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Two-wave mixing in (111)-cut Bi,SiO,o and Bij,TiO 5 crystals:  Characterization
and comparison with the general orientation
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We study the process of two-wave mixii§WM) in optically active, electro-optic, and elasto-optic BSO
and BTO crystals. We calculate the TWM gain for arbitrary crystal cut and optimize the energy exchange. For
the (111) cut, by choosing an appropriate coordinate system, we obtain a simple analytical solution for the
components of the coupling tensor which allows us to optimize analytically the TWM gain with respect to the
grating orientation and the initial light polarization.

PACS numbd(s): 42.70.Nq, 42.65.Hw

I. INTRODUCTION group symmetry(23) (in particular BSO and BTDand op-
timize it, taking into account optical activity as well as the
The energy exchange of TWM in sillenite crystals is theelasto-optic and electro-optic effect. o .
subject of many studies. In these crystals, in addition to the In the last few years there was a growing interest in
primary electro-optiqPockels effect, there exists also the 15111)'(:”" crystals as phOtorefr"thz“f g‘e%m n EWM ?nd
elasto-optic effector secondary electro-optic effeas well our-wave mixing expenmentgz iy .Z' e authors o
. . . : . Ref.[24] show that the diffraction efficiency farpolarized
as optical activity. It is known that optical activity affects

. . waves in (111)-cut GaAs crystals does not depend on the
TWM strongly[1,2]. After the pioneerring work of 12vanov g aiing orientation. In this work the elasto-optic effect is ne-

et al.[3], the rolg of the' elastg—optic effect for siIIen.ite Crys- glected. The dependence of the TWM gain fer and
tals was investigated intensivelh—22. Recently, it was p.polarized waves on the grating orientation in the (111)
shown that the elasto-optic effect leads to surface relief grafplane without taking into account optical activity and the
ings [19] and to surface wavelR0]. In most of the TWM  elasto-optic effect is given in Ref27]. It is shown in Ref.
studies in sillenites the intermediate role of all three effectg25] that reflexion gratings in (111)-cut BSO crystals can be
mentioned above must be considered. used for dynamic interferometry, whereby it is possible to
For real-time holographic interferometry in sillenites un- write a grating by orthogonally polarized waves. The optimi-
der diffusion recordind23], it is important to optimize the zation of the TWM gain for (111)-cut BSO crystals is given
energy exchange. Many papers were devoted to such an offt Ref. [22]. However, the expressions given there are quite
timization[5,6,8—10,13,17,18,21,22They show that the in- complicated and it is difficult to understand their physical
fluence of optical activity and of the elasto-optic effect isMeaning. It is a common disturbing feature of the elasto-
significant. Nevertheless, for a long time there was a wide®Ptic effect that the dependence of its contribution to the
spread belief that the optimum orientation is obtained for thdnotorefractivity on the grating orientation can become very
grating orientationK||[111] (and for polarization111] of complicated. ) . . .
the recording beamsince both the electro-optic and elasto- " thiS paper we give a simple analytical expression for

optic effect are most pronounced along the space diagonal &€ coupling tensor of a (111)-cut crystal which simplifies
the unit cell[4]. In Refs.[18] and [21] the simultaneous the propagation equations significantly. This allows us to de-

influence of optical activity and of the elasto-optic and SC'iP& TWM under diffusion recording in optically active,
electro-optic effect is investigated for (110)-cut crystals. It isele”ctro-odec and elastor;opUc BS? and BTOh crystals anal)r/;u-
shown that owing to the natural optical activity in sillenites ¢!y and to present the optimal gain with respect to the
the optimum grating orientation, as well as the optimum ”ghtg_ratlng orientation and the initial light polarization in a
polarization, moves away from tHe 11] direction and de- S|mTphIe form. f th . foll ns "
pends strongly on the crystal thickness. Corresponding re- e structure of the paper Is as follows. In Sec. Il we
sults were obtained later for the (111) ¢ag]. These recent present _the _coupled wave equations f‘.)r TWM in 3|Il'en|tes
results question the most popular cut (110) as the optimunHlnder diffusion re_cordl_ng. Sec. Il optimizes the gain fo_r
one so that a detailed study of two-wave mixing with arbi-general crystal onentathn. I_n Sec. I\./ we stress the_spemgl
trary crystal orientation involving all known effects is neces- CUt I( :t.ll)” and characterize its coupling tensor and its gain
sary. Referencgl7] makes an attempt to treat this problem analytically.
analytically. However, the considerations there are very gen-
eral and do not give a clear answer.

