PHYSICAL REVIEW E VOLUME 62, NUMBER 2 AUGUST 2000
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We study the interaction of breathers in the context of a coupled electron-vibron lattice system. Starting with
single-site excitations, it is demonstrated that constellations exist for which the coexistence of electronic and
vibronic breathers is assured. The energy exchange between the vibrational and electronic subsystems and its
impact on the breather formation are discussed in detail. The coupled electron-vibron dynamics shows a
tendency toward energy redistribution into the vibronic degrees of freedom at the expense of the electronic
energy content. Attention is paid to the relaxation dynamics in the energy exchange and we discuss the
attainment of a steady regime for the coupled electron-vibron dynamics starting from a nonequilibrium state. It
is demonstrated that the presence of breathers has a strong impact on the relaxation dynamics. Breathers can
assist the relaxation process. With the help of a linear stability analysis, we show why the electronic subsystem
acts as an energy donor while the vibron system serves as the energy acceptor. To this end we investigate the
existence and stability of localized breathing eigenmodes capable of energy trapping. A frequency analysis
reveals that strong exchange also occurs due to a temporal transition from single-frequency breathers to those
oscillating with two frequencies and their temporal resonance interaction. Finally, the self-stabilized electron-
vibron system relaxes to a combined electron-vibron breather. On increasing the electron-vibron coupling
strength, only a vibronic phonobreather of large amplitude survives, whereas the electronic subsystem tends to
energy equipartition.

PACS numbsd(s): 41.20.Jb, 63.20.Pw, 63.20.Ry

I. INTRODUCTION neous nonlinear lattice systems having one degree of free-
dom per lattice sitéunit cell). These nonlinear lattices con-
Discrete breathers, that is, spatially localized and timesist of coupled oscillators of one specific type, and the
oscillating solutions, of discrete nonlinear lattice systemaonlinearity stems from the local anharmonicity of the on-
have attracted considerable interest over recent yéard3]  site oscillators[Klein-Gordon (KG) chaingd and/or is con-
(for reviews se€[24,25). Recently, rigorous results have tained in the coupling termgermi-Pasta-UlantFPU) mod-
been obtained concerning the existence and stability oéls] [25]. Studies on several degrees of freedom per unit cell
breathers in nonlinear latticg48,26,27. Such intrinsic lo- have been performed iM2—44. From the perspective of
calized modes have been observed experimentally in electriocalization, combinations of distinct lattices have been ad-
networks[28], in Josephson laddef&9], in waveguide ar- dressed if45-586.
rays [30], in a quasi-one-dimensional charge density wave The present study is devoted to a combined lattice system
system31], and in crystalline arrays of charged linear chainspossessing two different dynamical degrees of freedom per
of PtCI[31]. Breathers have been proposed to understand th&ite. It describes the movement of an electron along a one-
transient photodynamics of various low-dimensional elec-dimensional molecular chain modeled by a discrete nonlinear
tronic materials such as conjugated polym&32|, and fem-  Schralinger equationfDNLS) [57-65. Moreover, the mo-
tosecond chemistry allows one to probe the photophysics décular constituents of the chain perform longitudinal vibra-
breatherlike excitationg33]. The proper excitation of intrin-  tions described by a KG Hamiltonian. The electronic disper-
sic localized modes of anharmonic lattices via optical controkion, viz., the transfer matrix element, depends on the
was discussed if34]. relative elongation of two adjacent lattice sites and in this
A great deal of the theoretical research has been focusadanner the coupling between the electronic and vibronic
on the dynamical properties of breathers, such as their staubsystems is established. Our model has to be distinguished
bility and mobility [6,8,23,35,36 and numerical algorithms from the Holstein mod€l45], its generalizationg52,53 and
for the excitation of breather solutions have been developeBavydov-type systemg6—55. Basic to all these systems is
[37]. Furthermore, the impact of the internal structure of dis-the coupling between electroniexcitonig and vibronic de-
crete breathers on their formation and stability properties hagrees of freedom in a combined lattice system.
been investigated12,13,38,3% It has been demonstrated  The work in[54] considered the interaction of a single
that perturbations along internal breathing modes of the diselectron with a discrete breather in a nonlinear FPU lattice.
crete breathers can also cause breather bifurcations, e.ghe electron-lattice coupling arises through dependence of
from single-frequency breathers to those oscillating withthe electronic overlap integral in a one-dimensional elec-
more than one frequency. Moreover, when certain internalronic tight-binding description on the positions of the lattice
modes are properly excited the breather may become mobiktes. It is demonstrated that a bound electron-breather state
[23,35. Internal localized modes of breathers are also conexists. The electron localization arises as the result of its
nected with scattering properti€40,41]. capture by the vibrational breather during each half period of
However, most breather studies have concerned homogés oscillation without any response of the electron to the

1063-651X/2000/6@2)/284612)/$15.00 PRE 62 2846 ©2000 The American Physical Society



PRE 62 ELECTRON-VIBRON-BREATHER INTERACTION 2847

breather. The study if65] dealt with the self-consistent in- breather solutions. In Sec. Ill A we investigate the linear
teraction of a single electron with longitudinal FPU lattice stability of the coupled breather dynamics. The time evolu-
vibrations when the electron response to the lattice breathdion of the eigenvalues of the Jacobian matrix corresponding
is taken into account. Due to the presence of the electron itp the system of linear equations in the tangent space is
the lattice, a static lattice deformation creates a potential weMmonitored. In particular, we study the existence and stability
for the electron as well as the lattice vibrations causing lo0f internal localized modes and their impact on electronic

calization in the form of a coupled breatherlike state. and vibronic breather formation and stability, respectively.
In [50,51 the electronic motion is studied in a single Based on a Fourier analysis we demonstrate that, during an

interlude of strong electron-vibron interaction, a transition

one-dimensional tight-binding band interacting with the vi- :
brations of a nonlinear lattice. Attention is focused on thel™o™ smgle-frequenc_y breathers to t_WO-frequency breathers
in Sec. IV we give a summary.

