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Wave-beam coupling in quadratic nonlinear optical waveguides:
Effects of nonlinearly induced diffraction
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Beam coupling influenced by nonlinearly induced diffraction, an effect stemming from tiietéim in the
wave equations, is stressed in the study. The system considered consists of two beams carried by TE-modes at
frequencies oftw and 2w in quadratic nonlinear planar optical waveguides. The power-conservation law, the
Lagrangian and the Hamiltonian of the system, as well as the equations governing its stationary states are
derived. It is shown that the nonlinearly induced diffraction modifies the second-order nonlinear terms and acts
as an effective third-order nonlinearity. The procedure for dealing with modifications caused by effects like the
nonlinearly induced diffraction within the framework of a paraxial approach is discussed. The numerical
analysis carried out has the nonlinear wave-number shift and the linear phase mismatch as parameters. The
influence of the nonlinearly induced diffraction on the shée amplitude and the widthof the solitary
waves is demonstrated.

PACS numbe(s): 42.65.Wi, 42.65.Jx, 42.82.Et, 42.82n

[. INTRODUCTION term in it and inducing an effective fifth-order nonlineayity
it leads to a new type of solitary waves. In a way, the non-
The second-order nonlinear effects and nonlinear energjnearly induced diffraction appears as a factor which par-
exchange in nonlinear wave interactions at fundamental antilly controls the balance between the linear diffraction of
second-harmonic frequencies have been a subject of inteﬁhet_beﬁm ancli_ the nor:_lln?arlty of t.ge mfﬁ'a' H«T_re, |r} qua-
sive study since the beginning of the research in nonlineagratically nonlinear optical waveguides, the nonlinearly in-
. o . . duced diffraction modifies the second-order nonlinear terms
optics. The solitonlike waves in second-order nonlinear me

: . . p | in the coupled beam equations and introduces an effective
dia predicted in 19741] form nowadays a tremendously third.order nonlinearity in them. Therefore, it could strongly
enlarged field called cascaded nonlinearitis3]. The  jnfluence phenomena which are governed by simultaneous

higher efficiency of the second-order nonlinear processegction of second- and third-order nonlinearities. The nonlin-
compared to those related to third-order nonlinearity justifiesarly induced diffraction affects the energy distribution in
their consideration as effects of great importance for applithe system of the two beams carried at the fundamentgl (
cations to all-optical switching. Solitonlike wave formation and second-harmonic () frequencies and modifies its sta-
in both self-phase modulation and self-focusing have beetionary states. This is demonstrated by both the analytical
covered by many studiesee, e.g., Refd4—14). A new _results (_jeri\(ed here for the.power of the two-beam system,
family of soliton solutions have been found in cascaded noniS Hamiltonian and Lagrangian, as well as the corresponding
linearities, stability analysis have been performed in differenfuler-Lagrange equations, and the numerical analysis per-

. ) . L . rmed for obtaining the shape and the parametenspli-
lete ns:cons atrj d p.ro?rI]ems concernl?%sgilton mtt(ejractlgnti.ag des and widthsof the solitary-wave stationary states. The
(S)(r) dlec;nnoor:ngr)irtlielg h;vgrgzgrqctfegte do second- and tirdygcedure for the derivation of the coupled equations, when

modifications caused by effects like the nonlinearly induced

. This study stresses the modifications of the beam couplingjiffraction are considered in the framework of the paraxial
in quadratic optically-nonlinear media which are related togpproach, is also discussed.

the divE term in the wave equations, a term which intro-
duces effects due to spatial inhomogeneity of the nonlinear ~ !l. COUPLED BEAM EVOLUTION EQUATIONS
polarlzanon. Although quite often neglected in nonI_mear op- Propagation of two bean{svith field space dependence
tics, such effects have been treated before in studies both on ) - ‘
temporal[15,16 and spatia[17—19 solitary waves in Kerr- E(X,Y,2)] carried by TE modepE = (Ex,0,0)] at fundamen-
type nonlinear media. With respect to beam propagation if@! (#) and second-harmonic (2 frequencies
t_hlrd-or_de_r nonlinear optl(_:al Wavegw_des_, the rate of the spa- E, = %(Ewe*“"%c.c.), (13
tial variation of the nonlinear polarization shows up as a
nonlinearly induced diffractiofi20]. Modifying the nonlin- 15 a-2iot
L . . . . E,,=3(E “'4c.c. 1

ear Schrdinger equationby changing the cubic nonlinear 20=2(F20@ c.c) (1b)
along thez axis of a planar nonlinear optical waveguide is
considered in a scalar approach. The extension of the beams