In order to give an overall picture we derive the general In our considerations a pump waggexgdi(k,-r—wt)]
orientational dependence of the gain for crystals with pointand a signal waveeeexdi(ks-r— wt)] interact in an arbi-

Il. COUPLED WAVE EQUATIONS
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trarily oriented sillenite crystal. We assume that the inci- AeiTl:EscG{B(ppL p,+ p3)+E(P1ni2+ pzﬂjz+ psni)
dence angles of both waves are equal and small so that the

amplitudesE, andEg have onlyx andy components and the
grating vector K=k,—K lies in the xy-plane. In this

paraxial approximation the waves themselves propagate

through the medium along an arbitrazydirection.

The coupled wave equations for the slowly varying am-

plitudesE, andEs in the steady state have the form

E.=ipo, Es+ig*H-Ep,
1)
E,=i00o, E,+igH-Es,

wherep is the rotatory powergs, is the 2nd component of
the vector of Pauli matrice$] is the coupling tensofwith
dimensionless componeptandg is the coupling constant,
proportional to the space-charge fiéld.. For diffusion re-
cording

_wn’ry KkgTle
> N1+ (Krp)?

)

where m=2E} -E,/(|EJ*+|E,|%) is the complex light
modulation depthn the refractive indexs3; the clamped
electro-optic ~ coefficient, N the wavelength, rp

= (e€okg T/Ne?) 2 the Debye radiuskg Boltzmann’s con-
stant, T the temperatureg the electron chargeseq the di-
electric permittivity, N; the effective trap density, ani

=[K].

The coupling tensoH is proportional to the induced
change of the inverse dielectric permittivity tensdd,
=—Ae Y(r3Eso. The changes o& ! are via the linear
electro-optic effect and the elasto-optic effect,

)

—-1_ S
Aeij - Esc(rijq + Pijki '}’kneqnmnlnm)nq )

where the tensoy,,, is the inverse of the Christoffel tensor
E ) s E
I'yn=CiinjniNy s BY I s Pijki » Ckinj» @NdegnmWe denote the

+F(pihi'+ ponit+ pand) + C(pinfnZ+ ponin?

+p3ni2nj2)}n1n2n31

with

A= —(CytCy)(C1—Crt2C,) —2C4(C1—Cy),
B=ciCy4,
C=(cy+cy)(c—Cr—2¢y),
D=—(Ccy+Cy)(Ci—Cr—2Cy),
E=—(cy+cCy)(C1—Cp)—Cy(Cr—Cy),

F=(catcu)(ci—Cr—2¢,),

G=2€41{C1C3+ (C1+2C,+Cy)(C1— C— 2C4)2N2N3N3

22,292, 2 24-1
+C4(C1+Cp)(C1—Co—2C,) (NTN3+ NN+ N5N3) .

Here the indiceglijs} are cyclic permutations of the se-
quence {123; the parameters  pG,P2,P3,P4)
:(pflvavaESvaA)v (CvaZ:CA):(CELCEZ'CEA)v and ey
are the nonzero components of the elasto-optic, elastic, and
piezoelectric tensors, respectively. Note that the electro-optic
effect contributes only to the off-diagonal elementsiaf *
[see the first term on the right-hand sidemefi]l in Eq. (4)].

