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Two-dimensional hydrodynamic lattice-gas simulations of binary immiscible
and ternary amphiphilic fluid flow through porous media
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The behavior of two-dimensional binary and ternary amphiphilic fluids under flow conditions is investigated
using a hydrodynamic lattice-gas model. After the validation of the model in simple cases~Poiseuille flow,
Darcy’s law for single component fluids!, attention is focused on the properties of binary immiscible fluids in
porous media. An extension of Darcy’s law which explicitly admits a viscous coupling between the fluids is
verified, and evidence of capillary effects is described. The influence of a third component, namely, surfactant,
is studied in the same context. Invasion simulations have also been performed. The effect of the applied force
on the invasion process is reported. As the forcing level increases, the invasion process becomes faster and the
residual oil saturation decreases. The introduction of surfactant in the invading phase during imbibition pro-
duces new phenomena, including emulsification and micellization. At very low fluid forcing levels, this leads
to the production of a low-resistance gel, which then slows down the progress of the invading fluid. At long
times ~beyond the water percolation threshold!, the concentration of remaining oil within the porous medium
is lowered by the action of surfactant, thus enhancing oil recovery. On the other hand, the introduction of
surfactant in the invading phase during drainage simulations slows down the invasion process—the invading
fluid takes a more tortuous path to invade the porous medium—and reduces the oil recovery~the residual oil
saturation increases!.

PACS number~s!: 82.20.Wt, 47.55.Mh, 68.10.2m, 05.60.2k
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I. INTRODUCTION

Since the ability of lattice-gas automaton models to rep
duce correctly the incompressible Navier-Stokes equat
was established@1,2#, these models have been intensive
studied. Rothman and Keller developed an extension of
one-component model for simulating binary immiscible fl
ids @3#. The introduction of a third component, namely su
factant, is due to Boghosianet al. @4#. The surfactant particle
acts as a point dipole, and tends to stay at the interface
tween the two immiscible fluids. It can also form micelle
when its concentration exceeds a particular value~the critical
micelle concentration!. This work logically follows the two
dimensional studies performed by Wilson and Coveney
flowing multiphase fluids, including their application to p
rous media@5#. Some preliminary results have been d
scribed in a first publication@6#. Complex fluid flow in po-
rous media is both a scientifically challenging problem an
field of great practical importance, from oil and gas produ
tion to environmental issues in ground water flows@7#.

The paper is structured as follows: a short description
the hydrodynamic lattice gas model is given in Sec. II.
Section III we present results obtained for the simulation
single phase flow through a two-dimensional channel,

*Present address: CECAM, Ecole Normale Supe´rieure, 46, Allée
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the verification of some theoretical predictions. These co
putations allow one to calculate the viscosity of the flu
Section IV is devoted to the verification of Darcy’s law an
to its generalization to the case of multiphase fluids. Invas
phenomena are investigated in Secs. V and VI, and con
sions are presented in Sec. VII.

II. DESCRIPTION OF THE MODEL

According to the lattice-gas model for microemulsio
@4#, the sitewise interaction energy of the system can be w
ten

DHint5aDHcc1mDHcd1eDHdc1zDHdd . ~1!

These terms correspond to the relative immiscibility of
and water, the tendency of surrounding dipoles to be
round oil or water particles and clusters, the propensity
surfactant molecules to align across oil-water interfaces,
a contribution from pairwise interactions between surfacta
respectively.

The use of a probabilistic, or Monte Carlo, process,
choose the outgoing state when particles collide leads to
introduction of a temperaturelike parameterb, which is,
however, not related to a true thermodynamic temperat
This parameter does not allow the analytical prediction of
viscosity. In essentially all such lattice-gas models involvi
interactions between multicomponent species, the condi
of detailed balance is not satisfied. This leads to the fact
one cannot be sure,a priori, that an equilibrium state exists
2898 ©2000 The American Physical Society
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Nevertheless, numerical simulations confirm that ste
states are reached. In this paper, the following set of par
eters have been used:

a51.0,

m50.001,

e58.0,

z50.005,

b51.0.

We make use of a triangular lattice, with six directions
each site. There can be up to seven particles at each site
reduced density of a fluid phase is defined as the ave
number of particles of this fluid phase~color! per lattice site,
divided by 7 ~six lattice directions and one rest particle!.
Note that all simulations performed in this paper are t
dimensional. A three-dimensional version of the model h
been formulated@8#, and similar investigations are alread
underway using this high performance computing code@9#.
The different fluid forcing methods were described in a p
vious paper@6#.

Lattice sites are selected at random, on which momen
is added, so that either~a! the total average momentum
kept constant~‘‘pressure’’ condition!, or ~b! the total added
momentum is constant~‘‘gravity’’ condition !. In order to
study the process of fluid invasion into porous media, so
modifications have been made to our existing lattice-
code@6#: The simulation cell system is no longer periodic
the flow direction~the vertical ory direction!, but retains
periodicity in the x-transverse direction. To achieve thi
‘‘invisible’’ rows at the top and bottom of the lattice hav
been added in order to simulate infinite columns of bulk
and water respectively. As the total number of particles
conserved, they are wrapped from top to bottom, and v
versa, but in so doing, they change their color to that of
bulk surrounding color fluid. When obstacle sites are pres
in the lattice, no-slip boundary conditions are used, co
sponding to a zero velocity condition at the boundary in
conventional Navier-Stokes fluid. Obstacles may be give
color charge, thus assigning wettability properties to
simulated rock species. The wettability index can vary o
the range$27;17%, 27 corresponding to a rock sitefull of
water~blue! particles, and17 to a rock sitefull of oil ~red!
particles ~i.e., maximally hydrophilic and hydrophobic re
spectively!.

III. TWO-DIMENSIONAL CHANNEL SIMULATIONS

A. Single phase fluids

In this section, we first check some basic properties
single phase flow within channels in two dimensions, a
then move on to consider binary immiscible fluid flow.

1. Velocity profile measurements

We are concerned here with the flow of a single ph
fluid through a pipe~Poiseuille flow!; the velocity profile in
this case is known to be parabolic. The results obtained u
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a 32332 lattice are displayed in Fig. 1. Also shown is
parabolic fit to the curve. The agreement between the si
lated curve and the fit is good. This lattice-gas model is a
to reproduce the flow of a single phase fluid through a p
correctly. The velocity profiles for low-density fluids~0–2
particles per lattice site! are less well fitted by a parabola.

2. Calculation of the viscosity

From the velocity profile, we can extract the numeric
value of the maximum flow velocity which occurs in th
center of the pipe. The relation between the velocity at
center of the pipe and the kinematic viscosity is

n5
1

8

FW

Lgmax
, ~2!

wheren is the kinematic viscosity,F is the forcing level,W
andL are the width and length of the channel, respective
andgmax is the maximum of the velocity in the center of th
pipe. Carrying out this calculation for different densities a
low us to compute the viscosity of the fluid as a function
density~Fig. 2!. The result obtained with this model is in th
same range as that obtained by Kadanoffet al. @10#.

B. Binary immiscible fluid flow in a channel

Simulations of binary mixtures in a two-dimensional pip
were conducted on a 323128 lattice. The first set of simu

FIG. 1. Velocity profile averaged over 20 000 time steps fo
reduced density of 0.5 on a 32332 lattice. The simulated points ar
represented by triangles and the fitted curve is the dotted line.
forcing level is 0.00075 using gravity conditions.

FIG. 2. Kinematic viscosity as a function of density for a 3
332 box size.
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2900 PRE 62J.-B. MAILLET AND PETER V. COVENEY
lations concerned the influence of the wettability index
the shape of a nonwetting fluid bubble, and the second
involved a study of the coupling between the two fluids.