analysis of energy equilibration and electron motion startingIakes place. Finally,
in a highly nonequilibrium initial state. The nonlinear lattice
considered irf50,51] does not itself support discrete breath-
ers. An explanation for the absence(pfire lattice vibration
breathers is given by the fact that the existence criterion de- We consider the transfer of an electron along a one-
pending on the potential parameters[66] is not fulfiled  dimensional molecular chain where the electron movement is
for the specific anharmonic lattice potential [80,51] (see influenced by longitudinal vibrations of the molecular con-
[54]). Nevertheless, a bound electron-vibron-breather statstituents of the chain. The Hamiltonian is determined by
can exist due to the local alterations of the lattice energy
(deformation of the latticecaused by the initially localized
electron creating a potential well not only for itself but also
for the lattice vibrations. These combined bound states arise
e_xperimental!y when incident elgctrons collide with a thin\,ith the electronic part given by a DNLS system derived
film [67]. On its way through the film the electron exchangess.om the Hamiltonian

energy with the excitations of the mater{@8—70. These

processes also play an important role in nanoelectronics,

II. COUPLED ELECTRON-VIBRON SYSTEM

H=He+H,, 1

such as quantum wells and wirggl—73. Furthermore, ini- N y &

tially highly nonequilibrium situations also occur experimen- He= EZ |cal®+ 2 Z |cal®

tally when a localized electro(exciton is produced by ini- =t n=t

tial excitations, e.g., due to phototransfer. Again, this N

electron can distribute its energy during its motion in the + > Vinoa(C¥ea_1+cnct_y), (2
n=1

material [74-76. The advances in femtosecond spectros-
copy make it possible to go to time and space scales for
Wh'Ch. the expenmental st.udy .Of transient phenqmena pf Ir‘i/vherecn represents the probability amplitude of the electron
teracting electronic and vibrational subsystems is possible.

T . occupying the molecular site and E is the on-site energy.
The studies if{50,51 considered the process of energy : ;
redistribution between an initially localized electron and theThe parametery regulates the strength of the nonlinearity

vibrations of an anharmonic lattice. The lattice atoms wer that arises from the adiabatic elimination of local fast in-
. ) A : VeI ramolecular vibrations strongly coupled to the electron am-
assumed to be in their rest positions, having zero velocitie

However, in contrast to the previous studies, in the curren litudes| 46,5765, 7. The derivation of this nonlinear elec-

approach the electronic as well as vibronic lattice degrees o on (polaron model 'S based on a t|me-scalg separation
freedom are represented bynanlinearlattice system, each rgu_men'_[, and in particular on the fact th_at the intramolecu-
system bearing its own breather solutions Iocalizfng elec!ar V|t_)rat|ons are much faster than any mtermole_cular_ pro-
tronic and vibrational energy, respectively. The coupling be_qess(mtermolecular ele_ctron_ transfer or the re!at|ve vibra-
tween the electronic and vib;onic nonlineér systems then at_|onal motion of _the_Iattlce sne}_sThe_ third sum in Eq(2)
lows us to study the highly nonlinear interaction of electron.represents the k|ne_t|c electronic lattice energy Whé‘{e'fl
and vibron breathers with respect to the time evolution of th IS the transfer matrix element .Of the electronic couplmg be-
P X ; Gween two molecular lattice sites. The transfer matrix ele-
energy redistribution in the combined lattice system. We d ds on the intersite relative coordirmte
think that the results are of relevance for the relaxation dy__ment_ epenas o TR Gn -1
L . hna) > in a linear fashion,
namics in real systems starting from a nonequilibrium exci-
tation state and when nonlinear excitations are present in the
idn;ﬁqracting electronic as well as vibrational degrees of free- Vi no1=Vol1—a(gn—0dn_1)], (3)
The paper is organized as follows. In Sec. Il we introduce
the coupled electron-vibron lattice system and examine itsvith g, being the elongation of theth molecular unit an@
coupled dynamics. With this aim a breather solution isthe coupling parameter. In the lim&=0 the transfer ele-
launched in both subsystems and their combined developnent reduces t&/y=const, and the Hamiltoniaf2) yields
ment is observed with emphasis on the dynamics of the erthe standard DNLS system.
ergy exchange between the electronic degrees of freedom The nonlinear classical dynamics of the longitudinal vi-
and the vibronic ones. In detail, we discuss how the relaxbrations of the molecular sites is described by a Klein-

ation process in the energy redistribution is influenced byGordon lattice system with Hamiltonian
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n=1 0 |
wherew is the frequency of small amplitude oscillations of %

the lattice sitesbq;1 is the anharmonic part of the quartic
on-site potential, and is the coupling constant. It is through
Eq. (3) that the coupling between the electronic and intersite
vibrational degrees of freedom is introduced. Since the latter =
are not constant, the transfer matrix elements are modulater oo
by the motion of the molecular sites relative to each other.
When two adjacent units are further apart, the corresponding < -
matrix element diminishes, causing a reduction in the elec-
tron transfer from one site to the other. Correspondingly, for ©
two neighboring sites coming closer to each other the trans-= 2-
fer matrix element increases, resulting in enhanced electror ©
transfer.(For a quantum treatment of the lattice vibrations
this would be a study of phonon-assisted hopging].) We
do not take into account diagonal couplings of the vibrational
and electronic degrees of freedom, since their effect on the
electron-vibron dynamics is assumed to be dominated by the
diagonal nonlinear polaronig term. Moreover, due to a )
simple phase transformatiocy(t) = c,(t)exp(~iEt), the E
dependence can be removed from the equations of motion. FIG. 1. The amplitude profile of the DNLS and KG lattices for
vanishing electron-vibron coupling=0. The lattice length iN
IIl. COUPLED ELECTRON-VIBRON DYNAMICS, =256 and periodic boundary conditions are imposé]. The

ENERGY REDISTRIBUTION, AND RELAXATION DNLS lattice with initially excited central site, |:e.x(0)128
DYNAMICS =y(0)126= 112 andx(0)y, 106= Y(0) - 126= 0. Shown is the elec-

tronic occupation amplitudge,(t)|2=x3(t)+y2(t). Parametersy
In this section we study the dynamics of the coupled=1 andV,=0.1. (b) The KG lattice with initially excited central

electron-vibron motion in the context of the system given bysite, i.e., 4(0)1g=0.746, q(0)n.126=0, and p(0);<n<256=0.

