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Dynamics of coupled gap solitons in diatomic lattices with cubic and quartic nonlinearities
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The dynamics of coupled gap solitons in diatomic lattices with cubic and quartic nonlinearities is considered
analytically based on an extended quasidiscreteness approach. For various mass differences~and thus different
gap widths of the phonon spectrum!, the coupled gap solitons are shown to display very rich dynamical
behavior and their properties are strongly dependent on the force-constant ratioK3

2/(K2K4), where K j

( j 51,2,3) are the force constants for the quadratic, cubic, and quartic parts of the intersite interaction poten-
tial, respectively. Several previous theoretical approaches for studying gap soliton dynamics in diatomic lat-
tices are recovered in our scheme, and the relations between these methods are elucidated in a systematic way.

PACS number~s!: 63.20.Pw, 63.20.Ry
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I. INTRODUCTION

Anharmonicity in lattices is responsible for many impo
tant phenomena, such as transfer of energy, thermal con
tivity, structural phase transitions, and the associated
mode and central peak phenomena, etc. The study of no
ear lattice dynamics and related lattice solitons has b
greatly influenced by the pioneering work of Fermi, Pas
and Ulam@1#. Most of the early work in this area focused o
monatomic lattices. In recent years, much attention has b
paid to nonlinear dynamics in diatomic lattices. The partic
lar interest in studying the band gap and related nonlin
excitations@2–14# has been greatly stimulated by the disco
ery of optical gap solitons in periodic dielectric materia
@15#. For a diatomic lattice, the phonon spectrum consists
two branches~acoustic and optical!, induced by mass o
force-constant differences. Due to the interplay between
creteness and nonlinearity, types of nonlinear localized e
tations that have no direct analog in continuum models
possible. In particular, gap solitons may appear with th
vibration frequencies in the phonon band gap. Since gap s
tons occur in perfect lattices with discrete translational sy
metry, the terms ‘‘anharmonic gap mode’’ and ‘‘intrinsic ga
mode’’ have been used also@4,12#. It is possible that gap
solitons may be created experimentally in diatomic lattic
References@16–18# reported observation of gap solitons
damped and parametrically driven one-dimensional~1D! di-
atomic pendulum lattices.

The mechanism for the appearance of gap solitons in n
linear diatomic lattices can be briefly explained. Assume t
there is an excited lattice wave with its vibration frequen
falling within the phonon band gap. In the linear limit, su
a lattice wave is strongly reflected~Bragg reflection!. Only
exponentially growing and decaying solutions for lattice d
placements are possible and, for a finite system, an expo
tially decaying solution results, leading to very low transm
sivity. The situation is changed when the amplitude of
lattice wave is high enough. In this circumstance the non
earity of the system begins to play its role. If the nonlinear
PRE 621063-651X/2000/62~2!/2827~13!/$15.00
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has an appropriate sign, the exponentially growing and
caying solutions to the left and right can be connected in
large-amplitude region to form a self-consistent nonline
localized solution that is finite everywhere. Such a solution
just the lattice gap soliton mentioned above.

There exist three different analytical approaches for
gap soliton dynamics in nonlinear diatomic lattices. The fi
one was provided by Kivshar and Flytzanis@3#. The starting
point is that, in the case of small mass difference~thus a
narrower phonon band gap!, because of nonlinearity ther
exists a strong coupling between the optical lower cut
mode and the acoustical upper cutoff mode at the bound
of the Brillouin zone~BZ!. Under the rotating-wave approxi
mation, they derived coupled nonlinear envelope equati
for the two cutoff modes for the diatomic lattice with non
linear on-site potential. Some interesting coupled soliton
lutions were obtained. Later, this approach was used to s
the coupled gap solitons in a diatomic lattice with nonline
intersite potentials@19–21#. Such coupled-mode theory i
similar to the corresponding theory for optical gap solitons
shallow nonlinear gratings@22#, valid only for a narrow band
gap, and the coupled-mode equations obtained are essen
the same as the coupled-mode equations obtained in
@22#.

The second theory was given by Konotop@11# based on
an envelope function approach. In his approach Konotop a
considered the small-band-gap case. However, instead o
coupled envelope equations he obtained a nonlinear Sc¨-
dinger ~NLS! equation. The solitons obtained can propag
with the group velocity of the carrier wave at wave vect
q5p/d of the corresponding monatomic lattice with the la
tice constantd05d/2, whered is the lattice constant of the
diatomic lattice@11#. The solitons obtained by this approac
display tails~companion modes! at the rear of the solitonic
pulses.

The third method is based on a quasidiscreteness
proach~QDA! @5,13#. The amplitude equation derived in th
approach is also a NLS equation but it is valid for the who
BZ of the phonon spectrum. Using the results from the QD
2827 ©2000 The American Physical Society
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one can obtain various types of nonlinear excitation
acoustic and optical modes. In particular, for the cut
modes at the BZ boundary, we can get the acoustic up
and optical lower cutoff gap solitons. Explicit criteria for th
existence of gap solitons in nonlinear diatomic lattices can
obtained@13#. However, the coupling between the two cuto
modes atq5p/d has not been considered in this approa
and a difficulty exists when the width of the band gap b
comes small. The difficulty can be seen from the express
for the gap soliton amplitudes, which are proportional
1/(M2m), wherem andM are the mass of light and heav
particles, respectively. Thus the results for the gap solit
obtained from the QDA developed before@5,13# are valid
only for single-mode excitations and for the large-band-g
case.

In a recent paper, Jime´nez and Konotop@14# considered
gap solitons in diatomic lattices with quartic intersite nonl
earity for different band gap widths. Some interesting res
are discussed, in particular, the appearance of compa
modes when solitons are excited. However, questions
exist: what is the relation between the above-mentioned th
different approaches for gap soliton dynamics in nonlin
diatomic lattices? Is it possible to construct a general sch
to derive all the envelope equations obtained previous
What kinds of effects will occur when cubic nonlinearit
which is a common characteristic of standard interatom
potentials, such as the Toda, Born-Mayer-Coulom
Lennard-Jones, and Morse types@13#, is introduced into the
model? It is just these problems that will be addressed h

The paper is organized as follows. In Sec. II, the mo
Hamiltonian with cubic and quartic nonlinearities is intr
duced and the asymptotic expansions for several diffe
cases are provided based on the QDA. The relative orde
magnitude for different smallness parameters appearin
the system are especially emphasized in making
asymptotic expansions. In Sec. III, we present some e
coupled lattice gap soliton solutions. We show that the pr
erties of these coupled gap solitons are strongly depen
on the mass and force-constant ratios of the system. Fin
Sec. V contains a discussion and summary of our result

II. MODEL AND ASYMPTOTIC EXPANSION

A. The model and preliminaries for asymptotic expansion

The model under investigation is a 1D diatomic latti
with a two-body nearest-neighbor interaction potential. T
Hamiltonian of the system is given by

H5(
i

F1

2
mi S dui

dt D 2

1V~ui 112ui !G , ~1!

whereui5ui(t) is the displacement from its equilibrium po
sition of the i th particle with the massmi5md i ,2k
1Md i ,2k11 (M.m, k is an integer!. The potentialV(r ) is
quite general; typically it can be a standard two-body pot
tial of Toda, Born-Mayer-Coulomb, Lennard-Jones,
Morse type~for their detailed expressions, see Ref.@14#!. We
focus on displacements with smaller amplitude; thus we T
lor expand the potentialV(r ) at the equilibrium positionr
50 in a power series of the displacements to fourth ord
As a result we have an approximateK2-K3-K4 potential
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V(r )5 1
2 K2r 21 1

3 K3r 31 1
4 K4r 4, where K2 (.0), K3, and

K4(.0) are harmonic, cubic, and quartic force constan
respectively. Obviously,K350 if the potentialV(r ) is sym-
metric. We assume thatK j ( j 52,3,4) are of order unity. The
equations of motion for the lattice displacementsvn ~for light
particles! andwn ~for heavy particles! are

m
d2

dt2
vn5K2~wn1wn2122vn!