1. Influence of the wall wettability

In order to study the effect of the wettability index on th
shape of a nonwetting bubble, invasion conditions are u
These conditions simulate infinite columns of wetting a
nonwetting fluid at the top and bottom of the lattice, resp
tively, thus allowing the nonwetting bubble to adhere to t
walls ~at least at the bottom of the lattice!. If the simulations
are performed without bulk flow, the wetting phase progr
sively invades the lattice~owing to capillary effects!, pre-
venting a detailed study of the nonwetting bubble. The sim
lations are run using pressure forcing applied to
nonwetting fluid, in order to achieve a state of zero fl
~momentum is added to the nonwetting phase until its fl
reaches a zero value!. The force needed to keep the nonwe
ting fluid on the lattice is then determined, as a function
the wettability of the walls. Figure 3 displays the results
a 1:1 water and oil mixture with a total reduced density
either 0.5 or 0.7. Each point is averaged over five indep
dent simulations, each of duration 20 000 time steps. Sev
points can be made. First of all, the curves correspondin
different reduced densities are similar. They display a str
influence of the wettability index in the range 0–3, for whi
the force needed to keep the nonwetting fluid on the lat
increases strongly. For wettability indices greater than
there is no change in the restraining force. Snapshots at

FIG. 3. Top: Effect of the wettability index on the force need
to keep the nonwetting fluid on the lattice. The curves with d
monds and triangles correspond to reduced densities of 0.35
0.25, respectively. Bottom: The configurations from left to rig
correspond to simulations with wettabilities 0, 1, 2, and 3~the
wetting fluid is in white!. The force is in unit momentum per tim
step, and the lattice size is 323128.
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ferent times during the simulation show that, for nonwetti
walls, the interface is on average flat. Increasing the we
bility leads to deformation of the interface, from a flat inte
face to a curved interface, and finally to the detachment fr
the wall of the upper part of the nonwetting bubble, for
index of 2. Increasing the wettability index further has
effect because the bubble has already detached from the

It is surprising that the reduced densities of the fluids
not influence this curve. One might have thought that
point at which the bubble detaches from the wall would c
respond to there being an equal number of particles per
in the wetting fluid and in the obstacle sites so that, when
reduced density of the wetting fluid increases, the bub
would detach for greater wettability coefficients; howev
this is not found to be the case.

2. Coupling

The coupling between the two fluids is studied here.
these simulations, only one fluid is forced, and the respo
of both fluids~forced and unforced! is calculated, for differ-
ent applied forces. The results are plotted in Fig. 4. Simu
tions were performed over 20 000 time steps, with a redu
density of 0.25 for each fluid. The wettability of the wall
27, i.e., strongly water wetting.

The behavior of the two fluids when they are forced
different. The curve associated with water lies below the o
for the oil because of the wettability of the wall. At small o
forcing levels, the oil phase exists as a single elonga
bubble, and its response is nonlinear. When the force
comes large enough, the response of oil becomes linear.
an applied force greater than two normalized units, a disc
tinuity is seen, which corresponds to the formation of
infinite lamellar phase~the bubble now extends over th
whole lattice!. In this regime, the response of oil is still lin
ear. At very high forcing levels, the response again becom
nonlinear. This is presumably due to the limitation in flu
velocity of the spatially discrete lattice gas model.

By contrast, the response of water is linear from t
smallest forcing levels to a force of approximately two no
malized units~Fig. 4!. The breakpoint at this forcing leve
corresponds, as in the case of the forcing of oil, to the f
mation of a continuous infinite oil phase. In this regime, t
response is still approximately linear. Increasing the wa

-
nd

FIG. 4. Response of fluids when they are either forced~left! or
unforced~right!. Stars and diamonds are for oil and water resp
tively. The normalized force is the force divided by the force
which linear behavior first arises. The normalized flux is the fl
divided by the flux of a single component fluid at that forcing.
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forcing level leads to the break up of this infinite oil pha
into several oil droplets, which are no longer ellipsoidal
shape.

On the other hand, the response of both fluids is ident
when they are unforced but driven by coupling to the forc
second phase: linear behavior is observed for a forcing le
up to two normalized units. For higher forces, the respons
roughly linear, albeit a little lower than before, due to t
formation of a continuous oil phase.

Figure 5 illustrates the different behavior observed.
the velocity profile corresponding to a continuous oil pha
when water is forced, a parabolic profile can be discerned
the right hand portion of the plot~where water occupies th
lattice!, while a linear segment on the left hand side cor
sponds to the location of the oil, which behaves as if it w
under shear~couette! conditions. When oil is forced, the cen
tral and left hand part of the velocity profile is parabo
~Poiseuille flow for the central oil phase!, while the linear
behavior is associated with the location of water at each
of the channel, under conditions approximating couette fl

Figure 6 displays the results of the calculation of the re
tive permeability coefficients over the whole range of wa
concentration, and for different channel wettability indice
In the case where oil is forced, the plots of the oil respo
become more curved as the wettability of the wall increa
~the curve is convex up to 0.4–0.5 water concentration,
concave for higher concentrations!. Moreover, lubrication ef-
fects are seen at small water concentrations, and they bec
more important as the wettability coefficient increases~lubri-
cation is manifested by a normalized momentum greater t
1!. This is due to the fact that when the wettability coef
cient is small~between 0 and 2), the water preferentia

FIG. 5. Top: A configuration showing the oil phase~white! as a
single bubble~low forcing!, a continuous phase~intermediate forc-
ing!, or a disconnected phase~high forcing!. Bottom: The velocity
profiles, averaged over 10000 time steps, correspond to a con
ous oil phase when either oil~left! or water~right! is forced. The
lattice size is 323128.
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accumulates at only one side of the walls. Thus the oil is
direct contact with the other wall. For the highest wettabil
index (27), the water adheres to both sides, and the
flows in the center of the pipe, avoiding any contact with t
walls. Thus the oil does not dissipate momentum on the w
any longer, and the resulting flow is greater than that o
pure fluid. By contrast, when water is forced, the concav
of the flux-composition curves increases with the wettabi
index, and the curves remain concave over the whole c
position range.

The main effect of increasing the wettability index on t
response of unforced fluids is that the viscous coupling
tween the two fluids then also increases. Moreover, a sec
ary maximum appears, when the wettability decreases~in the
case of unforced oil at low water concentration! or increases
~in the case of unforced water at high water concentratio!.
In the latter case, this peak is related to the fact that at v
high water concentration, there is a small~roughly spherical!
oil bubble which can flow in the pipe~whose diameter is
lower than the diameter of the pipe!. When the water con-
centration decreases, the diameter of the oil bubble incre
and becomes identical to the diameter of the pipe, at wh
point it experiences a direct interaction with the wall. In t
case of unforced oil, the secondary maximum is associa
with the formation of water droplets rather than elonga
layers along each wall. These droplets can flow easily,
the resulting coupling with water is enhanced. As in the c
of forced fluids, the main effect of the wettability index a
pears in the range 0–2.

u-

FIG. 6. Dependence of fluid flow on fluid composition as
function of wall wettability for progressively less water-wettin
channel walls; the wettability index has the numerical values27
~crosses!, 22 ~squares!, 21 ~diamonds!, and 0~stars!. The normal-
ized momentum is the momentum divided by the momentum o
pure fluid at the same level of forcing. Data are averaged o
10000 time steps on a 323128 lattice. For clarity, error bars ar
displayed only for one set of simulations.
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IV. DARCY’S LAW AND ITS GENERALIZATIONS

In this section, we are concerned with the study of flu
flow in porous media. The first subsection describes
method used to construct a porous medium, which diff
from the random distribution of obstacle sites used pre
ously@6#. In the case of a single component fluid, the valid
of Darcy’s law is investigated for various porous media.
the case of binary immiscible fluids, there is no genera
accepted law governing the flow behavior of the mixture.
generalization of Darcy’s law@Eq. ~5!# was used in previous
work, which explicitly admits viscous coupling between t
two fluids. The importance of this coupling is examined f
various porous media. The dependence of fluid flow on
fluid composition is investigated. Finally, an investigation
the influence of surfactant is also presented.

