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Fast and stable method for simulating quantum electron dynamics

Naoki Watanabe and Masaru Tsukada
Department of Physics, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, 113-0033 Bunkyo-ku, Tokyo, Japa

~Received 2 August 1999; revised manuscript received 29 March 2000!

A fast and stable method is formulated to compute the time evolution of a wave function by numerically
solving the time-dependent Schro¨dinger equation. This method is a real-space–real-time evolution method
implemented by several computational techniques such as Suzuki’s exponential product, Cayley’s form, the
finite differential method, and an operator named adhesive operator. This method conserves the norm of the
wave function, manages periodic conditions and adaptive mesh refinement technique, and is suitable for
vector- and parallel-type supercomputers. Applying this method to some simple electron dynamics, we con-
firmed the efficiency and accuracy of the method for simulating fast time-dependent quantum phenomena.

PACS number~s!: 02.70.2c, 03.67.Lx, 42.65.2k, 42.50.2p
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I. INTRODUCTION

There are many computational method of solving the T
Schrödinger equation numerically. Conventionally, a wa
function has been represented as a linear combinatio
plane waves or atomic orbitals. However, these represe
tions entail high computational cost to calculate the ma
elements for these bases. The plane wave bases set i
suitable for localized orbitals, and the atomic orbital ba
set is not suitable for spreading waves. Moreover, they
not suitable for parallelization, since the calculation of m
trix elements requires massive data transmission among
cessors.

To overcome those problems, some numerical meth
adopted real space representation@1–4#. In those methods, a
wave function is descritized by grid points in real space, a
with them some dynamic electron phenomena were si
lated successfully@6–8#.

Among these real space methods, a method called C
ley’s form or Crank-Nicholson scheme is known to be es
cially useful for one-dimensional closed systems because
method conserves the norm of the wave function exactly
the simulation is rather stable and accurate even in a l
time slice. These characteristics are very attractive for sim
lations over a long time span. Unfortunately, this method
not suitable for two- or three-dimensional systems. T
problem is fatal for physically meaningful systems. Thou
there are many other computational methods that can m
age two- or three-dimensional systems, these methods
have disadvantages.

In the present work, we have overcome the problems
sociated with Cayley’s form and have formulated a n
computational method which is more efficient, more ada
able, and more attractive than any other ordinary methods
our method, all computations are performed in real spac
there is no need of using Fourier transform. The time evo
tion operator in our method is exactly unitary by using Ca
ley’s form and Suzuki’s exponential product so that the no
of the wave function is conserved during the time evolutio
Stability and accuracy are improved by Cayley’s form so
can use a longer time slice than those of the other meth
Cayley’s form is a kind of implicit methods, this is the key
the stability, but implicit methods are not suitable for pe
PRE 621063-651X/2000/62~2!/2914~10!/$15.00
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odic conditions and parallelization. We have avoided th
problems by introducing an operator named adhesive op
tor. This adhesive operator is also useful for an adap
mesh refinement technique.

Our method inherits many advantages from many or
nary methods, and yet more improved in many aspects. W
these advantages, this method will be useful for simulat
large-scale and long-term quantum electron dynamics fr
first principles.

In Sec. II, we formulate the new method step by step.
Sec. III, we apply it to some simulations of electron dyna
ics and demonstrate its efficiency. In Sec. IV, we draw so
conclusions.

II. FORMULATION

In this section, we formulate the new method step by s
from the simplest case to complicated cases. Throughout
paper, we use the atomic units\51, m51, e51.

A. One-dimensional closed free system

For the first step, we consider a one-dimensional clo
system where an electron moves freely but never leaks ou
the system. The TD-Schro¨dinger equation of this system i
simply given as

i
]c~x,t !

]t
52

]x
2

2
c~x,t !. ~1!

The solution of Eq.~1! is analytically given by an expo
nential operator as

c~x,t1Dt !5expF iDt
]x

2

2 Gc~x,t !, ~2!

whereDt is a small time slice. By using Eq.~2! repeatedly,
the time evolution of the wave function is obtained.

