings underlie an early report by den Outer an.§ ~ 10'' -
co-workers and the experimental work by ourselpE3,15. § 10° L

These authors studied the transmitted diffuse photon§
through a slab of a homogeneous turbid medium with eR 107 |
pointlike absorbing object embedded inside. They found tha'"§ L
the diffuse photon flux perturbation that emerges froma surs 10" |

face shows the “shadow” of the object. The shadow be- 100 L

comes sharper and better defined as the object is broug L

close to the surface. As the object is moved away from the ot
surface, the shadow quickly becomes blurred, although th 0 50 100 150 200
center position of the shadow parallel to the surface plan Number of 2D reconstruction grid points

vaguely reproduces that of the pointlike object. When using

the flux perturbation data to reconstruct the position of the 1021
object, these authors found tha) the location of the object |
parallel to the surface plane could be reproduced fairly well 101
(2) however, the depth position of the object normal to the >
surface plane is reproduced reasonably welly when the
object isveryclose to the surface and poorly when the object
is away from the surface.

The findings of these authors was a manifestation of th¢
insufficiency of the flux data taken from only one surface to:
reconstruct the coordinates of the object. Similarly, in our
present simulation of a square turbid medium in two dimen- 10°
sions, the insufficiency of the flux perturbation data from (b))
only one side is quantitatively represented by an extremel 10° L R - N S
large N . By taking the flux perturbation data from the two 0 500 1000 1500 2000
opposite sides, the depth position near both sides is bett Number of 3D reconstruction grid points
determined and correspondingly: drops from 16° to 1¢°.

From the first findings of these authors, it is clear that FIG. 5. Asymptotic condition numbeX/; versus the number of
when the flux perturbation measurements from two adjacerigconstruction grid points for a fixed area of a square turbid me-
sides are used' the information to reconstruct bothxthad diUm.NC is obtained with the flux measurements made on all four
y coordinates of objects in our simulation should be more ofides_of the medium. The solid line is a fit t&/c=6
less sufficient. This is quantitatively manifested by the dra-<10 ' exp(3.8V*?), indicating the Ac increases exponentially
matic decrease i from 10 to 103 When we use the With the Ilngar densﬁy(mstegd of tht.a.aerlal densjtpf the recon-
data from three sides or all four sides, the information jsStruction grid. (b) Asymptotic condition number\c versus the

' number of reconstruction grid points for a fixed volume of a cubic

further improved for image reconstruction of all regions in aturbid medium.N¢ is obtained with the diffuse photon flux mea-

quuare turbid medium. This is manifested by a further reduCéurements made on all four sides of the medium when their respec-
tion of Az down to 3x 10°.

. . . . . . tive opposite side surfaces are uniformly illuminated. The solid line
At this point, it seems operationally simple to illuminate i5 o it to Ne=7.2x10"*exp(2.84¥3), again indicating that\V,

Just one S'de_ and measure the fI_ux perturbat_lon from th%creases exponentially with the linear densitystead of the vol-

other three sides. The drawback is that the diffuse photog,e density of the reconstruction grid.

flux emerging from the two sides that are adjacent to the

illuminated side varies in strength over orders of magnltudetion grids. One of the important questions to ask is, what is

Ir:alrsnign‘rf;une tgt %zfr:aéi ddsettgcetgrssurv(\a/l? ua:]iLaorr?:'l ekr:iOl;gQi c:])gl'ghe limit of the image resolution given an acceptable signal-
: ge a ' Yy NIgN SIgNal, hoise ratio of the image field? In other words, what deter-
to-noise ratio in the flux perturbation measurements.

