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Fast and stable method for simulating quantum electron dynamics
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A fast and stable method is formulated to compute the time evolution of a wave function by numerically
solving the time-dependent Schiinger equation. This method is a real-space—real-time evolution method
implemented by several computational techniques such as Suzuki’'s exponential product, Cayley’s form, the
finite differential method, and an operator named adhesive operator. This method conserves the norm of the
wave function, manages periodic conditions and adaptive mesh refinement technique, and is suitable for
vector- and parallel-type supercomputers. Applying this method to some simple electron dynamics, we con-
firmed the efficiency and accuracy of the method for simulating fast time-dependent quantum phenomena.

PACS numbgs): 02.70—-c, 03.67.Lx, 42.65-k, 42.50—p

[. INTRODUCTION odic conditions and parallelization. We have avoided these
problems by introducing an operator named adhesive opera-
There are many computational method of solving the TD-tor. This adhesive operator is also useful for an adaptive
Schralinger equation numerically. Conventionally, a wave mesh refinement technique.
function has been represented as a linear combination of Our method inherits many advantages from many ordi-
plane waves or atomic orbitals. However, these representfary methods, and yet more improved in many aspects. With
tions entail high computational cost to calculate the matrixthese advantages, this method will be useful for simulating
elements for these bases. The plane wave bases set is hfge-scale and long-term quantum electron dynamics from
suitable for localized orbitals, and the atomic orbital basedirst principles.
set is not suitable for spreading waves. Moreover, they are In Sec. I, we formulate the new method step by step. In
not suitable for parallelization, since the calculation of ma-Sec. lll, we apply it to some simulations of electron dynam-
trix elements requires massive data transmission among pré=s and demonstrate its efficiency. In Sec. IV, we draw some
Cessors. conclusions.
To overcome those problems, some numerical methods
adopted real space representafibtr4]. In those methods, a Il. FORMULATION
wave function is descritized by grid points in real space, and
with them some dynamic electron phenomena were simu- In this section, we formulate the new method step by step
lated successfully6—8]. from the simplest case to complicated cases. Throughout this
Among these real space methods, a method called Caypaper, we use the atomic unfis=1, m=1, e=1.
ley’s form or Crank-Nicholson scheme is known to be espe-
cially useful for one-dimensional closed systems because this
method conserves the norm of the wave function exactly and ] ] ] )
the simulation is rather stable and accurate even in a long For the first step, we consider a one-dimensional closed
time slice. These characteristics are very attractive for simuSyStem where an electron moves freely but never leaks out of
lations over a long time span. Unfortunately, this method idhe system. The TD-Schidnger equation of this system is
not suitable for two- or three-dimensional systems. ThisSimMPly given as
problem is fatal for physically meaningful systems. Though P
there are many other computational methods that can man- i 4
age two- or three-dimensional systems, these methods also ot
have disadvantages.
In the present work, we have overcome the problems as- The solution of Eq(1) is analytically given by an expo-
sociated with Cayley’s form and have formulated a newnential operator as
computational method which is more efficient, more adapt-
able, and more attractive than any other ordinary methods. In 52
our method, all computations are performed in real space so z/;(x,t+At)=ex;{iAt—x
there is no need of using Fourier transform. The time evolu- 2
tion operator in our method is exactly unitary by using Cay-
ley’s form and Suzuki’'s exponential product so that the normwhereAt is a small time slice. By using Eq@2) repeatedly,
of the wave function is conserved during the time evolution.the time evolution of the wave function is obtained.
Stability and accuracy are improved by Cayley’s form so we An approximation is utilized to make a concrete form of
can use a longer time slice than those of the other methodhe exponential operator. We have to be careful not to de-
Cayley’s form is a kind of implicit methods, this is the key to stroy the unitarity of the time evolution operator, otherwise
the stability, but implicit methods are not suitable for peri-the wave function rapidly diverges. We adopted Cayley’s

A. One-dimensional closed free system
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== 5 ¢x1). N

p(x,1), )

1063-651X/2000/6@)/291410)/$15.00 PRE 62 2914 ©2000 The American Physical Society