1K3@~wn2vn!22~wn212vn!2#

1K4@~wn2vn!31~wn212vn!3#, ~2!

M
d2

dt2
wn5K2~vn1vn1122wn!

2K3@~vn2wn!22~vn112wn!2#

1K4@~vn2wn!31~vn112wn!3#, ~3!

where n is the index of thenth unit cell with the lattice
constantd52d0, andd0 is the equilibrium distance betwee
two adjacent particles. The linear dispersion relation of
system is given by

v6
2 ~q!5I 21J26@~ I 21J2!224I 2J2 sin2~qd/2!#1/2, ~4!

whereI 25K2 /m andJ25K2 /M . The minus~plus! sign cor-
responds to the acoustic~optical! mode. At wave numberq
50 the eigenfrequency spectrum has a lower cutoffv2(0)
50 for the acoustic phonon band and an upper cu
v1(0)[v35@2(I 21J2)#1/2 for the optical band. Atq
5p/d there exists a band gap between the upper cutof
the acoustic branch,v2(p/d)[v15A2J2, and the lower
cutoff of the optical branch,v1(p/a)[v25A2I 2. The
width of the band gap isv22v15A2K2(1/Am21/AM ),
propotional to the mass differenceM2m.

Because in general it is not possible to solve analytica
nonlinear lattice equations of motion like Eqs.~2! and ~3!,
some approximate theories have been developed. One p
erful and clear-cut method is the method of multiple scale
kind of singular perturbation theory widely used in the stu
of nonlinear waves, solitons, and pattern formation in co
tinuous media@23,24#. In 1972, Tsurui@25# proposed the
QDA for studying soliton excitations in nonlinear mon
atomic lattices. Later, the QDA was extended by several
thors to nonlinear diatomic lattices@5,13,14#. The basic spirit
of the QDA is the assumption that a linear plane lattice wa
is weakly modulated by the nonlinearity of the system. T
modulated wave consists of two parts. One is the car
wave, which is taken to be completely discrete and a fu
tion of the ‘‘fast’’ variablesn and t. The other one is an
envelope~or amplitude!, which is a function of the slow
variables likejn5e(nd2lt) and t5e2t. Herel is a con-
stant given by a solvability condition.e is a small and order-
ing parameter denoting the amplitude of the excitation. T
envelope is determined by an ‘‘envelope equation’’ which
provided by another solvability condition. The solvabili
conditions here mean the conditions of eliminating secu
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terms in the asymptotic expansion. If several modes are c
sidered simultaneously, a set of coupled-mode equations
result.

One important fact that should be stressed is that there
generally several small physical parameters appearing in
system. The small parameters can also be provided by
initial conditions for the excitation under consideration. T
relative orders of magnitude of these small parameters ar
crucial importance for making an asymptotic expansion. Dif-
ferent relations for these small parameters result in differ
envelope equations, which are valid only for different typ
of nonlinear excitation. We shall show in what follows th
this is the key reason why there exist many different theo
ical approaches for the gap soliton dynamics in diatom
lattices in the published literature.

In general, one can make the following assumptions fo
nonlinear excitation in the system~2! and ~3!.

~1! The nonlinearity is weak, i.e.,

un~ t !5d1un
(1)~ t !1d1

2un
(2)~ t !1d1

3un
(3)~ t !1•••, ~5!

whered1 is a smallness parameter characterizing theweak-
nessof the excitation.un(t) represents eithervn(t) or wn(t).

~2! The excitation is a quasiplane lattice wave, i.e., it is
plane lattice wave modulated in time and in space as

un
( j )~ t !5u( j )

„t,jn ;fn~ t !… ~6!

( j 51,2,3, . . . ) with

t5d2t, ~7!

jn5d3~nd2lt !, ~8!

fn~ t !5qnd2v~q!t, ~9!

whered2 and d3 are two smallness parameters account
for the slow variation of the envelope of the excitation i
space and time.fn(t)5qnd2v(q)t is the phase of the car
rier wave, which is taken to be completely discrete in t
QDA.

~3! The mass differenceM2m may be small, i.e.

m5m̄2dm5m̄~12d4D!, ~10!

M5m̄1dm5m̄~11d4D!, ~11!

where d4 represents the mass difference byd45(M

2m)/(2m̄) with m̄5(m1M )/2 ~the mean value!. D is a
constant with order unity. Clearly,d4 is a parameter mani
festing the bandgap widthof the phonon spectrum.

For given values ofm and M and given initial exciting
conditions for the excitation in the system~2! and ~3!, the
relative orders of magnitude of the parametersd j ( j
51,2,3,4) in Eqs.~5!–~11! should also be given. In fact, th
property of the excitation is characterized by the relative
ders of magnitude of these parameters. Without loss of g
erality, we can taked15e. Thus d j ( j 52,3,4) should be
functions ofe, i.e., d j5d j (e). In general, one can make th
power-law assumption@23#

d25ea, d35eb, d45eg. ~12!
n-
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Since we are interested in the nonlinear excitations that
formed by some kind of mechanism, e.g., thebalancebe-
tween the self-phase modulation and the dispersion of
system, the choice ofa, b, and g is not arbitrary in an
asymptotic expansion@23#.

B. Coupled-mode equations for wide band gap

In this subsection, we derive the coupled-mode equati
for system~2! and ~3! when the band gap width is larg
enough that we haveg50 and thusd451. By choosinga
52 andb51 we have the following scaling assumption:

un~ t !5eun,n
(1)1e2un,n

(2)1e3un,n
(3)1•••, ~13!

t5e2t, jn5e~nd2lt !, ~14!

where un,n
( j ) [u( j )

„t,jn ;fn(t)… ( j 51,2,3, . . . ). Substituting
Eqs.~13! and~14! into Eqs.~2! and~3! we obtain the equa-
tions satisfied byvn,n

( j ) andwn,n
( j ) ( j 51,2,3, . . . ):

]2

]t2
vn,n

( j ) 2I 2~wn,n
( j ) 1wn,n21

( j ) 22vn,n
( j ) !5Mn,n

( j ) , ~15!

]2

]t2
wn,n

( j ) 2J2~vn,n
( j ) 1vn,n11

( j ) 22wn,n
( j ) !5Nn,n

( j ) . ~16!

The concrete expressions forMn,n
( j ) andNn,n

( j ) are the same as
in Ref. @14# and thus need not be repeated here. Equati
~15! and ~16! are now inhomogeneous but linear equatio
which can be solved order by order.