Egs.(1)—(4). The corresponding equations of motion are ~ Shown is the vibronic coordinatey(t). Parameterswo=1/4, b

5 0

1.0 -0

=
=)

=1, andc=0.05.
. oH , . .
iCh=—"r= ylcnl?cnt Vol 1—a(dns1—gn)ICni1 such Fhat the energy content (_)f the two lattice chains does
o not differ significantly. According td26] we expect that
Vo[1—a(g— Ve (5) these single-site initial conditions will be continued as
ol Gn~0n-1)1Cn-1, breather solutions if the coupling between the lattice oscilla-
JH tors is sufficiently small(The mathematical proof of the ex-
0. =— —=—20.—ba® — istence of such a combined breather state will be presented
pn= =—wgGn—ba+C(dni1+9n-1—20) IS . P
" d0n omin " Lt " elsewherd79]). In fact, after an initial transient phase, both

lattice dynamics have completely adopted stable breather so-
lutions with exponentially decaying tails around the initially
(6)  excited site. Each of their strongly localized excitation pat-
terns involves mainly three sites. For the electronic breather,
_dH it is equivalent to a stationary solitonlike solution schemati-
q“_,;_pn ~Pn- @) cally expressed as

+ aVO(C:1r Ch1t CnCﬁf 1) - aVO(C:+ 1Cn+ CnC:+ l)!

In the limit of a=0 we obtain the pure DNLS lattice and (. ee | [ T oo .) ,
a KG chain, each supporting breather solutions, correspond-

ing to electron and vibron localization, respectively. In Fig. 1where the dots stand for vanishingly small amplitudes. This
we depict such breather solutions. We excited initially amode sustaining symmetry breaking perturbations of its pat-
single site electronically as well as vibrationally and all othertern is centered at a single sit€7,77. On the KG lattice a
sites were left in their rest positions. Such a local excitatiorsimilar spatially symmetric breather is formed. The forma-
of the coupled electron-vibron lattice can be viewed as theion process and the stability of the breathers are linked to
local injection of excitation energy by an external processhe excitation of their internal localized modes as those
(e.g., a laser pulse leaving a hot gpdduring this process eigenvectors of the system linearized around the breather
both the electronic degrees of freedom and the vibronic panvhich are localized todsee below in Sec. Il A Without
become locally excited. The initial amplitudes are choserthe polaronic term, i.e., withy=0 in Eq. (5), the electronic
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] too strong. After an initial transient phase of gradual elec-
() tronic (vibronic) energy loss(gain), no further vibrational

i band states get excited, so that the energy redistribution pro-
cess terminates and the curves reach plateaus of constant,
nearly balanced, partial energies corresponding to a steady
equilibrium state. This striking feature shows us that after a
local deposition of excitation energy a transient of directed
energy transfer from the electronic to the vibronic subsystem
takes place until an equilibrium situation is attained. Note the
small amplitude oscillations around the steady state energy
values. The physical meaning is that a small part of the vi-
brational energy is fed back into the electronic state and this
amount of energy is from then on transferred between the
electronic and vibronic subsystems. On both the KG and the
DNLS lattices a stable breather has been created. The forma-
tion process of an electron{wibronic) breather is very simi-

lar to that in the uncoupled case shown in Fig. 1. Regarding
the electron breather, we notice an initial phase during which
the breather amplitude diminishes while its localized shape is
conserved. Eventually, after approximately 1000 time units
the amplitude loss terminates and a stalskationary elec-

tron breather remains with this reduced but virtually constant
amplitude. Accordingly, the vibronic part accumulates the
energy released by the electronic subsystem. Let us recall
that the initial single-site excitation of the vibrational lattice
causes a trapping potential for the nonlinear lattice vibrations
themselves. As a matter of fact, the spatiotemporal amplitude
pattern of the KG lattice relaxes onto its own breather solu-
tions for a single-site initial excitatiofsee Fig. 1b)], main-

FIG. 2. Temporal evolution of the partial energies for the taining localization at the initial site, so that finally the dis-
coupled DNLS and KG lattices for different electron-vibron cou- persion of the vibrational excitation energy is inhibited. In
pling strengthsa as indicated. Initial conditions and parameters asaddition, the lattice vibrations are influenced by a trapping
in Fig. 1.E(E,) indicates the electroniwvibronic) energy.(a) The  notential created by their coupling to the localized electron.
electronic energ§, . (b) The vibronic energy, . During the short time transient process of gradual decrease

of electronic energy, the electron itself remains localized at
probability amplitude would spread all over the lattice in theits initially excited site and experiences only a steady reduc-
course of time, leading to a delocalized electron. tion of its amplitude in accordance with the loss of its en-