An approximation is utilized to make a concrete form
the exponential operator. We have to be careful not to
stroy the unitarity of the time evolution operator, otherwi
the wave function rapidly diverges. We adopted Cayle
2914 ©2000 The American Physical Society
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PRE 62 2915FAST AND STABLE METHOD FOR SIMULATING . . .
form because it is unconditionally stable and accur
enough. Cayley’s form is a fractional approximation of t
exponential operator given by

expF iDt
]x

2

2 G.
11 iDt]x

2/4

12 iDt]x
2/4

. ~3!

It is second-order accurate in time. By substituting Eq.~3!
for Eq. ~2! and moving the denominator onto the left-ha
side, the following basic equation is obtained:

F12 i
Dt

2

]x
2

2 Gc~x,t1Dt !5F11 i
Dt

2

]x
2

2 Gc~x,t !. ~4!

This is identical with the well-known Crank-Nicholso
scheme. The wave function is descritized by grid points
real space as

c i~ t !5c~xi ,t !, xi5 iDx, i 50, . . . ,N21, ~5!

whereDx is the span of the grid points. We approximate t
spatial differential operator by the finite difference meth
~FDM!. Then Eq.~4! becomes a simultaneous linear equ
tion for the vector quantityc i(t1Dt). For example, in a
system with six grid points, Eq.~4! is approximated in the
following way:

F A 21 0 0

21 A 21 0

0 21 A 21

0 0 21 A

GF c1~ t1Dt !

c2~ t1Dt !

c3~ t1Dt !

c4~ t1Dt !

G
5FB 1 0 0

1 B 1 0

0 1 B 1

0 0 1 B

GF c1~ t !

c2~ t !

c3~ t !

c4~ t !

G . ~6!

In the above,

A[24i
Dx2

Dt
12, B[24i

Dx2

Dt
22 ~7!

andc0 andc5 are fixed at zero due to the boundary con
tion.

It is easy to solve this simultaneous linear equation
cause the matrix appearing on the left-hand side is ea
decomposed into the LU form as

F u1
21 0 0 0

21 u2
21 0 0

0 21 u3
21 0

0 0 21 u4
21

G F 1 2u1 0 0

0 1 2u2 0

0 0 1 2u3

0 0 0 1

G
3F c1~ t1Dt !

c2~ t1Dt !

c3~ t1Dt !

c4~ t1Dt !

G5F b1~ t !

b2~ t !

b3~ t !

b4~ t !

G . ~8!
e

n

-

-

-
ily

Herebi andui are auxiliary vectors defined as below

bi~ t ![c i 21~ t !1Bc i~ t !1c i 11~ t !, ~9!

ui[1/~A2ui 21!, u0[0. ~10!

The auxiliary vectorui is determined in advance, and it
treated as a constant vector in Eq.~10!. 26N floating opera-
tions are heeded to solve Eq.~10!; hereN is the number of
the grid points in the system, about twice that of the Eu
method. Unlike the Euler method, it exactly conserves
norm because the matrices in Eq.~6! are unitary. Moreover,
the expected energy is conserved because the time evol
operator commutes with the Hamiltonian in this case.

B. Three-dimensional closed free system

It is easy to extend this technique to a three-dimensio
system. The formal solution of the TD-Schro¨dinger equation
in a three-dimensional system is given by an exponentia
the sum of three second differential operators as

c~r ,t1Dt !5expF iDtS ]x
2

2
1

]y
2

2
1

]z
2

2 D Gc~r ,t !. ~11!

These differential operators in Eq.~11! are commutable
among each other, so the exponential operator is exactly
composed into a product of three exponential operators:

c~r ,t1Dt !5expF iDt
]x

2

2 GexpF iDt
]y

2

2 GexpF iDt
]z

2

2 Gc~r ,t !.

~12!

Each exponential operator is approximated by Cayle
form as

c~r ,t1Dt !5
11 iDt]x

2/4

12 iDt]x
2/4

11 iDt]y
2/4

12 iDt]y
2/4

11 iDt]z
2/4

12 iDt]z
2/4

c~r ,t !.

~13!

78N floating operations are required to compute Eq.~13!,
whereN is the total number of grid points in the system. T
norm and energy are conserved exactly.