In the leading order (j 51), we have generally the solu
tion

wn,n
(1)5F10~t,jn!1@F11~t,jn!exp@ ifn

2~ t !#1c. c., ~17!

vn,n
(1)5F10~t,jn!1@G11~t,jn!exp@ ifn

1~ t !#1c. c.#,
~18!

where fn
6(t)5qnd2v6(q)t. F10 is the ‘‘static’’ part ~dc

component! of the excitation~which generates a strain fiel
in the system! resulting from the cubic nonlinearity of th
interaction potential.F11 (G11) is the envelope of the ac pa
of the excitation for the acoustic~optical! mode. In contrast
to Ref. @13#, we are interested here in the coupling betwe
the acoustic upper cutoff and the optical lower cutoff mod
Thus we setq5p/d. The leading-order solution~17! and
~18! now takes the form

wn,n
(1)5F10~t,jn!1@F11~t,jn!~21!n exp~2 iv1t !1c. c.#,

~19!

vn,n
(1)5F10~t,jn!1@G11~t,jn!~21!n exp~2 iv2t !1c. c.#.

~20!

For the second order (j 52), the solvability condition of Eqs
~15! and~16! needsl50 thusjn5end. The solution in this
order reads
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wn,n
(2)5F201S F21~21!n exp~2 iv1t !2

2J3

v1v2
F11G11

3exp@2 i ~v11v2!t#1
2J3

v1v2
F11* G11

3exp@2 i ~v22v1!t#1c. c.D , ~21!

vn,n
(2)5G201F202

d

2

]F10

]jn
1F S G211

I 2d

v2
22v1

2

]F11

]jn
D ~21!n

3exp~2 iv1t !1
2I 3

v1v2
F11G11exp@2 i ~v11v2!t#

2
2I 3

v1v2
F11* G11exp@2 i ~v22v1!t#1c. c.G , ~22!

whereF20, G20, F21, andG21 are functions ofjn andt, yet
to be determined. We see that the appearence of the dc, s
and difference-frequency components in Eqs.~17!–~22! is
due to the cubic nonlinearity in the interaction potent
(K3Þ0). It should be stressed that, unlike in the soluti
ansatz used in the literature, the staggered factor (21)n does
not appear in these components.

In the next order (j 53), the solvability conditions require
F10, F11, andG11 to be governed by the following coupled
mode equations:

]2F10

]jn
2

1
4J3

J2d

]

]jn
~ uF11u21uG11u2!50, ~23!

i
]F11

]t
2

I 2J2d2

2v1~v2
22v1

2!

]2F11

]jn
2

2
J3d

v1
F11

]F10

]jn
2

3J4

v1
~ uF11u2

12uG11u2!F1150, ~24!

i
]G11

]t
1

I 2J2d2

2v2~v2
22v1

2!

]2G11

]jn
2

2
I 3d

v2
G11

]F10

]jn
2

3I 4

v2
~ uG11u2

12uF11u2!G1150. ~25!

Equations~23!–~25! are coupled NLS systems with couplin
to a mean term~dc fieldF10). As in Ref.@26# we denote such
equations as CNLSM. The case for excitation with a sin
cutoff mode ~i.e., without any coupling betweenF11 and
G11) has been discussed in Refs.@5# and@13# in the absence
and presence of cubic nonlinearity, respectively. We see
for the wide gap case the coupled interaction occurs betw
two cutoff modes through cross-phase modulations. T
coupled gap soliton solutions of the CNLSM equations~23!–
~25! will be given in Sec. III.

C. Coupled-mode equations for small band gap„I …

Now we derive the coupled-mode equations for a sm
band gap. In this case the cutoff modes at the BZ bound
have stronger coupling than in the wide-gap case. As in R
@14# by a small band gap we mean thatg, the parameter
characterizing the width of the band gap, is equal to 2. N
m-,

l
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at
en
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ry
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ing that for different excitationsa and b in Eq. ~12! may
take different values, we have two interesting cases, wh
will be discussed in this and the next subsection.

The first case is for an excitation with relatively larg
extent~determined by the initial exciting condition!, which is
denoted by takinga52 andb52. Thus one has

m5m̄~12e2D!, M5m̄~11e2D!, ~26!

t5e2t, jn5e2~nd2lt !. ~27!

It is obvious thatl can be taken to be zero because we ha
already introduced a slow-time-scale variablet5e2t. Thus
we takel50 in the following calculation.

Substituting Eqs.~26!, ~27!, and~13! into Eqs.~2! and~3!,
we obtain

m̄
]2

]t2
vn,n

( j ) 2K2~wn,n
( j ) 1wn,n21

( j ) 22vn,n
( j ) !5Pn,n

( j ) , ~28!

m̄
]2

]t2
wn,n

( j ) 2K2~vn,n
( j ) 1vn,n11

( j ) 22wn,n
( j ) !5Qn,n

( j ) . ~29!

The concrete expressions forPn,n
( j ) and Qn,n

( j ) for j
51,2,3, . . . aregiven in Appendix A.

At the leading order (j 51), Eqs.~28! and ~29! yield the
solution

wn,n
(1)5F101@F11exp~fn!1c. c.#, ~30!

vn,n
(1)5F101@G11exp~fn!1c. c.#, ~31!

where F10, F11, and G11 are functions of t and jn
(5e2nd) and are yet to be determined.fn5qnd2v(q)t is
the phase of the carrier wave with

v~q!5H 2K2

m̄
F12cosS qd

2 D G J 1/2

. ~32!

It is obvious that Eq.~32! is the linear dispersion relation o
a monatomic lattice with lattice constantd05d/2 and par-
ticle massm̄. Thus, in the leading order, the dynamics of t
system is similar to that of a monatomic lattice. Shown
Fig. 1 are the dispersion curvesv6(q) @see Eq.~4!# for the
diatomic lattice and the dispersion curvev(q) @i.e., Eq.~32!#

for the monatomic lattice with massm̄. When m→M the
band gap of the diatomic lattice atq5p/d approaches zero
and thus goes to the limit of the monatomic lattice.

Again we are interested in the cutoff modes at the
boundary~i.e., q5p/d). Then the solution~30! and ~31!
becomes

wn,n
(1)5F101@F11~21!n exp~2 i v̄t !1c. c.#, ~33!

vn,n
(1)5F101@G11~21!n exp~2 i v̄t !1c. c.#, ~34!

where v̄5v(q)uq5p/d5@2K2 /m̄#1/2 is the oscillating fre-
quency of the carrier wave for the monatomic lattice w
massm̄.
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At the next order (j 52), the solution of Eqs.~28! and
~29! reads

wn,n
(2)5F201S F21~21!n exp~2 i v̄t !

1
K3

K2
F11G11exp~22i v̄t !1c. c.D , ~35!

vn,n
(2)5G201S G21~21!n exp~2 i v̄t !

2
K3

K2
F11G11exp~22i v̄t !1c. c.D , ~36!

where F20, G20, and G21 are functions oft and jn , left
undetermined at this level. In this order the dc termsF20 and
G20 satisfy the relation

F202G205
2K3

K2
~F11G11* 1F11* G11!. ~37!

At the third order (j 53), the solvability conditions of Eqs
~28! and ~29! yield the following closed equations forF11
andG11:

2im̄v̄
]F11

]t
2K2d

]G11

]jn
1m̄v̄2DF1126K4~ uF11u2

12uG11u2!F1118K4S K3
2

K2K4
2

3

4DF11* G11
2 50,

~38!

FIG. 1. The linear dispersion curvesv6(q) for the diatomic
lattice, given in Eq.~4!. The phonon band gap appears atqd5p
with the gap widthv22v1 proportional to the mass differenceM
2m. The linear dispersion relation for the monatomic lattice w

massm̄ is also shown as the dashed line. The gap vanishes fo
diatomic lattice whenm→M ; thus the system becomes contin
ously the monatomic lattice with massm. The mass ratior m

5m/M50.75 and the frequency unitv1 are chosen for this figure
2im̄v̄
]G11

]t
1K2d

]F11

]jn
2m̄v̄2DG1126K4~ uG11u2

12uF11u2!G1118K4S K3
2

K2K4
2

3

4DG11* F11
2 50.

