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Electrostatic interaction between two charged dielectric spheres in contact
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Of fundamental importance in numerous industrial and natural processes, the problem of two electrified
spheres has been studied by many authors. However, the problem of particular importance for understanding
electrostatic effects on powder or granular behavior, such as two dielectric spheres both carrying arbitrary
amounts of charge, is still open for investigation. In the present work, two touching dielectric spheres of equal
size and permittivity but arbitrary amounts of charge are studied by computational means of the Galerkin
finite-element method. The effects of permittivity and the ratio of charge on the spheres are the main focus
here. Because of the electric polarization, the electrostatic force can become attractive even when the two
spheres carry charges of the same sign, due to positive dielectric effects, or to become repulsive for spheres
with charges of the opposite sign, due to negative dielectric effects. In the presence of dielectrophoretic effect,
whether the electrostatic force between the two spheres is attractive or repulsive is found to be determined by
the ratio of charge on the two spheres.

PACS numbd(s): 41.20.Cv, 02.70.Dh

[. INTRODUCTION natural processes, the problem of two electrified spheres has
been studied by many authors including Pois§6l Lord
Understanding the electrostatic interaction between twdevin [7], Maxwell [8], Russel[9], and others. Most earlier
charged dielectric spheres in contact is desired for scientifiauthors considered conducting spheres because of the rela-
description of the behavior of powder or granular materialgively simpler treatments in boundary conditions. The com-
that consist of electrically insulating particles]. Those in-  plete solution in bispherical coordinatéslorse and Fesh-
sulating (or dielectrig particles naturally acquire charge bach [10]) for two charged conducting spheres in an
through the mechanism of triboelectricity by contacting eacharbitrarily oriented uniform electric field was obtained by
other or the container wall2]. The amount of charge on Davis[11]. A less general problem of two equal-sized, un-
each particle and the distribution of charge among the pareharged conducting spheres in a uniform electric field at a
ticles are expected to influence the rheological behavior ofixed orientation was also solved in bispherical coordinates
powder or granular materials, which determines the degreby Levine and McQuarri¢12] for calculating the dielectric
of difficulty in accomplishing well controlled material trans- constant of simple gases. The investigation of two uncharged
portation as needed in many technological applications. Fodielectric spheres in a uniform electric field in bispherical
example, the toner used in electrophotographic copiers ancbordinates starts with the work of Goyette and Naj/t8l,
printers is typically a cohesive powder, with insulating par-who restricted the treatment to equal-sized spheres in an
ticles of a diameter about 1Am consisting of a pigment electric field of a fixed orientation. The problem was further
dispersed in a polymer resin. These toner particles are deeneralized through the efforts of Loy&4]|, Stoy[15,16],
signed to acquire charge through the mechanism of triboele@and Chaumet and Dufourl7]. To understand the atmo-
tricity ([3-5]). In electrophotographic processes, the tonerspheric phenomenon of removing aerosol particles by hy-
must be delivered from a toner reservoir to the image develdrometeor scavenging, the electrostatic force between a con-
opment zone. Stringent requirements of accurate control afucting sphere and a dielectric sphere was calculated by Hall
toner transportation in modern electrophotographic coloand Beard 18] and Grover{19] in bispherical coordinates.
printing engines call for a fundamental understanding of the The problem involving two charged dielectric spheres
electrostatic effects on charged particle interactions in a diwas not addressed in the literature until a recent publication
electric powder. by Nakajima and Satf20]. However, these authors mainly
To enable detailed analysis, the problem needs to be sinfecused on expounding the mathematical derivations, show-
plified by reducing the number of interacting particles. Aing limited results for applicability demonstration of their
relevant model should involve at least two spheres. Considreexpansion method in different problem configurations. For
ering two touching spheres is desired, because particles instance, the exemplifying cases presented by Nakajima and
powder or granular materials will make contact with eachSato[20] include two conducting spheres, a charged dielec-
other. Powder with a narrow particle size distribution can beric sphere near a grounded conducting plane, a charged di-
manufactured. But the charge distribution among dielectri@lectric sphere on a thick plane wépproximated as a very
particles is unlikely to become arbitrarily narrow due to thelarge dielectric sphejewithout surface charge, and an un-
stochastic nature of the triboelectric process. If the effect otharged dielectric sphere on a thick plane wall with surface
particle size distribution is ignored, considering two equal-charge. The problem of particular relevance to the electro-
sized dielectric spheres allows attention to be focused on th&tatic effects on powder or granular behavior, such as two
effect of charge distribution among particles and the effect oflielectric spheres each carrying an arbitrary amount of
permittivity of the dielectric particle materials. charge, is still heretofore open for investigation.
Of fundamental importance in numerous industrial and In the two-sphere system with finite separation, material
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dium of permittivity 5. For simplicity, the charge on each
sphere is assumed to be distributed uniformly over the sur-
face. For convenience, variables are made dimensionless by
measuring length in units dg, electric potential in units of
Q,/(4meyR), total charge on sphere in units &,, and
surface charge density in units @,/(47wR?). Thus, sphere
1 has a net charg®=Q,/Q,, whereas the net charge on
sphere 2 becomes unity. The dimensionless net charge on the
FIG. 1. Definition sketch of two touching dielectric spheres of Spheres becomes the same as their dimensionless surface
equal size. charge densities. In the absence of an externally applied elec-
tric field, the problem becomes axisymmetric about the line