To calculate the coupling tensét, we need to transform
Ae ! to the laboratory coordinate system with thexis
coinciding with the propagation direction of the light,

1

H.o=—
S
ra1Esc

1]

g-Ae lg, i=xy, j=xy, (5

whereg, , are the unit vectors along theandy axes of the
laboratory coordinate system. In contrast to ghdirection,
which is determined from the crystal cut, the choicegf is

components of the linear electro-optic, elasto-optic, elastic{r€e:

ity, and piezoelectric tensors, respectively; (n,,n3) are
the components of the unit vectf K pointing in the direc-

tion of the grating vector in the crystallographic coordinate

system. The second term in E@) corresponds to the con-
tribution of the elasto-optic effecti) the space-charge field

creates stress in the crystal through the inverse piezoelectri
effect (eqnm); (i) consequently, the crystal is deformed by

Hooke’s law with elastic moduli((Emj); (iii) finally, the de-

formations change the inverse dielectric permittivity tenso

(Piji1) -
Performing the multiplications in E¢3) we obtain for the

components ofAe ! in the crystallographic coordinate sys-

tem,

A€t =Esd jinst Es Gp{Anin?+B(n7+n?)

4 4\ 2 2,22
+C(nj'+nj)ng+Dninsn3ing,

(4)

Ill. OPTIMIZATION FOR ARBITRARY CRYSTAL CUT

In this section we optimize the energy exchange between
the pump and the signal beam at a given crystal thickness by
véalrying the direction of light propagatiofi.e., the crystal
cut), the grating orientation, and the light polarization. We
consider sillenite crystals which are optically active and pi-
ezoelectric. The optical absorption is neglected because it

"has no influence on the gai@,

B -IES? 6
_Wv ( )
s

whereES is the signal beam amplitude in the absence Bnd
the corresponding amplitude in the presence of the pump
beam, both values being measured behind the crystal.
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for a BSO crystalfor BTO the dependence is qualitatively
the samg The symmetry of the figure corresponds to the
symmetry of the point grouf®23). In cubic crystals the space
diagonal(e.g.,[111]) has threefold symmetry, which can be
clearly seen from the figure. The twofold symmetry of the
diagonal of one of the cube facés.g.,[ 110]) is also well
emphasized. The basic symmetry for the crystallographic
axes[100], [010], and[001] is twofold. Higher symmetry
is not forbidden, and these axes show fourfold symmetry.
The absolute minimunnamely zerp occurs when the light
propagates along one of the crystallographic axes
[100], [010Q], and[001]. In this case the waves are not
coupled at all. The absolute maximum is achieved for the cut
with &,/[[110]. In order to explain this, we recall that for this
crystal cut the grating vectdf and the[ 111]-direction lie
FIG. 1. Orientational dependence of the normalized maximafn the same plane. Consequently, the grating can be oriented
effective couplingCey, for BSO. The maximal effective coupling along the space diagonal, which is the condition for maximal
for a given cut is drawn in the direction of the normal to the crystal€nergy exchange if there is no optical activity. Actually all
surface. propagation directions which lie in the plane perpendicular
to one of the four space diagonals of the cube fulfill this
In our calculations the pump and the signal waves areondition and give maximal couplingee the bold curve in
linearly polarized with the same input polarization, which is Fig. 1). An additional feature of Fig. 1 is that there is a local
one of the conditions for the strongest coupling of the wavegninimum which appears wheg is parallel to[111] (or to
[17]. ChoosingK =r* we ensure that the space-charge fieldany other space diagonal
in the crystal has the largest possible amplitude with respect ) ) o
to the angle of incidencd]. B. TWM with optical activity

The crystal parameters used in the calculations below are For diffusion recording, optical activity in sillenite crys-

[18]: A=514.5 nm, n=2.615, e=56, ¢=38.6°/mm,
ry=>5.0x10"*? m/V, ey=1.12 C/nf, cp4={12.96,
2.99,2.4% x 10" N/m?, pyy,34=1{0.16,0.13,0.12,0.035
and N,=10”2 m % for BSO; \=633 nm, n=2.58,

e=47, 0=6.3°/mm, r3=475<10° 2 m/V, eu=1.1
C/m?, Ci124=1{13.7,2.8,2.5x 10'° N/m?, P123g
={0.173;-0.0015;-0.0015;-0.005, and N,=10? m~

for BTO.