The result displaved in Fia. 4 in essence aoplies to Otherrnines the density limit of the image reconstruction grid
piay g bp .Ei:ven an interrogated volume of a turbid medium? Assuming

108

ber N,

ition num
_
[oe]
o

cond,

geometries of turbid media. Such a systematic analysis i at the errors in the flux measurement andirare already

essential in assessing the eﬁect!veqess and eff.|c:|en.cy c_>f di; inimized, the achievable grid point density is determined
ferent source-detector combinations or |IIum|nat|on-Only by A
C .

detection arrangements. In Fig. 5a), we display the asymptotigV; versus the
number of grid pointsN for square-lattice reconstruction
grids as illustrated in Fig. 2. Het® is calculated with the
flux data taken from all four sides. We find ths increases
Once the illumination-detection arrangement is optimized gxponentially with thelinear density of the reconstruction
the asymptoticV varies only with the choice of reconstruc- grid. The solid line in Fig. &) is a fit to N;=6

C. Dependence of\N on the prescribed spatial resolution or
the number of reconstruction grid points
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X 10”7 exp(3.8NY?). This feature seems to be a general
characteristic of a diffuse-photon computed tomography. In

Fig. 5b), we display the asymptotic condition number of o it
matrices that relate a discrete set of optical absorption coef| it
ficients at N reconstruction grid points uniformly distributed (a) 2.7x104 (b) 3.4x104 (c) 110x104 (d) 5200x104

in a cubic volume of a turbid medium to a sufficiently large
set of flux measurements made at four side surfaces of thi Hi:i:: T
medium. In this three-dimension&éD) case, we uniformly H T H -
illuminate one side surface and detect the transmitted diffuse 1 ! ﬁ
photons that emerge from the opposite side surface. Simila HHH THEER
to the 2D case\ increases exponentially with the linear (e)5.5x1011 (f) 51x10% (g) 2.1x106 (h) 11x104
density of the reconstruction grid and the data are fit well to ) N )
Ne=7.2x10"*exp(2.8%9). This means that the quality or __"'G: 6. Asymptotic condition numbek/c versus uniform and
the signal-to-noise ratio of the image field deteriorates eXpor_wnqnlform reconstruction grids for a fixed area of a square turbid
. . . . - .+ medium.
nentially with thelinear density of the reconstruction grid
(instead of the aerial or volume dengitit once again shows
the ill conditioning of the kernel functioK(rs;r’) and the  Pphoton flux emerging from a boundary surface contains more
impossibility to achieve an arbitrarily high spatial resolution. information about objects near the boundary than objects far
We are presently investigating the physical or mathematicakway from it. It is then reasonable that the objects in the near
origins of theN'® dependence ol with d being the di- boundary region should be imaged with a higher spatial reso-
mensionality of the problem by analyzing the asymptotic bedution than those in the interior. This means that we should
havior of the kernel functiolK(rg;r’). It is noteworthy that be able to achieve the besterall image resolution by using
to resolve heterogeneous structures with a uniform resolutiononuniformreconstruction grids with higher density near the
of 0.3 cm throughout a 6 cm6 cmx 6 cm volume of a tur-  boundary and lower density in the middle of the medium.
bid medium, one would need to hake=8000 grid points.  This proposition, if true, should be reflected by the depen-
The correspondingVc would be 1.5<1G?%. In the next sec- dence of\ on where the high resolution is demanded. For
tion, we will show that by USing nonuniform reconstruction examp|e, we may expedtfc to increase s|ow|y when we
grids, one can reduc&/c dramatically and achieve the best jncrease the grid density near the boundary and rapidly when

overall spatial resolution in a diffuse photon tomography.ye attempt to increase the density near the center of the
We should note that using awverly fine reconstruction grid 1 edium. This is indeed the case.