interfaces fit coordinate surfaces in a bispherical coordinatéonnecting the centers of the two spheres, i.e. zthgis of
system, so that solutions to the Laplace equation can be offde€ zr axisymmetric cylindrical coordinates used in the
tained by separation of variablgs0]. Hence, most authors Present work.

(e.g.,[11-19) were tempted to derive formulas in bispheri- The electric potentiay/, inside and outside the spheres, is
cal coordinates. Elegant as the bispherical coordinate sol@overned by the Laplace equation

tions may seem to be, practical calculations can rarely be 5

done without implementation of a computer code for carry- Vev=0. 1)
Ir?l?m%:etr nol:‘r?eerxslir?%rzﬁz;ﬁiltc;nze?ilfees tr?e:ah des f:)cijghg;:ld‘;gz At dielectric material interfaces such as the surfaces of the

; .. .~ Spheres, the continuity of the tangential component of elec-
especially when the gap between the two spheres dIr‘mmShetSric field and surface charge induced change in the normal
Moreover, the bispherical coordinate system cannot be ap-

plied in the strict sense to cases when the spheres tou (homponent of the electric displacement vector are described

because of mathematical singularities. This fact led O'Meara”

and Saville[21] to seek other means of studying two touch- Q on S
ing spherical conductors in an electric field. Vi=V,, n-(«kVV,—VV,)= ’ 2)
When the particles are of spherical shape, multipole ex- 1, on S,

ansion in terms of Legendre polynomiéts. [22—24) or in . . . .
Ferms of image chargeg seriérsfp [7)/25_26%15)5 C[an beqzjsed to Wherexk=el¢ is the dielectric constant with respect to the
determine the electric potential distribution. Over the yearsPerm'Ft'V'ty of the surrounding mediurg,. The sub.scr|pt$
ndo in the present work are used to denote variables asso-

the multipole expansion method has been used in conside® ith reai L ide th h h
ing a charged dielectric sphere touching a plane surface, &ated with regions inside and outside the spheres. The same

an extreme configuration of the two-sphere system, for calYaiables without those subscripts apply in all the regions.
culating the electrostatic adhesion force on electrophoto-. .A'Of‘g the axis of symmetry, the Neumann boundary con-
graphic toner particleE28—31. Here again, numerical com- dition is applied as

putations must be carried out because large numbers of
multipole terms are needed to obtain a converged represen-

tation of the actual electric field that accurately satisfies all a5 large distance on the asymptotic boundary, a consid-

the boundary conditions. eration of the monopole charge alone should be sufficiently

