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The dynamics of coupled gap solitons in diatomic lattices with cubic and quartic nonlinearities is considered
analytically based on an extended quasidiscreteness approach. For various mass diffanentes different
gap widths of the phonon spectriynthe coupled gap solitons are shown to display very rich dynamical
behavior and their properties are strongly dependent on the force-constanK@é(lézK4), where K;
(j=1,2,3) are the force constants for the quadratic, cubic, and quartic parts of the intersite interaction poten-
tial, respectively. Several previous theoretical approaches for studying gap soliton dynamics in diatomic lat-
tices are recovered in our scheme, and the relations between these methods are elucidated in a systematic way.

PACS numbegps): 63.20.Pw, 63.20.Ry

I. INTRODUCTION has an appropriate sign, the exponentially growing and de-
caying solutions to the left and right can be connected in the
Anharmonicity in lattices is responsible for many impor- large-amplitude region to form a self-consistent nonlinear
tant phenomena, such as transfer of energy, thermal condulocalized solution that is finite everywhere. Such a solution is
tivity, structural phase transitions, and the associated softist the lattice gap soliton mentioned above.
mode and central peak phenomena, etc. The study of nonlin- There exist three different analytical approaches for the
ear lattice dynamics and related lattice solitons has beegap soliton dynamics in nonlinear diatomic lattices. The first
greatly influenced by the pioneering work of Fermi, Pastaone was provided by Kivshar and Flytzaf8j. The starting
and Ulam[1]. Most of the early work in this area focused on point is that, in the case of small mass differeritieus a
monatomic lattices. In recent years, much attention has beemarrower phonon band ggpbecause of nonlinearity there
paid to nonlinear dynamics in diatomic lattices. The particu-exists a strong coupling between the optical lower cutoff
lar interest in studying the band gap and related nonlineamode and the acoustical upper cutoff mode at the boundary
excitationg 2—14] has been greatly stimulated by the discov-of the Brillouin zone(BZ). Under the rotating-wave approxi-
ery of optical gap solitons in periodic dielectric materials mation, they derived coupled nonlinear envelope equations
[15]. For a diatomic lattice, the phonon spectrum consists ofor the two cutoff modes for the diatomic lattice with non-
two branches(acoustic and optical induced by mass or linear on-site potential. Some interesting coupled soliton so-
force-constant differences. Due to the interplay between didutions were obtained. Later, this approach was used to study
creteness and nonlinearity, types of nonlinear localized excithe coupled gap solitons in a diatomic lattice with nonlinear
tations that have no direct analog in continuum models aréntersite potential{19—21. Such coupled-mode theory is
possible. In particular, gap solitons may appear with theisimilar to the corresponding theory for optical gap solitons in
vibration frequencies in the phonon band gap. Since gap solshallow nonlinear grating®2], valid only for a narrow band
tons occur in perfect lattices with discrete translational symgap, and the coupled-mode equations obtained are essentially
metry, the terms “anharmonic gap mode” and “intrinsic gap the same as the coupled-mode equations obtained in Ref.
mode” have been used al§d,12). It is possible that gap [22].
solitons may be created experimentally in diatomic lattices. The second theory was given by Konotdl] based on
Reference$16—18 reported observation of gap solitons in an envelope function approach. In his approach Konotop also
damped and parametrically driven one-dimensidadl) di-  considered the small-band-gap case. However, instead of the
atomic pendulum lattices. coupled envelope equations he obtained a nonlinear Schro
The mechanism for the appearance of gap solitons in nordinger (NLS) equation. The solitons obtained can propagate
linear diatomic lattices can be briefly explained. Assume thawith the group velocity of the carrier wave at wave vector
there is an excited lattice wave with its vibration frequencyg= 7/d of the corresponding monatomic lattice with the lat-
falling within the phonon band gap. In the linear limit, such tice constantdy=d/2, whered is the lattice constant of the
a lattice wave is strongly reflectéBragg reflection Only  diatomic lattice]11]. The solitons obtained by this approach
exponentially growing and decaying solutions for lattice dis-display tails(companion modgsat the rear of the solitonic
placements are possible and, for a finite system, an exponepulses.
tially decaying solution results, leading to very low transmis- The third method is based on a quasidiscreteness ap-
sivity. The situation is changed when the amplitude of theproach(QDA) [5,13]. The amplitude equation derived in this
lattice wave is high enough. In this circumstance the nonlinapproach is also a NLS equation but it is valid for the whole
earity of the system begins to play its role. If the nonlinearityBZ of the phonon spectrum. Using the results from the QDA,

1063-651X/2000/6@2)/282713)/$15.00 PRE 62 2827 ©2000 The American Physical Society