By the way, a conventional method, Peaceman-Rach
method@1,8#, utilizes a similar approximation appearing
Eq. ~13!, which is a kind of alternating direction implici
method~ADI method!. However, by using exponential prod
uct, we have found that there is no need of ADI. This fa
makes the programming code simpler and it runs faster.

C. Static potential

Next we consider a system subjected to a static exte
scalar fieldV(r ). The TD-Schro¨dinger equation and its for
mal solution in this system are as follows:

i
]c~r ,t !

]t
5F2

n

2
1V~r !Gc~r ,t !, ~14!

c~r ,t1Dt !5expF iDt
n

2
2 iDtV~r !Gc~r ,t !. ~15!
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2916 PRE 62NAOKI WATANABE AND MASARU TSUKADA
To cooperate with the potential in the framework of the fo
mula described in the previous subsections, we have to s
rate the potential operator from the kinetic operator us
Suzuki’s exponential product theory@9,10# as

c~r ,t1Dt !5expF2 i
Dt

2
VGexpF iDt

n

2 G
3expF2 i

Dt

2
VGc~r ,t !. ~16!

This decomposition is correct up to the second order
Dt. The exponential of the potential is computed by ju
changing the phase of the wave function at each grid po
The exponential of the Laplacian is computed in the w
described in the previous subsections. Each operator is
actly unitary, so the norm is conserved exactly. But due
the separation of the incommutable operators, the energ
not conserved exactly. Yet it oscillates near around its ini
values and it never drifts monotonously. This algorithm
quite suitable for vector-type supercomputers because al
erations are independent by grid points, by rows, or by c
umns. The outline of this procedure for a two-dimensio
system is schematically described by Fig. 1.

The decomposition~16! is a second-order one. Highe
order decompositions are derived using Suzuki’s fractal
composition@9–14#. For instance, a fourth-order fractal d
compositionS4(Dt) is given by

S4~Dt !5S2~sDt !S2~sDt !S2@~124s!Dt#S2~sDt !S2~sDt !,
~17!

where

S2~Dt ![expF2 i
Dt

2
VGexpF iDt

n

2 GexpF2 i
Dt

2
VG ,

s[1/~42A3 4!. ~18!

D. Dynamic potential

To discuss high-speed electron dynamics caused b
time-dependent external fieldV(r ,t), we should take accoun
of the evolution of the potential itself in the TD-Schro¨dinger
equation given as

i
]c~r ,t !

]t
5H~ t !c~r ,t !; H~ t !52

n

2
1V~r ,t !. ~19!

FIG. 1. The procedure for a two-dimensional closed system w
a static potential. HereV shows the operation of the exponential
the potential, which changes the phase of the wave function at
grid point. Kx and Ky show the operation of Cayley’s form alon
thex axis and they axis, respectively. They are computed indepe
dently by grid points, by rows, or by columns.
-
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The analytic solution of Eq.~19! is given by a Dyson’s time
ordering operatorP as

c~r ,t1Dt !5PexpF2 i E
t

t1Dt

dt8H 2
n

2
1V~r ,t8!J Gc~r ,t !.

~20!

The theory of the decomposition of an exponential w
time ordering was derived by Suzuki@12#. The result is
rather simple. For instance, the second-order decompos
is simply given by

c~r ,t1Dt !.expF2 i
Dt

2
VS r ,t1

Dt

2 D GexpF iDt
n

2 G
3expF2 i

Dt

2
VS r ,t1

Dt

2 D Gc~r ,t ! ~21!

and the fourth-order fractal decomposition is given by

c~r ,t1Dt !5S2@sDt;t1~12s!Dt#

3S2@sDt;t1~122s!Dt#

3S2@~124s!Dt;t12sDt#

3S2~sDt;t1sDt !S2~sDt;t !c~r ,t !, ~22!

S2~Dt;t ![expF2 i
Dt

2
VS r ,t1

Dt

2 D GexpF iDt
n

2 G
3expF2 i

Dt

2
VS r ,t1

Dt

2 D G . ~23!

These operators are also unitary. These procedures
quite similar to those of the static potential except that
take the dynamic potential at the specified time.