PRE 62 FAST AND STABLE METHOD FOR SIMULATING ... 2915

form because it is unconditionally stable and accurate Hereb; andu; are auxiliary vectors defined as below
enough. Cayley’s form is a fractional approximation of the

exponential operator given by bi(t) =i -1 (1) +Bi() + 1 1(1), 9
92 1+iAté4 u=1(A—ui_;), Uue=0. 10
exp{iAt—X - : )2( . (3) i ( i 1) 0 ( )

2] 1-iAtdd4

The auxiliary vectory; is determined in advance, and it is

treated as a constant vector in Ef0). 26N floating opera-
dtions are heeded to solve E(.0); hereN is the number of

the grid points in the system, about twice that of the Euler

method. Unlike the Euler method, it exactly conserves the

norm because the matrices in E6) are unitary. Moreover,
y(x,t). (4  the expected energy is conserved because the time evolution

operator commutes with the Hamiltonian in this case.

It is second-order accurate in time. By substituting B).
for Eq. (2) and moving the denominator onto the left-han
side, the following basic equation is obtained:

2

At
1—-1—

X .
2 E 1+i

2
X
2

l//(X,t‘l‘At)Z ?
This is identical with the well-known Crank-Nicholson ] )
scheme. The wave function is descritized by grid points in B. Three-dimensional closed free system

real space as It is easy to extend this technique to a three-dimensional
_ » o system. The formal solution of the TD-Schlinger equation
i)=9(xi, 1), x=iAx, i=0,...N=1, (39 ;3 three-dimensional system is given by an exponential of

. . . . th f th d diff tial t
whereAx is the span of the grid points. We approximate the © sum ot fhree second differential operators as

spatial differential operator by the finite difference method

(FDM). Then Eq.(4) becomes a simultaneous linear equa- ¢(r,t+At)=ex+At
tion for the vector quantityy,(t+At). For example, in a
system with six grid points, Eq4) is approximated in the
following way:

(95 2 2

y z
— 4+ 24+ =
2 2 2

p(r,y).  (11)

These differential operators in Eqll) are commutable
among each other, so the exponential operator is exactly de-

A -1 0 0 1T iyt +At) composed into a product of three exponential operators:
-1 A =1 0 || ¢(t+At) & . (9)2, 92
0 -1 A —1||ygstran Y(r t+At)=ex |At§ ex IAIE ex |At§ P(r,t).
0 0 —1 A || ut+AD) (12)
B 1 0 O0[uy(t) Each exponential operator is approximated by Cayley’s
1 B 1 0| yt) o form as
10 1 B 1|t (A 1+iAtaZ/4 1+i At /4 1+iAtas/4 )
rt+At)= r,t).
0 0 1 BJ[ya®) v 1-iAtog/4 1-iAtd;/4 1—iAta§/4¢l
13
In the above, 13
) 5 78N floating operations are required to compute EB),
A= — 4i A_X+2 B=_4i A_x_2 7) whereN is the total number of grid points in the system. The
At ' At norm and energy are conserved exactly.

By the way, a conventional method, Peaceman-Rachfold
and ¢, and ¢ are fixed at zero due to the boundary condi-method[1,8], utilizes a similar approximation appearing in
tion. Eqg. (13), which is a kind of alternating direction implicit

It is easy to solve this simultaneous linear equation bemethod(ADI method. However, by using exponential prod-
cause the matrix appearing on the left-hand side is easil\ct, we have found that there is no need of ADI. This fact

decomposed into the LU form as makes the programming code simpler and it runs faster.
-1
Uz 01 0 01rt —uy 0 0 C. Static potential
1w 0 ojjo 1 -u O Next we consider a system subjected to a static external
0o -1 u;l 0||0O O 1 —u; scalar fieldV(r). The TD-Schrdinger equation and its for-
0 0o -1 uytjlo o 0 1 mal solution in this system are as follows:

Gy (t+ADT [ by(t) 2 ={— é+V(r) P(r 1), (14)

sat+A0 || bo(t) o
Pa(t+AL) | | bs(t) |
ha(t+AL) by(t)

(8)
zp(r,t+At)=exr{iAt%—iAtV(r)}zﬂ(r,t). (15
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Olololo] [ ) Olololo The analytic solution of Eq.19) is given by a Dyson’s time
O101010| [ ) Olololo ordering operatoP as
0101010 | ) D000 A
t+At
Juioia) 8 ) ©OOd oloolo ¢(r,t+At)=Pexp[—if dt’[——+V(r,t’)Hzp(r,t).
|4 Kx Ky \% t 2