2828 BAMBI HU, GUOXIANG HUANG, AND MANUEL G. VELARDE PRE 62

one can obtain various types of nonlinear excitation forV(r)=3K,r2+ $Ksr3+:K,r#, whereK, (>0), K3, and
acoustic and optical modes. In particular, for the cutoffK,(>0) are harmonic, cubic, and quartic force constants,
modes at the BZ boundary, we can get the acoustic uppeaespectively. ObviouslyK;=0 if the potentialV(r) is sym-
and optical lower cutoff gap solitons. Explicit criteria for the metric. We assume thé; (j=2,3,4) are of order unity. The
existence of gap solitons in nonlinear diatomic lattices can bequations of motion for the lattice displacementgfor light
obtained 13]. However, the coupling between the two cutoff particle3 andw,, (for heavy particlesare

modes atg= w/d has not been considered in this approach

and a difficulty exists when the width of the band gap be- d2

comes small. The difficulty can be seen from the expressions
for the gap soliton amplitudes, which are proportional to
1/(M —m), wherem andM are the mass of light and heavy
particles, respectively. Thus the results for the gap solitons

mﬁvn=Kz(wn+wn,l—2vn)

+K3[(Wn_vn)2_(wn—1_vn)z]

obtained _from the QDA _de\_/eloped beforg,13] are valid + K [(Wy—0) 3+ (W1 —v1)%], 2)
only for single-mode excitations and for the large-band-gap
case. ) iy
In a 'recen.t paper, Jme; and .Konotoli'léli] con.S|dered. M_ZWn:KZ(Un+Un+1_2Wn)
gap solitons in diatomic lattices with quartic intersite nonlin- dt
earity for different band gap widths. Some interesting results 5 5
are discussed, in particular, the appearance of companion —Ka[(vn=Wp) "= (vn+1=Wp)7]

modes when solitons are excited. However, questions still
exist: what is the relation between the above-mentioned three
different approaches for gap soliton dynamics in nonlinear ) ) , ) .
diatomic lattices? Is it possible to construct a general schem@here n is the index of thenth unit cell with the lattice

to derive all the envelope equations obtained previously$°nstantd=2d,, andd, is the equilibrium distance between
What kinds of effects will occur when cubic nonlinearity, two adjaceljt particles. The linear dispersion relation of the
which is a common characteristic of standard interatomicYStém is given by

potentials, such as the Toda, Born-Mayer-Coulomb, 5 _

Lennard-Jones, and Morse typds], is introduced into the @3 (q)=1,+3,5[(1,+32)2— 41,0, si(qdi2) Y2, (4)
model? It is just these problems that will be addressed here.

The paper is organized as follows. In Sec. Il, the modelwherel ,=K,/m andJ,=K,/M. The minus(plus) sign cor-
Hamiltonian with cubic and quartic nonlinearities is intro- responds to the acoustioptica) mode. At wave numbenq
duced and the asymptotic expansions for several different-0 the eigenfrequency spectrum has a lower cuinff0)
cases are provided based on the QDA. The relative orders 6fQ for the acoustic phonon band and an upper cutoff
magnitude for different smallness parameters appearing iﬂ)+(0)zw3:[2(|2+J2)]1/2 for the optical band. Atq
the system are especially emphasized in making the-/d there exists a band gap between the upper cutoff of
asymptotic expansions. In Sec. Ill, we present some eXaghe acoustic branchy _(m/d)=w;=2J,, and the lower
coupled lattice gap soliton solutions. We show that the propgioff of the optical branchw . (m/a)=w,=+2l,. The

erties of these coupled gap solitons are strongly depe”deWidth of the band gap isn,— wy=2K,(1/ym—1/\/M)
on the mass and force-constant ratios of the system. Fina'%ropotional to the mass differendé— m. '

Sec. V contains a discussion and summary of our results.

+K4[(Un_Wn)3+(Un+l_Wn)3]v 3

Because in general it is not possible to solve analytically
nonlinear lattice equations of motion like Eq®) and (3),

A. The model and preliminaries for asymptotic expansion

2
+V(Uj 11— ;)