together with the regularization as described in Sec. Il does |, Fig. 6, we show a set of nonuniform reconstruction
not improve theoverallimage resolution. This is because the ’

regularization acts as a low-pass “spatial” filter. : : . : )
The exponential increase ik with the linear density of a§ymptot|cNC. Whep weunlformly increase the grld den
. e d sity by a factor of 2, i.e., from Fig.(@) directly to Fig. &e),
a reconstruction grid originates from the fact that the smgulag\/ umDs from 2. % 10% 10 5.5¢ 10 by more than 7 orders
values of the kernel functioi(rg;r’) in Eq. (6) form an ofcrjnua E't de It.'s diffic It. from s Zh 2 uniform densit
infinite sequence whose limit is zero. As the grid density han 9 tl ul 'rn v:/h rl |Wu hay lfd th uril for d t:l?ln
increases, the matrix equatiérb) becomes a better approxi- change 1o lea ere we nave pa € price for doubling
mation of the original integral equatidiq. (6)]. As a result, the resolution. The answer lies in the results displayed from

the smallest singular values quickly approach zero, Causing'g' 6@ to 6(c); n eac_h case, thhanea_r de_r_13|ty of the grid
N to approach infinity. oints in a small, identically sized regiontrgpled, while the

Given the errors in the flux perturbation data andKin center of this small region is shifted progressively toward the

and given an acceptable signal-to-noise ratio of a compute'@te.nor' The total number of reconstruction grid points re-
tomographic image, one may determine the number of recor{ﬂi'?}? i-gzﬂzti?m{eﬁ ;]Nies Cr?gaf?ﬁg E?)Ldr:)(/jacrh?ri]tgezirl/(rl]e?n-
struction grid points or the grid point density from Figab 9 y reg y: 1t g y

or 5(b). Such a procedure for determining the achievabl<Creases as the region moves towards the middle of the me-

. L . ium. It increases by more than 3 orders of magnitude as the
image resolution is generally applicable to other forms ofd. . o X .
diffuse-photon computed tomography. high-density region is near the center of the medium. This

In the calculation that will be described in Sec. IV and in result shows that theverall image resolutiorcan be opti-

our recent experimental investigation, we find that a spatiaﬁmuzr?i?o% usr;ggFai Z?gug)'fgﬁglv\rse(;?]nzggﬁ]“?g gfr |gurcartrr£rr]_than
resolution of 2-3 mm can be achieved with simulated and* gnd. g P

experimentaflux perturbation data when imaging objects in ?hnéf%r;;if; oor;s;[rr]léc?ggoﬁgt?gctivzhrzcgri\:jvee\?:r\;/(\a/vﬁg?edwg;?dthe
a 6 cmx 6 cmx 6 cm volume of a turbid mediuri22]. boundary(occupying more than 50% of the total reconstruc-

tion area while reducing the density near the center by 30%.
Here A increases only by a factor of 20. Figurégh is

In our investigation of the effect of regularization, we find another example where the total number of the grid points
that for a uniform reconstruction grid, the image resolutionremains the same as that in Figebexcept the grid density
of objects far away from the boundary of a turbid medium isprogressively decreases from the boundary to the cehfer.
reduced or worsened the most, while that of objects near this only 2.1x 10°, a factor of 2< 10° smaller than that for Fig.
boundary is much less affected. This hints that the diffuses(e).

T
=
!

I
|

grids and two uniform grids with the corresponding

D. Benefit of using nonuniform reconstruction grids
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In practical imaging, an initial image reconstruction can
be performed on a coarse, uniform grid. If the heterogeneity
is found localized in one or a few small regions, one can _— nferrogated

. . . volume

perform the second reconstruction computation on a nonuni- —
form grid with higher grid density only in theeducedre- —
gions where objects are located. In some cases, we can even > :L ]
use a truncated grid like the one shown in Figh)6f the i
optical absorption coefficient is constant outside the interro- -_— b
gated regionNc increases only slightly from that for Fig. — interrogated
6(a) even when the grid density near the center of the me- — surface section
dium is quadrupled.

uniform long square column

IV. DIFFUSE-PHOTON COMPUTED TOMOGRAPHY illumination  of turbid medium
IN THREE DIMENSIONS FIG. 7. Sketch of an illumination-detection arrangement for a