E. Periodic system

In a crystal or periodic system, the wave functions m
obey a periodic condition

c~r1R,t !5c~r ,t !exp@ if#, f[k•R, ~24!

wherek is the Bloch wave number andR is the unit vector
of the lattice. The matrix form equation corresponding to E
~6! in this system takes the following form:

F A 21 0 e1 if

21 A 21 0

0 21 A 21

e2 if 0 21 A

GF c1~ t1Dt !

c2~ t1Dt !

c3~ t1Dt !

c4~ t1Dt !

G
5F B 1 0 e2 if

1 B 1 0

0 1 B 1

e1 if 0 1 B

GF c1~ t !

c2~ t !

c3~ t !

c4~ t !

G . ~25!

These matrices have extra elements, so the equation ca
longer be solved efficiently.
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PRE 62 2917FAST AND STABLE METHOD FOR SIMULATING . . .
We propose a trick to avoid this problem. We repres
the second spatial differential operator]x

2 as a sum of two
operators

]x
25]xtd

2 1]xad
2 . ~26!

Multiplying by Dx2, the above representation reads in t
matrix form

F 22 1 0 e2 if

1 22 1 0

0 1 22 1

e1 if 0 1 22

G5F21 1 0 0

1 22 1 0

0 1 22 1

0 0 1 21

G
1F 21 0 0 e2 if

0 0 0 0

0 0 0 0

e1 if 0 0 21

G .

~27!

The first matrix on the right-hand side, which corresponds
]xtd

2 , is tridiagonal, and the second one, which correspo
to ]xad

2 , is its remainder, and it has a quite simple form. T
exponential of the second differential operator is deco
posed by these terms:

expF iDt

2
]x

2G5expF iDt

4
]xad

2 GexpF iDt

2
]xtd

2 GexpF iDt

4
]xad

2 G .
~28!

The exponential of]xad
2 is exactly calculated by the following

formula:

expF iCS 21 e2 if

e1 if 21 D G5I1
12e22iC

2 S 21 e2 if

e1 if 21 D .

~29!

This operation is exactly unitary and easy to compute.
The exponential of]xtd

2 is computed in the ordinary way
Thus the norm is conserved. We named]ad

2 an ‘‘adhesive
operator’’ because this operator plays the role of an adhe
to connect both edges of the system. The outline of the p
cedure for a two-dimensional periodic system is schem
cally described by Fig. 2.

F. Parallelization

The adhesive operator plays another important role
makes Cayley’s form suitable for parallelization. We use
adhesive operator to represent the second finite differe
matrix in the following way
t

o
s

-

on
o-
i-

It
e
ce

F22 1 0 0

1 22 1 0

0 1 22 1

0 0 1 22

G5F22 1 0 0

1 21 0 0

0 0 21 1

0 0 1 22

G
1F 0 0 0 0

0 21 1 0

0 1 21 0

0 0 0 0

G . ~30!

The interior of the first matrix on the right-hand side is sep
rated into two blocks, which means this system is separa
into two physically independent areas. The second ma
which is the adhesive operator, connects the two areas
large system is separated into many small areas, and
area is managed by a single processor. Since the expone
of a block diagonal matrix is also a block diagonal matr
each block is computed by a single processor independe
Data transmission is needed only to compute the adhe
operator. The amount of data transmission is quite sm
nearly negligible. The outline of the procedure for a tw
dimensional closed system on two processors is schem
cally described by Fig. 3.

G. Adaptive mesh refinement

It is necessary for real space computation to be equip
with an adaptive mesh refinement to reduce the comp
tional cost or to improve the accuracy in some importa

FIG. 2. The procedure for a two-dimensional periodic syste
Here Kx and Ky show the operations of Cayley’s form, and the
operate as if this system is not periodic.X-adhesive andY-adhesive
mean the operations of the exponential of the adhesive opera
along thex-axis and they-axis, respectively. The operation of th
adhesive operator needs only the values at the edges of the sy

FIG. 3. The procedure for a two-dimensional closed system
two processors. Adhesive shows the operation of the exponenti
the adhesive operator for parallel computing. The operation of
adhesive operator needs only the values at the edges of the are
the data transmission between the processors is quite small.
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2918 PRE 62NAOKI WATANABE AND MASARU TSUKADA
regions. We improved the adhesive operator to manag
connection of between two regions whose mesh sizes
different, as illustrated in Fig. 4.