~39!

In contrast to the wide-band-gap case, here we see that t
is no coupling between the dc componentF10 and the ac
componentsF11 andG11. In contrast to the gap solitons i
nonresonant quadratic optical media@27#, here there is no
couplings betweenF20 ~and thusG20) andF11, G11. In or-
der to get the equation forF10 one must go to the fifth orde
( j 55) of Eqs.~27! and ~28!. A straightforward calculation
gives

]2F10

]t2
2v1

2 ]2F10

]jn
2

50, ~40!

wherev15@K2d2/(4m̄)#1/2 is the phase velocity atq50 of
the carrier wave for the monatomic lattice with massm̄.

Using the transformation@28# F65(F116 iG11)/2, Eqs.
~38! and ~39! become

i S ]

]t
2v2

]

]jn
DF21

1

2
v̄DF12

4K4

m̄v̄
S 3

2
1

K3
2

K2K4
D uF2u2F2

1
4K4

m̄v̄
S 3

2
2

K3
2

K2K4
DF1

2 F2* 2
8K4

m̄v̄
S 3

2
2

K3
2

K2K4
D

3uF1u2F250, ~41!

i S ]

]t
1v2

]

]jn
DF11

1

2
v̄DF22

4K4

m̄v̄
S 3

2
1

K3
2

K2K4
D uF1u2F1

1
4K4

m̄v̄
S 3

2
2

K3
2

K2K4
DF2

2 F1* 2
8K4

m̄v̄
S 3

2
2

K3
2

K2K4
D

3uF2u2F150, ~42!

wherev25K2d/(2m̄v̄) is the group velocity atq5p/d of
the carrier wave of the monatomic lattice with massm̄.
Equations~41! and ~42! are a generalized version of th
coupled-mode equations. Such coupled-mode equations
first derived for describing the coupled gap solitons in no
linear periodic optical media with a shallow grating@22#.
Later, a generalization to a deep grating was made by
Sterkeet al. @29#. For convienence we hereafter call Eq
~38! and~39! or ~41! and~42! the generalized coupled-mod
equations.

We note that, in the context of nonlinear lattice dynami
the coupled-mode equations were first derived for an on-
interaction potential using the rotating-wave approximat
~i.e., without any companion mode considered! @3# or by a
special ansatz for solution in perturbation expansions@20#. In
our derivation based on the QDA provided above, such
approximation or ansatz is not necessary and the proce
for the derivation is clear-cut from the viewpoint of singul
perturbation theory@23#.
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D. Coupled-mode equations for small band gap„II …

The second case for small band gap (g52) is the situa-
tion where the extent of the excitation is not very large, i
we havea52 andb51. Hence one has

m5m̄~12e2D!, M5m̄~11e2D!,

t5e2t, jn5e~nd2lt !. ~43!

By substituting Eqs.~43! and ~13! into Eqs.~2! and ~3! one
obtains

m̄
]2

]t2
vn,n

( j ) 2K2~wn,n
( j ) 1wn,n21

( j ) 22vn,n
( j ) !5Rn,n

( j ) , ~44!

m̄
]2

]t2
wn,n

( j ) 2K2~vn,n
( j ) 1vn,n11

( j ) 22wn,n
( j ) !5Sn,n

( j ) . ~45!

We see that the expressions on the left hand side of Eqs.~44!
and ~45! are the same as those in Eqs.~28! and ~29! but the
corresponding right hand side is now different. Detailed f
mulations forRn,n

( j ) andSn,n
( j ) ( j 51,2,3, . . . ) have been listed

in Appendix B.
The leading-order solution (j 51) of Eqs.~44! and~45! is

the same as that of Eqs.~28! and ~29! becauseRn,n
(1)5Sn,n

(1)

50. At the BZ boundary, the solution is expressed again
Eqs. ~33! and ~34! but one should note thatF10, F11, and
G11 are now yet to be determined functions oft5e2t and
jn5e(nd2lt).

At the second order (j 52), the solvability condition
yields l5s1l0 with l05v25(dv/dq)uq5p/d

5K2d/(2m̄v̄), and

G1152 is1F11, ~46!

wheres1561. Thus in this caseF11 andG11 are no longer
independent of each other. The second-order solution re

wn,n
(2)5F201S F21~21!n exp~2 i v̄t !1 is1

K3

K2
F11

2

3exp~22i v̄t !1c. c.D , ~47!

vn,n
(2)5G201S G21~21!n exp~2 i v̄t !2 is1

K3

K2
F11

2

3exp~22i v̄t !1c. c.D , ~48!

with F20, G20, and G21 left as undetermined functions
There exists a relation between the dc termsF20 andG20:

F202G205
d

2

]F10

]jn
. ~49!

At the third order (j 53), the solvability conditions of Eqs
~44! and ~45! require
.,

-

y

ds

]2F10

]jn
2

1
16K3

K2d

]

]jn
~ uF11u2!50, ~50!

i
]F11

]t
2

K2d2

16m̄v̄

]2F11

]jn
2

2
K3d

m̄v̄
F11

]F10

]jn
2

4K4

m̄v̄

3S K3
2

K2K4
1

3

2D uF11u2F1150, ~51!

]F21

]jn
2

d

4

]2F11

]jn
2

1 is1

D

2d
F1150. ~52!

This set of equations was derived by Konotop and
workers in the absence of cubic nonlinearity@11,14#. If K3
50, we haveF1050. The dc terms (F20 and G20) and the
second harmonic terms in Eqs.~47! and~48! also disappear.
Thus the second-order solution~companion mode! includes
only the fundamental harmonic wave proportional to t
leading-order solution~principal mode!. In contrast to the
cases discussed in the last two subsections,F21 ~and thus
G21) here is controlled by Eq.~52!, i.e.,F21 is determined by
F11 through

F215
d

4

]F11

]jn
2 is1

D

2d E F11djn . ~53!

Up to now we have derived coupled-mode equations
the dynamics of coupled gap solitons for thewide band gap
(g50) and thesmallband gap (g52). The relation between
three different gap soliton theories existing in the literatu
@3,19–21,11,14,5,13# is now clear. We see that, in th
scheme provided here, these different theoretical approa
correspond to different gap widths and different spati
temporal extents of the excitations, i.e., they refer to differ
values ofa, b, andg, as denoted by the relation~12!. Fur-
thermore, the inclusion of the cubic nonlinearity~i.e., K3
Þ0) gives rise to many additional features for coupled g
solitons, which will be described in Sec. III below.

Let us now discuss two other cases,g51 ~intermediate
band gap! and g>3 ~negligible band gap!. For the case of
the negligible band gap,dm @see Eqs.~10! and~11!# can be
ignored to the fourth order in the perturbation expansi
Our results show that the envelope equations can be obta
in the third-order perturbation expansion and they are
same as Eqs.~50! and~51!, which are the envelope equation
for the monatomic lattice with massm̄, but the constraint
betweenF21 and F11, i.e., Eq.~52!, is no longer imposed
Hence for negligible band gap the respective envelope s
tons display all the dynamical features of the monatom
lattice with massm̄, as also discussed in Ref.@30#.