A. A brief review

There have been a few studies concerning the calcula
of relative permeabilities of two-phase flow in porous med
In two dimensions, Rothman@11# used a lattice-gas metho
to investigate the validity of macroscopic fluid flow laws
porous media. He constructed a porous medium compr
of a square block in the middle of a pipe. For each saturat
he computed the four phenomenological coefficients@see Eq.
~5!# from the slope of the linear response of the flux~of each
species! to the applied force. He then constructed a relat
permeability diagram, which shows that the viscous coupl
is not negligible~typically of the order of 0.2 for a 50%
saturation!. Nevertheless, his model ‘‘porous medium’’ wa
extremely simple. Kalaydjian@12# compared theoretical pre
dictions with experimental results on the behavior of an
ganglion in a capillary tube with square cross section a
axial constriction. He found that for a ratio of viscositie
equal to 1, the effect of viscous coupling is significa
Moreover, taking into account variation of the viscosity ra
of the two fluids, the relative permeability can assume val
greater than 1, indicative of lubrication effects. Goode a
Ramakrishnan@13#, calculated relative permeabilities in th
case of a tube network using a finite element method. T
found that the viscous coupling is very small. They also st
ied the influence of the viscosity ratio on lubricatio
Zarcone and Lenormand@14# constructed an experimenta
setup to determine the coupling coefficient from a sin
experiment. The porous medium was a packing of s
grains and the experiments were performed on pairs of flu
~mercury/water and oil/water!. They assumed that the cros
coefficients were equal over the whole range of saturat
and found that they could be neglected in both cases.
recent study, Olson and Rothman@15# calculated relative
permeabilities using the lattice-gas method in three dim
sions, for a digitized microtomographic image of Fontaine
leau sandstone. The coupling coefficients appear to be
small and Onsager’s reciprocity relation is verified.

B. Construction of two-dimensional porous media

It is known that the behavior of fluids in porous med
changes dramatically when going from two to three dim
sions, and it is frequently stated that there is no such thin
a porous medium in two dimensions. Nevertheless, tw
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dimensional~2D! simulations can be compared to 2D-lik
micromodel experiments, and prove to be helpful in und
standing such complex problems. The first step needed
fore doing any simulation is the construction of a poro
medium itself. If we take a 2D slice of a 3D porous mediu
we cannot be sure that the pores are connected~the connec-
tion may appear in the third dimension!, and thus simulations
in such media would be impractical. On the other hand
regular porous medium can introduce unwanted symm
and thus introduces artifacts into the results.

The method used by Wilson and Coveney@5# to create a
porous medium consists of randomly placing obstacle s
on the lattice. This has the disadvantage that the resul
medium has rather uncontrollable properties. The met
proposed here ensures control of the size and dispersio
solid obstacles without imposing any symmetry: first a sim
lation of domain growth in an oil-water binary mixture
run, starting from a random configuration. The temporal e
lution of such a mixture is marked by the formation of sm
droplets of oil in bulk water@4#. These droplets coalesce wit
each other, becoming larger and larger. When the size of
droplets reaches the desired size for the obstacle, the s
lation is stopped and the oil sites are stored as obstacle
for latter use. Figure 7 shows examples of porous me
constructed in this way, which have been extensively use
the simulations described here.

One should note that the porosities of these media
roughly equal to each other~Table I!; the differences origi-
nate from the average size of the obstacle grains. The us
these kinds of porous media enables us to readily change
scale of the simulations.

FIG. 7. Examples of porous media (643128 lattice sites! con-
structed from domain growth in a binary phase. Obstacle sites
colored in black. Right: small; center: medium; and left: large.

TABLE I. Properties of the three porous media~small, medium
and large! shown in Fig. 7. The effective surface is the number
available lattice sites in direct contact with an obstacle site. A sit
far from an obstacle if the distance to the nearest obstacle si
larger than one lattice site.

Properties Small Medium Large

Porosity 55% 52% 60%
Number of available sites 4466 4230 4929
Effective surface 3288 2407 1101
Number of sites far from obstacle 1178 1823 382
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C. Single phase fluids

In the case of single component fluids, the flow is go
erned by Darcy’s law,

J52
k

m
~¹p2rg! ~3!

whereJ is the flux,k the permeability,m the kinematic vis-
cosity, ¹p the pressure gradient, andrg the gravitational
force density. To determine permeabilities for these th
porous media, simulations were performed at a reduced
sity of 0.6 particle per lattice direction with an initially ran
dom configuration. The flux was averaged over the en
lattice and over 7500 time step intervals, after the flow h
reached a steady state. Figure 8 displays the results c
lated over a wide range of applied forces, making use of
gravity condition.

In the three porous media~cf. Table I!, a linear expression
fits the simulated points: Darcy’s law is thus obeyed in th
cases. However, for very high levels of forcing, nonline
effects appear~for the largest porous medium!. The slope of
the linear fit is proportional to the permeability of the poro
medium; the ratios of these slopes are reported in Table

All these simulations were performed under the same c
ditions: the viscosity of the fluids is unchanged and the
rosities of the various porous media are very similar to o
another. The slopes of the lines, i.e. the permeabilities
these three porous media, are strongly dependent on the
sen resolution~averaged number of lattice sites per pore!.

FIG. 8. Verification of Darcy’s law for a single component flu
in the three different porous media of Table I and Fig. 7. The lin
are linear fits to the data. Triangles, crosses, and diamonds ref
the large, medium, and small porous media, respectively.

TABLE II. Ratios of the permeabilities (ks ,km ,kl) of the small,
medium, and large porous media, respectively.

Ratio of permeabilities
km

ks

kl

km

kl

ks

Numerical value 1.8 8.5 15.7
-
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D. Binary immiscible fluids

Even binary immiscible fluid flow in pipes is a problem
for conventional continuum fluid dynamics methods, beca
of the complexity of the fluid interfaces, particularly at hig
Reynolds numbers. Similar challenges remain for the m
elling and simulation of two-phase flow in porous med
even at very low Reynolds numbers.

1. Cross-coefficients and Onsager relations

At the outset, we should stress that there is no w
established law governing the flow of binary immiscible fl
ids through porous media. One might consider the simp
extension of Darcy’s law for two components of the form

Ji5ki~S!
k

m i
Xi , ~4!

where Ji is the flux of the i th species,ki is the relative
permeability coefficient~depending on the saturationS), m i
is the viscosity, andXi is the body force acting on thei th
component. These equations assume that the fluids are
coupled~i.e. each fluid flows in a porous medium formed b
original the porous medium plus the other fluid!.

However, if we assume that the fluids are coupled,
generalized form of Darcy’s law becomes

Ji5(
j

L i j Xj , ~5!

wherei , j 51,2. Equation~5! is a more general form of linea
force-flux relationship. These equations have a similar str
ture to that which arises in the theory of linear irreversib
thermodynamics. The coefficientsLi j are then referred to a
phenomenological coefficients. In this theory Onsager’s re
procity relation applies@the cross-coefficients are equ
(L125L21)]. Tempting as it is, one must nevertheless be v
careful about claiming that there is more than a formal sim
larity in this case. Onsager’s theory depends on vari
physical assumptions, such as detailed balance, which
obviously not satisfied here.