Il. MODEL AND ASYMPTOTIC EXPANSION some approximate theories have been developed. One pow-
erful and clear-cut method is the method of multiple scales, a
kind of singular perturbation theory widely used in the study
The model under investigation is a 1D diatomic lattice of nonlinear waves, solitons, and pattern formation in con-
with a two-body nearest-neighbor interaction potential. Theinuous media[23,24. In 1972, Tsurui[25] proposed the
Hamiltonian of the system is given by QDA for studying soliton excitations in nonlinear mon-
atomic lattices. Later, the QDA was extended by several au-
H= 2 lmi(% ’ (1) thors to nonlinear diatomic lattic¢s,13,14. The basic spirit
T2 dt of the QDA is the assumption that a linear plane lattice wave
is weakly modulated by the nonlinearity of the system. The
whereu;=u;(t) is the displacement from its equilibrium po- modulated wave consists of two parts. One is the carrier
sition of the ith particle with the massm;=md; wave, which is taken to be completely discrete and a func-
+M3é; x+1 (M>m, kis an integex. The potentialV(r) is  tion of the “fast” variablesn andt. The other one is an
quite general; typically it can be a standard two-body potenenvelope(or amplitude, which is a function of the slow
tial of Toda, Born-Mayer-Coulomb, Lennard-Jones, orvariables likeé,=e(nd—\t) and 7= €%t. Here is a con-
Morse type(for their detailed expressions, see H&#]). We  stant given by a solvability conditior.is a small and order-
focus on displacements with smaller amplitude; thus we Taying parameter denoting the amplitude of the excitation. The
lor expand the potentidV(r) at the equilibrium positionr envelope is determined by an “envelope equation” which is
=0 in a power series of the displacements to fourth orderprovided by another solvability condition. The solvability
As a result we have an approximake,-K;-K, potential  conditions here mean the conditions of eliminating secular
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terms in the asymptotic expansion. If several modes are corBince we are interested in the nonlinear excitations that are
sidered simultaneously, a set of coupled-mode equations wifbrmed by some kind of mechanism, e.g., th&lancebe-
result. tween the self-phase modulation and the dispersion of the
One important fact that should be stressed is that there aystem, the choice o&, 8, and y is not arbitrary in an
generally several small physical parameters appearing in th@symptotic expansiof23].
system. The small parameters can also be provided by the
initial conditions for the excitation under consideration. The
relative orders of magnitude of these small parameters are of
crucial |mportance for makmg an asymptoﬂc expansﬁr‘_ In this Subsection we derive the COUpIed -mode equations
ferent relations for these small parameters result in differenfor system(2) and (3) when the band gap width is large
envelope equations, which are valid only for different typesenough that we have=0 and thusé,=1. By choosinge
of nonlinear excitation. We shall show in what follows that =2 andg=1 we have the following scaling assumption:
this is the key reason why there exist many different theoret-

B. Coupled-mode equations for wide band gap

ical approaches for the gap soliton dynamics in diatomic un(t)zE“g}r)ﬁfz“%r)ﬁfguﬁ)ﬁ T (13
lattices in the published literature.
In general, one can make the following assumptions for a =€, &=e(nd—\t), (14
nonlinear excitation in the systefg) and (3).
(1) The nonlinearity is weak, i.e., where ud) =u(r,&,;4,(1)) (j=1,2,3...). Substituting
Egs.(13) and(14) into Egs.(2) and(3) we obtain the equa-
Un(t) = S0 + U (D) + S () + - (5) tigns satisfied by ) angwﬁ,{)n (i=1,23...): !

where 6; is a smallness parameter characterizingikeak- 5

nessof the excitationu,(t) represents either,(t) or w,(t). J o) G0 G o ()N (i)
(2) The excitation is a quasiplane lattice wave, i.e., it is a &tz Unn~ l2(WnntWan1=2050) = Mg, (15)
plane lattice wave modulated in time and in space as
‘ , 5
uP () =uD(7,&,; dn(1)) (6)

d _
RW(J)_J LD +o® . —2wil)=ND . (16)
(j=1,2,3...) with

=5t (77 The concrete expressions b)) andN{) are the same as
in Ref. [14] and thus need not be repeated here. Equations
£,=83(nd—\t), (8) (15 and (16) are now inhomogeneous but linear equations
which can be solved order by order.
é,(H)=qnd—w(q)t, 9) In the leading orderj(=1), we have generally the solu-
tion
where §, and §3 are two smallness parameters accounting
for the slow variation of the envelope of the excitation in W%}%:Flo( &) H[Fu(nélexdie, (H)]+c.c., (17)

space and timegp,(t)=qgnd— w(q)t is the phase of the car-
rier wave, which is taken to be completely discrete in the

QDA. via=F1(7.&) +[Gu(r.&exdidy (V] +c. cl,

(3) The mass differenc® —m may be small, i.e. (18)

m=m— 5m=5(1—54A), (10) where ¢, (t)=qnd— w_i(q)t. Fl_o is the “static” par; (d_c
component of the excitation(which generates a strain field
in the system resulting from the cubic nonlinearity of the
interaction potentialf 1, (G1,) is the envelope of the ac part
of the excitation for the acoustioptical) mode. In contrast
to Ref.[13], we are interested here in the coupling between
the acoustic upper cutoff and the optical lower cutoff modes.
Thus we setg==/d. The leading-order solutiofl7) and
(18) now takes the form

M=m+sm=m(1+ 8,A), (11)

where 6, represents the mass difference hy=(M
—m)/(2m) with m=(m+M)/2 (the mean value A is a
constant with order unity. Clearly§, is a parameter mani-
festing the bandjap widthof the phonon spectrum.