(20)
FIG. 1. The procedure for a two-dimensional closed system with
a static potential. Her® shows the operation of the exponential of ~ The theory of the decomposition of an exponential with
the potential, which changes the phase of the wave function at eadime ordering was derived by Suzuki2]. The result is

grid point. K, andK, show the operation of Cayley’s form along rather simple. For instance, the second-order decomposition
thex axis and they axis, respectively. They are computed indepen-js simply given by
dently by grid points, by rows, or by columns.

At At A
To cooperate with the potential in the framework of the for- l/f(hHAt):eXI{ —iSVintt = ex;:{&t?}
mula described in the previous subsections, we have to sepa-
rate the potential operator from the kinetic operator using At At
Suzuki's exponential product theof9,10] as xexp —i-Virt+ o lg(r) (21
At A - ition is ai
z,/;(r,t+At)=ex;{ i 7\/ ex;{iAtE} and the fourth-order fractal decomposition is given by

A Y(r t+At)=Sy[sAt;t+(1—s)At]
t
Xex;{—i7v} P(r,t). (16 X Sy[sAt;t+(1—2s)At]

. . X S)[(1—4s)At;t+2sAt]
This decomposition is correct up to the second order of

At. The exponential of the potential is computed by just X Sy(sAt;t+SAL)S(SAL ) ¢(r,t), (22
changing the phase of the wave function at each grid point.

The exponential of the Laplacian is computed in the way _ At A
described in the previous subsections. Each operator is ex- SZ(At;t)EeXF{_'?V Lt = ex;{lAtE}

actly unitary, so the norm is conserved exactly. But due to

the separation of the incommutable operators, the energy is xexp{ i EV . E (23
not conserved exactly. Yet it oscillates near around its initial 2 t2

values and it never drifts monotonously. This algorithm is

quite suitable for vector-type supercomputers because all op- These operators are also unitary. These procedures are
erations are independent by grid points, by rows, or by colqguite similar to those of the static potential except that we
umns. The outline of this procedure for a two-dimensionaltake the dynamic potential at the specified time.

system is schematically described by Fig. 1.

The decompositior(16) is a second-order one. Higher-
order decompositions are derived using Suzuki’s fractal de- o )
composition[9—14). For instance, a fourth-order fractal de- Ina cry§ta|. or perllqdlc system, the wave functions must
compositionS,(At) is given by obey a periodic condition

J(r+R)=y(r,t)exdio], ¢é=k-R, (24

E. Periodic system

Sy(At)=Sy(sA)S(sA) [ (1—4s)At]Sy(sAL) Sy(sAt),

(17) wherek is the Bloch wave number arid is the unit vector
of the lattice. The matrix form equation corresponding to Eq.

where (6) in this system takes the following form:
At A At i
Sz(At)zex;:{—i?V exp[im? exp{—i7v}, A -1 0 e y(t+AY
-1 A -1 0 Po(t+At)
e’ 0 —1 A || (t+Ab)
D. Dynamic potential B 1 0 e'¢ (1)

To discuss high-speed electron dynamics caused by a 1 B 1 0 Po(t)
time-dependent external fiel(r,t), we should take account = . (25
of the evolution of the potential itself in the TD-Schlinger 0' 18 1 ¥s(t)
equation given as e 0 1 B Pa(t)