The second case not discussed so far is for an interm
ate band gap, i.e.,g51. It seems that in this case one cann
arrive at any significant nonlinear coupled-mode envelo
equations because the envelope equations

2im̄v̄
]F11

]t
2K2d

]G11

]jn
1m̄v̄2DF1150, ~54!
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2im̄v̄
]G11

]t
1K2d

]F11

]jn
2m̄v̄2DG1150 ~55!

appear as the solvability conditions in the second order in
perturbation expansion. Equations~54! and ~55! are linear,
dispersive equations which can easily be solved. Under s
circumstances a distortionless pulse propagation is imp
sible @14#.

III. COUPLED GAP SOLITON SOLUTIONS

A. Coupled soliton solutions for wide band gap

In this subsection we consider the soliton solutions of
coupled-mode equations~23!–~25!. Integrating Eq.~23! once
with respect tojn and using the transformationu5eF10,
v5eG11exp@i(I3d/v2)C0t#, and w5eF11exp@i(J3d/v1)C0t#,
we obtain

i
]w

]t
2gw

]2w

]xn
2

1pw~ uwu21suvu2!w50, ~56!

i
]v
]t

1gv

]2v

]xn
2

1pv~ uvu21suwu2!w50, ~57!

]u

]xn
52

4K3

K2d
~ uvu21uwu2!1C0 , ~58!

when returning to the original variables. Herexn5nd andC0
is an integration constant. The coefficients in Eqs.~56!–~58!
are defined by

gw5
K2

2d2

4v1~M2m!
, ~59!

gv5
K2

2d2

4v2~M2m!
, ~60!

pw52v1

K4

K2
S K3

2

K2K4
2

3

4D , ~61!

pv52v2

K4

K2
S K3

2

K2K4
2

3

4D , ~62!

s5
K3

2/~K2K4!23/2

K3
2/~K2K4!23/4

. ~63!

Equations~56! and ~57! are coupled nonlinear Schro¨dinger
equations. Many authors have considered their coupled
ton solutions for some particular coefficients@31#. However,
we note that Eqs.~56!–~58! have several interesting chara
teristics that should be stressed. The first is that the sec
order derivative terms forv andw, with respect toxn , have
opposite signs. This is due to the fact that the acoustic up
cutoff and optical lower cutoff modes have opposite gro
velocity dispersions. Generally, the coupled soliton solutio
in this situation are bright-dark~i.e., soliton-kink! type @31#.
As we shall show below, this conclusion is no longer va
when the cubic nonlinearity is taken into account~i.e., when
e

ch
s-

e

li-

d-

er
p
s

K3Þ0!. The second feature is that the terms representing
cross-phase modulation~i.e., the termsuvu2w and uwu2v)
vanish if the force-constant ratior k[K3

2/(K2K4), is equal to
3/2, which is just the case for the Toda and Morse potent
@13#. In this circumstance the motions of the two cuto
modes are independent of each other, although the nonlin
ity in the system still play its role through the self-pha
modulation, denoted by the termsuvu2v and uwu2w. Further-
more, whenr k53/4, the self-phase modulation disappea
and thus the two cutoff modes interact through the cro
phase modulation. Depending on the mass ratior m[m/M
and the force-constant ratior k defined above, the couple
soliton solutions can be divided into three different categ
ries, which are listed below.

~a! Soliton-soliton excitations. If r m and r k satisfy the
condition

f 1~r m!,r k,
9

8
, ~64!

where the functionf 1 is defined by

f 1~x!5
3~112x!

4~11x!
, ~65!

Equations~56!–~58! admit the coupled soliton-soliton solu
tion

w5W0 sech~kxn12gwkk1t !exp@ i ~k1xn2V1t !#, ~66!

v5V0 sech~kxn22gvkk2t !exp@ i ~k2xn2V2t !#, ~67!

u52
4K3

K2d
k~V0

21W0
2!tanh~kxn12gwkk1t !1C0xn ,

~68!

with

W0
25

2k2

s221
S gw

pw
1s

gv

pv
D , ~69!

V0
25

2k2

12s2 S gv

pv
1s

gw

pw
D , ~70!

V15gw~k22k1
2!, ~71!

V25gv~k2
22k2!, ~72!

wherek252(gw /gv)k1 andk,k1 are two free parameters. I
order that the energy of the excitation be finite, one sho
take the integration constantC050. The lattice configuration
in this case takes the form
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wn~ t !52
4K3

K2d
k~V0

21W0
2!tanh~knd12gwkk1t !

1~21!n2W0 sech~knd12gwkk1t !

3cos@k1nd2~v11V1!t#, ~73!

vn~ t !52
4K3

K2d
k~V0

21W0
2!tanh~knd22gvkk2t !

1~21!n2V0 sech~knd22gvkk2t !

3cos@k2nd2~v21V2!t#. ~74!

Thus the displacements of both light and heavy partic
have an ac component plus a dc background~mean field!. If
k1 ~and thusk2) vanishes, the excitation described by Eq
~73! and ~74! is an asymmetric standing soliton-soliton pa
in which the oscillating frequency of the acoustic upper c
off mode is increased but that of the optical lower cut
mode is lowered. Thus both of the oscillating frequencies
within the band gap of the phonon spectrum. Accordingly
the Hamiltonian of a system has a cubic nonlinearity, it
hard to say the nonlinearity of the system is ‘‘hard’’
‘‘soft.’’

~b!. Kink-soliton excitations. In the case thatr m and r k
obey the relation

r k, f 1~r m! or r k. f 2~r m!, ~75!

where the functionf 2 is defined by

f 2~x!5
3~21x!

4~11x!
, ~76!

Equations~56!–~58! have the coupled kink-soliton solution

w5W0 tanh~kxn12gwkk1!exp@ i ~k1xn2V1t !#, ~77!

v5V0 sech~kxn22gvkk2t !exp@ i ~k2xn2V2t !#, ~78!

u52
4K3

K2d
k~V0

22W0
2!tanh~kxn12gwkk1t !, ~79!

with

W0
25

2k2

12s2 S gw

pw
1s

gv

pv
D , ~80!

V0
25

2k2

12s2 S gv

pv
1s

gw

pw
D , ~81!

V152gw~2k22k1
2!2spwV0

2 , ~82!

V25gv~k2
22k2!2spvW0

2 , ~83!

wherek252(gw /gv)k1 and k,k1 are still two free param-
eters. In order to make the excitation energy finite, we h
taken C054K3W0

2/(K2d). The lattice displacement in thi
case reads as
s

.

-
f
re
f
s

e

wn~ t !52
4K3

K2d
k~V0

22W0
2!tanh~knd12gwkk1t !

1~21!n2W0 tanh~knd12gwkk1t !

3cos@k1nd2~v11V12b1C0!t#, ~84!

vn~ t !52
4K3

K2d
k~V0

22W0
2!tanh~knd22gvkk2t !

1~21!n2V0 sech~knd22gvkk2t !

3cos@k2nd2~v21V22b2C0!t#, ~85!

with b152K3d/(Mv1) andb252K3d/(mv2). If k1 ~and
thus k2) vanishes, Eqs.~84! and ~85! represent a standing
kink-soliton pair. Depending onr m and r k , the oscillating
frequency of the ac component for bothwn(t) andvn(t) may
be inside or outside the band gap.

~c!. Kink-kink excitations. If r m andr k satisfy the relation

9

8
,r k, f 2~r m!, ~86!