For given values oim and M and given initial exciting
conditions for the excitation in the systef®) and (3), the
relative orders of magnitude of the parametess (]
=1,2,3,4) in Egs(5)—(11) should also be given. In fact, the
property of the excitation is characterized by the relative or- 1) _ )
ders of magnitude of these parameters. Without loss of gen-vn.n=F1d(7,én) +[G1a(7,€,)(— 1) exp( —iw,t) +c. c.

W =Fo( 7,60 +[F1a(7 &) (— 1) exp( —iwqt) +¢. ¢,
(19

erality, we can takes;=e. Thus &; (j=2,3,4) should be (20)
functions ofe, i.e., §;=6j(e€). In general, one can make the
power-law assumptiof23] For the second ordej € 2), the solvability condition of Eqs.

(15) and(16) needsk =0 thusé&,= end. The solution in this
S,=€% 63=€P, b,=¢. (12)  order reads
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@) _ 2], ing that for different excitationsr and 8 in Eq. (12) may
Wrn=Faot| Far(—1)"exp—iwit) = ——F,Gyy take different values, we have two interesting cases, which
12 will be discussed in this and the next subsection.
) 233 _, The first case is for an excitation with relatively large
Xexfd —i(w;+ wy)t]+ oy 11611 extent(determined by the initial exciting conditipnwhich is
denoted by takingg=2 andB=2. Thus one has
Xexp[—i(wz—wl)t]-i-c. C.), (21) mza(l—EZA), Mzm(l-f'EZA), (26)
_ 2 _ 2 _
0o i p F 10 ( I,d aFM) b T=€t, &=’ (nd—\t). (27
U = —_——— —
mhoTRT T2 2 o, 2 wi-w? 06, It is obvious that\ can be taken to be zero because we have
9l already introduced a slow-time-scale variabte €’t. Thus
; 3 ; we takeh =0 in the following calculation.
Xexp—iwit)+ ——F ;G exfd —i(w;+ wy)t
Rttt o, FuGuexd ilortwa)t] Substituting Eqs(26), (27), and(13) into Egs.(2) and(3),
ol we obtain
3 .
— —wlwzF’l‘lGllexp[—|(w2—wl)t]+c. c., (22) e ‘ | . ‘
Mo Kol 1= 200 =P, (29

whereF,g, Gy, Fy1, andG,, are functions of, andr, yet
to be determined. We see that the appearence of the dc, sum-, 2
and difference-frequency components in Effs)—(22) is e () I Q) o () o)y — )
due to the cubic nonlinearity in the interaction potential matZW”'“ Ka(onntonne1=2Won)=Qnn. (29
(K3#0). It should be stressed that, unlike in the solution _ .
ansatz used in the literature, the staggered factdr)( does  The concrete expressions foP%) and QU for j
not appear in these components. =1,2,3... aregiven in Appendix A.

In the next order (= 3), the solvability conditions require At the leading order j(=1), Egs.(28) and (29) yield the
F10, F11, andG;; to be governed by the following coupled- solution
mode equations:

Wi =F 1ot [Frexp(¢n) +c.cl, (30)
PFg 43 9 ) b )
0@ 3 0, P TIGAD=0 @9 W=FuotGuexagy)ecl, ()
where F,3, Fy;, and G,; are functions ofr and
IF11 1,0,02  9?Fy; Jad . 9F4, 33,4 100 F11 11 T &n
| —_ —

=R - = (|F 2 (=€°nd) and are yet to be determined,=qgnd— w(q)t is
0T 2wi(wi-w?) 982 w1 L& o M the phase of the carrier wave with

_aG11+ 1,0,02  9?Gy; lzd _ dF4 3l,

I J—

1/2
1—c05<q7d)H . (32
—(|Gy4l?

0T 2wy(wi-w?) 982 w2 & o It is obvious that Eq(32) is the linear dispersion relation of
5 a monatomic lattice with lattice constady=d/2 and par-
+2[F11%)G1;=0. (25

ticle massm. Thus, in the leading order, the dynamics of the

Equations(23)—(25) are coupled NLS systems with coupling system is S|m|Ie}r to that of a monatomic lattice. Shown in
to a mean ternfdc fieldFyg). As in Ref.[26] we denote such  Fig. 1 are the dispersion curves.(q) [see Eq.(4)] for the
equations as CNLSM. The case for excitation with a singlediatomic lattice and the dispersion curwéq) [i.e., Eq.(32)]
cutoff mode (i.e., without any coupling betweeR;; and for the monatomic lattice with mass. Whenm—M the
G;,) has been discussed in Ref§] and[13] in the absence band gap of the diatomic lattice gt= 7/d approaches zero
and presence of cubic nonlinearity, respectively. We see thand thus goes to the limit of the monatomic lattice.

for the wide gap case the coupled interaction occurs between Again we are interested in the cutoff modes at the BZ
two cutoff modes through cross-phase modulations. Théoundary(i.e., q=/d). Then the solution30) and (31
coupled gap soliton solutions of the CNLSM equati¢23—-  becomes

(25) will be given in Sec. lll.