In the present work, a numerical technique based on thg.cyrate, the asymptotic boundary condition is applied in a
well-established Galerkin finite-element meth@2] is em-  pirichlet form as

ployed; therefore, the intrinsic limitations to two spheftas

n-VVvV=0, on Sgn. 3)

in the bispherical coordinate systgmnd the restriction on o) 1
material interface shape@s in multipole expansiohsare V= + . ON Sygymp (4
eliminated. Sophisticated mathematical derivations become V(z+1)24r2  (z—1)2+r2

unnecessary in computing finite-element solutions. More-
over, the finite-element method is readily applicable to much The electrostatic interaction force acting on sphefdet
more complicated problem configurations if future extensiomoted a$=), which should only have a nonzex@omponent,

of the present analysis is desired. For simplicity, two touch-can be computed by integrating the difference of the Max-
ing dielectric spheres of equal size and permittivity are exwell stress tensor across the material interface over the sur-
amined with each sphere carrying an arbitrary amount oface of sphere 1 as

charge. The effects of particle permittivitgr dielectric con-

stan) and the ratio of charge on the two spheres are the main Fo 1 [nz

1
1- ;) (N-VVg)2+ (k—1)(t-VV,)?

focus here. m)s,| 2
2Q Q?
Il. PROBLEM FORMULATION ——(n-VVy)— —|—1,Q(t-VV,) { dS, (5)
K K

As shown in Fig. 1, the problem considered here consists
of two touching dielectric spheres, namely, sphere 1 andvheren andt denote the local unit normal and unit tangential
sphere 2, of the same radisand the same permittivity,  vectors on the surface, arfél is a dimensionless quantity
carrying charge€); andQ, in a dielectric surrounding me- scaled in units oQ%/(leeoRz). In the absence of an ex-
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ternally applied electric field, the total electrostatic force act-
ing on sphere 2 is simply given by F.

Now, the problem can be treated by solving the electric
potential distribution for a given value @ and then deter-
mining F from V, andQ according to Eq(5). This approach T

20 |

15

requires tedious solution &f, for many different values of 0

Q to gain adequate insights into the general behavidt ag \\\\\\\\\“\““mm%//,

a function ofQ for a given particle permittivity. 5 - \\\\\\\\}\&\\g\\“\“‘""""”%’//’/if,';///,

From a phyical point of view, however, the electrostatic

force can be expressed as a sum of three lumped terms 0+
| | | | | 1 | | |
-20 -15 -10 -5 0 5 10 15 20

F(Q)=aQ*-BQ+y, (6) ”

as similarly discussed for the case of electric field detach-
ment of a charged dielectric sphere from a plane surfetce
[24,29,33). On the right side of Eq6), the first term is due

T4
to the attraction from the image charge Qf induced in T \ \\}\\\\“““‘ "”’III[;,“Z’///,,

sphere 2. The second term represents the Coulomb forc" \\\\\“}“}}\“‘“ ,,’,”',l,‘z{ll[,' ,’
from the interaction betwee@ and the electric field gener- i s\\\\‘?\\\}}‘\\\\\\‘“ ,,',IIIII,I,I,ZI,‘{'/',{/"
ated by the charge on sphere 2. The third term describes th s“\s“‘“‘““ "'t""""'o,{i'

fact that a net dielectrophoretic force can be induced by the
electric field from the charge on sphereg(\ghich is a con-
stant normalized as unity in the present notatiewen when o -
sphere 1 does not carry net chaige., Q=0). In general, - - - - ' : ' ' .
the coefficientsx, 8, andy can be functions of the particle
permittivity and geometric configuration such as the particle
size ratio as well as the distance between particles. For the
present problem, because of symmetry in the two equal-size%f
spheres with the same value of permittivity, a relationship

FIG. 2. Finite-element mesh for two touching sphel@s:gen-
al view; (b) detail around touching spheres.