Equations~56!–~58! yield the coupled kink-kink solution

w5W0 tanh~kxn12gwkk1!exp@ i ~k1xn2V1t !#, ~87!

v5V0 tanh~kxn22gvkk2t !exp@ i ~k2xn2V2t !#, ~88!

u52
4K3

K2d
k~V0

21W0
2!tanh~kxn12gwkk1t !, ~89!

with

W0
25

2k2

12s2 S gw

pw
1s

gv

pv
D , ~90!

V0
25

2k2

12s2 S gv

pv
1s

gw

pw
D , ~91!

V152gw~2k21k1
2!, ~92!

V25gv~2k21k2
2!, ~93!

wherek252(gw /gv)k1 andk,k1 are again free parameter
The requirement of the excitation energy to be finite ne
C054K3(V0

21W0
2)/(K2d). The corresponding lattice con

figuration for this case can also be written down but
omitted it here.

It should be stressed that the soliton-kink excitation~i.e.,
the ac component for the acoustic upper cutoff mode i
soliton while the ac component for the optical lower cuto
mode is a kink! does not exist in our system~2! and ~3!. In
Fig. 2 we have shown the different existence regions for
possible coupled soliton excitations in the parameter spac
r m andr k . We see thatr m andr k are two important param-
eters for controlling what coupled solitons occur. For a sym-
metric potential,r k50, only one type of coupled soliton, i.e
the kink-soliton, is allowed. However, note that the stand
interatomic potentials, i.e., the Toda, Born-Mayer-Coulom
Lennard-Jones, and Morse potentials, have a cubic non
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earity and hencer kÞ0 @13#. Consequently, realistic lattic
systems display more types of coupled gap solitons t
those obtained from a simple model based on symme
potentials.

The single-mode excitations~i.e., F11Þ0, G1150 or F11
50, G11Þ0) for Eqs. ~23!–~25! have been studied befor
@13#. Here we note that the type of each single-mode exc
tion can be changed when the coupling between two cu
modes is taken into account. The physical reason for
change is the cross-phase modulation, as pointed out rec
in Ref. @32#.

B. Coupled soliton solutions for small band gap„I …

Let us now discuss the coupled soliton solutions of
coupled-mode equations~38! and ~39!. To use the original
variables we setf 5eF11 andg5eG11. Then we have

2m̄v̄S i
]

]t
1V0D f 2K2d

]g

]xn
26K4~ u f u212ugu2! f

18K4S r k2
3

4D f * g250, ~94!

2m̄v̄S i
]

]t
2V0Dg1K2d

] f

]xn
26K4~ ugu212u f u2!g

18K4S r k2
3

4Dg* f 250, ~95!

with xn5nd and V05e2v̄/2. For convenience we have s
D51 and hencee25(M2m)/(M1m)5(12r m)/(11r m).
A generalized version of Eqs.~94! and~95! was obtained by
de Sterkeet al. in the context of nonlinear optics@29#.

We seek stationary soliton solutions of Eqs.~94! and~95!
by use of the method developed by Kivshar and Flytza
@3#. Thus we set

FIG. 2. Overview of different existence regions for coupled g
soliton excitations in the case of a wide band gap. In the regio
and IV coupled kink-solitons exist; while in II and III the syste
displays soliton-soliton and kink-kink excitations, respectively.
n
ic

-
ff
is
tly

e

is

f ~xn ,t !5 f ~xn!exp~2 iVt !, ~96!

g~xn ,t !5g~xn!exp~2 iVt !, ~97!

whereV is a frequency detuning, andf (xn) and g(xn) are
two real functions yet to be determined. Substitution of E
~96! and ~97! into Eqs.~94! and ~95! results in

d f

dz
52g2g1g31h f 2g, ~98!

dg

dz
5g1f 2 f 32h f g2, ~99!

with z5@6K4 /(K2d)#xn , h54(9/42r k)/3, g5@m̄v̄/
(3K4)#(V1V0), andg25@m̄v̄/(3k4)#(V2V0). Equations
~98! and ~99! are similar to the equations obtained b
Kivshar and Flytzanis@3#, and their qualitative features wer
analyzed recently through the bifurcation picture witho
considering cubic nonlinearity@21#. In our system here the
force-constant ratior k ~or equivalenth) and the frequency
detuningV are two important parameters for controlling th
property of the soliton solutions, as shown below. Equatio
~98! and ~99! form a Hamiltonian system in whichg and f
play, respectively, the roles ofp andq, and the Hamiltonian
is

H5
1

2
g1f 21

1

2
g2g22

1

4
~ f 21g2!2

1

2
h f 2g2. ~100!

By introducing the functionh(z)5g(z)/ f (z), Eqs.~98! and
~99! can be solved exactly through integration of the eq
tion

dh

dz
52s1@~g11g2h!224E~112hh21h4!#1/2,

~101!

where s1561 and E is the value of the ‘‘energy’’ corre-
sponding to the particular orbit associated with the Ham
tonianH. The solutions forf and g may be found with the
help of the relations

f 25
g11g2h26@~g11g2h2!224E~112hh21h4!#1/2

112hh21h4
,

~102!

g5 f h. ~103!

In the phase plane (f ,g), the separatrixes correspond to so
ton or kink solutions of different types. The phase portrait
the system depends on the parametersr k andV. For a given
r k , as V increases a number of subsequent bifurcations
the plane take place. By analyzing the critical points on
phase plane, we can distinguish three different regimes.

~1! V,2V0. In this regime bothg1 andg2 are negative
and the oscillating frequency of the lattice (v̄1V) satisfies
the condition

v̄1V,S 2

11r m
D 1/2 113r m

2~11r m!
v1 . ~104!

I
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We find that the origin (0,0) is the only fixed point and th
it is a stable center. Thus there is no soliton solution.

~2! 2V0,V,V0. This is the case forg1.0 and g2
,0, and hence

S 2

11r m
D 1/2 113r m

2~11r m!
v1,v̄1V

,S 2r m

11r m
D 1/2 31r m

2~11r m!
v2 .

~105!

In this situation the system~98! and ~99! has a saddle a
(0,0) and two centers at (6Ag1,0). Independent ofr k , the
only type of localized solution corresponds to the separa
connecting (0,0) with itself~thusE50), corresponding to a
bright soliton. Solving Eqs.~101!–~103!, we obtain

h52~g1 /ug2u!1/2 tanhy, ~106!

f 5s1

A2g1sechy

@112h~g1 /ug2u!tanh2y1~g1 /ug2u!2tanh4y#1/2
,

~107!

g52s1g1A 2

ug2u

3
tanhy sechy

@112h~g1 /ug2u!tanh2y1~g1 /ug2u!2 tanh4y#1/2
,

~108!

wherey5Ag1ug2u(z2z0) with z0 an arbitrary constant. We
see that in this case both envelopes of the vibrations
heavy and light particles are solitons. However, they are
ferent kinds of solitons since the solitonf ~for the heavy
particles! is symmetric with only one maximum but the so
ton g ~for the light particles! is asymmetric and there are tw
extrema.

~3! V.V0. In this regime bothg1 and g2 are positive.
The corresponding oscillating frequency is located in the
gion

v̄1V.S 2r m

11r m
D 1/2 31r m

2~11r m!
v2 . ~109!