tals can usually not be neglected. Without applied external
field the initial linear polarizations of the light waves remains
linear within the crystal but their angles of polarization
change strongly with the crystal thickness owing to natural
optical activity. Since it is impossible to keep the optimum
polarization everywhere inside the crystal, the effective cou-
pling alters periodically with the thickness. The resulting en-
ergy exchange will not reach the maximum value possible

for an optically nonactive crystal because the maximal effec-
tive coupling can be achieved only locally. Correspondingly,
as shown for the (110) cut, the optimum grating orientation

Let us now neglect optical activity, i.e., we consider ais generally not in thd 111] direction[18]. Here we will
very thin crystal. For TWM in an optical nonactive medium, additionally optimize the TWM gain with respect to the crys-
under diffusion recoding the interacting waves keep their inital orientation. For any given propagation direction we look
tial linear polarization. The additional rotation of the light for grating orientation and initial polarization angles for
polarization caused from the nonlinear interaction of thewhich the energy exchange between the beams becomes
waves can also be neglected because the crystal is thin. maximum.

Examining Egs.(1) for =0 one can see that the only  Including optical activity in Eqs(1) makes the optimiza-
parameter responsible for the optimization of the energy extion more mathematically complicated. In our analysis we
change is the so called effective couplir&y], use the approximation of constant light modulation along the

crystal thickness and the approximation of strong optical ac-

(1) tivity. The argument for the first approximation is that the

o ] diffraction efficiency in sillenites is small enough so that the

wheree, ande; are the polarization vectors corresponding togynamic change of the light modulation is negligible. The
the wave amplitude&, andE (in our treatment,=e,). validity of the second approximation is based on the value of

From Eqs.(4), (5), and(7) we calculate the effective cou- the ratiog/o, with g=T 8/(8+1), where is the beam

pling for arbitrary crystal orientation. In order to get the | ) : ) ~
strongest energy exchange for every cut we maxinGze intensity ratio. For typical BSO parameters we figde

with respect to all grating orientations and all light polariza-=0.06 (8=1) andg/¢=0.12 (8—x=) so that optical ac-
tion vectors in thexy plane (remember that in our paraxial tivity dominates. For BTO,g/¢ is in the range from
approximation thez-axis coincides always with the propaga- 0.23 (8=1) to 0.57 (3—x) so that we may only expect
tion direction. qualitative agreement with experiment.

In Fig. 1 the maximal coupling coefficient for each crystal  The practical consequences of the above approximations
cut is drawn in the direction of the surface normal of this cutare that(i) g is constant along the crystal widtlij) the

A. TWM without optical activity

Ce=65-H- &,
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FIG. 3. Geometrical scheme for the optical configuration of
(111)-cut crystals.

FIG. 2. Orientational dependence of the normalized optimum@Ptimum cut for every crystal thickness. At the same time
gain for BSO atpd=180° (see the caption of Fig.)1 the corresponding optimum orientations of the grating vector

and of the light polarization vectdboth of them lie in the
eigenmodes of the system dieft or right) circularly polar-  (110) plang depend strongly on the crystal thickness

ized waves. Usingi) and (i) we obtain, 18,21).
G:Fd—lgfl[(HlﬁH22)+(H11_H22)TC05(2€D_Qd) V- SPECIAL CUT (11D
In the previous section we saw that (110) and (111) are
+2H,7sin(2¢—pd)], (8)  the most interesting crystal cuts. The (110) cut is character-
ized by the strongest energy exchange while the (111) cut
with possesses the highest symmefigr cubic crystals As we
will show, owing to its symmetry properties, the (111) cut
r=sin(gd)/(ed). allows an easy analytical treatment.