tial is expressed in an expansion of nine biquadratic finite-
y=a (7)  element basis functions, each associated with an element
node. As a consequence, the nodal values of electric poten-
is expected. Thus, only two independent points on the patial become the expansion coefficients. By the same token,
rabola, as described by E@), are required to determine the the spatial coordinates are expressed in an expansion of the
two unknown coefficientsy and 8 for a complete descrip- same type of basis functions with the nodal coordinates as
tion of the behavior ofF(Q) for a given value of particle the expansion coefficients, which are commonly referred to
permittivity «. as isoparametric mapping. Galerkin’s method of weighted
residuals is applied by multiplying the Laplace equatitn
with each finite-element basis function as used for the expan-
sion of electric potential and integrating the weighted equa-
Instead of specifically formulating the problem in bi- tion over the entire problem domaif87]. The obtained
spherical coordinates or going through a multipole expansiomveighted residual equations is a set of algebraic equations
procedure for spherical geometry, the computational techwith finite degrees of freedom.
nique used in the present work is based on a straightforward The unknown electric potential here can be determined by
application of the well-established Galerkin finite-elementsolving a set of linear residual equations, which takes only
method that is generally applicable to virtually any geomet-one step of Newton iterations as usually used for solving
ric configuration and equation systef82]. Therefore, the nonlinear algebraic equatiorts.g.,[37,38)). Once the elec-
two-dimensional problem domaitin zr space is divided tric potential distribution is obtained, the electrostatic inter-
into a set of nine-node quadrilateral eleme(dse Fig. 2, action force on each sphere can be computed according to
with the elements at the point where two spheres touch bezq. (5), in “post-processing” the solution. In the present
coming triangular shaped as degenerated from the quadrilatvork, the integral is discretized and computed in the same
eral elements by collapsing one of the element sides tway as with the finite-element method in computing
acommodate the cusp geometry. These degenerated elemewtighted residual equations. Actually, E§) is added into
need no special treatment in code implementation, in view othe set of weighted residual equations from Laplace’s equa-
previous experience with similar circumstan¢88—35 and  tion as an auxiliary equation associated with an auxiliary
the comments of Hughd86]. With the convenience of the unknownF. Thus,F is solved simultaneously with the elec-
finite-element domain discretization, the mesh is made muctric potentialV.
finer near the surfaces of the spheres as needed for accurateTo reduce errors arising from induced multipoles in using
evaluation of the expected more significant variations ofEq. (4), the asymptotic boundary is positioned at a large
electric potential than elsewhere. spherical surface of radius 20 centered at the coordinate ori-
On each element, which is mapped onto a unit square igin where the two spheres touch. Thus, the distance from
the £ (computationgl domain, the unknown electric poten- each sphere to the asymptotic boundary is much greater than

IlI. COMPUTATIONAL TECHNIQUES
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strength is reduced in sphere 1.

The case withk=1 is special because the effects of in-
duced multipoles in dielectric media are completely elimi-
nated. Without the polarization effecis,in Eq. (6) becomes
zero and the parabola i@ —F space is degenerated into a
straight line through the origi®@=F=0. The slope of the
line — B can be obtained by computirig at Q=1. From

//——\\ﬁ phys_,ical considerationk: s_hould become-1 atQ=1, re-
flecting a mutually repulsive force between two spheres car-
FIG. 3. Equipotential contours of the case with=1 andQ  'Ying the same amount of charge. Here, the computed values
=0. The equipotential values are 0.05, 0.06, 0.075, 0.1, 0.15, 0.2f F on sphere 1 and force on sphere 2 ar£.000 046 0 and
0.3, 0.5, 0.75, and 1. 1.0000455, respectively. Both the deviation from the exact
theoretical value and the difference betwé¢Ehon sphere 1
10, where the effects of higher-order multipoles than that oftnd the magnitude of force on sphere 2 are very small here,
the monopole become negligible. ;/a!idating the adequacy of the present finite-element tessel-
ation.
To determine the two unknown coefficienrtsand 8 for a
complete description df as a function ofQ, in general, the