There exists now a larger number of critical points, the ch
acter of which depends on the relative sizes of the for
constant ratior k and the the detuningV. Four possible types
of critical points for this regime are listed in Table I. Th
critical point at the origin (0,0)~type I! is always a center for
all r k andV (.V0), and hence no soliton is possible. Th
nature of the other types of critical points depends onr k and
V. Details can be found in Table II. For each separatrix
shape of the soliton excitation may be found explicitly
integrating Eq.~101! using the corresponding value of th
‘‘energy’’ E. For example, in the case of 0,r k,3/2 and
V.(11h)V0 /(h21), the critical points (0,6Ag2) and
(6Ag1,0) are centers while the critical points„6@(g1
2hg2)/(12h2)#1/2,6@(g22hg1)/(12h2)#… are saddles.
t

ix

r
f-

-

r-
-

e

Through the saddles we have E5(g1
21g2

2

22hg1g2)/@4(h221)#. Integrating Eq.~101! for this case
we find that

h5s2C1 tanhy ~110!

with s2561, C15(g1h2g2)/(g2h2g1), and y5@(g1h
2g2)/(h221)#1/2(z2z0). Using Eqs.~102! and ~103! we
obtain

f 5s3S g11g2C1
2 tanh2y2s2C1C2 sech2y

112hC1
2 tanh2y1C1

4 tanh4y
D 1/2

, ~111!

g5s2s3tanhyS g11g2C1
2 tanh2y2s2C1C2 sech2y

112hC1
2 tanh2y1C1

4 tanh4y
D 1/2

,

~112!

where s3561 and C25@(g1h2g2)/(h221)#1/2. Each of
these solutions~for differentsj , j 52,3) is a kink connecting
a saddle to another saddle.

We note that the three regimes discussed above co
spond to the cases that the oscillating frequencies of the
tice are located below, within, and above the band gap of
phonon spectrum, respectively. For instance, whene50.1
we have r m50.98. The regimes expressed in Eqs.~104!,
~105!, and ~109! are v̄1V,0.99v1 , 0.99v1,v̄1V

,1.01v2, andv̄1V.1.01v2, respectively. Ifr m→1, they
correspond respectively tov̄1V,v1 , v1,v̄1V,v2,
and v̄1V.v2. Thus r m is the parameter controlling th
oscillating frequency of the system.

We know that all standard two-body interatomic pote
tials display cubic nonlinearity~i.e., r kÞ0); and for different
potentials r k takes different values@13#. The results pre-
sented above can be applied to two-body potentials fr
Lennard-Jones (r k563/53) and Toda and Morse (r k53/2)
to Born-Mayer-Coulomb (r k53I /2, I .1; some typical val-
ues ofI have been given in Ref.@13#!. From Table II we see
that there are different critical points for different two-bod
interaction potentials and hence different gap solitons. T
the introduction of the cubic nonlinearity gives rise to ma
defferent types of coupled gap soliton excitations in the s
tem.

TABLE I. The positions of the critical points in the phase pla
( f ,g) for V.V0. The definitions of the parametersg1 ,g2, andh
have been given in the text.

Type f g

I 0 0
II 0 6Ag2

III 6Ag1 0

IV 6Ag12hg2

12h2
6Ag22hg1

12h2
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TABLE II. Nature of the critical points and their existence conditions for the caseV.V0 . r k

5K3
2/(K2K4) is the force-constant ratio of the system. The parametersh andV0 have been given in the text

In the last column the standard two-body potentials@i.e., Lennard-Jones~L-J!, Toda, Morse, Born-Mayer-
Coulomb~B-M-C!# are listed in the corresponding regions ofr k .

Condition 1 Condition 2 Type II Type III Type IV Application

0,r k,
3
2 V,

11h

h21
V0

saddle center nonexistence L-J

V.
11h

h21
V0

center center saddle

r k5
3
2 saddle center nonexistence Toda and Morse

3
2 ,r k,

9
4 V,

11h

12h
V0

saddle center nonexistence B-M-C

V.
11h

12h
V0

saddle saddle center
sl

n-
l

e
n

nt
c
t,
ton

-
.

nd
as

lat-
ral
ed-

a-
en
for
ar.
i.e.,

e
tons
iton

n
ue
C. Coupled soliton solutions for small band gap„II …

To solve Eqs.~50!–~52!, we integrate Eqs.~50! and ~52!
with respect tojn once, and make the transformationu
5eF10, w5eF11exp$i@K3d/(m̄v̄)#t%, and w15e2F21. Then
we have

]u

]xn
52

16K3

K2d
uwu21C0 , ~113!

i
]w

]t
1

v2
2

2v̄

]2w

]xn
2

1
12K4

m̄v̄
S r k2

1

2D uwu2w50, ~114!

w15
d

4

]w

]xn
2 is1

D

2d E w~xn ,t !dxn1C1 , ~115!

when we return to the original variables. Herexn2v2t again
with v25K2d/(2m̄v̄). C0 and C1 are two integration con-
stants.C1 may be taken as zero since it represents a tran
tion of the system as a whole.

Equation~114! is the NLS equation, which has been i
tensively studied. Forr k,1/2 ~the Lennard-Jones potentia
applies in this case!, we have the single-soliton solution

w5
v2

Av̄A0

h0 sech~h0xn!exp@ i ~ 1
2 h0

2t2f0!#, ~116!

with A0512K4(1/22r k)/(m̄v̄), whereh0 and f0 are two
arbitrary constants. The dc component can be obtained
integrating Eq.~113!:

u5
16K3v2

2

K2dv̄A0

h0 tanh~h0xn!1C0xn . ~117!

The constantC0 should vanish for the excitation with finit
energy. Using Eq.~115! one gets the companion compone
a-

by

t

w15
v2

Av̄A0

S 2
d

4
h0

2 sech~h0xn!tanh~h0xn!

2 is1

D

2d
arctan@sinh~h0xn!# D exp@ i @ 1

2 h0
2t2f0!#.

~118!

From Eqs.~116!–~118! we see that the principal compone
of the lattice vibration,w, is an envelope soliton and the d
background,u, is a kink; while the companion componen
w1, consists of two parts, an asymmetric envelope soli
with two extrema and an envelope kink.

If r k.1/2 ~the potentials of Toda, Morse, and Born
Mayer-Coulomb belong to this case!, we can also solve Eqs
~113! and ~115!. The result shows that bothw and u are
kinks. However, when solving forw1 from Eq. ~115!, there
is a divergence unlessD50. Thus we conclude that, forr k
.1/2, these solutions are not physically meaningful a
hence not allowed. This is due to the cubic nonlinearity
for symmetric potentialsr k50 the solutions~116!–~118! are
always valid.

IV. DISCUSSION AND SUMMARY

Based on an extended QDA we haveanalytically investi-
gated the dynamics of coupled gap solitons in diatomic
tices with cubic and quartic intersite nonlinearities. A gene
scheme is provided for deriving several types of coupl
mode equations, without using the rotating-wave approxim
tion or any ansatz for the solutions. The relation betwe
different theoretical approaches existing in the literature
the gap soliton dynamics in diatomic lattices is made cle
Our results also show that two parameters of the system,
the force-constant ratior k5K3

2/(K2K4) and the mass ratio
r m5m/M , are of crucial importance for making th
asymptotic expansions and characterizing the gap soli
and their coupling. Furthermore, some exact coupled sol
solutions for the coupled-mode equations given in Eqs.~23!–
~25! ~for the wide band gap! and Eqs.~38!–~39! and ~50!–
~52! ~for the small band gap!, which have couplings to mea
field ~dc! components, are explicitly presented. Effects d
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to the cubic nonlinearity, in particular, types of coupled g
solitons that are absent in the case of symmetric potent
are discussed in detail.