- . . . continuous-wave diffuse photon computed tomography. The turbid
To test some of the findings in the preceding sections, Wehedium is a long column with a square cross section of 6 cm

have_perfor_med a numerical study in Wh'c_h we image ab~ 6 cm. One face of the medium is uniformly illuminated with a
sorptive objects in a 3D volume of a turbid medium. For coniinuous-wave light. The normal component of the diffuse pho-
convenience rather than necessity, we assume that the turbigh fiux that emerges from a 6 o6 cm surface section on the
medium under consideration is homogeneous andab-  gpposite side of the medium is detected with an imaging optics and
sorbing and it has a reduced scattering coefficigm{  a charge coupled devicécCD) detector. Four such 6 crb cm
=1/l,=17 cm L. It is contained in a square column that is surface sections enclose a 6 i cmx 6 cm volume section that
infinitely extended along axis and has a width.=6 cm s to be imaged.

alongx andy axes. The objects to be imaged consist of three
letter-shaped objects “D,” “C,” and “U.” They are 1 cm in
overall size and have a width of 0.24 cm. They are distrib-
uted in the medium over a range of 6 cm alangxis. The
planes of these letter-shaped objects are parallel tocthe
plane. We choose the origin of tlzeaxis so that the objects
are confined in a volume section between0 and 6 cm.
The centers of D, C, and U are ft’, y', z'}={2.88cm,
3.12 cm, 4.20 cry {4.08 cm, 1.68 cm, 2.28 gnand{1.68
cm, 4.08 cm, 2.28 chrespectively. Our objective is to de-
termine the achievable spatial resolution of our tomographic
algorithm. For this purpose we choose the absorption coeffi-
cients of these letter-shaped objects togge=1.3cm L.

In our calculation, we uniformly “illuminate” one side
surface of the medium. Our detection strategy is to only
“measure” the diffuse photon flux emerging from a
6 cmx6 cm section on the opposite surface betweer)
and 6 cm or the surface of the volume section between
=0 and 6 cm. In Fig. 7 we show the sketch of the
illumination-detection arrangement. The 6 x@cm surface
section is uniformly divided into 28 35= 805 pixels that are
of rectangular shape with the long side along trexis. To
obtain the simulated flux perturbation data for image recon-
struction, we solve the forward problem and evaluate the flux x (cm)
emerging from the centers of the 805 pixels. We first calcu- _
late the flux in the absence of the objects and then the flux in G- 8- Contour plots of the perturbed flux=Jno + ], normal-

ized by the unperturbed flud,, from four 6 cmx6 cm surface

the presence of the objects, and finally we take the dlﬁerencséections of a 6 c;ra 6 cmx 6 cm volume section that contains three

between the two as the flux perturbation data. We repeat tr\gtter sha . o
. S . -shaped objects. The volume section is a part of a long, square
|IIum|nat|on-detect_|on sequence for each of the other thre%olumn of turbid medium. The difference between two successive
surfaces and obt_am a total M:805X4:3220 flux pertur- contours is 0.1(a) The normalized diffuse photon flux emerging
bation data. In Fig. 8, we display the calculated flux pertur.,m the surface section a3t=0 when the opposite surface gt
bation from the four surface sections when the correspondind. g ¢y is iluminated. (b) The normalized diffuse photon flux
opposite surface is uniformly illuminated. The displayed datamerging from the surface section a6 cm when the opposite
are normalized by the flux taken in the absence of the Obface atx=0 is illuminated.(c) The normalized diffuse photon flux
jects. It is obvious that there are objects inside the mediumemerging from the surface section yat 6 cm when the opposite
The question is, can one pin down the center locations of theace aty=0 is illuminated.(d) The normalized diffuse photon flux
objects and resolve their structures in original details? emerging from the surface sectionxat 0 when the opposite face at
To examine whether our tomographic algorithm enablex=6 cm is illuminated.