The second differential operator]x
2 should be Hermite,

but in this case the condition required for the matrix rep
sentation (]x

2) i j is given by

~]x
2! i j Dxi

25~]x
2! j i Dxj

2 , for all i , j . ~31!

Considering this condition, an approximation of the se
ond differential operator is given as

~32!

The indices attached to this matrix indicate the correspo
ing mesh indices described in Fig. 4. This matrix is a
divided into a block-diagonal one and an adhesive oper
as

~33!

~34!

The exponential of the adhesive operator is calculated
ing the following formula:

FIG. 4. An example of adaptive mesh refinement. The elem
in the left area is twice as large as that in the right area. T
adhesive operator connects these areas.
a
re

-

-

d-

or

s-

expF iDt

4Dx2 S 21/4 1/8 1/8

1/2 21/2 0

1/2 0 21/2
D G

5I1S 2c1 2c1 2c1

24c1 2c11c2 2c12c2

24c1 2c12c2 2c11c2

D , ~35!

where

c1[
1

6
expF2

3i

A2

Dt

8Dx2G2
1

6
, ~36!

c2[
1

6
expF2

2i

A2

Dt

8Dx2G2
1

6
. ~37!

In this way, it is found that the adhesive operator is imp
tant to simulate a larger or a more complicated system by
present method.

III. APPLICATION

In this section, we show some applications of our nume
cal method. Though these applications treat simple phys
systems, they are sufficient for verifying the reliability an
efficiency of the method. Throughout this section, we use
atomic units~a.u.!.

A. Comparison with conventional methods

As far as we know, the conventional methods of solvi
the TD-Schro¨dinger equation are classified into three categ
ries: ~1! the multistep method@3#, ~2! the method developed
by De Raedt@2#, and~3! the method equipped with Cayley’
form @5#.

In this section, we make brief comparisons between C
ley’s form and other conventional methods by simply sim
lating a Gaussian wave packet moving in a one-dimensio
free system as illustrated in Fig. 5.

The TD-Schro¨dinger equation of this system is simp
given by

i
]c~x,t !

]t
52

]x
2

2
c~x,t !. ~38!

The wave function at the initial state is set as a Gaussia

nt
e

FIG. 5. The model system for comparison with convention
methods. 256 computational grid points are allocated in the phys
length 8.0 a.u. A Gaussian wave packet is placed in the sys
whose initial average locationx0 and momentump0 are set atx0

52.0 a.u. andp0512.0 a.u., respectively.
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PRE 62 2919FAST AND STABLE METHOD FOR SIMULATING . . .
c~x,t50!5
1

A4 2pW2
expF2

ux2x0u2

4W2
1 ip0xG , ~39!

whereW50.25 a.u.,x052.0 a.u.,p0512.0 a.u.
The evolution of this Gaussian is analytically derived a

c~x,t !5
1

A4 2pW21~p/2!~ t/W!2

3expF2
~x2x02p0t !2

4W21~ t/W!2
1 ip0xG . ~40!

Therefore, the average location of the Gaussian^x(t)& is
derived as if it is a classical particle:

^x~ t !&5^x~ t50!&1p0t. ~41!

This characteristic is useful to check the accuracy of
simulation. We use the second-order version of the multis
method and the De Raedt’s method in order to compare w
Cayley’s form since Cayley’s form is second-order accur
in space and time. The second-order multistep method
used in this system is given by

c~ t1Dt !5c~ t2Dt !1 i2Dt
]x

2

2
c~ t !, ~42!

where]x
2 is approximated by a finite difference matrix as

]x
2.

1

Dx2 3
22 1 0 0 0 0

1 22 1 0 0 0

0 1 22 1 0 0

0 0 1 22 1 0

0 0 0 1 22 1

0 0 0 0 1 22

4 . ~43!