+2|Gyy|*)F11=0, (24) 2K,

w(q)=[f
m

W =Fot[Fu(—1)"exp —iwt)+c.c], (33
C. Coupled-mode equations for small band gagl)

(1) = — — it
Now we derive the coupled-mode equations for a small vnn=Fiot[Cu(—1)"exp(—iwt)+c.c], (34
band gap. In this case the cutoff modes at the BZ boundary — — 1 o
have stronger coupling than in the wide-gap case. As in Refvhere o=(0)|q--4=[2K,/m]** is the oscillating fre-
[14] by a small band gap we mean that the parameter duency of the carrier wave for the monatomic lattice with
characterizing the width of the band gap, is equal to 2. Notimassm.
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FIG. 1. The linear dispersion curves. (q) for the diatomic
lattice, given in Eq.4). The phonon band gap appearsqat= 7
with the gap widthw,— w, proportional to the mass differendé
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—3G1; IFy1 —
2imo——+K; IE. —Mw?AG;— 6K,(|Gyq|?
3
+2|F11|2)C511+8K4(_K2K4_ Z) 1FL=0.
(39

In contrast to the wide-band-gap case, here we see that there
is no coupling between the dc compondnf, and the ac
componentd-,; and G4;. In contrast to the gap solitons in
nonresonant quadratic optical med@7], here there is no
couplings betweefk,, (and thusG,g) andFq;, Gy4. In or-

der to get the equation fd¥,, one must go to the fifth order
(j=5) of Egs.(27) and(28). A straightforward calculation
gives

9*F 10
72

9*F 1
€3

2
-v1

-0, (40)

—m. The linear dispersion relation for the monatomic lattice with Wherevl—[K2d2/(4m)]1/2 is the phase velocity 31 0 of
massm is also shown as the dashed line. The gap vanishes for thﬁ.]e carrier wave for the monatomic lattice with mass

diatomic lattice wherm— M; thus the system becomes continu-

ously the monatomic lattice with magss. The mass ratior,

=m/M =0.75 and the frequency unii; are chosen for this figure.

At the next order [=2), the solution of Egqs(28) and
(29) reads

Wi =F 5t ( Fou(—1)"exp(—iwt)

K J—
+ K_3|:ll(311ex|i —2iwt)+c. C.) , (39
2
0{AA=Goot | Gar(—1)"exp—iwt)
Ks —
_ K_Fllellexq—Zla)t)-l—C. c., (36)
2

where F,y, Gy, and G, are functions ofr and &,,, left
undetermined at this level. In this order the dc tefigand
G, satisfy the relation

2K 4
Fao— Gzo:K—2 (F1.Gl1+F1iG1y). (37)

At the third order (= 3), the solvability conditions of Egs.

(28) and (29) yield the following closed equations fd¥,;
andGq:

—Fq; Gy
2|me_K d agn +m(1) AFll 6K4(|F11|
3
+2|Gl]‘|2)Fll+8K4(K2K4_Z) IlG%lzoy
(38)

Using the transformatiof28] F.. =
(38) and (39) become

(F11*iG19)/2, EQs.

aF+1_F 4K, (3 K3 .
| 77 ~vegg |F-t3@AF ——=| 5+ o |IF-I°F-
4K4<3 K2 ) - 8K4(3 K2 )
meo \2 KKy T ome 2 KKy
X|F.|?F_=0, (41)
[ aF+1_F 4K, (3 K§F2F
| 77 Tvagg |Fet goAF——=| 5+ IR P
4K4<3 K3 ) . 8K4(3 K3 )
mo |2 KoKy 7 " me\2 KKy
X|F_|?F,. =0, (42
Wherev2=K2d/(2m_w) is the group velocity agj=w/d of

the carrier wave of the monatomic lattice with mass
Equations(41) and (42) are a generalized version of the
coupled-mode equations. Such coupled-mode equations were
first derived for describing the coupled gap solitons in non-
linear periodic optical media with a shallow gratifng2].
Later, a generalization to a deep grating was made by de
Sterkeet al. [29]. For convienence we hereafter call Egs.
(38) and(39) or (41) and(42) the generalized coupled-mode
equations.