We have shown that the relative order of magnitude
different small parameters appearing in the problem is v
important for making an asymptotic expansion. Differe
relative orders require different spatial-temporal scalin
and hence result in different envelope equations. For the
namics of a gap soliton excitation in diatomic lattices, the
smallness parameters include the amplitude, the spa
temporal extent of the excitation, and the band gap width
the phonon spectrum if the force constantsK j ( j 52,3,4) are
of order of unity. In our problem, these relative orders
magnitude are expressed by the exponentsa, b, and g,
given in Eq.~12!. By choosing different values ofa, b, and
g, and based on the QDA, we have arrived at several dif
ent types of coupled-mode equations, i.e., the CNLSM eq
tions ~23!–~25!, the generalized coupled-mode equatio
~38! and~39! @or ~41! and~42!#, and Eqs.~50!–~52!. In Table
III, we have summarized results obtained in Secs. II B–II
We note that, in the context of nonlinear optics, such a s
tematic procedure for deriving the coupled-mode equa
and the nonlinear Schro¨dinger equation has been consider
@29#.

Realistic interatomic interaction potentials, like th
Lennard-Jones, Toda, Morse, and Born-Mayer-Coulomb
tentials, are asymmetric and hence display strong cubic n
linearity. This shows the interest of considering its influen
on gap soliton dynamics. Another parameter, i.e., the for
constant ratior k , is thus introduced into the system and w
see that it plays a very significant role. It helps the prod
tion of the mean~dc! fields, which are coupled to ac compo
nents, together with the appearance of some other sum-
difference-frequency components in higher orders. In con
quence, the coupled-mode equations are modified by
mean fields, a result of much interest in the context of n
linear optics@26,27#. The parameterr k is also important for
controlling and characterizing the coupled gap solitons.
addition, from the exact soliton solutions given in Secs. II
and III B, we see that, relative to the case with no cu
nonlinearity, nonvanishingr k yields many additional types
of coupled gap solitons in the system.

The theoretical scheme presented here is not limited o
to 1D diatomic lattices with nonlinear intersite potentia
The application to on-site potentials is straightforward.
generalization to higher dimensional and multiatomic latt
systems also seems feasible with reasonable effort.

TABLE III. The envelope equations for different widths of th
band gap of the phonon spectrum and different spatial-temp
extents of the excitation in diatomic lattices. The parametersa, b,
andg are the exponents expressed in Eq.~12!.

Gap width g a b Envelope equations

Wide 0 2 1 CNLSM Eqs.~23!–~25!

Intermediate 1 linear dispersive Eqs.~54!, ~55!

Small 2 2 2 Eqs.~38!, ~39!

2 1 Eqs.~50!–~52!

Negligible >3 2 1 Eqs.~50!, ~51!
ls,

f
y
t
,
y-
e
al-
f

f

r-
a-
s

.
s-
n

o-
n-
e
e-

-

nd
e-
he
-

n

c

ly
.

e

ACKNOWLEDGMENTS

The authors wish to express their gratitude to O.
Braun, Y. S. Kivshar, and V. V. Konotop for useful discu
sions and suggestions. This work was supported by the N
ral Science Foundation of China, the Program for Train
Talents of the Ministry of Education of China, the Hon
Kong Research Grants Council~RGC!, a Hong Kong Baptist
University Faculty Research Grant~FRG!, and the Spanish
Ministry of Education and Culture under Grant No. PB9
599.

APPENDIX A

The expressions forPn,n
( j ) andQn,n

( j ) ( j 51,2,3, . . . ) used in
Sec. II C are defined by

Pn,n
(1)50, ~A1!

Pn,n
(2)5K3~wn,n

(1)2vn,n
(1) !22K3~wn,n21

(1) 2vn,n
(1) !2, ~A2!

Pn,n
(3)522m̄

]2

]t]t
vn,n

(1)1m̄D
]2

]t2
vn,n

(1)2K2d
]

]jn
wn,n21

(1)

12K3~wn,n
(1)2vn,n

(1) !~wn,n
(2)2vn,n

(2) !22K3~wn,n21
(1) 2vn,n

(1) !

3~wn,n21
(2) 2vn,n

(2) !1K4~wn,n
(1)2vn,n

(1) !31K4~wn,n21
(1)

2vn,n
(1) !3, ~A3!

. . . ,

and

Qn,n
(1)50, ~A4!

Qn,n
(2)52K3~vn,n

(1)2wn,n
(1) !21K3~vn,n11

(1) 2wn,n
(1) !2, ~A5!

Qn,n
(3)522m̄

]2

]t]t
wn,n

(1)2m̄D
]2

]t2
wn,n

(1)1K2d
]

]jn
vn,n11

(1)

22K3~vn,n
(1)2wn,n

(1) !~vn,n
(2)2wn,n

(2) !12K3~vn,n11
(1) 2wn,n

(1) !

3~vn,n11
(2) 2wn,n

(2) !1K4~vn,n
(1)2wn,n

(1) !31K4~vn,n11
(1)

2wn,n
(1) !3, ~A6!

. . . ,

APPENDIX B

The expressions forRn,n
( j ) and Sn,n

( j ) ( j 51,2,3, . . . ) men-
tioned in Sec. II D are given by

Rn,n
(1)50, ~B1!

Rn,n
(2)52m̄l

]2

]t]jn
vn,n

(1)2K2d
]

]jn
wn,n21

(1) 1K3~wn,n
(1)2vn,n

(1) !2

2K3~wn,n21
(1) 2vn,n

(1) !2, ~B2!

al



PRE 62 2839DYNAMICS OF COUPLED GAP SOLITONS IN . . .
Rn,n
(3)52m̄l

]2

]t]jn
vn,n

(2)2m̄S 2
]2

]t]t
1l2

]2

]jn
2D vn,n

(1)

1m̄D
]2

]t2
vn,n

(1)1K2S 2d
]

]jn
wn,n21

(2)

1
d2

2

]2

]jn
2

wn,n21
(1) D 12K3~wn,n

(1)2vn,n
(1) !~wn,n

(2)2vn,n
(2) !

22K3~wn,n21
(1) 2vn,n

(1) !S wn,n21
(2) 2vn,n

(2)2d
]

]jn
wn,n21

(1) D
1K4~wn,n

(1)2vn,n
(1) !31K4~wn,n21

(1) 2vn,n
(1) !3, ~B3!

. . . ,

and

Sn,n
(1)50, ~B4!
bo

od

. B

in
Rn,n
(2)52m̄l

]2

]t]jn
wn,n

(1)1K2d
]

]jn
vn,n11

(1) 2K3~vn,n
(1)2wn,n

(1) !2

1K3~vn,n11
(1) 2wn,n

(1) !2, ~B5!

Rn,n
(3)52m̄l

]2

]t]jn
wn,n

(2)2m̄S 2
]2

]t]t
1l2

]2

]jn
2D wn,n

(1)

2m̄D
]2

]t2
wn,n

(1)1K2S d
]

]jn
vn,n11

(2) 1
d2

2

]2

]jn
2 vn,n11

(1) D
22K3~vn,n

(1)2wn,n
(1) !~vn,n

(2)2wn,n
(2) !12K3~vn,n11

(1) 2wn,n
(1) !

3S vn,n11
(2) 2wn,n

(2)1d
]

]jn
vn,n11

(1) D1K4~vn,n
(1)2wn,n

(1) !3

1K4~vn,n11
(1) 2wn,n

(1) !3, ~B6!
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