*Also at Faculty of Physics, Sofia University, BG-1164 Sofia, is in the x direction and the guiding confinement is in the
Bulgaria. direction. Waveguide medium with quadratic nonlinearity
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within the 32 crystal class4 quart? [21] is considered.
Therefore, the amplitudes at frequenciesand 2w of the

second-order nonlinear po

EZw_SOX

NL™
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larizatipR(2)= (Py.,0,0)] are

@_
2 Eu

PﬁLZSOX(z)EZ)EZwv

where ¢, is the vac

_Xxxx(zw ®,w)= Xxxx(w 2w,—w) is the second-order

susceptibility.
In the wave equation

(2a)

(2b)

uum  permittivity, and x®

(4)

a relation which stems directly fron¥-D=0 with D

=e0e E+ Py, . In Egs.(3) and(4), ¢, is the linear dielec-
tric constant,ug is the vacuum permeabilityc is the light

speed in vacuum, and is t

The set of equations, obtained from E¢k.—(4) for de-

he displacement.

scribing the coupled beam propagation, is

PE, E, o2

2

+—s|_(w) +_X(2)E* E2
C

+
X2 972
X(Z) 02( E:) EZw)
e (w) JX

&ZEZ(D " &ZEZU, il 4(1)2
x> 92 c?

X

2 — Y

2 2
sL(Zw)EZw-i——)((Z)EZ
C

@ 22

22 (20) gx2

The last terms in Eq5) come out from the ¥ - E) term in
Eg. (3) and since their form is similar to that of the diffrac-
tion termg[the first ones in Eq5)], we call them nonlinearly

induced diffraction terms.
The transformation

E,=

E, expifB,2),

Ez,=Ea, eXHi B2,2)

(5a)

(5b)

(6a)

(6b)

applied involves the total, nonlinear wave numbgis=Kk,,

+AB,, Bro=Ko,+ABy, (Wherek,, k,, are the linear
wave numbers and 8, AB,, are the nonlinear contribu-
tions) and the convenient condition for synchronism

BZw:

2B,

()

is used for them. For balanced states, the linear mismatch is
compensated by the mismatch of the nonlinear contributions
in which case the following condition holds exactly:

AkLEKZw_Zka)ZZAﬁw_ABZa)' (8)

The transformatiori6) should be rather used instead of trans-
formation E,=E, exp(k,2), E,,=E,, exp(k,,2) because
the latter is not commutative with the paraxial approxima-
tion. In addition, the derivation of the power-conservation
law when the nonlinearly induced diffraction is taken into
account requires before going to the paraxial approach to
have the total wave number taken into account.

After introducing notation «a=k,,/2k,, B=1
+(AB,/k,) and making the transformations B2z
—27, 2B X—X, YEz,—E,, V2vyE,—E; [where y=(o/
(28,,))*x'?], Egs.(5) take finally the form

JE, &°E; 1-B? . ,(ETEy)
IE PR E1+E E2+4B T—O,
(93
0E, E, a —BZE g2, B B2 aZEi_O ob
'z 2 g2 2 et g (9b)

In Egs. (9) the nonparaxial terms are neglected because in
the amplitude€,, E, there is no fasflinear and nonlinear
phase changes. The constaf$—1~2Ap,/k, and «?
—1~Ak, /k, are, respectively, twice the relative nonlinear
wave-number shift at the fundamental frequency and the
relative mismatch. Therefore, the coefficien®?¢ 1)/4B?

and B2— a?)/B? in the third terms of Eqs9a) and(9b) are
related to the relative nonlinear wave-number shift, respec-
tively, of the fundamental and second-harmonic waves.