The coupling tensor elements are important factors for
Here d is the crystal thickness, and is the polarization wave-mixing. In this section we characterize the coupling
angle measured from theaxis of the laboratory coordinate tensor for the (111) cut and present it in a convenient form.
system. For the first time an analytical expression of thidn Sec. || we have mentioned that there is no restriction on
form for the gain was given in Ref18] but it was not the choice of thex- andy-axis of the laboratory coordinate
realized there that it is even valid for an arbitrary crystal cutsystem. In many cases it is useful to choosextaxis par-
if only the coupling tensor components and the polarizatiorallel to theK vector, so that the light polarization angle is
angle are measured in the appropriate coordinate system. measured from the plane of incidence; this is convenient for

The strongest influence of optical activity on the TWM experiments. Another possibility, often used for analytical

process is to be expected when the polarization vector rotateslculations, is to have fixed andy-axes. We shall consider
by 180° during the propagation in the crystal and doing saa coordinate system which rotates with the grating vector. In
scans all possible angles of polarization. In this case the resuch a system the symmetry of the (111) cut is most clearly
sulting gain is independent of the initial light polarization. expressed and a significant simplification of the coupling
We have seen that (110) is the optimum cut without opticatensor for BSO and BTO crystals is achieved.
activity. It can be expected that the strongest shift of the
optimum crystal orientation from (110) is atd=180° A. Another form of the coupling tensor
[18,21]. The optimization of Eq(8) for BSO for od=180° . .
is shown in Fig. Afor BTO we obtain qualitatively the same Let us choose a laboratory coordinate system with axes
dependende The symmetry of Fig. 1 is here present again. &Il 111 ande, always parallel t. The angle¥’ between
The absolute and local mininfa.g.,e,|[001] ande,|[111], the[110] axis and theK vector (see Fig. 3 indicates the
respectively are preserved too. Contrary to the case0,  rotation of the grating vector or the coordinate system around
the propagation directions perpendicular [tbll] are no the[111] axis.
longer equivalent. Before all the planes perpendicular to the From Egs.(4) and (5) we calculate the coupling tensor
space diagonals gave the propagation directions which CopomponentsHi(j“l), for the (111) cut,
respond to the absolute maximum of the gain. Now there are
only _osix __equivalent maximac > [ALJ sink\If+Bikjcosk‘lf]
[110], [110], [011], [101], [101], and[01]]. It is in- H 1D k
teresting to note that the optimization gives the same result g
for eachpd>0. In general, the closepd is to 180° the
bigger the difference is between the maximum gair{ idQ] Here the summation indek takes the values 3 and 9. The
and the other propagation directions perpendicular to one dfoefficientsA/!, B!, andBg depend only on the material
the space diagonals of the cell. That is, (110) remains theonstants of the crystals and characterize the elasto-optic ef-

0
1+ Bgcos 6V THjj- ©
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fect. They are given in the Appendix. The parameﬂélr in (a) (b)
Eq. (9) denotes the components of the coupling tensor with-
out elasto-optic contribution, 1.0
__ 05
2 00
T 05
H(1)1=—H(2)2=\/?g sin 3V, H(l’2=\/?6 cos3V. (10 10

The following symmetry can be checked directly: 1.0

HED(W) = YW +120%)= — H{MD(W + 180°). 05
& 00} ’
B. New form of the coupling tensor T .05 N /," RN\ ’,"
for BSO and BTO crystals 4.0 R e

The set of Eqs(9) and(10) is valid for each crystal with
cubic symmetry. A useful simplification is possible if we 10
restrict our attention to BSO and BTO. The evaluation of the
coefficientBg [see Eqs(Al) in the Appendi} gives Bg= = 03
—0.04 for both BSO and BTO. Consequently we can neglects 0.0
the denominator in the first term of E¢), 1+ Bgcos 6V 05
=1. Similarly, we obtain for the coefficients andB) that -1.0
AF'=0.35{A}!, B3, B3N, A%=0.29>{A%? B2, B3%, and
B}*=0.11>{A*,A}?,Bs34  for  BSO; A%=0.24
>{A3?B3*,B3% and >{A}' B A2, B3¢ for BTO.
Finally, we rewrite the coupling tensor in the form FIG. 4. Dependences of the coupling tensor comportéptal’)
for (111)-cut BSO(a), and BTO(b). The dashed lines correspond
to the dependences without elasto-optic effect.