Simulations have been performed on a 1:1 mixture of w
ter and oil, at a total reduced density of 0.5, using the th
porous media described in Table I. The wettability index
the rock was set at27 throughout. The applied force~grav-
ity condition! varies over the range@0.0001, 0.2#. To calcu-
late the different phenomenological coefficients, we co
puted the response of both fluids when each one is for
~Fig. 9!. In the literature@15#, the force is normalized with
respect to the capillary threshold~the force needed for an oi
bubble to flow!. In our work, particularly using the sma
obstacle matrix, the flux of water becomes linear at hig
forcing levels than for the oil. Thus the normalization
made with respect to the appearance of a linear respons
both fluids.

The response of forced fluids is linear over a large app
force range in the case of the small porous medium, and
low forces in the case of the large one. Thus we can ext
the coefficientsL11 andL22 from the slope of the linear re
gime. The coefficient relative to the water is lower than t
one for the oil because of the wettability of the porous m
dium. The water preferentially adheres to the obstacles ra
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2904 PRE 62J.-B. MAILLET AND PETER V. COVENEY
than flowing into the channels. However, the two diago
coefficients have the same order of magnitude.

In the case of oil, capillary effects can be seen at very l
forcing levels. This leads to a nonlinear behavior. This n
linearity vanishes for applied forces greater than a criti
value corresponding to the capillary threshold. In the cas
water, the nonlinearity disappears when the average siz
the channels increases~that is, for the large porous medium!.
When the channels are very narrow, a small oil bubble
easily block the flow of water. Thus this nonlinearity is d
rectly related to the width of the channel; it may also
influenced by the connectivity of the obstacle matrix.@Tests
have been made to check the influence of the bounce-b
~no-slip! boundary conditions at obstacles on this behavio
appears that using other types of conditions does not cha
these results.#

The behavior of the unforced fluids is quite different:
the case of oil, the response is linear, even for small app
forces. This is presumably due to the fact that oil partic

FIG. 9. Investigation of a generalized version of Darcy’s la
calculation of the phenomenological coefficients as the slope of
response of each fluid component when they are either forced~di-
agonal! or unforced~cross-coefficients! in the case of the smal
~top!, medium~center!, and large~bottom! porous media of Table I.
Oil and water are represented by stars and squares, respect
Data are averaged over 10000 time steps on a 643128 lattice.
l
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l

of
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ck
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reside preferentially far from obstacles, and so a flux of w
ter particles will necessarily induce a flux of oil particles.
the case of unforced water, its response is linear only if
applied force is greater than a critical value~in the small and
medium sized porous media!. In the low forcing regime, the
response is clearly nonlinear, and sometimes even nega
This nonlinearity can be attributed to the wettability of o
stacles with respect to water, as well as to the fact that
bubbles can block pore throats and so prevent the flow
water.

However, the cross-coefficients in the generalized form
Darcy’s law@Eq. ~5!# are nearly equal to each other~Fig. 9!.
The surprising thing is that the numerical values of the cro
coefficients are of the same order of magnitude as thos
the diagonal coefficientsL11 or L22. In comparison with the
results obtained by Rothman and Zalesski@7#, this fact may
be attributed to the dimensionality of the model~we are
working in two dimensions, while Ref.@7# is concerned with
the 3D case! and to the porous media used. The relati
permeabilities are reported in Table III for each porous m
dium. The increase of the relative permeabilities when go
from the small porous medium to the large porous medi
can be understood in term of connectivity of space: in
case of the small porous medium, pores are numerous
very small, and the oil phase is much more disconnected t
in the large obstacle matrix, in which the pores are lar
enabling the oil to form larger droplets. Thus the amount
fluid-fluid interface decreases when going from the small
rous medium to the large porous medium. This explains
small decrease of the cross coefficients and the increas
the relative permeabilities of each fluid.

Note that the ratio of cross terms is approximately co
stant, and equal to 1. This supports the notion of Onsa
reciprocity, which seems to be valid in spite of the fact th
various properties, such as detailed balance, are not m

:
e

ely.

TABLE III. Relative permeabilities for the three porous med
of Table I, and coupling cross-coefficients. Their ratios are a
reported. Indices 1 and 2 refer to oil and water, respectively.

Obstacle Small Medium Large

L11 0.27 0.38 0.42

L22 0.09 0.12 0.17

L12 0.17 0.15 0.14

L21 0.17 0.16 0.12

L11

L22
3.0 3.17 2.47

L12

L21
1.0 0.94 1.17

L11

L12
1.59 2.53 3.0

L22

L21
0.53 0.75 1.42



ag
t
v

ac
in
th

a
e
i

h
ed
r

ed

a
ia
e
if
id
u
-
u

a
re
t

0
le
e

is
a

so
e
ar

ter
ater
the

sites
.
is
e-
en-
less

on
ough
r-
as
all

flux
n

all
oil.

a
o
wa-
he
tag-
flux

s as
oci-
At
be-
ual

ra-

the
are
-
-

ith
ld

n is
se
rge
e-

e-
ta-
ix.

is
sts
the
ra-
he

ery
ob-
gle
ot

ca-
the
the

c-
ta
re
r

e
es
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tained by the lattice-gas model. Moreover, the ratio of di
onal terms is also approximately constant, implying tha
correlation exists between the forcing of oil and water. Ne
ertheless, the ratio of diagonal to off-diagonal terms for e
fluid is not constant: this is due to the fact that the coupl
between the two fluids also depends on the geometry of
porous medium.

These simulations demonstrate that there is signific
coupling between the two fluids, at least in the case of th
particular porous media. This strong viscous coupling
thought to be due to the dimensionality of the model. T
reciprocity relations seem to be valid over a well-defin
range of applied forces, and the response of the fluids
mains linear down to a well-defined value of the appli
force.

2. Relative permeabilities as a function of saturation

In Sec. IV D 1, we calculated the cross-coefficients in
linear generalization of Darcy’s law in various porous med
These results were obtained by looking at the respons
each fluid when they are either forced or unforced, for d
ferent applied forces. We focus now on the behavior of flu
for different water saturations. For this study, a new poro
medium was selected~see Fig. 10!, because of its large con
nectivity. For each saturation, the flux of each fluid is calc
lated when it is forced or unforced. The results are shown
Fig. 10. These curves have been calculated taking into
count only the flux of majority color sites, but the results a
identical if the total flux of particles is considered. The we
tability of the porous medium has been set equal to27. The
total reduced density is 0.7, and the forcing level is 0.0
~gravity condition!. Also shown in Fig. 10 is the graysca
velocity profile in the porous medium considered. The b
havior of the two immiscible fluids when only water
forced is described first. At low water saturations, water p
ticles form small bulk water clusters together with some i
lated particles which adhere to the obstacle matrix. Som
the clusters flow through the channels, while others

FIG. 10. Left: binary immiscible fluid flow behavior as a fun
tion of water saturation. The normalized momentum is the to
vertical momentum divided by the total vertical momentum of pu
fluid at the same forcing level in the same porous medium. Wate
represented by crosses~forced! and stars~unforced!, and oil by
triangles~forced! and squares~unforced!. Right: grayscale velocity
profile of the flow of a single phase fluid in the same porous m
dium. Light and dark are associated with high and low velociti
respectively. The size of the porous medium is 643128. Averaging
is performed over 10000 time steps.
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trapped in stagnant zero-velocity regions. When the wa
concentration increases, the cluster size grows, and the w
still occupies both channel sites and stagnant regions. As
water concentration increases, there is no change in the
occupied by water: the mechanism of flow is unchanged