Extra memories are needed for the wave function at
previous time stepc(t2Dt). Though the time evolution o
this method is not unitary, the norm of the wave function
conserved with good accuracy on the condition t
Dt/Dx2<0.5. This method needs only 10N floating opera-
tions per time step, which is the fastest method in conditi
ally stable methods.

Meanwhile, the second-order De Raedt’s method is gi
by

c~ t1Dt !5expF iDt

2

]xa
2

2 GexpF iDt
]xb

2

2 GexpF iDt

2

]xa
2

2 Gc~ t !,

~44!

where ]xa
2 and ]xb

2 are the parts of the second differenti
operator and are approximated by finite difference matri
as below
e
p

th
e
e

e

t

-

n

s

]xa
2 .

1

Dx2 3
21 1 0 0 0 0

1 21 0 0 0 0

0 0 21 1 0 0

0 0 1 21 0 0

0 0 0 0 21 1

0 0 0 0 1 21

4 , ~45!

]xb
2 .

1

Dx2 3
21 0 0 0 0 0

0 21 1 0 0 0

0 1 21 0 0 0

0 0 0 21 1 0

0 0 0 1 21 0

0 0 0 0 0 21

4 . ~46!

The exponentials of those matrices are exactly calcula
using the following formula:

expF iCS 21 1

1 21D G5I1
12e22iC

2 S 21 1

1 21D .

~47!

The time evolution of this method is exactly unitary, and t
norm is exactly conserved unconditionally. However,
seems that the accuracy tends to break down on the cond
that Dt/Dx2.1.0. This method needs 18N floating opera-
tions per time step, which is the fastest method in uncon
tionally norm-conserving methods. Cayley’s form with th
finite difference method is given by

c~ t1Dt !5
11 iDt/4]x

2

12 iDt/4]x
2
c~ t !, ~48!

where the spatial differential operator is approximated by
ordinary way in Eq.~43!.

FIG. 6. Time variances in the energies computed by the th
methods. The time slice is set atDt51/2048 a.u. and the spatia
slice is set atDx51/32 a.u. so that the ratioDt/Dx2 is equal to 0.5.
The energies violently oscillates in the result of the multist
method and De Raedt’s method. Meanwhile, the energy is c
served exactly in the result of Cayley’s form.
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2920 PRE 62NAOKI WATANABE AND MASARU TSUKADA
The time evolution of this method is exactly unitary, a
the norm is exactly conserved unconditionally. Moreov
this method maintains good accuracy even under the co
tion thatDt/Dx2.1.0. This method needs 26N floating op-
erations per time step, which is the fastest method in unc
ditionally stable methods.

We have simulated the motion of the Gaussian by th
methods. First we show a comparison of Cayley’s form w
the conventional methods in the framework of the FD
Figure 6 shows the time evolution of the error in the ener
which is evaluated by the finite difference method as
scribed below

e~ t !5E~ t !2E~ t50!, ~49!

E~ t !52
1

2Dx
Re(

i 50

N21

c i* ~ t !@c i 21~ t !22c i~ t !1c i 11~ t !#.

~50!

FIG. 7. Errors in the average momentum computed by the th
methods in several time slices. The multistep method canno
performed whenDt/Dx2.0.5. The error of De Raedt’s method
too large whenDt/Dx2.1. The error of Cayley’s form is rathe
small. The spatial slice is set atDx51/32 a.u.

FIG. 8. The model system for the test of the adhesive oper
for periodic conditions and parallelization. This system is perio
cally connected and is divided into nine areas. Each area is m
aged by a single processing element. 32332 computational grid
points are allocated in each area whose physical size is se
8.0 a.u.38.0 a.u. The time slice is set atDt51/16 a.u.
,
i-

n-

e

.
,
-

The initial energy is evaluated as 73.03 a.u., though it
theoretically expected to be 74 a.u. The ratioDt/Dx2 is set at
0.5 to meet the stable condition required for the multis
method.