z (cm)
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us to achieve high spatial resolution, we adopt a nonuniform
grid as illustrated by Fig. ®). Knowing that the objects are
localized only in thre€1.2 cm?® volume sections, it is only
necessary for us to image the distribution of optical absorp-
tion coefficients in these three regions. We do so by dis-
cretizing the thre¢l.2 cm?® volume sections that contain the
three letter-shaped objects, each int& @< 6=216 cubic
voxels The region containing the object D starts{at, y’,
z'}={2.5cm, 2.5 cm, 3.72 chrand ends af3.7 cm, 3.7cm,
4.92 cnj. The region containing the object C starts{at,

y', Z’}={2.4cm, 1.2 cm, 1.8 cinand ends af3.6 cm, 2.4
cm, 3.0 cn). The region containing the object U startgat,

y', Z’}={1.2cm, 2.4 cm, 1.8 cinand ends af2.4 cm, 3.6
cm, 3.0 cn. From the three regions of interest, we have total
N =648 optical absorption coefficients to determine from the
flux perturbation measurements. It is easy to find the Green
functionG(x,y,z;x’,y’,z") and the unperturbed diffuse pho-
ton density®y(x,y) in the present geometry. From an inte-
gral equation similar to Eq5), we arrive at a 3228648
matrix K that relates 648 optical absorption coefficients to
3220 flux perturbation data. We compute the optical absorp-
tion coefficientsu, by performing an inversion df with the
method of SVD.

The condition number of the 322048 matrix K is
found to beNc=4x10". If 648 is uniformly distributed
over the 6 cnx6 cmx6 cm volume instead of only over the
three localized regions\/¢ is reduced to X 10’ according
to Fig. 5b). To see how well the distribution of optical ab-
sorption coefficientgan be resolved and how the round-off
errors in computing the flux perturbation data and the matrix
K affect the image quality, we performed two image calcu-
lations: one is done witkingle-machine precisiotihat nomi-
nally has a fractional accuracy of 19 in representing the
floating-point numbers; the other is done witdouble-
machine precisiorthat nominally has a fractional accuracy
of 10716,

In Figs. 9 and 10, we display 2D contour plots of the
reconstructedptical absorption coefficients in they plane
that are obtained with double-machine precision. Figure 9
shows three consecutive image planes that are separated
along thez axis by 0.24 cm fronz=3.96 to 4.44 cm, Figure
10 shows three consecutixey planes that are also separated
along thez axis by 0.24 cm fronz=2.04 to 2.52 cm. The
best reconstruction is obtaineitrectly from Eq. (8) without
any regularization on the matrk or W. The distribution of
the optical absorption coefficients that characterizes all three
letter-shaped objects isompletelyrestored. In fact, the re- x (cm)
constructed values agree with the set values of
=1.3cm ! within a few parts in 18, At grid points where

optical absorption coefficients are set to zero in the forward¢@ xtinction coefficients in threey planes fromz=3.96t0 4.44

problem, the reconstructed values are in the range 0<1‘.m. The planes are separated by 0.24 cm. The difference in optical

10’60mi1 or a few millionths ofu,=1.3cr* extinction coefficients between two successive contours is 0.26
=1 .

. . cm tor 1/5 of u,=1.3 cn . The image reconstruction calculation
In Figs. 11 and_ 12, we dls_play 2D _cc_)ntour plot_s of th_eis performed vﬁ?h double-machine p?ecisic(a) z=3.96cm,(b) z
reconstructed optical absorption coefficients obtained with_, ,, cm. (c) z=4.44 cm.
the single-machine precision. In this case we have effectively
added accumulative machine round-off errors to the calculaization, the reconstructed image is dominated by artifacts
tion. According to Golub and van Loan, the error in the produced by the round-off errors. When we apply the zeroth-
reconstructed image has a contribution that may be as largerder regularization to the inversion by using E¢K)) and
as the accumulative round-off errors multiplied by the con-(11), the original distribution of the optical extinction coef-
dition number. We find it to be qualitatively the case here. Ifficient is partially restored. The best images as shown in