We note that, in the context of nonlinear lattice dynamics,
the coupled-mode equations were first derived for an on-site
interaction potential using the rotating-wave approximation
(i.e., without any companion mode considerg¢8] or by a
special ansatz for solution in perturbation expans[@. In
our derivation based on the QDA provided above, such an
approximation or ansatz is not necessary and the procedure
for the derivation is clear-cut from the viewpoint of singular
perturbation theory23].
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D. Coupled-mode equations for small band gagll ) pri= o 16Kz 4
1

The second case for small band gap=2) is the situa- 982 + Kod d&,
tion where the extent of the excitation is not very large, i.e., n
we havea=2 andB=1. Hence one has

(IF1®=0, (50

OF;  Kod? 9°Fy; Kad o 9F, 4K,

m=m(1-€’A), M=m(1+eA), T leme 02 me U E me
r=€’t, &,=e(nd—\t). (43 K2 3
" X K }2 +§ |Fll|2Fllzoi (51)
By substituting Egs(43) and(13) into Egs.(2) and(3) one 2
obtains )
dF, dd F11+. A Eo_0 -
P o _ _ 08, 4 g2 'SipgruTv (52)
0 i) 4yl ()= R() &
mﬁvn,n_KZ(Wn,n'}_Wn,nfl_2Un,n):Rn,n, (44
This set of equations was derived by Konotop and co-
7 workers in the absence of cubic nonlinealfifyl,14. If K
m_2W§1j,)n_Kz(vgj,)n“LUE]j,)nu_ZWEJ,)n):SE]j,)n- (45) =0, we haveF,=0. The dc termsK,, and G,y and the

second harmonic terms in Eq4.7) and (48) also disappear.

Thus the second-order solutiggompanion modeincludes
We see that the expressions on the left hand side of(@ds. ©only the fundamental harmonic wave proportional to the
and (45) are the same as those in E¢®8) and (29) but the  leading-order solutior{principal modg. In contrast to the
corresponding right hand side is now different. Detailed for-cases discussed in the last two subsectiéng, (and thus
mulations forR{), andS{), (j=1,2,3 ...) have been listed Gz1) here is controlled by Eq52), i.e.,F», is determined by

in Appendix B. F1; through

The leading-order solution € 1) of Egs.(44) and(45) is
the same as that of Eq&28) and (29 becauseR(")=Ss{) ~diFy A
=0. At the BZ boundar ion i ' ai Far=7 5e ~'S134 f F1dén. (53

. y, the solution is expressed again by 4 9&, 2d
Egs. (33) and (34) but one should note thdtq,, F;;, and
G,; are now yet to be determined functions of €°t and Up to now we have derived coupled-mode equations for
&n=€e(nd—At). the dynamics of coupled gap solitons for thile band gap

At the second order j&2), the solvability condition (y=0) and thesmallband gap §=2). The relation between
yields ~ A=s;\g with No=v,=(dw/dq)|q-q three different gap soliton theories existing in the literature
=K,d/(2mw), and [3,19-21,11,14,5,13is now clear. We see that, in the

scheme provided here, these different theoretical approaches
Gi=—is1Fqq, (46) correspond to different gap widths and different spatial-

temporal extents of the excitations, i.e., they refer to different
wheres;=*+1. Thus in this cas€; andG; are no longer values ofa, B, andy, as denoted by the relatidd?2). Fur-
independent of each other. The second-order solution readthermore, the inclusion of the cubic nonlinearitye., K3
#0) gives rise to many additional features for coupled gap
— . Kz, solitons, which will be described in Sec. Ill below.
F21(—1)”exp(—lwt)+|31K—F11 Let us now discuss two other casess 1 (intermediate
2 band gap and y=3 (negligible band gap For the case of
— the negligible band gapim [see Eqgs(10) and(11)] can be
Xexp(—2iot)+c. C-)' (47)  ignored to the fourth order in the perturbation expansion.
Our results show that the envelope equations can be obtained
- K in the third-order perturbation expansion and they are the
Go(—1)"exp( —iwt)— ile—sFil same as Eq$50) and(51), which are '@e envelope equations
2 for the monatomic lattice with mas®, but the constraint
_ betweenF,, andF 44, i.e., Eq.(52), is no longer imposed.
X exp(—2iot)+c. C-), (48 Hence for negligible band gap the respective envelope soli-
tons display all the dynamical features of the monatomic

with F,y, G, and G, left as undetermined functions. lattice with massm, as also discussed in R¢80].