Now consider the behavior of the oil when only water
forced. The coupling is maximum for 60% water, corr
sponding to a significant water flux. When the water conc
tration increases, the oil flux decreases because there is
oil in the medium. Equally, when the water concentrati
decreases, the oil flux decreases because there is not en
water to drive oil. However, the case of forced oil is diffe
ent. At low water saturation, the water still forms clusters
well as surrounding obstacles, but now the clusters are
trapped in stagnant zero-velocity zones. The normalized
of water is 0, while the normalized flux of oil is greater tha
1. This means that a mixture of oil together with a sm
amount of water produces a larger flow than that of pure
This can be explained on the basis of alubrication phenom-
enon, as in the case of a flowing binary immiscible fluid in
pipe ~see Sec. III B!. As shown below, this is largely due t
geometrical properties of the porous medium. When the
ter concentration increases, the oil still flows freely in t
channels. Water clusters accumulate preferentially in s
nant zones. When the water concentration increases, the
of the unforced water increases, for the same reason
given above. However, the decrease of the oil flux is ass
ated with a reduction of the connectivity of the oil phase.
higher water concentrations, the flux of water decreases
cause of the decrease of the oil flux. The very small resid
oil saturation is due to the use of random initial configu
tions: the results are different in invasion simulations~Secs.
V and VI!.

The same calculations have been performed using
large porous medium described in Table I. The results
displayed in Fig. 11~the total density is 0.7 and the wetta
bility coefficient is27, forcing levels 0.001 and 0.005, av
eraged over 10000 time steps!. The two diagrams in Fig. 11
represent simulations in the same porous medium, but w
forcing either greater or lower than the capillary thresho
respectively. In the former case, the residual oil saturatio
very small, and the effect of the connectivity of the oil pha
is small. The cross-coefficients are roughly equal over a la
range of fluid compositions, and the viscous coupling b
tween the two fluids is non-negligible. The role of the r
sidual water concentration is significant, owing to the wet
bility of the rock and the connectivity of the obstacle matr

In the low forcing case~Fig. 11!, the residual oil satura-
tion is very high. The appearance of a nonzero oil flux
related to the connectivity of the oil phase: when oil exi
only as bubbles, it cannot flow. The coupling between
two fluids is very small, because of the high residual satu
tions~the flux of the forced phase is zero, as is the flux of t
unforced phase!.

In both diagrams, lubrication phenomena are seen at v
low water concentrations. Figure 12 displays the results
tained in the case of a porous medium comprising a sin
pore. The principal result is that lubrication effects are n
very important in this case. It therefore seems that lubri
tion effects in the other porous medium used are due to
topology of the obstacle matrix, being dependent on
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amount of solid-liquid interface.
In summary, for binary immiscible fluid flow in porou

media, it appears that when the forcing is greater than
capillary threshold, the shapes of the relative permeab
curves agree well with what has been published previou
concerning simulation results. The residual oil saturation
small, and is probably due to the topology of the poro
medium and to the use of random initial configurations. T
porous medium can also produce ‘‘lubrication’’ effects,
very small levels of water saturation. The coupling coe

FIG. 11. Binary immiscible fluid flow behavior as a function
water concentration. The normalized flux is the total vertical m
mentum divided by the total vertical momentum of pure fluid at
same forcing level in the same medium. Water is represented
crosses~forced! and stars~unforced!, and oil by squares~forced!
and diamonds~unforced!. The lower graph corresponds to a forcin
level of 0.005, while the upper one corresponds to a forcing
0.001.

FIG. 12. Left: binary immiscible fluid flow behavior as a fun
tion of water concentration. No lubrication phenomenon is exh
ited in this case. Water is represented by crosses~forced! and
squares~unforced!, and oil by triangles~forced! and diamonds~un-
forced!. Error bars are also displayed. Right: the single pore por
medium used, together with a velocity profile; grayscale coding
in previous figures.
e
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ly
is
s
e
t
-

cients appear to be roughly equal over a large range of s
rations, and exhibit a maximum of 0.2 for 60% water sa
ration. When the forcing is lower than the capilla
threshold, the oil flux is strongly dependent on the conn
tivity of the oil phase.

E. Ternary amphiphilic fluids

In this section the effect of surfactant on the hydrod
namic behavior of oil/water fluid mixtures in porous media
investigated. In the binary immiscible fluid case, the flux
of the different species were normalized by the flux of a p
fluid in the same medium, of density equal to the sum of
partial densities. In the ternary case, the flux of each spe
is normalized by the flux of a pure fluid of density equal
the sum of the partial densities of oil and water.

The simulations are performed using the large~cf. Table
I! obstacle matrix. As in the binary case, the gravitatio
flow implementation is used. The reduced densities of
and water are equal to 0.2, and the reduced density for
factant is set equal to 0.1~for this surfactant concentration
the equilibrium state without flow corresponds to the mic
emulsion phase!. Results are displayed in Fig. 13.

As in the binary case, the response of fluids when they
forced is approximately linear, provided the applied force
greater than a threshold value, the capillary threshold.
diagonal coefficients~relative permeabilities! can then be
calculated from the slopes of these lines. Their values
kww'0.20 andknn'0.50. The capillary threshold is lowere
by a factor of'2 ~now equal to 0.0005) in comparison wit
the binary case. This change is due to a lowering in surf
tension~oil can now pass more easily through narrow cha
nels!.

V. IMBIBITION SIMULATIONS

This work follows some initial studies done by Fowle
and Coveney@16# on the invasion process in a porous m
dium. They used a randomly constructed porous med
made as described in@5# to study the effect of surfactant o
the invasion process in the cases of drainage and imbibit
We have used the same type of porous media. In this sec
we consider only the case of imbibition. The imbibition pr

-

by

f

-

s
s

FIG. 13. Evolution of the response of fluids when they are eit
forced~left! or unforced~right!, as a function of the forcing level, in
the ternary amphiphilic case, and using the large porous med
~cf. Table I!. Water is represented by crosses~forced and unforced!,
oil by triangles~forced and unforced!, and surfactant by diamond
~oil forced! and squares~water forced!.
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cess refers to the invasion of a wetting fluid with or witho
surfactant into a porous medium filled with a nonwetti
fluid. The aim of the following study is to characterize th
invasion process, and to investigate the influence of sur
tant on this process.

A. Invasion process

A typical result obtained from an invasion simulatio
given in terms of the evolution of the number of particles
each species versus time, is displayed in Fig. 14. This t
evolution can be decomposed into two parts. In the first
gime, at early times in the simulation, the change in
number of particles is roughly linear with time. The end
this regime corresponds to percolation of the water pha
that is breakthrough by the invading water phase. The sec
regime shows a slow variation of the number of particles
a given type with time, and a continuously connected path
the invading fluid exists across the lattice. In this domai
steady state has been reached. The number of particles
given type tends slowly to an asymptotic value. This asym
tote corresponds to the residual oil saturation. Figure 15
plays the gradient of the number of water particles vs tim
or the water mass flux, for the simulation data shown
Fig. 14. The two regimes described above can be identi
here more clearly. Prior to water percolation, the decreas
the number of oil particles is linear and its gradient is co
stant in time. After this period, the gradient assumes a sm
value, corresponding to the existence of a continuously c
nected pathway of the invading fluid across the lattice sim
lation cell.