The energies violently oscillate in the results of the m
tistep method and De Raedt’s method, as a result of the
that these time evolution operators do not commute with
Hamiltonian. These energies seem to converge after
wave packet is delocalized in a uniform way over the syste
Meanwhile, the energy is conserved exactly in the resul
Cayley’s form because Cayley’s form commutes with t
spatial second differential operator which is the Hamilton
itself in this system.

Figure 7 shows the relation of the time sliceDt to the
error in the average momentum of the Gaussian, which
evaluated by the finite difference method as described be

e~Dt/Dx2!5
^x~ t5T!&2^x~ t50!&

T
2^p~ t50!&, ~51!

^x~ t !&5Dx (
i 50

N21

xi uc i~ t !u2, ~52!

^p~ t !&5
1

2
Im(

i 50

N21

c i~ t !* @c i 11~ t !2c i 21~ t !#, ~53!

e
e

or
-
n-

at

FIG. 9. Evolution of the density. Time flows left to right, to
row first. The Gaussian is observed to go through these a
smoothly.

FIG. 10. Time variance in the energy. The initial energy is the
retically derived as 1.0625 a.u., but it is evaluated as 1.0553 a.u
the FDM. The energy oscillates near its initial value but never dr
monotonically.
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whereT is a time span set at 0.4 a.u. The initial momentu
^p(t50)& is calculated as 11.7 a.u., which is different fro
the theoretical valuep0512.0 a.u. due to the finite differ
ence method.

In the multistep method, the computation cannot be p
formed due to a floating exception, if the ratioDt/Dx2 ex-
ceeds 0.5. In De Raedt’s method, the error becomes too l
to plot in this graph if the ratioDt/Dx2 exceeds 1.0. Mean
while, in Cayley’s form, the error is not so large even if t
ratio Dt/Dx2 exceeds 1.0.

In this way, Cayley’s form is found rather stable. Ther
fore, we can use a longer time slice than those of the o
methods. And this Cayley’s form becomes suitable for thr
dimensional systems, potentials, periodic conditions, ad
tive mesh refinement, and parallelizations by our impro
ments in this paper.

B. Test of the adhesive operator

To verify the reliability and efficiency of the adhesiv
operator for periodic condition and parallelization, we ha
simulated the motion of a Gaussian wave packet in a t
dimensional free system. As illustrated in Fig. 8, this syst
has periodic conditions along both thex axis and they axis,
and it is divided into nine areas, each of them is managed

FIG. 11. The model system for the test of the adhesive oper
for the adaptive mesh refinement. This system is also periodic
connected and is divided into nine areas. Each area is manage
a single processing element. The size of each area is se
8.0 a.u.38.0 a.u. 32332 computational grid points are allocated
each area except the central area. The central area has 64364 com-
putational grid points, which makes it twice as fine as those of
other areas. The time slice is set atDt51/16 a.u.

FIG. 12. Evolution of the density. Time flows left to right, to
row first. The Gaussian is observed to go through these a
smoothly.
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a single processing element; the adhesive operator conn
them. The initial wave function is set as a Gaussian given

c~r ,t50!5
1

A2pW2
expF2

ur2r0u2

4W2
1 ip0•r G , ~54!

where r0 is set as the center of this system andp0
5(1, 1 a.u.), W51 a.u. The energy of this Gaussian
theoretically derived as 1.0625 a.u.

Figure 9 shows snapshots of the time evolution of
Gaussian, which is observed to go through these a
smoothly. Figure 10 shows the evolution of the ener
which is observed to oscillate around its initial value.

Second, we allocate 64364 grid points only in the centra
area as illustrated in Fig. 11. We utilize the adhesive oper
for the adaptive mesh refinement. Figure 12 shows the sn
shots, with the Gaussian going through these areas smoo
Figure 13 shows the evolution of the energy, which is o
served to oscillate near its initial value. In this way, the
liability of the adhesive operator is proved.

C. Excitation of a hydrogen

As the last application of the present method, we dem
strate its validity and efficiency in describing the process

or
ly
by
at

e

as

FIG. 13. Time variance in the energy. The initial energy is the
retically derived as 1.0625 a.u., but it is evaluated as 1.0591 a.u
the FDM. The energy oscillates near its initial value but it nev
drifts monotonically.