2
Wi =F 5ot

v{h=Gyot

There exists a relation between the dc tefas and G.o: The second case not discussed so far is for an intermedi-
ate band gap, i.ey=1. It seems that in this case one cannot
d 9F 10 arrive at any significant nonlinear coupled-mode envelope
on—GzoZE ? (49 equations because the envelope equations
n
At the third order {=3), the solvability conditions of Egs. 2irﬁ£ﬂ— szaG“erzAFn: 0, (54)

(44) and (45) require ar &,
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— Gy, Fy — K;#0). The second feature is that the terms representing the
2imo—-—=+Kd PR AGy;=0 (55  cross-phase modulatiofi.e., the terms|v|?w and |w|%v)

" vanish if the force-constant ratig= K%/(K2K4), is equal to
appear as the solvability conditions in the second order in thé/2, which is just the case for the Toda and Morse potentials
perturbation expansion. Equatiofs4) and (55) are linear, [13]. In this circumstance the motions of the two cutoff
dispersive equations which can easily be solved. Under sudmodes are independent of each other, although the nonlinear-
circumstances a distortionless pulse propagation is imposdty in the system still play its role through the self-phase

sible[14]. modulation, denoted by the terms/?v and|w|?w. Further-
more, whenr,=3/4, the self-phase modulation disappears
IIl. COUPLED GAP SOLITON SOLUTIONS and thus the two cutoff modes interact through the cross-
phase modulation. Depending on the mass ratjgem/M
A. Coupled soliton solutions for wide band gap and the force-constant ratiq, defined above, the coupled

In this subsection we consider the soliton solutions of thesoliton solutions can be divided into three different catego-
coupled-mode equatiori&3)—(25). Integrating Eq(23) once  ries, which are listed below.

with respect toé, and using the transformation= eF y, (a) Soliton-soliton excitationslf ry, andr satisfy the
v=¢€eG 11 eX[{I(|3d/a)2)C0t], and w=eF 11 eXF[i(J3d/w1)Cot], condition
we obtain
oW 9w fo(rm)<r <9 (64)
i~ —Gu— T PullW*+olo|Hw=0, (56 s
ot (9X§
P 2 where the functiorf, is defined by
1% 1%
iEﬂLgv—z+pu(|U|2+U|W|2)WIOa (57)
P (o 3020 ]
1(X)= A1tx) (65
M s s rC 58
3_xn__K_2d(|v| |w|?)+Co, (58

Equations(56)—(58) admit the coupled soliton-soliton solu-
when returning to the original variables. Hetg=nd andC, tion
is an integration constant. The coefficients in H§§)—(58)

are defined by W= W, seclikx, + 20, kk;t)exd i (kpx,— ;1)1 (66)
= 20, (M—m)’ v =V, seclikx, — 29, kkot) expi (koX,— Q,t)], (67)
K3d?
gvzz—’ (60) _ AKs o
4dwy(M—m) u=— mk(vo+wo)tanr(kxn+ 2g,kKkit) + CoXp s
2
68
2 K“( s 3) (61) 0
Pw= 201w 7
K2\ KoKy 4 with
20,54 K 3 62
Po= 0210 KoK, 4) (62) , 2K% (9w g,
o=\ =—+o=—], (69)
2 0'2_1 pW pv
K2/(K,K ) —3/2
s TS 63
K3/(K2K4)_3/4 5 2k2 g, Ow
. . L Ve=——|=—+o0—]|, (70)
Equations(56) and (57) are coupled nonlinear Schiimger 1-02\Py Pw
equations. Many authors have considered their coupled soli-
ton solutions for some particular coefficief&l]. However, s 12
Q3=gw(k"—k7), (71)

we note that Eqe56)—(58) have several interesting charac-
teristics that should be stressed. The first is that the second-
order derivative terms fay andw, with respect tok,,, have Q,=g,(K2—Kk?) (72)
opposite signs. This is due to the fact that the acoustic upper 27 9ui 2 '

cutoff and optical lower cutoff modes have opposite group

velocity dispersions. Generally, the coupled soliton solutionsvherek,= —(g9,,/9,)k; andk,k; are two free parameters. In
in this situation are bright-dar.e., soliton-kink type[31]. order that the energy of the excitation be finite, one should
As we shall show below, this conclusion is no longer validtake the integration consta@t=0. The lattice configuration
when the cubic nonlinearity is taken into accodrg., when in this case takes the form
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4Kz 4Kz .,
W, (t)=— K—dk(V0+Wo)tanh(knd+ 2gwkkqt) W,(t)=— K—dk(Vo—Wo)tanr(knd+ 2gukkit)
2 2
+(—1)"2W, sectiknd+ 2g,,kk;t) +(—1)"2W, tanh(knd+ 2g,,kk;t)
XCOE{klnd—(wl-i—Ql)t], (73) XCOE{klnd—(wl-i—Ql—BlCo)t], (84)
K3 v2rw? 2 V2o WR)tanhknd—2g, kk
vn(t)=—K—zdk(V0+W0)tanh(knd—ngkkzt) vn(t)——K—20| (Vo—Wp)tanhknd—2g,kkst)
+(—1)"2V, sectiknd—2g,kkyt) +(—1)"2V, sectiknd—2g,kkst)
X cog kond—(w,+ Q))t]. (79 xcogkond—(wz+ Q= B2Co)t], (85