0 30 60 90 120 0 30 60 90 120
¥ (deg) v (deg)

H{!™W=a,;sin3¥, HEM=a,,sin3¥,

the analytical analysis of (111)-cut BSO and BTO crystals.
We can, for instance, calculate explicitly the dependence of

H{}"W=a,cos 3P, (11)  the gain on the grating vector orientatioh, From Eqs.(8)
and(11) we obtain,

wherea,;= 6/3+A%!, a,,=6/3+B%?, anda,,=—6/3

+AZ? for BSO; a;;=a;,=\6/3 anday,= — \/6/3+A%? for 5

BTO. The accuracy of this approximation is 2% for BSO _

and 4% for BTO. Thehitgnsdﬂ(“” in Eq. (11) has the same G=Id B+ B Msin 3 +hy7sin3¥ cod2¢ - od)

angular dependence &S, except that every element is nor- .

magiized diflfaerently owing to thg elasto-op?i/c effect. +haTcos 3¥ sin(2e—ed)], (12)
A graphical motivation of the above simplification is

shown in Fig. 4. We compare the angular dependence of the

nonsimplified coupling tensor from E¢Q) (solid line) with wit

the pure electro-optic tenStbfi(jO) (dashed ling As one can

see, the role of the elasto-optic effect is different for both

crystals. Its contribution tdH{}'*? and HGY for BTO is

negligibly small in contrast to BSO where all three coeffi- hi=aptaz, hy=an—az, hs=2a5,.

cients are influenced. However, for both crystals Hfé“)

dependences show practically the same behavior asithe

dependences but with different amplitudes, which is the base

of our approximation. The components of the simplified ten

sor of Eq.(11) are not plotted in Fig. 4, because they are

graphically indistinguishable from the nonsimplified one. Fi-

nally, we would like to emphasize that our simplification is

valid only in the appropriate coordinate systérig. 3.

Optimization of Eq.(12) with respect to the polarization
-angle gives for the maximum gai|;™,

G|7¥=Td——(h;sin 3¥ +| 7|y hj— (h5—h3)sinP3 V).

(13

B+1
C. TWM gain in the new representation

The new simplified coupling tensor includes all known
effects and can be used with a high degree of accuracy forhe corresponding initial light polarizatio,;, is
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+90° §(—sin(ed)sin(3¥)) for 7#0

1 hs

ed Earcta o cot3¥

Popt™ o = 2
arbitrary for 7=0,

(14)

where 0 is Heaviside’s function. It is responsible for the typical 90°-jump of the polarization which characterizes the point
where the minimum and the maximum gain are eq8l.

After optimization of Eq.(13) with respect to the angl# we obtain the maximum gai@,,(d) and the optimum grating
orientation¥ ., for a given crystal thickness,

B ha(hf+7%[h5—h3))

rd for |7|= 7,
BHLJ2(N3—h)? +hi(hi—h))

Gmald)= (15
I'd——(hy+h for |7|<m,
,3+1( 1 2|T|) | | th
1 hihs
— arcsin for |7|=m
Vop=1 3 V72(hi—h2)2+h2(h3—h3) (16
30° for | 7)<y,

where r,=h;h,/|h3—h3|. We assumed in the above equa- is inclined at 23° to the plane of incidence. In our notation
tions thato >0 and took into account thét, , 5> 0. these conditions correspond0,,=30 ande,,=23°. The

In Figs. 5a) and 5b) the dependence oF o, and ¢ o ON theo.rencal prediction from Eq$14) andl(16) (see. also Fig.
the crystal thickness is plotted. For BSO the threshold pa®) 91Ves Wop=30 and ¢q,=22.5°. This result is in very
rameterr, is greater than one. Sinde|=|sin(ed)/(od)| is ~ 900d agreement with the experiment.
always smaller than one, the optimum grating orientation as
well as the initial light polarization for BSO are independent
of the crystal thickness. On the other hand, for BTQ, and We investigated TWM in cubic crystals. In this study all
@opt depend on the crystal thickness. Upda=90° (e.g., known effects were taken into account: optical activity,
|7|=r,) there are two branches which correspond to the (a)
maximum gain. At 7|< 7, they stick together and the opti-
mum grating orientation and initial light polarization are the 50 |
same as for BSOY o, =30° andg,,=0d/2.