Because the problem is solved here by means of numerfomputed values of (Q) at Q=0 and 1 appear to be the
cal computations, the accuracy of the numerical results needgost convenient choices. According to E¢8) and (7), «
be examined first. An effective indicator is found to be theand B can be readily determined from the compute(D)
difference between the directly computed valuegRjfon ~ andF(1) as
sphere 1 and the magnitude of force on sphere 2, which can
be appreciated when considering a simple case witl a=F(0) and g=2F(0)—F(1). ®)
and Q=0. It is immediately recognized from Eg5) that
F=0 on sphere 1 foxk=1 andQ=0 because each term on
the right side is multiplied by a factor of 0. However, in

IV. RESULTS AND DISCUSSION

As expected, the parabola B{Q) has two roots aF=0 as
given by

computing the force on sphere 2 by integrating the Maxwell 1
stress tensor oved,, Q in Eq. (5) should be replaced by 1. Q== éi \ /(E) _4} 9)
Thus, the value of force so computed cannot be exactly zero 2|a a

=1 (10

and it represents the magnitude of the actual numerical error. ) ]

As expected, the value of force on sphere Zatl andQ Notewo_rthy here is that the two ro_ots are of the same sign

—0 varies with the number of elements used in tessellatio@®"d reciprocal to each other as evidenced by

of the problem domain. For the mesh shown in Fig. 2 with > >

2250 elements used in the domain tessellation, the directly E E+ ; /(E) _4 E_ ; /(E) 4

computed value of force on sphere 2riat1 andQ=0 is 4la a @ a

8.26x 10" °, indicating that the numerical error can be con- ) ) )

sidered negligible here. Figure 3 shows the equipotentials ctnd the symmetry of the system. Furthermore, in delineating

electric field for k=1 andQ=0, where the equipotential the intervals ofQ for attractive and repulsive electrostatic

surfaces are concentric spherical surfaces around spheref@ces, these two roots can serve as the discriminating points.

without any modification due to the presence of sphere 1, as For the case of dielectric spheres witk 3, as represen-

physically expected. For comparison, the equipotentials ofive for the situation of electrophotographic toner particles in

electric field for k=3 and Q=0 are illustrated in Fig. 4 aif, the computed values of(Q) at Q=0 and 1 are

where equipotential surfaces are distorted and electric fiel-208 36 and—0.77482, respectively. Thus, we have
=0.208 36 and3=1.19154 from Eq(8). The two roots at
F=0 are 0.18057 and 5.538 09. Because hotand 3 are

4 AN positive, F has a minimum valudcorresponding to maxi-
mum repulsion between the two spherasthe middle of the
3 | interval between the two roots, i.e.Qn=p8/(2a)
r (=2.859 33 fork=3). The distribution of electric field for
2 | maximum repulsion to occur is shown in Fig. 5 with equipo-
tential contours. The field strength in sphere 1 appears to be
1| much weaker than that in sphere 2, because sphere 1 has
greater amount of charge on its surface. Interestingly, the
ol maximum repulsion between the two spheres does not hap-
. \ . . . . , . . pen when the two spheres carry the same amount of charge
4 3 2 1 2 1 2 3 4 (i.e., Q=1) as one would have intuitively expected. Also

somewhat counterintuitive is that two particles carrying
FIG. 4. Equipotential contours of the case with-3 and Q charges of the same sign do not necessarily repel each other,
=0. The equipotential values are 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.Qqrovided the difference between the particle charges is large
0.45, 0.5, 0.6, 0.7, and 0.8. enough; this is due to the dominant dielectric force.
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FIG. 5. Equipotential contours of the case with=3 and Q
=2.859 33. The equipotential values are in increments of 0.25 from
0.75 to 3.25.

0

The computational results ef and 3 are shown as func-  *°

tions of x in Figs. 6 and 7, respectively. As can be seen,
takes positive values that increases witfor k> 1. Positive

a represents a positive dielectrophoretic force on sphere 1ir =25}

the direction of the gradient of electric field generated by the
charge on sphere 2. k<1, a« becomes negative corre-
sponding to a negative dielectrophoretic effect that arises,

when the particles are less polarizable than the surroundint 2° [

20 |

0

20 40 60 80 100

(b)

30

(@

0 s L
0.01 0.10 1.00 10.00
K

FIG. 6. Plot ofa as a function of: (a) general viewjb) detail
for k<10.