ialﬂ(r,t) —HO P D): H(t)=— éJrV(r 1. (19 These matrices have extra elements, so the equation can no
at e 2 e longer be solved efficiently.
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We propose a trick to avoid this problem. We represent  [O]O[O[O] [ I [ ) O ]
the second spatial differential operatﬁfr as a sum of two 0000 O ]« ) [ L
operators OIO0[0] B Il ) B Tl
o000 | B ) M L]
by ) \4 X-adhesive Kx X-adhesive
9= B Iraa (26) DN pEEE EREEE [Cooo
{ slislislie
Multiplying by Ax?, the above representation reads in the DO EnE gggg
matrix form Y-adhesive Ky Y-adhesive \4
g } FIG. 2. The procedure for a two-dimensional periodic system.
-2 1 0 e -1 1 0 0 Here K, andK, show the operations of Cayley’s form, and they
1 -2 1 0 1 -2 1 operate as if this system is not periodicadhesive and-adhesive
= mean the operations of the exponential of the adhesive operators
0 1 -2 1 0 1 -2 along thex-axis and they-axis, respectively. The operation of the
eti¢ o 1 -2 0 0 1 -1 adhesive operator needs only the values at the edges of the system.
—1 0 0 e -2 1 0 071 ([-2 1
|0 000 1 -2 1 0 1 -1 0
0 00 O 1 -2 1 o 0 -1 1
+ig _
e’ 00 -1] o 1 -2 lo 0o 1 -2
27) 0O O 0
. . . . . 0 - 1 1 0
The first matrix on the right-hand side, which corresponds to + . (30
o . 0O 1 -1 0
dwd» 1S tridiagonal, and the second one, which corresponds
to 92,4, is its remainder, and it has a quite simple form. The 0 0 0 ©

exponential of the second differential operator is decom-
posed by these terms: The interior of the first matrix on the right-hand side is sepa-
rated into two blocks, which means this system is separated
into two physically independent areas. The second matrix,
F{iAt 5 F{iAt 5 F{iAt 5 which is the adhesive operator, connects the two areas. A
eXP x| = €XH =~ Ixad|€XH 5~ Jiid large system is separated into many small areas, and each
2 X 4 "xa 2 ge sy p y '
area is managed by a single processor. Since the exponential
of a block diagonal matrix is also a block diagonal matrix,
each block is computed by a single processor independently.
Data transmission is needed only to compute the adhesive
operator. The amount of data transmission is quite small,
nearly negligible. The outline of the procedure for a two-
dimensional closed system on two processors is schemati-
cally described by Fig. 3.

iAt
T§>2<ad -
(28)

ex

The exponential oﬂf(ad is exactly calculated by the following
formula:

e i¢ e ¢

-1 ) -1 ) '

(-1
exgiC P
(29)
It is necessary for real space computation to be equipped

This Operation is exacﬂy unitary and easy to Compute. W|th an adaptive _meSh reﬁnement to re-duce the Computa-
The exponential of, is computed in the ordinary way. tional cost or to improve the accuracy in some important

Thus the norm is conserved. We namég an “adhesive

-1

=+ etid

1— e—ZiC
2 (
G. Adaptive mesh refinement

operator” because this operator plays the role of an adhesion Zges b R
to connect both edges of the system. The outline of the pro- [2l2P© | BSIIS]IS]S)
s . . . . . OO0, [N [ [o)[9]ie](e]
cedure for a two-dimensional periodic system is schemati- [Sic[olo|™ UUUL ) oo
cally described by Fig. 2. Hept S
D000 U ) ([©000

Vv Adhesive K Adhesive Kx V

F. Parallelization . .
FIG. 3. The procedure for a two-dimensional closed system on

The adhesive operator plays another important role. ltwo processors. Adhesive shows the operation of the exponential of
makes Cayley’s form suitable for parallelization. We use thehe adhesive operator for parallel computing. The operation of the
adhesive operator to represent the second finite differencsihesive operator needs only the values at the edges of the areas, so
matrix in the following way the data transmission between the processors is quite small.
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2Ax Ax Do
315 iAx 2w
2Ax 1 2 x
4|6 }
Xo

X

FIG. 4. An example of adaptive mesh refinement. The element FIG. 5. The model system for comparison with conventional
in the left area is twice as large as that in the right area. Thdnethods. 256 computational grid points are allocated in the physical
adhesive operator connects these areas. length 8.0 a.u. A Gaussian wave packet is placed in the system,

whose initial average locatior, and momentunp, are set ai,

regions. We improved the adhesive operator to manage 32'0 a.u. anc=12.0 a.u., respectively.