The aim of the current paper is to investigate the breatheergy.
interaction in the context of a coupled nonlinear electron- In general, the larger the coupliregthe less time it takes
vibron model with particular respect to the transient dynam+o reach the equilibrium state, and the amount of electronic
ics of the electron-vibron energy redistribution. In Fig. 2 we energy distributed into the vibrational lattice also gets larger.
depict the temporal evolution of the partial energies of theMoreover, fora=0.5 there is at the beginning a sudden in-
electronic and vibronic subsystems for different strengths otrease(decreasgeof the vibrational(electroni¢ energy as if
the interactiora. [The contribution of the interaction energy the lattice oscillators experience an instant kicklike distortion
Hin=aZ,(d,—dn_1)(chc,_1+C,Ch_y) to the total energy by the localized electron. Unlike the exchange dynamics in
is less than 1%.We always observe redistribution of the the low-coupling casea=0.2), here there already appear
electronic energy into the vibronic subsystem, regardless gmall amplitude oscillations during the transient redistribu-
the coupling strength. The coupling of the localized electrortion phase, pointing to early time energy backfeeding of tiny
to its surrounding lattice sites causes local lattice displaceportions of vibronic energy into the electronic system, and
ments. As a consequence, lattice modes differing in theivice versa. We further observe that after short times each
phases and velocities become excited and their superposiurve still reaches a plateau; however, the amplitudes of the
tions may extend with time over the KG lattice. This spread-oscillations around the corresponding steady energy value
ing behavior is manifested also in a temporal increase of thdecay more rapidly the larger the coupling. With regard to
lattice partition number, measuring the distribution of thethe amplitude patterns of the lattices, we note that fera2
excitation energy among the lattice sifege Fig. 6 beloyw =~ <0.6 a stable electronic breather on the DNLS lattice has
Since the number of excited vibrational lattice modes isbeen formed, whereas on the KG lattice we observe a
fairly high it seems unlikely that energy flows back into the breather solution at the initially excited site which is sur-
electronic degrees of freedom. Thus the process of energpunded by small amplitude phononic excitations. Appar-
redistribution from the electronic degrees of freedom into theently, the stronger the electron-vibron coupling the greater is
vibronic ones is irreversiblésee alsd51]). the impact of the localized electron on the lattice vibrations.

For weak coupling 4=<0.25) the energy exchange is not The large amount of electronic energy injected rapidly and
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0.6 ‘ ‘ strong nonlinearityp=1, as seen in Fig.(®). For smallb
osl b=0.6 there is almost no variation of the vibronielectronig en-

’ W ergy in the course of time. However, fbi 0.5 this behavior
oal b=0.5 | changes drastically. At short times the vibronic energy jumps

up to a higher valu¢analogous to the instant kicking behav-
ior appearing in Fig. 2 foa=0.5), increasing gradually af-
terward, and eventually reaches a horizontal plateau. While
0. | the DNLS lattice dynamics is characterized by stable elec-
b=0.2 o tronic breathers regardless of the valuenpthe localization
o1 szo ' " properties of the vibronic KG lattice dynamics depend
heavily on the value of the nonlinearity parameter. For the
cases(b=0) and (b=0.2) in Fig. 3 there exists no strong
vibron localization and we observe rather a small amplitude
breathing localized state at the initially excited KG lattice
FIG. 3. Temporal evolution of the vibrational lattice enefgy,  Site, from which small amplitude bandlike vibrations leak out
for different nonlinearity strengths and fixed electron-vibron cou- into the remaining sites of the KG lattice. Apparently, it
pling strengtha=0.5. needs a certain overcritical nonlinearity strendptof the
quartic potential in order to suppress dispersion. Starting
locally into the KG lattice can exceed the trapping ability of from the case ob=0, i.e., a harmonic vibron lattice, it be-
the initial nonlinear KG lattice site, and thus the excess eneomes clear that bound state creation requests at least a bal-
ergy that cannot be pinned there has to be rejected such thance between two competing mechanisms: the tendency to
phononic modes are excited, which disperse into extendedisperse the vibronic enerdyhich is most efficient for the
parts of the KG lattice. Afterwards, when the partial energiesharmonic potential ob=0) due to the coupling among the
evolve around the equilibrium plateaus, we observe an invibron lattice oscillators, and, on the other hand, the trapping
phase motion of the electronic potentiginetic) and the of the vibrational state itself by intrinsic KG nonlinearity
vibronic kinetic (potentia) energies, whereas the potential (amplified with growing stiffnes® of the potential, and
and kinetic energies of each lattice oscillate out of phase. ladditionally vibron trapping because of its coupling to the
other words, the impact of the localized electron on the cenlocalized electronic amplitude. Conversely, only in the pres-
tral lattice oscillator results in a temporal increase of theence of a stable KG breather does the coupling between the
vibronic potential energy due to larger elongations of theelectron and the vibron maintain a strong local character and
lattice oscillator, which in turn leads to an enlarged localthe lattice vibrations absorb electronic energy efficiently.
electronic transfer matrix elemefglectronic kinetic energy ~ Otherwise, on dispersing vibronic energy away from the ini-
The increase in the electronic kinetic energy goes along withially excited site, the electronic amplitude becomes nearly
an attempt to delocalize the electron and thus weakens thenaffected by the depleting vibrational amplitude. This is
local influence of the electron-vibron interaction around thesimilar to the localization behavior in the opposite case,
initially excited site. On the other hand, the strongly local-when the vibrational subsystem bears the nonlinearity
ized electron does not leave the near vicinity of the initialwhereas the electronic subsystem is described by a linear
site, and only a small portion of the electronic excitationtight-binding lattice[50,51]. Strong enough electron-vibron
energy oscillates between the central site and its left anthteraction, determining the nonlinearity strength in this
right adjacent sites, in accordance with the periodic changenodel, causes local deformations of the vibrational lattice,
of the electronic kinetic and potential energy. At the momentwhich create a potential well for the electronic amplitude and
when the latter reaches its maximum value, that is, when fothus produce a polaronic state of the coupled electron-vibron
vanishing electronic kinetic energy the electron is completelyattice. Equivalently, in the present case the strong coupling
localized at the initially excited site, there is again a maximalof the localized electron to a weakly nonlinear KG lattice
influence of the electronic occupation on the vibrational cen{small b) is able to generate a trapping potential for the
tral amplitude, and the energy exchange dynamics passeigle-site vibrational excitation, leading to a long time lo-
through another cycle. The resulting small amplitude oscil-calization of the vibrational energy at the initially excited
lations in the temporal evolution of the partial energies decaite. With enhanced nonlinearity strendthnot only is pro-
more rapidly the larger the electron vibron coupling. nounced directed energy migration from the electronic to the
The threshold behavior, i.e., the sudden quantitativevsibronic subsystem initiated as reported abdsee Fig. 2,
change in the energy exchange dynamics around some critbut also the degree of vibron localization is amplified. More-
cal value of the coupling strength, is a genuine nonlineaover, the largeb the higher is the amount of electronic en-
effect. To gain further insight we illustrate in Fig. 3 the tem- ergy absorbed by the vibron lattice and the less time it takes
poral development of the vibrational energy for a couplingto achieve the equilibrium regime. This result demonstrates
strengtha=0.5 and different nonlinearity strengthsof the  the accelerating effect of higher-amplitude vibron breathers
KG lattice. (Because of energy conservation we can readilyon the relaxation process in highly excited systems.
infer the corresponding evolution of the electronic energy From the perspective of the influence of the electronic
from these picturegFor comparison with the results in Fig. breather on the relaxation dynamics, similar results are ob-
2 we remark that the electron-vibron couplirg=0.5 is  tained when we vary the polaronic nonlinearity strength
taken to be relatively large. Heavy directed energy migratiorand keep all the other parameters fixed. For smalD.5 the
occurs from the electronic to the vibronic subsystem forenergy exchange behavior is equivalent to the cases of small
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vibrational nonlinearity strengthv illustrated in Fig. 2b). 2 ‘ ;
Beyond a critical value ¥=0.9) the energy gain of the vi- Y
bronic subsystem is again high and resembles the behavior of
the strong coupling cases=0.5 in Fig. 2. However, when
vy=1.2 there is no longer an energy redistribution from the t
electronic system into the vibronic degrees of freedom and
the electronic and vibronic energy are conserved. The large
polaronic term is then responsible for such a strong localiza- !
tion of the electronic energy at the initial site that the inter- L
. . - loc
action between the two subsystems is actually suppressed. 1N
This prevention of the directed energy transfer from the elec- o1 /p0c
tronic into the vibronic subsystem might have consequences _, ‘ ‘ : ‘ ;
for the vibron localization itb is not too large. In this case, -0.0010 -0.0008  -0.0002 0.0002 0.0008 0-0010
the KG lattice may lack the amount of absorbed electronic Re(h)
energy needed to enhance its effective nonlinearity, that is, G, 4. Spectrum of the eigenvalues of the Jacobian matrix for
the amplitude of the initially excited site, which allows for the uncoupled DNLS KG lattice in the complaxplane. Parameters
profound vibron localization as in the cases previously disng initial conditions as in Fig. 1. The two pairs of isolated eigen-
cussed. Nevertheless, we observe a breathing localized Wpalues corresponding to local breathing modes are denoted by
bron state at the initially excited lattice site, although it co-),1/\, for the DNLS lattice anc\,,1/\, for the KG lattice.
exists with a background of small amplitude modes in the
remainder of the KG lattice.