IIl. POWER-CONSERVATION LAW

The linear and nonlinear diffractiofi.e., the second and
the last terms in Eq99)] are combined and Eq$9a) and
(9b) are multiplied, respectively, t&} +4B%E,E% andE}
+(B?/ «?)E% 2. After some algebra, we obtain the conserva-
tion law of the two-beam system:

dP/dz=0, (103

where

P= J [|E1|?+2a2|E,|?+ 2B?(E 2E,+ E2ES ) ]dx
(10b)

is the total poweror mas$ carried by the beams. Whereas
the first two terms give the power carried separately by each
of the beams, the third term, which is the term stemming
from the nonlinearly induced diffraction, combines contribu-
tions of the two beams. Through the nonlinearly induced
diffraction the nonlinear polarization is explicitly involved in
the conservation law of the beam system. The derivation of
the power-conservation layl0) of the system is possible
since a proper consequence in making the transformations
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FIG. 1. Comparison of the normalized amplitudeg and E,
[according to the notation in Eq€l1)] of the beams at the funda-
mental ) and second-harmonic (9 frequencies, marked, re-
spectively, by(1) and (2), for «=0.9 (Ak /2k,=—0.1) andB
=1.03 AB,/k,=0.03) and nonlinearly induced diffraction taken
(in solid curve$ and not taker{dashed curvgsnto account.

[separation of the phase variation according@pand then
applying the paraxial approathas been chosen.

IV. HAMILTONIAN, LAGRANGIAN, AND
EULER-LAGRANGE EQUATIONS OF THE SYSTEM

The equations governing the stationdsplitonlike) solu-
tions obtained by dropping thedependence in Eq$9) are

d? B2—
@(E1+4BZE1E2) ST E.+E;E,=0, (113

d2 2 2

B2 a 5
—TEZ‘F El:O. (llb)

(EZ+2E§
o

dx2

After making the transformationE, ,/[(B?—1)/4B?]
—Eq,, X[(B2—1)/4B?]Y2—x, the set of the coupled equa-
tions (11) takes the form

d2
Q[E1+(Bzf 1)E,E,]-E;+E;E,=0, (123

d2 BZ_ 2

@ 2
—4_—Ep+E{=0, (120

E,+ o

A

and can be integrated once to obtain the Hamiltonian

H=T+U, (13a
where
1[dE; , . dEE)]* o?|dE,
T_Z[OIXJF(B Ve | T A ax
B2—1 dEZ]? A
1a? x|’ (13b
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FIG. 2. Comparison of the changes of the normalized total
power P of the two-beam system with variation of the dimension-
less nonlinear wave-number shig=1+(AB,/k,) with (solid
squares, NLD and without(open circles, standarahonlinearly in-
duced diffraction taken into account atw=k,,/2k,=1
+(Ak_/2k,) equal to(a) 0.7, (b) 0.9, and(c) 1.

1 B?— a? a?
—__F2_ 2 2 2 - p2
U=-SEi~a 21 E5+EIE,| 1+ - B)
2_ 2_
+——(EiE)*+ —5~E1 (139

16

are, respectively, the kinetic and potential energies of the
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FIG. 3. Comparison of the solitonlike beam properties and their variation with the normalized total Pasiethe system(for «

=0.9) without(open circles, standar@énd with(solid squares, NLDPnonlinearly induced diffraction taken into account: dimensionless full

widths A; and A, (at the half-maximurnin (a) and(c) and normalized beam amplitud&g(x=0) andE,(x=0) in (b) and(d), respec-
tively, at the fundamentdindex “1”) and second-harmonigndex “2") frequencies.

two-beam system. Therefore, E4$2) are equivalent of par-
ticle motion in a two-dimensional potential=U(E,,E,).
Comparison with the HamiltoniartH'=T'+U’ [where
T'=[(dE;/dx)%/2]+[(dE,/dx)?/4] and U’'=—(EZ2/2)
—[(B?—a?)/(B?>—1)]E5+ (E2E,/2) are the kinetic and po-
tential energies of the two beam system when the nonlinearly
induced diffraction is not taken into accoui]], shows the

: 5 1
influence of the latter on the energy of the system. Introduc-

ing the paraxial approximation at a wrong stage does not al —o— standard |
ensure possibility of obtaining the Hamiltonian of the sys- —a—NLD

tem.
The Lagrangian is

L=T—-U, (14)

whereT andU are, as given by expressiofi3b) and(130).
According to Egs.(11), existence of bound statéat x

— ) requiresB?>1 and B2>a?. The first inequality is

equivalent toAB,>0 and the second one being equivalent

to 2AB,> Ak =k,,— 2k, put a condition for a threshold

clusions about the effects associated with the inhomogeneity
of the nonlinear polarization and its rate of spatial variation
(i.e., about the effects related to the nonlinearly induced dif-
fraction).