connection of between two regions whose mesh sizes are

different, as illustrated in Fig. 4. -4 18 1/8

The second differential operat@? should be Hermite, ex iAt /2 -1/2 0
but in this case the condition required for the matrix repre- 4Ax?\ 12 0 —1/2
sentation ¢3);; is given by
(92)iAXF = (09)Ax?,  forall i,j. (31) 2¢y —Cy —Cy
=|+| —4c; 2cy+c, 2ci—Cy |, (35
Considering this condition, an approximation of the sec- —4c, 2c,—C, 2ci+c,
ond differential operator is given as
where
-1/2|1/4 1
1/4 |-1/2(1/8 |1/8 2 1 3i At 1
ci;=<exg ——= - =, (36)
e _ 1| prelse| |t 3 =80 T 28ax| 6
Ar?l iy 320 1 e
1 2 5 1 2i At 1 37
Cr=—exg ——= - .
1 2 6 > 6 p_ V28Ax?| 6

(32

In this way, it is found that the adhesive operator is impor-
The indices attached to this matrix indicate the correspondtant to simulate a larger or a more complicated system by the
ing mesh indices described in Fig. 4. This matrix is alsopresent method.
divided into a block-diagonal one and an adhesive operator

as
Ill. APPLICATION

L1/2]1/4 1 In this section, we show some applications of our numeri-
cal method. Though these applications treat simple physical
systems, they are sufficient for verifying the reliability and
efficiency of the method. Throughout this section, we use the
atomic units(a.u).

1/4 |-1/4

az'bd = Az?

v
—
—

(=] ot o w (3]

A. Comparison with conventional methods

(33 As far as we know, the conventional methods of solving
the TD-Schradinger equation are classified into three catego-
ries: (1) the multistep metho@3], (2) the method developed
by De Raed{2], and(3) the method equipped with Cayley’s
form [5].

In this section, we make brief comparisons between Cay-
ley’s form and other conventional methods by simply simu-
lating a Gaussian wave packet moving in a one-dimensional
free system as illustrated in Fig. 5.

The TD-Schrdinger equation of this system is simply
given by

-1/411/8 |1/8
. 1 1/2 |-1/2
a:racl= Az?

1/2 -1/2

L S T - N ]

34 aP(x,t 72
(34 [ w;)t( )=—?¢(x,t). (38)

The exponential of the adhesive operator is calculated us-
ing the following formula: The wave function at the initial state is set as a Gaussian:
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o1 x=x%ol? 11 0 0
zp(x,t—O)—Wex Y. +ipox|, (39 1 -1 o0 0 0
5 110 0o -1 0 0 45
whereW=0.25 a.u.Xo=2.0 a.u.,pp=12.0 a.u. ' Ixa™ Ax2l 0 0 1 -1 0 o} (45)
The evolution of this Gaussian is analytically derived as
0 0 0 -1 1
1 | 0 0 0 0 1 -1
X,t)=
#xt) V2mW2+ (7/2) (1/W)? -1 0 0 0 0 0]
(X—Xg—Pot)? 0o -1 1 0 0 0
Xexp —————— +ipeX|. 40
F{ 2+ Wz O “o P 0 91 4
XTAx2l 0 0 0 -1 1 0
Therefore, the average location of the Gausgia(t)) is 0 0 0 1 -1 O
derived as if it is a classical particle: o 0 0 0 0 -1
(X(1))=(x(t=0))+ pot. (41) The exponentials of those matrices are exactly calculated
using the following formula:
This characteristic is useful to check the accuracy of the _
simulation. We use the second-order version of the multistep (-1 1 1-e2¢(-1 1
method and the De Raedt's method in order to compare with ~ €X iIC 1 -1/ I+ 2 1 -1/
Cayley’s form since Cayley’s form is second-order accurate (47)
in space and time. The second-order multistep method we
used in this system is given by The time evolution of this method is exactly unitary, and the
norm is exactly conserved unconditionally. However, it
2 seems that the accuracy tends to break down on the condition
z/x(t+At)=zp(t—At)+i2At?¢(t), (42)  that At/Ax?>>1.0. This method needs Ngfloating opera-

tions per time step, which is the fastest method in uncondi-
tionally norm-conserving methods. Cayley’s form with the

whered? is approximated by a finite difference matrix as ~finite difference method is given by