the reconstruction computation is done without any regularFigs. 11 and 12 are obtained with a regularization parameter
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FIG. 9. Two-dimensional contour plots of the reconstructed op-
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FIG. 10. Two-dimensional contour plots of the reconstructed F|G. 11. Two-dimensional contour plots of the reconstructed
optical extinction coefficients in three-y planes fromz=2.04 to  optical extinction coefficients in threey planes fromz=3.96 to
2.52 cm. The planes are separated by 0.24 cm. The difference in44 cm. The planes are separated by 0.24 cm. The difference in
optical extinction coefficients between two successive contours igptical extinction coefficients between two successive contours is
0.26 cmi * or 1/5 of u,=1.3cni ™. The image reconstruction cal- 0.26 cn® or 1/5 of u,=1.3cm % The image calculation is per-
culation is performed withdouble-machine precision(a) z formed with single-machine precision(a) z=3.96cm. (b) z
=2.04cm.(b) z=2.28cm,(c) z=2.52cm. =4.20cm.(c) z=4.44 cm.

a=7x10"%. The position and shape of all three objects areregularization. The broadening of the image are less than
again reproduced. The values gf, are reproduced within 0.24 cm for objects C and U, both of which are closer to the
10% of the original values for letters C and U, and only boundary of the medium. For object D, which is located in

within 40% of the original value for letter D. Most notice- the middle of the investigated volume section, the broaden-
ably, the spatial resolution is deteriorated as a result of théng increases to 0.5 cm. This shows that the regularization
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bation datd22]. In the experiment we imaged a 30-mm-long
and 2.5-mm-diam capillary tube in a column of a turbid me-
dium. The wall thickness of the capillary tube is 0.4 mm.
The column has a square cross section of X&mem and is
filled with a 4% Intralipid emulsior(from Kabi Pharmacia,
Clayton, NQ as the turbid medium. The reduced scattering
coefficient of the medium is measured to og=27 cm ! at
the He-Ne wavelength of 633 nm. As an absorbing object,
the capillary tube is filled with the same Intralipid emulsion
except we have added India Ink dye so that the optical ab-
sorption coefficient of the Intralipid emulsion in the tube is
1,=0.1cm L. This corresponds tp,/u.=0.0037, compa-
rable to u,/®s=0.0024 in normal human breast tissue at
780 nm[28]. Using experimentallymeasured flux and the
strategy described in this section, we were able to image the
capillary tube with a spatial resolution of 2.5 mm.

Our numerical calculation, supported by the results of our
recent experiment, shows that by properly choosing the
illumination-detection scheme and the reconstruction grid it
is indeedfeasibleto image objects in a 6 cHI6 cmMX6cm
volume of a turbid media with a spatial resolution as high as
2.4 mm.

Finally, we remark on the issue of the uniqueness of re-
constructed images as investigated in the present numerical
study and in the experimental study to be reported separately
[22]. Recently, Hoenders showed that, rigorously speaking,
the reconstructed image is not unique in any form of optical
tomography that is based on diffuse photon flux measure-
ments at the surface of an interrogated turbid medjigj.
There existgat least a class of object distributions that gen-
erate no detectable perturbation to the diffuse photon flux at
the surface. This may seem in contradiction to the fact that
many groups, including us, have already obtained reasonable
images of simple objects using various forms of diffuse pho-
ton optical tomography experimentally as well as numeri-
cally. The answer lies in the fact that the uniqueness of a
reconstructed image is determined by the property of the
kernel functionK(rg;r') in Eq. (6) and in the discretized
form by the condition number of the matri as defined in
Sec. Il.

As correctly pointed out by Hoendef29], a continuous
distribution of optical absorption coefficient,(r’) that
characterizes an object distribution in a turbid medicemn-
not be uniquely determined in its infinite detttirough Eqg.