Let us now discuss the origin of such behavior. After
excluding the elasto-optic contribution in Eq&l2)—(16)
(i.e., puttingh;=0 andh,=h;=2./6/3), it can be directly
seen that for a given crystal thickness the maximal gain is
achieved for arbitrary grating orientation, i.eG[;®
=Gnha{d). The presence of the elasto-optic effect gives a
preference direction for the energy exchange. Since there is 0 45 90 135 180
also optical activity, the optimal grating orientation depends pd (deg)
in principle on the crystal thickness. The form of this depen-
dence is determined from the ratio between the strengths of (o)
the elasto-optic effect and the optical activity.

It is worth mentioning that in some papé#, the electro- 30 sr0
optic and the elasto-optic coefficients for BSO are negative.
In this case the energy flow will be in the opposite direction.
Consequently, the optimum grating orientation will be ro-
tated by 180° from our result.

Lastly, we will compare our analysis with the already
published experimental results from Rg22], where TWM
measurements are performed in a 2.1-mm-thick (111)-cut
BSO crystal with a He-Ne lasdthe rotatory power isp 0 45 90 135 180
=21.4°/mm atA =633 nm). The maximum TWM gain is pd (deg)

rrE\sureq when t_he_ grating vector is_ parallel. to_ the g 5. Dependence® o,(pd) (8 and gop(pd) (b) for BSO
[112]-axis (with periodicity 120°) and the light polarization (dashed lingand BTO(solid line).

V. CONCLUSIONS

BTO

Yo (deg)

P - PA/2 (deg)
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electro-optic effect, and elasto-optic effect. We showed that J2 e "
the (110) cut corresponds to the largest possible TWM gain  B3'= —B3'= —B3*=B3?=Al*=—— —(p,— ps)as,
. : o ) 432r
even if optical activity and the elasto-optic effect are taken
into account. We derived a simple analytical expression for
the components of the coupling tensor of (111)-cut BTO and gl2_ V6 Caa| [ P2+ P3 42
BSO crystals which allowed us to optimize the TWM gain 37 648 Fa1 1 2 83T 2Psaz|,

analytically with respect to the grating orientation and the
initial light polarization. 1
Be=— ﬁ(cl"_2C2+C4)(C1_02_204)21
ACKNOWLEDGMENT

We acknowledge financial support by the Deutsche Forswherea; andb are combinations of the elasticity modali,
chungsgemeinschaf{Sonderforschungsbereich 225, Gra-

(étrjrﬁzgle_r’llkgelltiger_Pr?él:;o;;:]uktur Oxidischer  Kristalle, a;=3(ci+4c5—2¢5—5¢1Co+5¢,C4—11¢,C4)/b,
APPENDIX a,=3(5¢c5+2c5+2¢5—7¢1Co+ 19c,c4— 13c,¢4) /b,
For (111)-cut cubic crystals the coupling tenggy in the a;=—(Cyt2cy+Cy)(Ci—Cr—2Cy)/b
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corresponding coefficients are 2. a2
=3(3c]{+2c;—3c.Co+11ciC4—5C5C,)/b,
V6 ey P2t pP3
11_ VY =4l
36481, p1a1+( 7 T2Pajaz,  (AD a5 = 3(3¢2+ 62— 22— 9¢,Cy+ 13¢,C4— 19¢,C4) /b,
A%Z 6\{4—68 (pl 2p4)a4+ pz—'z_pg’ as|, dg= _3(Cl+ 2C2+ C4)(C1_C2+ 2C4)/b,
My
\/g e T a7:(2&:%_25:§+ 20421_C102+ 5&1(:4_4%204)/*),
Aél A22 le>2 = P1— P2 Ps —2p4|as,
6487, 2
Ge b= clc4+ 108( —Cy—2Cy)[27C4(Cy+Cy)
A= "2 (p,~py)as,
S 2327, (P2 Pe)3s +(Cy+2C,+Ch)(Cy—Co—2¢4)].
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