"_2 1. 0 0 0 0] 1+iAt/49?
P+ Ay =———— (1), (48)
1 -2 1 0 0 0 1-iAt/40;
0 1 -2 0 0 o . . .
)2(‘2 i (43) where the spatial differential operator is approximated by the
Ax? 0 0 -2 1 0 ordinary way in Eq(43).
0 0 -2 1
o 0 0 0 1 -2 025 “Muftistep ——
- J De Raedt
_ 02 H Cayley - 1
Extra memories are needed for the wave function at the 3
previous time stepy(t— At). Though the time evolution of z 015
this method is not unitary, the norm of the wave function is g
conserved with good accuracy on the condition that $ 0.1
At/Ax?<0.5. This method needs only MOfloating opera- s
tions per time step, which is the fastest method in condition- © 0.05
ally stable methods. 2
Meanwhile, the second-order De Raedt's method is given 0
by
-0.05 : : : :
) ) ) 0 0.02 0.04 0.06 0.08 0.1
iAt d J iAt d Ti .u.
Y(t+At)=ex — lexpiAt—=2|ex —ﬁdx(t), 'me [a.u.
2 2 2 2 2 . . . )
FIG. 6. Time variances in the energies computed by the three

(44 methods. The time slice is set At=1/2048 a.u. and the spatial
, 5 ) ~ slice is set at\x=1/32 a.u. so that the ratibt/Ax? is equal to 0.5.
where d5, and d;,, are the parts of the second differential The energies violently oscillates in the result of the multistep
operator and are approximated by finite difference matricemethod and De Raedt's method. Meanwhile, the energy is con-

as below served exactly in the result of Cayley’s form.
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0.9 : : . —
Multistep —— ; o
5 087 deRaegt —=— 1
S 07} Caylgy e | " | X
"g 0.6 | | ,
e o5y | BB BCT AFR FF-
c 7 J Z
g ol | . : '
° 03 | 4
= o02¢t i . . . . .
° 041 | | FIG. 9. Evolution of the density. Time flows left to right, top
2 - *_,,_,» row first. The Gaussian is observed to go through these areas
u 0 i Eo ] smoothly.
-0.1 : : : ' ‘
0.0625 0.125 0.25 0.5 1 2

The initial energy is evaluated as 73.03 a.u., though it is
theoretically expected to be 74 a.u. The ratidAx? is set at

FIG. 7. Errors in the average momentum computed by the thre®.5 t0 meet the stable condition required for the multistep
methods in several time slices. The multistep method cannot b&ethod.
performed whemt/Ax?>0.5. The error of De Raedt's method is ~ The energies violently oscillate in the results of the mul-
too large whenAt/Ax?>1. The error of Cayley's form is rather tistep method and De Raedt’'s method, as a result of the fact
small. The spatial slice is set Atx=1/32 a.u. that these time evolution operators do not commute with the

Hamiltonian. These energies seem to converge after the

The time evolution of this method is exactly unitary, and wave packet is delocalized in a uniform way over the system.
the norm is exactly conserved unconditionally. Moreover,Meanwhile, the energy is conserved exactly in the result of
this method maintains good accuracy even under the condgayley’s form because Cayley’s form commutes with the
tion thatAt/Ax*>1.0. This method needs R6floating op-  spatial second differential operator which is the Hamiltonian
erations per time step, which is the fastest method in uncontself in this system.
ditionally stable methods. Figure 7 shows the relation of the time slig to the

We have simulated the motion of the Gaussian by thoserror in the average momentum of the Gaussian, which is

methods. First we show a comparison of Cayley’s form withevaluated by the finite difference method as described below
the conventional methods in the framework of the FDM.

Figure 6 shows the time evolution of the error in the energy, _ _
which is evaluated by the finite difference method as de- G(At/sz):<X(t_T)>_<X(t_O)> —(p(t=0)), (51)

At/Ax?

scribed below T
e(t)=E(t)—E(t=0), (49) -
L (x(0)=4x 2, xi[ui(D]?, (52)
E()=—57-Re>, ¢ (D[ #i-1()—24(0)+ i1 (D)].
ZAX i=0
(50 N-1
1 *
(P(1)=3Im >, YO [Yisa(D—via(D], (53
' 1.0560 . . . . :
H H H
 PE1 ] PE2 [ PE3[] rE 1.0555 |
— 1.0550 |
1 PE4 |1 PE5 (] PE6 [ ;
> 1.0545 ¢
I PE7[ ]I PES ] | PE9[| PE7 W 40540 |
1 H t
1.0535 |
1.0530 : ; ; : ;
0 5 10 15 20 25 30
FIG. 8. The model system for the test of the adhesive operator Time [a.u.]