* 5 loc
1 F }v

—
= ol ]
£

L

: 0 0 0 0
= _aVo[Xg31Un71+(Xgﬁl_xﬁmf)l)vn_xwlvnu]

0)\2 0)\2 0)_ (0
A. Linear stability and local internal modes —3x)2+ (v 21 é0— Vol 1-a(qP—alP )11

To gain deeper insight into the process of directed energy ~ —Vo[1—a(q%;—a®)1én1—2yxOy©@ g - (13
transfer from the electronic state into the vibronic one and to
support the physical explanations given above by dynamical Introducing the perturbation vectdr=(u,v,§, ), we ex-
system arguments, we study the linear stability of thepress the systerfl0)—(13) in matrix notation as
coupled breather dynamics. The two subsystems’ responses i
to the mutual perturbations caused by their coupling may A=MA4], (14

lead to the excitation of localized internal modes. The latter . . .
play a fundamental role in the formation and stability of Where the Jacobian matriki =M (p(t),q(t),x(1),y(t)) is

breather$25,38,39. Thus we are especially interested in the detérmined via the right hand sides of the systam—(13).

existence and stability of localized internal modes. Imposing-n€&r stability of the solution(p,(t),dn(t), Xa(t),yn(t)) re-
small perturbations quires that the Jacobian matr has no eigenvalue with

positive real part, otherwise perturbations grow in time. The
pn(t)=pﬁ0)(t)+un(t). qn(t)=q§1°)(t)+vn(t), (8)  matrix M is symplectic. Therefore its complex eigenvalues
occur in quadruplesNi N 1 AE A F 1) with 1<k<=N.

During the transient process it is suitable to discuss the
stability by inspection of the temporal development of the
eigenvalues,, of the Jacobian matrix determining the tem-
substituting Egs(8) and (9) into the system(5)—(7), and  poral Lyapunov exponents. Before embarking on the coupled
linearizing around (,=v,=§,=7,=0) gives the linear case, we briefly describe the features of the spectrum of the

%D =xP(O)+ &1,  yaO)=yP+ 7.0, (9

system of tangent equations uncoupled casea=0) in the presence of individual stable
electronic and vibronic breathers. Thespectrum is shown
Up=Cvp_1—[w2+3(qP)2+2¢]vn+Conia in Fig. 4 in the complex plane. We recognize that the purely
imaginary eigenvalues constitute two continuum bands cor-
+2aVo[x V¢, 1+ (x©, —xO & —xO¢, . 1] responding to extended phonon modes. The frequency

ranges of the linear bands are bounded by
+ ZaVO[yglo)”]nfl"' (yg())l— yt(]qr)l) h— E\o)”]n+ 1l
(10) - 2V0$ weS 2V0 y (15)
. i< w?< w3+4c, (16)
Uh=Up,, (11
where we(w,) denotes the phonon frequency of the DNLS
(KG) chain. The eigenvalues with the largesmallest

& — (0) (0) _,(0) _y(0) . ! .
En=aVolYnZ1vn-1F (Y11= Yn21)Un=Yni1Vn+1] modulus of the imaginary part correspond to phonons with
+29xOyO¢ 1y 11— a(q@—q@ - wave vector O {r). For later refgrence we note t_hat the upper
VX Yn bt Vol (@h"—An=0) 1701 edge of the KG phonon band is at the level 0i5Rurther-
+ [ (x{9)243(yO)2] 5, more, two pairs of isolated imaginary eigenvalues