1.5 F

0 L L
0.01 0.10 1.00 10.00
K

FIG. 7. Plot of 8 as a function ofk: (a) general viewjb) detail
for k<10.

medium. In contrastp is always greater than 1 except for
k=1 whereB exactly equals 1. Thus, the Coulomb force
term in Eq.(6) is always enhanced by the polarization effect.
Figure 8 shows sever&l(Q) curves for various values of
k. Similar to the case ok= 3, opportunities for obtaining a
repulsive electrostatic force are rather limit@d the interval
between the two roots of positive valyas general for two
nearby particles ofkx>1, due to the positive dielectro-
phoretic effect. A significant attractive electrostatic force
(positiveF) appears either when two particles carry opposite
signed charge as described by negative value3 of when
the same-signed charges on two particles differ considerably
in amount as represented by large positive valuel.dks «
increases from unity, the two roots convergeQe-1 as a
consequence gB/a—2 [cf. Eq. (10)]. Moreover, the mag-
nitude of the repulsive electrostatic force is also limited by a
finite extreme value, whereas the magnitude of the attractive
electrostatic force has no physical limit. Fex 1, the situ-
ation is just the opposite due to the negative dielectrophoretic
effect. Attractive electrostatic force can only be obtained in
the interval between the two negative valued roots and its
magnitude is limited by the finite extreme value. The
common-sense based intuition that particles with like
charges repel and those with opposite charges attract can be
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In spite of the shrinking range between the two roots, the
ratio F(Q,)/Qn appears to approach nonzero limit values as
k increases or decreases from unity. As>1, F(Q,)/Qn
approaches-0.5 from both sides.

V. CONCLUDING REMARKS

The equation governing the electrostatic interaction be-
tween two touching dielectric spheres of equal size and per-
mittivity with each sphere carrying an arbitrary amount of
charge is solved here by means of Galerkin finite-element
computations. Physically recognizing a quadratic relation-
ship, Eqg.(6), enables an efficient means to determine the
electrostatic force on each sphere as a function of the net
charge ratio of the two spher&4Q). By virtue of the sys-
tem symmetry{consequentlye=y in F(Q)], only two so-
lutions at two different values of the charge raoneed to

FIG. 8. Curves ofF vs Q for x =0.01 (dot-dashey) 0.1  be computed for a given value of the particle dielectric con-
(dashed 0.5(long dashel 1 (solid), 2 (long dashel) 10 (dashedi  stantx. For systems without the symmetry, three solutions at
and 100 (dot-dashefl Bordered by the solid line ok=1, the  three different values a® should be sufficient for determin-
curves on the left correspond t0<1, whereas those on the right ing the three coefficients, 3, andy in Eq. (6) at a givenx.
are for k>1. The electrostatic force becomes attractive when (Jplike most previous publications on two electrified par-
>0 and repulsive whef <0. ticles with the limitations either due to the bispherical coor-

dinate system or the simple geometry for image charge ex-
strictly applicable only to particles of unity dielectric con- pansions, the computational method described in the present
stant («=1 as described by a degenerated line in Fig. 8 work is quite versatile and can be readily extended to a great
when dielectrophoretic effects vanish. Therefore, confusingariety of problem configurations involving many more par-
results are expected in the dielectric force measurementitles with even irregular particle shapes. Restricting the
with Coulomb’s torsion balanc@f. Ref.[8]) when the sepa- analysis to the case of two equal-sized spheres here is not
ration between two spheres becomes relatively small. due to the limitation of the computational method; it is rather

For convenience of reference, the difference and mediafor a better focused analysis that provides important physical
value of the two root$AQ| andQ,, as well as the value of insights.