for periodic conditions and parallelization. This system is periodi-

cally connected and is divided into nine areas. Each area is man- FIG. 10. Time variance in the energy. The initial energy is theo-
aged by a single processing elementx&2 computational grid retically derived as 1.0625 a.u., but it is evaluated as 1.0553 a.u. by
points are allocated in each area whose physical size is set #te FDM. The energy oscillates near its initial value but never drifts
8.0 a.ux8.0 a.u. The time slice is set At=1/16 a.u. monotonically.
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| 1.063 T T T T T
_PEO T PE7 [ PES_ | | PE9 || PE7_ 1.062 |
‘ 1.061 |

~ pra [ pE1 O PE2 (T PR3] pRi - 1.080 |
1.059
1.058 |
1.057 |
1.056 |
1.055 |

! ‘ 1.054 : : ' . :
A L 0 5 0o 15 20 25 30

1T Time [a.U.]

Energy [a.u.]

0 o [
T
1
[
=
=1
(=)
[
|
\

EERRRERRERR
FIG. 11. The model system for the test of the adhesive operator _FIG' 13. _Time variance in the energy. The initial energy is theo-
for the adaptive mesh refinement. This system is also periodicallret'ca”y derived as 1.0625 a.u., but it is evaluated as 1.0591 a.u. by

connected and is divided into nine areas. Each area is managed _ﬁFDM' The_enliergy oscillates near its initial value but it never
a single processing element. The size of each area is set g' s monotonically.

8.0 a.ux 8.0 a.u. 3X 32 computational grid points are allocated in g single processing element; the adhesive operator connects

each area except the central area. The central area ha8468om-  them_ The initial wave function is set as a Gaussian given as
putational grid points, which makes it twice as fine as those of the

other areas. The time slice is sett=1/16 a.u. |r— r0|2

P(r,t=0)=—=exg —
whereT is a time span set at 0.4 a.u. The initial momentum V2mW? 4W?
(p(t=0)) is calculated as 11.7 a.u., which is different from
the theoretical valugy,=12.0 a.u. due to the finite differ- =(1,1 a.u),W=1 a.u. The energy of this Gaussian is
ence method. , theoretically derived as 1.0625 a.u.

In the multistep method, the computation cannozt be per-  Figure 9 shows snapshots of the time evolution of the
formed due to a floating exception, if the ratd/Ax” ex-  Gaussian, which is observed to go through these areas
ceeds 0.5. In De Raedt’s method, the error becomes too |ar%¢noothly. Figure 10 shows the evolution of the energy,
to plot in this gr:’;\ph if the ratlmSt/AXZ exceeds 1.0. Mean- hich is observed to oscillate around its initial value.
wh_|le, in Ca;yleys form, the error is not so large even if the Second, we allocate 6464 grid points only in the central
ratio At/Ax“ exceeds 10 _ area as illustrated in Fig. 11. We utilize the adhesive operator

In this way, Cayley's form is found rather stable. There-for the adaptive mesh refinement. Figure 12 shows the snap-

fore, we can use a longer time slice than those of the otheghots, with the Gaussian going through these areas smoothly.
methods. And this Cayley’s form becomes suitable for threegigyre 13 shows the evolution of the energy, which is ob-

dimensional systems, potentials, periodic conditions, adapserved to oscillate near its initial value. In this way, the re-
tive mesh refinement, and parallelizations by our improveygpility of the adhesive operator is proved.
ments in this paper.