© o (A2, 1% and (\1°¢, 1A !°%) are situated outside the bands
+Vol1-a(dns1—an ) 17041, (12 of the phonon eigenvalues. The supersdaptindicates that
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the corresponding eigenvectors of the Jacobian matrix repre 0.3
sent localized breathing modg25,38,39. Due to the time (a)
reversibility of the breather solutions the corresponding pairs 0z r
of eigenvectors f/°¢,v/°%) and @°°,7\°°) are complex

conjugate, so that one is the image of the other through time

—

reversibility. In particular, for the KG lattice it holds that 3. | MWWM | ‘ WNWNW

Imv,°°=Reul?°=0, meaning that the momentum compo- %

nents are purely imaginary whereas the position component 51 L
are real. For the DNLS lattice the stable eigenvectors satisfy
either Im7/°°=Re&°°=0 or Reyl°°=Im £°°=0. More- 0z} -
over, the internal local modes resemble the spatial symmetr
of the (uncoupled electronic and vibronic breathers. -0.3
For the coupled case @=0.1 we monitor the temporal
evolution of the\,’'s and report time snapshots of their mo-
mentary positions in the complex plane. As an orientation for 0.2 : :
our description we use the spectrum of the uncoupled cas:
shown in Fig. 4. Due to the reflection symmetry along the (b)
real axis it suffices to consider only the upper half of the o1 .
complex\ plane, and in what follows we describe the tem-
poral movement of the eigenvalues with positive imaginary 5~
part. o
We distinguish three time intervals. '
(i) 0=<t<300. The first snapshot is taken after a hundred
time units. Most strikingly, the imaginary part of the vibronic —01F
isolated eigenvalua!°® has almost descended to the=0
edge of the phonon band. In general, we observe that eiger

1 L
50 100 150 200 250

>

0.0 WMWMWWNVWV\W \ |

>

iy
[}

o

values may slightly depart from the imaginary axis into the =924 =0 100 750 500 o0
right or left half plane but their real parts are confined to n
values in the interval £0.0001,0.0001). Moreover, after a

0.8

short duration, of the order of 50 time units, in one of the
half planes the eigenvalues cross the imaginary axis, revers o7 | (©) ]
ing the sign of their real part. These oscillatory crossings of
the imaginary axis take place only fo=1000. Therefore it

is justified to discard the tiny real parts because they cause¢ 05¢
merely a negligible temporal amplitude change of the eigen-3_  ,
functions. Afterward, fot>1000, the eigenvalues come to ¢

lie on the imaginary axis. Since IN°°=0.517 is just above ~ * 9~ ]
the upper edge of the phonon band, its eigenfunctionis only 0.2 | 8
quasilocalized because the localization length is rather large
[80]. In Fig. 5a) we show the real part of the position com-
ponentv'nOC of the correspondingnormalized eigenvector 0.0 ‘ . : ‘ ‘
exhibiting a density group centered around the lattice rsite 0 50 100 130 200 25C
=95. We remark that the imaginary parts of the position n

1°° of the eigenvectors and the real parts of FIG. 5. The real part of the position componanf® of the

0.6 b

0.1 r p

components
their momentum Componenu;lﬁOc are no longer zero but re- (normalized eigenvector belonging to the isolated vibronic eigen-
main small. Most importantly, the asymmetric spatial pat-values\!°® (a) andx!°° (b). In (c) the real part of[°° correspond-
terns of the KG eigenvector shown in Fig(ap break the ing to the isolated electronic eigenvalhg® is shown.

spatial symmetry of the single-site excitation. Unlike the

DNLS lattice, the KG lattice so far lacks the existence of atern strongly localized around the central lattice site. In Fig.
local breathing mode serving for strong localization of the5(c) we draw the Ré&|°® component of the strongly localized
initial conditions. Therefore the initial single-site vibronic symmetric eigenmode of the DNLS chain to emphasize the
excitation caused by a quasilocalized mode tends to disperskfference from the quasilocalized eigenmode of the KG sys-
immediately into neighboring sites. This is why the vibronic tem.

lattice participation numbeE, makes an early jump to rela- | At later time (=250) the isolated electronic eigenvalue
tively high values fort>0 (see below. In contrast, pertur- e has moved upward to the value 1i64he imaginary
bations of the DNLS breather by the stable localized eigenpart ofA1°¢ is still detained above the level of the=0 band
mode belonging to the isolated eigenvam§°=1.24 do  edge. Another vibronic eigenvaILTé)°°=0.513 has left the
not destroy the localization of the electronic energy at thephonon band, creating a further quasilocalized mode of the
initially excited site because the single-site breather and th&G lattice in addition to the mode shown in Figah In Fig.
perturbational mode have the the same spatial symmetry pai{b) we show the pattern of the real part of the positions
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v1°¢ There exist two density groups. Compared to the posi-
tion pattern shown in Fig.(8) a further relatively large den-
sity group of longer localization length has been created to- 14| i
ward the right end of the lattice. The superposition of these :
two different quasilocalized modes on the KG lattice ampli-
fies the dispersive destruction of the single-site excitation.

These features of the eigenmodes explamathemati-
cally) the affinity of the vibronic subsystem to distribute en-
ergy in its lattice segments where the eigenmodes of Figs
5(a) and §b) have become excited. This temporary energy
spreading over the KG lattice is clearly reflected in the evo-
lution of the energetic lattice partition number, which we use : A ‘ ‘ ‘ ‘
to quantify the degree of localization of the partial energies. 0 200 400 600 800 1000 1200
The energetic lattice partition number is defined as t

FIG. 6. The lattice partition number defined in E¢7)—(19).