F(Q,, are listed in Table | for varioug. The relative range When k=1, polarization effects vanish and the quadratic
covered between the two roots as representedMfp| is  function of F(Q) degenerates to a linear function because
shrinking asx moves away from unity. The two roots as well «=y=0 andB8=1 in Eq.(6). For the case ok>1 where
asQy, converge taQ=1 andQ=—1, with k—% and—0, the positive dielectrophoretic effect appears, the two nearby
respectively. The magnitude &f(Q,,) is always less than dielectric particles are more susceptible to an attractive elec-
that of Q,,, as consistent with the physical expectation thattrostatic force even when they carry charges of the same
the dielectrophoretic effect reduces the net interaction forcgign. Repulsive electrostatic force can only be obtained in a
at Q=Q,, from that described by Coulomb’s law for the restrictive range of charge ratio values, which is shrinking
force between two point charges located at the centers of theith increasingk. Thus, attractive electrostatic force can oc-
two spheregas represented by the line in Fig. 8 fer=1).  cur even when the two spheres carry charges of the same
sign. In contrast, negative dielectrophoretic effect comes into

TABLE I. Values of|AQ|, Q,,, andF(Q,,) for variousx. play whenk<1, such that attractive electrostatic force be-
tween two nearby dielectric particles cannot be obtained out-
K |AQ| Qnm F(Qm) side a restrictive range of charge ratio values. Two nearby

dielectric particles okc<<1 can experience a repulsive elec-

0.001 0.86878 —1.09027 0.73958 trostatic force even when they carry charges of the opposite
0.01 2.02327 —l.42247 0.886 28 sign. In the presence of dielectrophoretic effect, whether the
0.05 3.02277 —181226 1.04547  electrostatic force between the two spheres is attractive or
0.1 3.78306 —2.13960 118768  repulsive is determined by the ratio of charge on the two
0.5 11.13037 —5.654 32 2.87033 Spheres_
0.8 32.84258 —16.45170 8.24185 In a typical powder or granular material, the surrounding
2 9.21213 4.71337 —2.39930 medium is air or a gas with permittivity about the value of
5 3.23054 1.899 76 —1.03884 vacuum and therefore is greater than unity. Although the
10 1.83101 1.35578 —0.786 88 bulk averaged net charge should be zero on a macroscopic
20 1.08563 1.13783  —0.68620 scale, each dielectric particle is likely to carry a charge dif-
50 0.53891 1.03567 —0.63213 ferent from its neighbors either in amount or sign due to the
100 0.31165 1.01207 —0.62379 stochastic nature of the triboelectric charging process.
1000 0.099 53 1.001 24 ~0.61536 Hence, electrostatic force among charged dielectric particles

is expected to enhance the macroscopic cohesivity of powder
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or granular materials, due to the positive dielectrophoretigrevent particles from forming aggregates and therefore sta-
effect between neighboring particles. For a dense suspensidnilize the suspension.

of charged dielectric particles in a dielectric liquid medium
where the Debye length is much greater than the particle
size, negative dielectrophoretic effect may come into play
when the liquid permittivity becomes greater than solid par- The author would like to thank Dr. Dan Hays for frequent
ticles(i.e., k<1). Negative dielectrophoretic effect can help discussions and Dr. Keith Watson for thoughtful suggestions.

ACKNOWLEDGMENTS

[1] The effects of particle charge on granular flow rheology is a[20] Y. Nakajima and T. Sato, J. Electrogts, 213(1999.
largely unexplored area of research. The lack of discussion of21] D. J. O’'Meara, Jr. and D. A. Saville, Q. J. Mech. Appl. Math.
these effects in the granular flow literature should not be inter- 34, 9 (1981).
preted as a dismissal of their importance, as commented on H}ZZ] R. Becker Electromagnetic Fields and InteractioiBlaisdell,

H. Ahn and C. Brennen, ifarticulate Two-Phase Floyed- London, 1964

ited by M. C. Roco(Butterworth-Heinemann, Boston, 1993 [23] T. B. Jones, J. Electrost8, 55(1986. _ _

p. 210. [24] T. B. JonesElectromechanics of Particle€Cambridge Uni-
[2] W. R. Harper,Contact and Frictional ElectrificatiorfOxford versity Press, Cambridge, England, 1895 _

University Press, London, 1987 [25] W. R. Smythe Static and Dynamic ElectricityMcGraw-Hill,

New York, 1950.