FIG. 14. Time variance in the polarization of the electron.
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photon-induced electron excitation in a hydrogen atom i
strong laser field. The laser is treated as a classically o
lating electric force polarized in thez direction:

Ez5E0 sinvt. ~55!

The spatial variation of the electric field of the light
neglected, because the electron system is much smaller
the order of the wave length. Then the interaction term of
Hamiltonian is approximated as

Hint52eEzz. ~56!

In other words, we only take into account the electrodip
interaction of the electron with the light, and neglect t
electroquadrapole, the magnetic-dipole, and other highe
teractions.

The amplitudeE0 is set at 1/64 a.u.50.80 V/Å , which is
as strong as a usual pulse laser. The angular frequencyv is
set at 0.3125 a.u.58.5 eV, less than the transition energ
between 1S and 2P. Ordinarily, such low energetic electri
force has no effect on the electronic excitation. But with su
a strong amplitude, various nonlinear optical effects
caused by the electron dynamics.

We allocate 1283 grid points in a 323 a.u.3 cubic closed
system. The hydrogen nucleus is located at the center o
system, and the nucleus potential is constructed by solv
the Poisson equation in the discretized space to avoid
singularity of the nucleus potential. The 1S orbital is as-
sumed as the initial state of the wave function. Then we t
on the electric field and start the simulation. The time slice

FIG. 15. Spectrum of the scattered light generated by the o
lation of the electron.

FIG. 16. Evolution of the density of the electron in the hydrog
atom. The density starting from a 1S orbital oscillates with time and
becomes a 2Pz orbital.
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set at 0.0785 a.u.52.031023 fs so as to follow the rapid
variation of the wave function and the electric force. W
follow the evolution for 32k iteration.

Figure 14 shows the time variance in the polarization
the electron. The oscillation of the polarization generates
other electric field, which corresponds to a nonlinearly sc
tered light from the atom. By Fourier transforming the p
larization along the time axis, we obtained the spectrum
the scattered light shown in Fig. 15.

Several sharp peaks are found, which are interpreted
follows: The peak at 8.5 eV comes from Rayleigh scatteri
whose frequency is identical with the injected lightv. The
peak at 10.2 eV comes from Lymana emission, which is
generated by the electron transition from the 2P orbital to
the 1S orbital vLa

. On the other hand, the peak at 12.1 e

comes from Lymanb emission, which is generated by th
electron transition from the 3P orbital to the 1S orbital vLb

.

The peak at 6.8 eV comes from hyper Raman scatter
whose frequency is identical with 2v2vLa

. Moreover the

peak at 25.5 eV comes from the third harmonic generat
whose frequency is identical with 3v.

The simulation is also performed for a different laser fr
quency; the injecting photon energyv is set at 10.2 eV,

il-
FIG. 17. Time variance in the polarization of the electron.

FIG. 18. Spectrum of the scattered light generated by the os
lation of the electron.
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which is the same as the transition energy between 1S and
2P. In this case the electron starting from a 1S orbital is
expected to excite to a 2Pz orbital. Figure 16 shows the
snapshots of the density during the simulation time span

Figures 17 and 18 show the polarization and the spectr
respectively. Three peaks are found at 9.9, 10.2,
10.5 eV. These peaks are derived from the theory of
Dressed atom or the ac stark effect as below

v2eE0^2Pzuzu1S&, v, v1eE0^2Pzuzu1S&. ~57!

One could obtain such behavior analytically by using pert
bation theory; however, with the present method, we co
directly calculate them without perturbation theory and wi
out information on the excited states of the system.
P.

B

d

,
d
e

-
d
-

IV. CONCLUSION

We have formulated a method for solving the tim
dependent Schro¨dinger equation numerically in real spac
We have found that by using Cayley’s form and Suzuk
fractal decomposition, the simulation can be fast, stable,
curate, and suitable for vector-type supercomputers. We h
proposed the adhesive operator to make Cayley’s form s
able for periodic systems and parallelization and adap
mesh refinement. These techniques will also be useful for
time-dependent Kohn Sham equation, which is our fut
work.
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