N -1
2 Parameters and initial conditions as in Fig. 2 éo£ 0.1.
- S e,
Ee.o()= N 2 ' 17) quasilocalized mode. Meanwhile, the electronic isolated ei-
E Eeoun genvalue has been pushed further downward to a lower
n=1

imaginary value 1.53
As time goes by the mobile KG eigenvalué®® experi-
ences further transitions, that is, it steadily climbs up the
imaginary axis. During this process the local breathing KG
mode is being rebuilt. At=750 the eigenvalue has reached
E, n=%|0n|4+Vo(C§ Cn1+CaCr_y), (18  the point 1.24. On its way up the imaginary axis, InjC
passes the level of |nL°°. The latter is continuing its down-
ward motion and fot=750 has dropped down to 1i3%Ve
stress that with risingdfalling) imaginary part of the eigen-
value the frequency of the corresponding eigenmode gets
higher (lower).
The partial electronidvibronic) energy is completely con- During the period of strong exchange interaction between
fined at a single site iE,,=1 and is uniformly extended the electronic and vibronic subsystems, there is a temporary
! increase of the DNLS lattice partition numbeee Fig. 6

over the lattice ifEe'“ is of the ordem. ThusEe‘U MEASUreS  \ihich is due to radiative losses of the electronic breather
how many sites are excited to contribute to the lattice energy.

With regard to the perturbations of the DNLS breather,"’“np!ItUde into the DNLS. _Iatqce. Th|s EMISSION process can
. . o be viewed as a self-stabilization in the sense that in order to
we note that the eigenvector correspondlng\tb is now

. . ic e %0 and Re9¢=0. H maintain its localized shape the electronic breather has to
time antisymmetric, i.e., Iny,“#0 and Re,"#0. HOW- 4450 g the reduction of the frequency of its excited internal
ever, since the electronic breather and its excited local 'merbreathing mode. This is achieved such that the breather di-
nal mode still obey the same spatial pattern, the latter is NGfinishes its amplitude and hence itenlineay frequency.

symmetry breaking with respect to the breather. It is rathefrg this end the breather has also to get rid of the excess
that the breather amplitude is modified under radiative |°Sse§nergy that will not be absorbed by the vibron system. In
into the DNLS lattice while the localized shape remainsy, i “the amount of vibron energy gain is governed by the

pinned at the originally excited lattice site. _ (growing excited internal breathing KG mode. Note that
(i) 300<t=1000. In this time interval the picture peither the DNLS breather nor the KG breather can be made
changes significantly. By the sudden steep slope of the engqpile, for there exists no pinning mode in the form of a
ergy curves in Fig. 2 we note that the exchange of electronigyia|ly antisymmetric local internal mode. But the spatially
and vibronic energy becomes much more pronounced. At a8y mmetric local breathing mode for the stationary DNLS
instant of time {=310) the isolated vibron eigenvalwﬁg’c breather always exists.
has returned to the phonon band whereé%C has been (iii) t=1000. Finally, all eigenvalues have found their
raised to the value 1.28Now the KG lattice is equipped for destination on the imaginary axis and thespectrum re-
the first time with a local breathing mode at the central site sembles the structure of the uncoupled dasenpare Fig. %
analogous to the one in thee=0 case. In this way the vi- i.e., there are phonon bands and two pairs of isolated purely
bronic energy starts to accumulate at the initially excited siteimaginary conjugate eigenvaluad®® and \'°¢ assigned to
The electronic eigenvaluel®® has moved down the imagi- the internal local modes of the stable KG and DNLS breath-
nary axis to 1.6il ers. However, compared to the=0 case, the isolated eigen-
From the next snapshot &t 500 it becomes apparent that values have exchanged their positions on the imaginary axis,
the isolated vibronic eigenvaluel®®=0.52 has almost re- that is,\\°°=1.27 and\'°°=1.74.
turned to the upper phonon band edge. As a consequence, theFinally, fort=1000, when the energy exchange process is
local breathing mode ceases to exist and is replaced by @aver, the DNLS-KG dynamics has approached a stability re-

whereE, , , are the local electronic and vibronic energies
determined by

1 1 1 1
E,n=5Pa+ 50500+ 700+ 5¢(Ah—0n-)% (19



2854 DIRK HENNIG PRE 62

gime and the electronic and vibronic breathers evolve with- 19000

out further interference. Apart from oscillations around a 9000 ]

constant mean value, the nonvarying vibronic and electronic 8000 L (o) ]

lattice partition numbers assure the strong localization of the

partial energies at a few sites of each lattice as seen in Fig. € ;238 I § 1

B. Transition from single- to two-frequency breathers & izzg i ]

It is illuminating to describe the different scenarios of the 2000 |- ]

electron-vibron breather interaction also in terms of the { ]

power spectrum of the main excitation amplitudes involved. 2000 i

Figure Ta) depicts the power spectrum of the real part of the 1000 ¢ ]

central electronic amplitude;,g and the vibronic coordinate %5 o : 02 0.3

J128, respectively, measured in the time intervat 0<250. ¢

(Note that only the low-frequency part without higher har-

monics is shown.Like the power spectrum of the uncoupled 7000

case the present spectrum for the coupled case reveals tw

peaks at separate incommensurate frequencies where tt 8000
lower (highep frequency peak corresponds to the vibronic
(electronig breather motion.

Later, for t=300, the pronounced breather interaction _ 4co0
process sets in. From spectral analysis performed in the in¥
terval 306<t=<550 for either electronic as vibronic ampli-
tude, a second peak emerges between the electronic and v
bronic peakgsee Fig. T)]. Their mutual overlap points to
resonance interaction between the electronic and vibronic 1000
subsystems, viz., their breathers. Consequently, a transitiol R
from weakly interacting single-frequency breathers to %5 i C 0.3
strongly interacting two-frequency breathers has taken place f
As time progresses the height of the Igfight) vibronic
(electronig peak of the power spectrum is gradually low- 10000 ]
ered. Simultaneously, the righiteft) vibronic (electronig 9000 ©
peak height is enhanced while the frequency positions move 8000 | i
in opposite directions, namely, the electronic peak shifts to 2000 -
lower and lower frequencies and vice versa for the vibronic

. . 6000
peak. Eventually, when the breather interaction process ha © ‘
terminated, the power spectrum for 1000 restores two iso- & %[ 35 ]