[26] L. Poladian, Q. J. Mech. Appl. Mati.1, 395(1988.

[27] I. V. Lindell, J. C. E. Sten, and K. I. Nikoskinen, Radio Sci.
28, 319(1993.

[28] N. S. Goel and P. R. Spencer, Amhesion Science and Tech-
nology, Polymer Science and Technolpggited by L.-H. Lee
(Plenum, New York, 1975 Vol. 9B, p. 763; Also see more
detailed derivations in the work of F. P. Buff and N. S. Goel,

[3] J. H. Dessauer and H. E. Clatkerography and Related Pro-
cessegThe Focal Press, London, 1965

[4] R. SchaffertElectrophotographyFocal/Hastings House, New
York, 1975.

[5] L. B. Schein, Electrophotgraphy and Development Physics
2nd ed.(Laplacian, Morgan Hill, 1996

[6] M. Poisson, Mem. Sci. Math. de I Inst. Imp. A2, (1811 (as

cited by Davis[11]). Poisson’s work on two conducting J. Chem. Phys56, 2405(1972.
spheres was also mentioned in Maxwell’s treafBewithout  [29] G. C. Hartmann, J. E. Marks, and C. C. Yang, J. Appl. Phys.
clear citation. 47, 5409(1976.
[7] W. Thomson, Philos. Magb, 287 (1853. [30] W. Y. Fowlkes and K. S. Robinson, iRarticles on Surfaces:
[8] J. C. Maxwell,A Treatise on Electricity and Magnetis(@®x- Detaction, Adhesion, and Remoyetlited by K. L. Mittal(Ple-
ford University Press, London, 1881 num, New York, 1988 p. 143.
[9] A. Russell, Proc. R. Soc. London, Ser.8%, 524(1909. [31] D. A. Hays, J. Adhes. Sci. Technd, 1063(1995.
[10] P. M. Morse and H. Feshbadiethods of Mathematical Phys- [32] G. Strang and G. J. Fi¥An Analysis of the Finite Element
ics (McGraw-Hill, New York, 1957. Method(Prentice-Hall, Englewood Cliffs, NJ, 19¥3

[11] M. H. Davis, Q. J. Mech. Appl. Mathl7, 499 (1964); also  [33] J. Q. Feng and D. A. Hays, IEEE Trans. Ind. App#, 84
available in a form of RAND Memorandum of January 1964 (1998.

(RM-3860-PR. [34] J. Q. Feng and T. C. Scott, J. Fluid Me@11, 289(1996.
[12] H. B. Levine and D. A. McQuarrie, J. Chem. Phy®, 4181  [35] L. A. Bozzi, J. Q. Feng, T. C. Scott, and A. J. Pearlstein, J.
(1968. Fluid Mech.336, 1 (1997).
[13] A. Goyette and A. Navon, Phys. Rev. B, 4320(1976. [36] T. J. R. HughesThe Finite Element Method, Linear Static and
[14] J. D. Love, Q. J. Mech. Appl. Matl28, 449 (1975. Dynamic Finite Element Analysi§rentice-Hall, Englewood
[15] R. D. Stoy, J. Appl. Phys65, 2611(1989. Cliffs, NJ, 1987.
[16] R. D. Stoy, J. Appl. Phys66, 5093(1989. [37] J. Q. Feng, J. Comput. Phys51, 969 (1999.
[17] P. C. Chaumet and J. P. Dufour, J. Electrd&. 145 (1998. [38] J. M. Ortega and W. C. Rheinboldterative Solution of Non-
[18] W. D. Hall and K. V. Beard, Pageophl3 515(1975. linear Equations in Several Variable§Academic, London,

[19] S. N. Grover, Pageoph.14, 521(1976. 1970.