The transformations

T T T T

op
1.00

1.06 1.08 1.10

o

1.02 1.04

power which should be ensured in order to have the linear FiG. 4. Comparison of the dependence of the normalized total

mismatch compensated by the nonlinear wave-number shifiower of the syster® on a= 1+ (Ak, /2k,,) at the soliton threshold

in the case ok,,>2k,, . (B=a+0.0001) with (solid squares, NLD and without (open
Assuming considerations close to exact synchronism simeircles, standand nonlinearly induced diffraction taken into ac-

plifies the Lagrangian of the system and the drawing of coneount.
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w=E;+(B?-1)E,E,, (159

B%-1

v=E,+ e E2 (15b
o

introduce the displacementsandv at the fundamental and
second-harmonic frequencies,
terms in the right-hand side of expressi@hs) are contribu-
tions coming out from the nonlinear polarization which are
involved owing to the nonlinearly induced diffraction. By
taking them as correction terms, a perturbation procedure i
expressinge; , throughw andv can be developed:

E;~w—(B?—1)wo, (163
B*-1 ,
Ez"’\‘l)_ 4a2 w=. (16b)

Therefore, the Lagrangia(l4) of the system expressed in
terms ofw andv is

1| /dw\2 a?/dv\? 2_o?
=20 22+ 2 22 4wt 242 2_R2u2
L 2[<dx > | dx W+ 2a — v B“w<v
1(B%-1

2

|

Comparison with the corresponding expression

3 W4+(2a2—1)(82—1)W2v2]. (17

L' =(1/2{(dw'/dx)?+[(dv'/dx)?/2]+w'?
+2[(B*~a?)/(B*~1)Jv'?~w'%}

(withw’ =E,, v’ =E,) obtained without taking into account
the nonlinearly induced diffraction shows that the introduc-
tion of the latter gives a new meaning of and v and

changes the coefficients of some of the terms in addition to

introducing correction termfthe last two terms in expres-

sion (15)]. The Euler—Lagrange equations corresponding to

the Lagrangiar(17) is

dZW 2_
— —w+B?wy — wi—(2a?—1)(B>—1)wv?=0,
dx?

(183
O e B e 2 (202 1)(B2- w0
— 44— v+t W - —(2a"— — 1w =0.
dx? B2-1 a? a?

(18b)

The nonlinearly induced diffraction involved® and B/«)?

as coefficients in the third terms in Eq48a and(18b) and
introduces new termithe last two in(189 and the last one
in (18b)] in the Euler—Lagrange equations of the system
These new terms show that the nonlinearly induced diffrac
tion has a meaning of an effective third-ordeefocusing
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FIG. 5. Comparisorfat phase matchy=1) of the solutions of
the set of Eqs(11) (exact solutionswith the solutions of the ap-
proximate equationg18) (mode). The solutions(standardl in
which the nonlinearly induced diffraction is ignored are also shown.
In (a), total powerP of the system v8=1+(AB,/k,) obtained
from Egs. (11) (solid diamonds, exagtand (18) (open circles,
mode); the solid line represents the solution when the nonlinearly
induced diffraction is ignored. Normalized amplitudégs(x=0),
E,(x=0) [according to the notation in Eq&l2)] and dimension-
less full widthsA; and A, (at half-maximum of the two beams,
respectively, in(b) and (c) with notation as specified ith).

nonlinearity. Besides, in the equation for the fundamentaktrongly influence phenomena which are associated with si-
wave this effective third-order nonlinearity acts both throughmultaneous action of second- and third-order nonlinearities.