5000

3000

2000

T

lated peaks, but the electronic and vibronic peaks have nov 4000 ¢ 1
exchanged their positions compared to the early time powel 3000 1 1
spectrum[see Fig. Tc)]. This is due to the fact that the 2000 ¢ ;

electronic breather, after the interaction phase with the vi- 1000 ¢ ]
bronic breather, has reduced amplitude and hence also lowe A : o 55 o3

frequency. Correspondingly, the vibronic breather has gainec
amplitude(energy at the expense of the electronic breather,
shifting its power spectrum peak to a higher frequency. FIG. 7. The temporal development of the power spectrum of the
time evolution of the central electronic amplitude,g and the vi-
bronic coordinatey,,g, respectively; only the low-frequency part
without higher harmonics is depicteh) The time interval Gt

We consider the case of stronger coupling between the:250. Two isolated peaks at distinct frequencies. The (teght)
electron and vibron systems by choosiag-0.65. Again  peak is attributed to a single-frequency KBNLS) breather.(b)
single-site excitations are used. In Figga)8and 8b) we  The time interval 30&:t<550. The KG and DNLS power spectra
draw the spatiotemporal evolution of the DNLS and KG lat- produce a second peak situated at a frequency between théae of
tices. The narrow excitation peak of the DNLS lattice soonTwo-frequency breathers are being forméd. The time interval
splits into two low-amplitude itinerant breathers. Analysis of 1000<t=<1500. The reappearance of two isolated peaks at distinct
the linear stability shows that for the DNLS system an un-frequencies. The leftright) peak now belongs to the single-
stable eigenmode with time antisymmetric part has been exrequency DNLSKG) breather.
cited, which causes breather splitting and the subsequent mo-
bility of the remaining two fragment&ee alsd38]). These breathe{25,52,31) persists. From the plot of the temporal
breathers are not exact solutions so that their nonunifornevolution of the electronic and vibronic energies we deduce
movement is restricted to a lattice segment of nearly 40 siteghat the energy redistribution is in favor of the vibronic sys-

On the KG lattice a phonon background is initiated. Ontem, as seen in Fig.(8. The lattice partition number shown
top of it a long-lived breather with extended tdphono- in Fig. 8d) confirms that the vibronic energy remains

f

C. Formation of a vibronic phonobreather
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FIG. 8. The coupled DNLS-KG lattice dynamics with single-site excitations according(®),5=Y(0)106= 142, X(0)n=128
=Y(0)n2126=0, 9(0)126=1, q(0)n-2126=0, and p(0)1<n<256=0. (a) Spatiotemporal evolution of the electronic occupation number
|ca(t)]? illustrating the immediate decay of the initial single-site excitation to two low-amplitude itinerant breathe8patiotemporal
evolution of the vibronic coordinate,(t). A phonobreather around the central site has been cre@lefiemporal evolution of the partial
energies. The electronic enerBy drops while the vibronic enerdy, rises.(d) The lattice partition number for the DNLS and KG systems
as indicated in the plot. In agreement with the results show)ir(c) the vibronic energy remains localized whereas the electronic energy
is spread over the DNLS lattice.

strongly localized whereas the electronic energy is shared bihe coupled electron-vibron lattice system starting from a
many DNLS lattice sites. The most important consequenc@onequilibrium state. At short times we observed that the
of this process physically is that the electron is no longerstronger the electron-vibron coupling the more electronic en-
localized at the initially excited site, unlike in the cases con-ergy is absorbed by the vibronic subsystem to be stored in a
sidered in Sec. Ill. Due to the modulation of the electronicyibron breather. During the exchange process the amplitude
transfer matrix element by numerous extended phonon baclksf the localized electronic state is gradually reduced, but lo-
ground modes, electronic transfer into extended parts of thgjization of the electron at the initially excited site is main-
lattice is stimulated. As in Sec. Il the vibronic breather of (5ined. Afterward, when the energy migration is over, the

the KG lattice prevents a rapid relaxation. evolution of the electronic and vibrational energies
progresses with temporal oscillations decaying faster the
IV. SUMMARY larger is the amplitude of the vibron breather. This result

We have considered the interaction of electron and vibrolémonstrates that in coupled systems excited in nonequilib-
breathers in a coupled DNLS-KG lattice system. In the for-fium initial states higher-amplitude breathers may signifi-
mation process of the breathers a single lattice site has be&antly boost the relaxation process. The vibron breathers in
used electronically and vibrationally. We have always ob-particular possess an energy absorbing capacity that assists
served temporal energy redistribution in favor of the vibronicthe rapid attainment of an equilibrium regime.
degrees of freedom, regardless of the value of the electron- We have discussed the existence and stability of localized
vibron coupling strength. When for weak electron-vibroninternal breathing modes derived from a system of linear
couplings the energy content of the KG and DNLS systenequations in tangent space. To this end we have considered
eventually becomes balanced, a stable breather evolves time time evolution of the corresponding Lyapunov exponents
each lattice. Such a combined electron-vibron bound statand the resulting stability properties of the associated eigen-
has strong influence on the relaxation process subsequentfienctions. First we considered the weak coupling case. Re-
a local injection of excitation energy in real systefesg., markably, the DNLS lattice always possesses a local breath-
solids, biomolecules Probing the short term relaxation dy- ing mode assisting permanent energy localization, whereas
namics is of special interest for achieving a steady regime oin the beginning the KG lattice has no such local internal
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mode. In the course of time a dynamical process of selfbreather splits up into two small amplitude itinerant breath-
stabilization takes place, during which the KG lattice alsoers that are unable to prevent greater dispersion of the elec-
produces a stable local internal mode, supporting a breathefonic energy.
responsible for the vibron energy localization. Eventually,
the lattice dynamics is characterized by two coexisting stable
breathers.

Interestingly, above a critical electron-vibron coupling
strength, energy localization on only the KG lattice is pre- This work was supported by the Deutsche Forschungsge-
ferred, where a phonobreather is formed. The electromeinschaft via the Heisenberg-progrdhe 3049/1-].
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