+ipg-r{, (54

where ry is set as the center of this system apgd

C. Excitation of a hydrogen

B. Test of the adhesive operator As the last application of the present method, we demon-

To verify the reliability and efficiency of the adhesive strate its validity and efficiency in describing the process of
operator for periodic condition and parallelization, we have
simulated the motion of a Gaussian wave packet in a two-
dimensional free system. As illustrated in Fig. 8, this system
has periodic conditions along both thexis and they axis,
and it is divided into nine areas, each of them is managed bg

~ p S== A rr—— 01
4 I8 rFr

4 .
. _— _ 025 5 10 15 20 25 30
FIG. 12. Evolution of the density. Time flows left to right, top Time [fs]
row first. The Gaussian is observed to go through these areas

smoothly. FIG. 14. Time variance in the polarization of the electron.
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. . FIG. 17. Time variance in the polarization of the electron.
FIG. 15. Spectrum of the scattered light generated by the oscil- P

lation of the electron. 5 )
set at 0.0785 a.&.2.0x10 *° fs so as to follow the rapid

photon_induced electron excitation in a hydrogen atom in a/ariation Of the wave funCtion and the eleCtriC force. We
strong laser field. The laser is treated as a classically oscifollow the evolution for 3R iteration.
lating electric force polarized in thedirection: Figure 14 shows the time variance in the polarization of
the electron. The oscillation of the polarization generates an-
other electric field, which corresponds to a nonlinearly scat-
E,=Egsinwt. (55  tered light from the atom. By Fourier transforming the po-
larization along the time axis, we obtained the spectrum of
The spatial variation of the electric field of the light is the scattered light shown in Fig. 15.
neglected, because the electron system is much smaller than Several sharp peaks are found, which are interpreted as
the order of the wave length. Then the interaction term of theollows: The peak at 8.5 eV comes from Rayleigh scattering,
Hamiltonian is approximated as whose frequency is identical with the injected light The
peak at 10.2 eV comes from Lyman emission, which is
generated by the electron transition from the @rbital to
Him=—eEz. (56) the 1S orbital o . On the other hand, the peak at 12.1 eV

In other words, we only take into account the electrodipole©mes from Lymans emission, which is generated by the

interaction of the electron with the light, and neglect the€lectron transition from theB orbital to the 1S orbital O

electroquadrapole, the magnetic-dipole, and other higher infhe peak at 6.8 eV comes from hyper Raman scattering,

teractions. whose frequency is identical withaz—wLa. Moreover the
The amplitudeE, is set at 1/64 a.8:0.80 V/A , whichis  peak at 25.5 eV comes from the third harmonic generation,

as strong as a usual pulse laser. The angular frequenisy  whose frequency is identical withe3

set at 0.3125 a.&:8.5 eV, less than the transition energy  The simulation is also performed for a different laser fre-

between B and 2P. Ordinarily, such low energetic electric quency; the injecting photon energy is set at 10.2 eV,
force has no effect on the electronic excitation. But with such

a strong amplitude, various nonlinear optical effects are
caused by the electron dynamics.

We allocate 128 grid points in a 32 a.u® cubic closed
system. The hydrogen nucleus is located at the center of th1w
system, and the nucleus potential is constructed by solvin¢g
the Poisson equation in the discretized space to avoid the2,
singularity of the nucleus potential. TheSlorbital is as-
sumed as the initial state of the wave function. Then we turn
on the electric field and start the simulation. The time slice is

15 E

Intensity [arbitrar

'l

0 5 10 15 20 25 30
Photon energy [eV]

- - e
o . o »

FIG. 16. Evolution of the density of the electron in the hydrogen
atom. The density starting from &8lbrbital oscillates with time and FIG. 18. Spectrum of the scattered light generated by the oscil-
becomes a Rz orbital. lation of the electron.
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which is the same as the transition energy betweSradd [V. CONCLUSION

2P. In this case the electron starting from & brbital is We have formulated a method for solving the time-

expected to excite to_aPZz qrb|tal. F!gure .16 S.hOWS the dependent Schdinger equation numerically in real space.
snapshots of the density during the'swn.ulatlon time span. \we have found that by using Cayley’s form and Suzuki's
Figures 17 and 18 show the polarization and the spectrumy,cia| decomposition, the simulation can be fast, stable, ac-
respectively. Three peaks are found at 9.9, 10.2, andyrate, and suitable for vector-type supercomputers. We have
10.5 eV. These peaks are derived from the theory of th@roposed the adhesive operator to make Cayley’s form suit-
Dressed atom or the ac stark effect as below able for periodic systems and parallelization and adaptive
mesh refinement. These techniques will also be useful for the
time-dependent Kohn Sham equation, which is our future
w—eEy(2P|2|1S),  w+eEy2P, 719, (57 VO
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