FIG. 14. Variation of the number of oil~dashed line!, water
~continuous line!, and surfactant~dot line! particles vs time when a
water-wetting porous medium filled with oil is invaded by a mixtu
of water and surfactant. The porous medium is displayed in Fig.
and the lattice size is 1283256. Data come from a single run.

FIG. 15. Rate of change of water particles vs time~i.e., the
water mass flux! for the simulation data shown in Fig. 14.
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Between the two domains described above, there is a t
sient region, in which the gradient decreases from its c
stant finite value to zero. At the end of the first time interv
the water attains its percolation threshold. At the beginn
of the second temporal domain, the flux of oil is very sm
and the oil forms only disconnected bubbles. In the trans
regime between these two domains, both fluids are perco
ing and the flux of each species is nonzero. Oil particles
driven off the lattice, while water occupies more and mo
sites. The end of the transient domain is associated with
end of oil percolation.

B. Effect of forcing

The effect of the applied force is investigated in the fi
steps of the invasion process, that is prior to the onse
water percolation. In this regime, the number of oil partic
decreases linearly with time~the oil mass flux is essentially
constant!. Figure 16 displays the results obtained for t
small porous medium~cf. Table I!, with no surfactant, for
different applied forces. The simulations were perform
over 75000 time steps.

A linear variation of the number of oil particles versu
time before water percolation is observed. The slopes
these lines are calculated for different applied forces. T
calculation was performed for several different porous m
dia, and the results are collected in Fig. 17.

From these curves~calculated before the percolatio
threshold!, we can see that there is a linear regime in t
evolution of the oil flux. The oil flux is then directly propor
tional to the force applied to the water particles. Thus
greater the forcing on water, the faster the oil flows~and the
sooner the percolation threshold is reached!.

At very high forcing levels, the gradient of the oil flux n
longer exhibits a linear dependence on the applied force,
rather tends to an asymptotic limit. This behavior is proba
related to the limited velocity of the particles in the lattic
gas model; otherwise it would mean that an optimal value
the forcing level exists to maximize oil production, implyin
that the application of ever increasing forces will not be be
eficial.

9,

FIG. 16. Invasion of water in a water-wetting porous mediu
filled with oil ~imbibition!, showing the effect of the applied forc
on the flux of oil particles. The time is the number of time ste
and they axis is the normalized number of oil particles in th
lattice. The porous medium has dimensions 643128. Each curve is
a result of a single simulation. Before percolation, the flux exhib
a linear dependence on time. The different forcing levels~from top
to bottom! are 0.0005, 0.001, 0.005, 0.01, and 0.025~using gravity
conditions!.
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2908 PRE 62J.-B. MAILLET AND PETER V. COVENEY
C. Effect of surfactant on imbibition

1. Emulsification

As Fowler and Coveney noted@16#, one often encounter
substantial variation in results for similar simulations. Th
means that precise results require a substantial ensembl
eraging, and so one must be very careful in attempting
draw conclusions from one or a limited number of simu
tions. Bearing this in mind, we start by a careful study of t
effect of surfactant at the pore level. The porous medium
now composed of only one pore as shown in Fig. 12. Thi
obviously not representative of a porous medium, but nev
theless it contributes to our understanding of what happ
on larger scales. The conclusion arising from this particu
porous medium is that the termination of oil percolati
takes longer to occur in the case with surfactant, and he
that oil recovery is enhanced. The behavior of the fluids a
the end of oil percolation is strongly dependent on whet
surfactant is absent or present. Without surfactant, the
maining oil forms large spherical droplets which can bar
flow, whereas the presence of surfactant favours the for
tion of smaller oil droplets~the surfactant concentration re
quired to achieve this is quite high, typically 0.2–0.3!, which
can flow very easily. Therefore, in this example of imbib
tion, the introduction of surfactant strongly enhances oil
covery.

These phenomena observed at the pore level are
manifested at larger scales. Figure 18 displays configurat
obtained when flooding a porous medium filled with oil b
either water or a mixture of water and surfactant. From t
figure, we can see that when there is no surfactant, large
droplets remain in the rock. On the other hand, in the pr
ence of surfactant, a large number of small oil droplets
be seen surrounded by surfactant. These small droplets
less affected by capillary effects and can flow readily. Ho
ever, we also notice that the concentration of surfactan
greater in the lower part of the box, from where the floodi
occurred. There are two reasons for this: first, surfactant
ticles are rapidly trapped when they encounter the first
water interface. This trapping remains until the oil drople
form and flow. Second, surfactant particles can self-assem
into small clusters@17,18#, which can be trapped in sma
pores. This phenomenon, calledmicellization, is discussed
further below. These various emulsification phenomena
clearly observed in our imbibition simulations, and tend

FIG. 17. Effect of the applied force on the gradient of the flux
oil particles for porous media~randomly created and also built us
ing the method described in Sec. IV B! of various size (643128
and 1283256). Each point is the result of a single simulation.
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decrease the residual oil saturation in the steady state reg
thus improving the oil recovery.

2. Micellization

One important effect arising from the presence of surf
tant is now discussed in greater detail: micellization. T
corresponds to the formation of small clusters of surfacta
trapped in the medium. It requires a sufficiently high conce
tration of surfactant~greater than the critical micelle concen
tration! @18#. These micelles tend to form in regions whe
the flux of particles is low. This phenomenon is also se
when a porous medium filled with water is flooded by
mixture of water and surfactant~Fig. 19!.

From the upper image in Fig. 19, we can clearly see t
surfactant particles gather in the smallest pores, where
flow velocity is small. The lower image in the same figu
represents the grayscaled concentration profile of surfac
vs time and vs the lattice row number~i.e., in the flow direc-
tion!. This quantity is averaged over all columns of the la
tice. The start of the simulation corresponds to the bott
line on this diagram, at which point there is no surfacta
present. The appearance of a new shade~light gray! corre-
sponds to the advance of the front of surfactant~represented
approximately by the diagonal ‘‘front’’ in this image!. We
can see that the progression of the surfactant front does
exactly follow a constant speed. Indeed, zones of high s
factant concentration appear~represented by lighter gray!;
these correspond to the formation of micelles. We can
that the micelles are stable in time, both from the point
view of their concentration~which actually even shows a
tendency to increase! and of their localization~the surfactant
density peaks are vertical, indicating that the micelles do
move!. The advance of surfactant is thus held up by t
micellization process; the water advances faster than the
factant.

3. Structure

Here the structural properties of the front during imbib
tion simulations are investigated. During an invasion sim

f

FIG. 18. Configuration obtained while flooding a porous m
dium filled with oil by either water~left! or a mixture of water plus
surfactant~right!. The size of the lattice is 643128. The configu-
rations are taken just before the end of oil percolation. The emu
fication phenomenon can easily be seen in the latter case. Oil
white, surfactant in light gray, water in dark gray, and rock in bla
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PRE 62 2909TWO-DIMENSIONAL HYDRODYNAMIC LATTICE-GA S . . .
lation, the precise location of the interface can be extrac
Only sites at the water-oil or surfactant-oil interface a
taken into account~the obstacle sites are discarded!. From
these data, the fractal dimension of the interface can be
culated. This is achieved by counting the number of bo
needed to cover the interface for different box sizes. T
fractal dimension is the slope of the linear part, in a log-l
diagram, of the evolution of the number of boxes vs the s
of the box~the so-called box counting method!. At the be-
ginning of the simulation, the interface is flat, and so t
fractal dimension is equal to 1. As invasion takes place,
interface becomes more complex, and the resulting fra
dimension increases to reach a maximum value at the w
percolation threshold. Simulations have been performed
order to compare the fractal dimension of the front in t
binary and ternary cases. Figure 20~bottom! shows the re-
sults obtained from several of these simulations. It can
seen that the difference between the two curves~binary and
ternary case! is very small, implying that the fractal dimen
sion of the front is the same in both cases. The fractal
mension of the porous medium~equal to 1.65), also show
in Fig. 20 ~bottom!, is greater than that associated with t
invading fronts. One might thus wonder if the fractal dime
sion of the front is not substantially controlled by the co
plexity of the porous medium. Indeed, the linear part of th