self- and cross-phase modulation whereas for the secon

When self-phase and cross-phase modulation due to third-

harmonic wave its action is only through cross-phase moduerder nonlinearity is taken into account together with the

lation. Therefore, the nonlinearly induced diffraction could

second-order nonlinearity, terms of the formu(B?
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—1)[(WA4)+v?lw and 2u(B%—1)(W?+v?)v, should be changes of the shapes and the power of the solitonlike states
added to the left-hand sides of Eq$8a and(18b), respec- of the systen{Figs. 1-3. Its effect depends on the deviation
tively. Hereu=(3/2)x®e (w)/(x'?)? andxy® is the third-  of 2A3,, from Ak, and it is the weakest at the threshold
order susceptibility. Therefore, the effects of the nonlinearly(2A 8,= Ak, , respectivelyB=«). The latter is shown in
induced diffraction predominate over those of Kerr-type non-Fig. 4 where conditions close to threshold for a formation of
linearly for u<1. spatial solitons are simulated.
It is worth noting that Eqs(18) obtained here in the case Figure 5, where numerical solutions of the coupled equa-
of nonlinearly induced diffraction taken into account are oftions taken in their exadtEgs.(11)] and approximatéEgs.
the same type as the equations which describe the solitoil8)] forms are compared, show that at comparatively small
like solutions in quasi-phase-matched quadratic mediaalues of the nonlinear wave-number shift the results of the
[22,23. approximate descriptiofEgs.(18)] coincides with that given
by the exact one. This figure also stresses on the effect of the
V. NUMERICAL ANALYSIS nonlinearly induced diffraction on the beam propertiesal
] ) ] ] ) power of the system and amplitudes and widths of the
The set(11) is solved by using an algorithm involving the peamg. The deviations of the solutions of Eq41) and(18),
shooting techniqug24]. Since equatiorJ(E;,E2)x—0=0  which account for the nonlinearly induced diffraction, from
relates the amplitudes of the interacting beams=a0, one  the solution of the corresponding set of equations in which it

of the unknown boundary conditions &0 drops off and, s ignored, strongly increases with the increase of the non-
therefore, there is one “shooting” parameter left. A solution jinear wave-number shift.

of the set of Eqs(11) describing the shape of a coupled
two-beam solitonlike state at giveBr and a-values is pre-

sented in Fig. 1. The role of the nonlinearly induced diffrac-
tion is to decrease the amplitudes of the beams and to in- In conclusion, the nonlinearly induced diffraction stem-

crease their width. This agreeS with the intel‘pl‘etation of thQn"‘]g from the d|\E term in the wave equation acts on the
nonlinearly induced diffraction as a defocusing effect. solitonlike states of a two-beam system at fundamental and
The dependence of the total power of the sysfémre-  second-harmonic frequencies as an effective third-order non-
lation (10b)] on the nonlinear wave-number shift at different jinearity. With respect to the beam properties at the funda-
a values is presented in Flg 2. The solution without non”n-menta| frequency this is an effect of both self- and cross-
early induced diffraction is denoted as “standard.” The non-phase modulation whereas at the second-harmonic frequency
linearly induced diffraction requires higher power for ensur-the nonlinearly induced diffraction acts only through cross-
ing a given value of the nonlinear wave-number shift.phase modulation. Without influencing the threshold power
Increasing mismatchi.e., larger deviation ot from unity)  value, the nonlinearly induced diffraction leads to changes of
leads to increased power for a given value of the nonlineathe properties of the solitons: Widening of their shape ac-
wave-number shift. The lowest value of the power is at phasgompanied with a decrease of the beam amplitudes. Al-
match[Fig. 2c)]. At different @ values, the relative changes though the involvement of the nonlinearly induced diffrac-
of the power caused by the nonlinearly induced diffractiontion complicates the investigation of the two-beam coupled
are almost the same. system, derivation of the power-conservation law and getting
The effects associated with the nonlinearly induced dif-results for the Lagrangian and the Hamiltonian of the system
fraction are shown in more details in Fig. 3. The full widths js still possible if a proper analytical procedure is applied
Ay, A, (at half-maximum amplitudg¢sand the amplitudes with respect to the stage at which the paraxial approach is
E:, E; of the coupled solitonlike beams at the fundamentalmade. The nonlinearly induced diffraction could be very im-
and second-harmonic frequenci@enoted, respectively, by portant for processes which go simultaneously through
indices “1” and “2”) and their variation with the total second- and third-order nonlinearities.
power P of the system(respectively, with the nonlinear

VI. CONCLUSIONS

wave_-ngmber shi)‘t_are depicted. Since th_e effect is nonlin- ACKNOWLEDGMENTS
ear, its influencéin increasing the beam widths and decreas-
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