(6) even with full knowledge of the diffuse photon flux
x (cm) jn(ro) that emerges from the surface of the medium. In the
framework of the present study, the nonuniquenessoof

I_:IG. 12_. T_W0-dime.n_sional_ contour plots of the reconStrUCtedtinuouslyreconstructed images qr,(r') is reflected by the
optical extinction coefficients in three-y planes fromz=2.0410 ¢4 that when the reconstruction grid is infinitely fine, the
2.52 cm. The planes are separated by 0.24 cm. The difference |0y gition number of the resultant matixequals to infinity.
optical g)itlnctlon coefficients lzetween _two successive cc_>ntours I%s clearly shown in Fig. 5, the condition number diverges
0.26 cmi or 1/5 of u,=1.3cm . The image calculation is per- - . ’ . . .
formed with single-machine precision(a) z=2.04cm. (b) z _exponentlally as the Ilnea_r density O.f the rec_:orjstructlon gr_ld
—2.28cm. () z=2.52 cm. increases. It means that in the continuous limit there are in-

finite solutions that solve Eq6). As also correctly demon-

has the largest effect on the image resolution of objects in th&trated by many groups, including us, a finite, discrete distri-

interior of the medium and has the least effect on that ofution —of ~optical —absorption coefficientzz, that
objects near the boundary. approximately characterizes an object distributiadan be

We have recently performed an experiment to test ouﬂ”iqueb’ determinedrom a finite set of diffuse photon flux
imaging algorithm withexperimentally measurgtlix pertur-  j, measured at the surface of a turbid medium. This is re-
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flected by the fact that the condition number of a finite ma-puted tomography of a turbid medium. The tomography is
trix K is finite. based upon the measurement of the diffusely scattered pho-
By approximating a continuous distribution of objects tons that emerge from the surface of the medium. Such an
with a finite, discrete distribution, one automatically rejectsanalysis enables us to quantitatively compare the effective-
those solutionginfinite in numbey of Eqg. (6) that have spa- ness of various illumination-detection arrangements and the
tial frequencies larger than the inverse of the grid point separeconstruction algorithméncluding reconstruction grid se-
ration of the discrete distribution. The relevant questions tqgctior). Since the condition numbe\i) of the matrixK
ask are(1) whether such a discrete distribution of optical (obtained from a perturbation analysis in essence the am-

absorption coefficienf, has an adequate spatial resolution yigeation factor of the errors in the surface flux measure-

and sensitivity for the realistic purpose of the tomography?]ent and the model description of the diffuse photons, and in
h

?"E?n(izn)a‘;\i’g]ﬁ_tggtregfog'Sggﬁ'éi?]t;igns;hs;e sgdghﬁnizggetg e image reconstruction computation, we find that the opti-
: X o P {nization of a diffuse-photon computed tomography is
give the best overall resolution and sensitivity. In our present . Lo R
chievable through a systematic minimization @ . Our

numerical study, we have precisely addressed these two i&en findi the followingtl) it | dsuf
sues. For potential applications in early breast cancer detef_qa'n indings are the following(1) it is necessanand suf-

tion and optically guided biopsy of breast tumors, a spatia |c!entto make the number of surfgce flux measurem_ents pe
resolution of 2—3 mm would make the optical tomopgraphicticé @ many as the number of image reconstruction grid
imaging technique competitive to x-ray-based imaging techPints; (2) multiple illumination-detection arrangements are
niques. We have demonstrated here that such a resolution #gcessary for minimizing the condition number and the mini-
indeed achievable and one can use the condition number &jzation can be quantified3) given a required signal-to-
the measure of the uniqueness and the stability of a recoroise ratio for the image, one can achieve the best overall
structed image against the errors in model descriptiopn  image resolution throughout the interrogated medium by us-
cluding computational errpand in diffuse photon flux mea- ing nonuniform reconstruction grids; aitd) the experimen-
surements. Most importantly, we have also shown thatal flux perturbation data have a sufficiently high signal-to-
experimentally measure¢rather than computer-simulated noise ratio to enable a continuous-wave diffuse photon
diffuse photon flux has a sufficiently high signal-to-noisetomography of objects in a 6 ci cmx6 cm turbid medium
ratio to yield stable images of objects in a turbid mediumwith a spatial resolution of 2.4 mm.
with a spatial resolution of 2.4 mm and a sensitivity adequate
for breast cancer detectid@2].
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