FIG. 19. Top: configuration after 100 000 time steps wh
flooding a water-wetting porous medium filled with water by a m
ture of water and surfactant~water in dark gray and surfactant i
light gray!. The direction of the invasion is from left to right. Bo
tom: normalized concentration of surfactant vs time and vs thy
coordinate that is in the direction of the flow~light and dark corre-
spond to high and low concentrations, respectively!. The concentra-
tion of surfactant in the invading fluid is 0.3. The lattice size
1283256. One time unit corresponds to 250 time steps.
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curves appears at scales larger than ten lattice sites, whi
greater than the average pore size~here equal to 8.4). The
shape of the front during invasion could be imposed by
porous medium. Simulations of invasion in the absence
porous medium help to resolve this issue. Simulations w
different surfactant concentrations have been run, and
results are displayed Fig. 20~top!.

In the case of low concentration of surfactant@Fig. 20
~top!#, which leads to similar results as in the absence
surfactant, the interface exhibits two smooth bumps. On
other hand, when the concentration of surfactant is gre
(0.3), the interface becomes much more complicated.
calculation of the fractal dimension in these two cases le
to the values 1.1 and 1.35, respectively~the lower part of

FIG. 20. Top: configurations during invasion without a poro
medium, for concentrations of surfactant of 0.1~left! and 0.3
~right!. Bottom: computation of the fractal dimension of the inte
face ~on a log-log diagram, with a basis of 10!. The lower two
curves show the calculation of the associated fractal dimensio
the absence of a porous medium~dot-dashed line for 10% surfac
tant, dashed line for 30% surfactant!. The curves in the middle
(D51.6) correspond to the invasion of binary~dot-dashed line! and
ternary ~dashed line! (rsur f50.2) mixtures into the water-wetting
~index of wettability equal to27) porous medium shown in Fig
19. The upper curve~continuous line! is a calculation of the fracta
dimension associated with the porous medium alone. They axis
refers to the number of square boxes~length along thex axis, in
lattice site units! needed to cover the oil/water and oil/surfacta
interfaces.
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Fig. 20!. Simulations with higher surfactant concentratio
produce the same fractal dimensions as the latter case.
the fractal dimension of the invasion front evolves from 1
or 1.1 to 1.3 when the proportion of surfactant changes fr
0 to 50 %. We can see that the linear regime in these log
plots persists down to box sizes of a few lattice sites, me
ing that interfacial complexity still exists at this scale. F
invasion simulations in porous media, the high values of
fractal dimensions are found at large scales, and a decr
of the slopes is observed at smaller scales, where the in
facial structure is not imposed by the porous medium
rather follows the shape described in the absence of the
rous medium.

Another, more intuitive, means of characterizing the
terface is simply to compute its length~i.e., the number of
sites that it occupies!. It is calculated in the same way a
above by counting the number of interfacial sites~for ex-
ample, a blue site is at the interface if one of its neighbor
not a blue site or an obstacle site!. Results are displayed in
Fig. 21. In both binary and ternary invasion, at the beginn
of the simulation, the interfacial length grows. This growth
approximately the same in the two cases, and is roug
linear with time over the first 20 000 time steps. No obvio
reasons are apparent for this linear time evolution. The p
at which linear growth halts corresponds approximately
the onset of water percolation. In the binary case, after
linear regime, the length of the interface begins to decre
This is related to the fact that oil droplets do not break in
smaller droplets but rather escape from the lattice, leadin
a reduction of the interfacial length. On the other hand, in
ternary case, beyond the linear regime, the surfactant
ticles induce the breaking of large oil droplets into smal
ones, thus increasing the overall length of the interface, e
though the total number of oil particles decreases as inva
drives them from the lattice. This is due to emulsificatio
and to the fact that the structure of the interface in the tern
case is much more complex.

FIG. 21. Length of the oil-water interface in the binary ca
~dotted line! and in the ternary case (rsur f50.2) ~continuous line!,
calculated during invasion into a porous medium~the same as in
Fig. 19, with a wettability index527). The vertical axis measure
the number of lattice sites occupied by the interface and the h
zontal axis shows the time step in the simulation. The lattice siz
1283256.
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Time scale of micelle and emuslification phenomenaIn
this part, we discuss the time scale of the phenomena
scribed above, due to the introduction of surfactant.

First of all, the formation of a complex interface appea
quickly after the beginning of the simulation, well before th
onset of water percolation. The phenomena of micellisat
and emulsification are coupled together and appear on
same time scale. Figure 22 shows the results obtained w
invading a porous medium filled with oil with a mixture o
surfactant and water or simply by water. Three simulatio
have been run in each case. The forcing level is very sm
~equal to 0.001).

We can see that the curves associated with invasion w
out surfactant lie below the curves associated with the s
factant case. This means that the invasion of pure wate
faster. The main differences in the curves appear near w
percolation (;80 000 time steps!. After this point, the curves
corresponding to the surfactant containing fluid continue
decrease while those associated with pure water invasion
come flat. This suggests that in the case of pure water in
sion, the oil percolation state is ended while in the case w
surfactant, particles of oil continue to flow within the m
dium. We expect that the asymptotic value, that is resid
oil saturation, will be smaller in the surfactant case, due
the flow of small oil droplets.

The slowing down of the invasion process when surf
tant is present can be understood qualitatively in terms
‘‘gel’’ formation. In the snapshot image in Fig. 22, we ca
see a large number of micelles and/or small oil droplets s
rounded by surfactant accumulating at the bottom of the
tice from where invasion takes place. This accumulation
micelles prevents the invading fluid from passing throug
slowing down the invasion process. This is analogous to
known formation of gel by accumulation of surfactant
polymer in actual flooding experiments or reservoir tre
ments. Over long times, the effect of surfactant is to enha
oil recovery, as we can expect from Fig. 22.

Some additional simulations at higher forcing levels ha
been run, with the same initial conditions: the results
shown in Fig. 23. Two simulations have been run in ea
case ~with and without surfactant!. The results with and
without surfactant present in the invading fluid phase

ri-
is

FIG. 22. Left: time evolution of the number of oil particle
when invading an oil-filled water-wetting porous medium with w
ter ~three continuous lines! or with a mixture of water and surfac
tant (rsur f50.2) ~three upper dotted lines!. The three curves in each
case correspond to three independent similar simulations. The
ing level is 0.001. Right: a snapshot of the case with surfactant a
70000 time steps; grayscale coding as in previous figures.
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identical, implying that a gel-like phase does not exist a
more; its structure is destroyed by the greater flow rates u
here.

In conclusion, the formation of a gel-like phase is o
served at low forcing levels, when the invasion process
slow. Its formation is due to the self-assembly of micelles
pores. The effect of surfactant when the forcing level is h
is small and, in some cases negligible. From these sim
tions, we conclude that surfactant fluids need a signific
period of time to produce new features through se
assembly processes.

Their action involves the formation of micelles and/
emulsification which can then enhance oil production dur
the imbibition process. However, to achieve this even at
forcing levels requires the use of high concentrations of s
factant (;30%), i.e., concentrations which would lead
microemulsion states under equilibrium conditions.

VI. DRAINAGE SIMULATIONS

The term ‘‘drainage’’ is used to describe the invasion o
porous medium filled with wetting fluid by a nonwetting on
Simulations are performed in an oil-wetting porous medi
displayed in Fig. 25. The lattice size is 1283256. The effect
of the applied force and the presence of surfactant in
invading phase are described.

A. Effect of applied force

The methodology is the same as in our imbibition sim
lations ~Sec. V!, apart from the fact that the medium is oi
wetting. Simulations are performed with a wettability ind
of 17, for different fluid forcing levels. Results are di
played in Fig. 24, for the binary immiscible case.

At very low forcing levels~upper curve!, the nonwetting
fluid cannot enter the medium because of the capill
forces: the applied force on the nonwetting fluid has to
ceed the capillary force to allow invasion. For greater drivi
forces, the speed of the invasion process is roughly pro
tional to the applied force. As in the case of imbibition,
maximum flow speed is reached at high forcing levels. T
residual oil saturation decreases when the applied force
creased, as previously observed in our imbibition simu
tions.

FIG. 23. Temporal evolution of the number of oil particles wh
invading an oil-filled porous medium~the same as previously used!
with water~lower curves! or with a mixture of water and surfactan
(rsur f50.2) ~upper curves!. The forcing level is 0.005, and th
lattice size is 1283256. Two similar independent simulations he
been performed in each case.
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Three regimes can be distinguished during the invas
process: first, the nonwetting fluid invades the medium, d
placing the wetting fluid. Second, the nonwetting fluid pe
colates, but the still flowing wetting fluid retains its conne
tivity to the top of the lattice. The last regime corresponds
flow of the nonwetting fluid through a medium containin
stagnant residual wetting fluid.

B. Effect of surfactant

The effect of the presence of surfactant in the invad
fluid is now investigated. Simulations have been perform
with a 17 wettability index ~i.e., strongly oil wetting!, a
driving force of 0.02 using the gravity condition, a reduc
density of 0.5 and for concentrations of surfactant equal to
15%, and 30%. Results are displayed in Fig. 25.

We can see that the temporal evolution of the numbe
oil particles changes dramatically when surfactant is ad
to the invading fluid. Going from 0 to 30 % surfactant co
centration, the speed~or the efficiency! of the displacement
process is slowed down by more than a factor of 2. T
residual oil saturation appears to be lower (;5 –10 %) in the
case of pure water invasion.

Figure 26 displays the oil concentration profile for drai
age simulations with and without surfactant. The red reg
is greater in the case with surfactant, showing that the p
cess is slower. Moreover, we can see that the progressio

FIG. 24. Temporal evolution of the number of oil particles r
maining on the 1283256 lattice when invading an oil-filled oil-
wetting porous medium with water. The various curves are at fo
ing levels 0.005, 0.01, 0.02, 0.03, 0.04, and 0.05, from top
bottom.

FIG. 25. Left: temporal evolution of the number of oil particle
remaining on a 1283256 lattice when invading an oil filled oil-
wetting porous medium with water~lower curve! or with a mixture
of water and surfactant@15% surfactant in the invading fluid~in-
termediate curve! and 30% ~upper curve!#. The forcing level is
0.02. Right: a snapshot of the simulation during the binary fl
invasion process~oil in white and water in dark gray!.
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water follows a stepwise increase. This feature is mo
marked in the case with surfactant~lower part of Fig. 26!. It
is due to the fact that the nonwetting fluid experiences
delay before it is able to enter a channel.Visual inspection
reveals that the invading fluid does not take the same p
when surfactant is present as when it is absent. In the sur-
factant case, the path is much more tortuous. In experime
there is some indirect evidence that paths can be differe
depending on the nature of the invading fluid@19#. Our nu-
merical results appear to confirm this behavior.

VII. CONCLUSION

A two-dimensional hydrodynamic lattice gas model ha
been used to study the behavior of complex multiphase a
amphiphilic fluids under various conditions in two dimen
sions. In simple cases, the results from this model agree w
with theoretical predictions. In more complex geometrie

FIG. 26. Normalized colored oil concentration profile~light and
dark correspond to high and low concentrations, respectively! vs
time andy coordinate~direction of the flow! in the case of drainage
without ~top! and with surfactant~bottom! ~at 30% concentration!
present in the invading phase. The porous medium is shown in F
25. One time unit corresponds to 250 time steps.
e
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th
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like porous media~where theoretical predictions in gener
cannot be made!, an extension of Darcy’s law has been use
which explicitly admits a viscous coupling between the fl
ids. This coupling appears to be non-negligible, and exhi
a maximum for a 1:1 water and oil mixture. Such stro
viscous coupling may be understood in terms of the spa
dimensionality of the model. The introduction of surfacta
does not change the response of oil and water dramatic
but it lowers the capillary threshold. On the other hand, d
ing imbibition, introduction of surfactant leads to the appe
ance of new and complex features, including emulsificat
and micellization. At very low fluid forcing levels, this lead
to the production of a low-resistance gel, which then slo
down the progress of the invading fluid. At long times~be-
yond the water percolation threshold!, the concentration of
remaining oil within the porous medium is lowered by th
action of surfactant, thus enhancing oil recovery. The c
verse behavior is observed in drainage simulations: the in
duction of surfactant leads to a reduction in the invas
process and an increase in the residual oil saturation. Sim
studies are now underway using a three-dimensional ver
of our amphiphilic lattice gas@9#.
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APPENDIX: TEMPORAL VS ENSEMBLE AVERAGING

In most of the simulations presented in this paper, av
aging of the fluctuations inherent in our lattice-gas model
been performed over time, when a steady state has b
reached, rather than over an ensemble of different sim
tions. When using fully periodic boundary conditions, a
simulations were started from an initially random configu
tion, independent initial configurations being constructed
ing different seeds for the random number generators.
suming the existence of a steady state, and the ergodicit
the system, we can use the ergodic theorem to argue
averaging in time is equivalent to ensemble averaging. T
have been made concerning the equivalence of these
procedures, and they show that the difference between t
poral and ensemble averaging is small~roughly ;2.0% for
medium forcing levels, although this increases when
forcing becomes very small!. The results obtained in this
paper can thus be compared to those obtained using an
semble averaging procedure.

However, some thought reveals that ensemble-avera
may not always lead to reliable results. For example, c
sider a simulation using fully periodic boundary condition
with a mixture of 10% oil and 90% water in a water-wettin
porous medium, forcing only water, the simulation starti
from an initially random configuration. The oil particles co
lesce and form a droplet which flows. Now consider a sim
lation starting from a special condition, that is a large
bubble trapped in the same porous medium; the probab
to obtain such an unusual configuration from a random ini

ig.
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distribution is negligible~it is essentially of zero measure!.
The calculated oil flux for the bubble, whose stable posit
can be found from a preliminary imbibition simulation, wi
be zero. Which simulation produces the more relevant
sults? From the point of view of the experiments, if the m
dium is at its residual oil saturation, the flow of water w
not induce a flow of oil, and thus the appropriate simulat
is the one starting with a chosen special initial configurati
R

.

o

n

-
-

n
;

but this has a negligible probability of being sampled in
conventional ensemble average. The problem with apply
ensemble averaging to invasion simulations is that these
tems are not ergodic in general; nor indeed are their ste
states equilibrium states. It is therefore a more reliable st
egy to perform and report averages based on temporal
haviors in steady states, as has generally been done in
paper.
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