Thus the displacements of both light and heavy particledVith B1=—Kzd/(Mw,;) and B,=—Ksd/(mw,). If k; (and
have an ac component plus a dc backgro(mdan field. If ~ thuskz) vanishes, Eqs(84) and (85) represent a standing
k, (and thusk,) vanishes, the excitation described by Egs.kink-soliton pair. Depending om,, andr,, the oscillating
(73) and (74) is an asymmetric standing soliton-soliton pair frequency of the ac component for bath(t) andv(t) may
in which the oscillating frequency of the acoustic upper cut-P€ inside or outside the band gap. _ _

off mode is increased but that of the optical lower cutoff (C)- Kink-kink excitationsif r,, andr, satisfy the relation
mode is lowered. Thus both of the oscillating frequencies are

within the band gap of the phonon spectrum. Accordingly, if g<rk<f2(rm), (86)

the Hamiltonian of a system has a cubic nonlinearity, it is 8

‘hs(;?t fo say the nonlinearity of the system is “hard” or Equations(56)—(58) yield the coupled kink-kink solution
(b). Kink-soliton excitationsIn the case that,, andry w=W, tanh(kx,+ 2g,kky ) ex i (K;x,— Q4t)],  (87)

obey the relation
v=Vgtanhkx,—2g,kkst)exgi(kox,—Q,t)], (88

Ne<fi(rm) or n>fy(ry), (795
4K
where the functiorf, is defined by u=-— K—Zé‘k(v3+wg)tanr(kxn+ 2g,.kkit), (89
_3(2+x) with
, 2k* (9w g,
Equations(56)—(58) have the coupled kink-soliton solution Wo=1_(72 E+UD_U : (90)
w=W, tanh(kx,+2g,,kky)exdi(k;x,—Qqt)], (77) )
Y (%+ag—w) (92)
v =V, sectikx,— 2g,kkt)exfi(kox,— Q,t)], (78) O 1—s2\p, P/’
4K Q= —g,(2k2+Kk?), (92
u=—K—;k(vg—wg)tanr(kxn+2gwkklt), (79 17 7 Gul J
? 0,=0,(2K2+K3), (93

with
wherek,= —(0,/9,)k; andk,k,; are again free parameters.
) The requirement of the excitation energy to be finite needs

(80) Co=4K3(V§+W§)/(K2d). The corresponding lattice con-
figuration for this case can also be written down but we
omitted it here.

) 2k? (g, Ow It should be stressed that the soliton-kink excitatioe.,

Vo= 2(—+ —) (81)  the ac component for the acoustic upper cutoff mode is a

2k? (g g
2 _ 2w v
W 1—02(

o
Pw Py

g
1=0%\ P Pw soliton while the ac component for the optical lower cutoff
_ ) mode is a kink does not exist in our systef2) and(3). In
Q1= —0w(2k*=k7) — op, V5, (82 Fig. 2 we have shown the different existence regions for all
possible coupled soliton excitations in the parameter space of
Q,=0,(K5—Kk?) — op, W5, (83  r,andr,. We see that,, andr, are two important param-

eters for controlling what coupled solitons occior a sym-
wherek,=—(9,/9,)k; andk,k; are still two free param- metric potentialy =0, only one type of coupled soliton, i.e.,
eters. In order to make the excitation energy finite, we havehe kink-soliton, is allowed. However, note that the standard
taken Co=4K;W3/(K,d). The lattice displacement in this interatomic potentials, i.e., the Toda, Born-Mayer-Coulomb,
case reads as Lennard-Jones, and Morse potentials, have a cubic nonlin-
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2 : ; . , f(Xn,t)="F(x,)exp —iQt), (96)
2l ) 0(Xn ) = g(X)exXp — i Q1), 97)

where() is a frequency detuning, anfdx,) andg(x,) are
1 two real functions yet to be determined. Substitution of Egs.
(96) and (97) into Egs.(94) and(95) results in

16 k- 1V kink-soliton |

1.4 i)

12k IIT ¥ink-kink

Tk ir soliton-soliton df

plg— 4=~ 729+ 9%+ nf%g, (98)
0.8 B
06 F - dg

I Xkink-soliton E = ’}/11: - f3_ 77f92- (99)
04 -
02t 1 with  z=[6K,/(Kd)Ixy,  n=4(9/4-1)/3, y=[ma/
o , , , . (3K4)1(Q2+9Q0), and y,=[maw/(3ke) 1(Q — Q). Equations
0 0.2 0.4 0.6 0.8 1 (98) and (99 are similar to the equations obtained by

Tm

Kivshar and Flytzani$3], and their qualitative features were
FIG. 2. Overview of different existence regions for coupled gapanalyzed recently through the bifurcation picture without
soliton excitations in the case of a wide band gap. In the regions tonsidering cubic nonlinearit}21]. In our system here the
and IV coupled kink-solitons exist; while in 1l and Ill the system force-constant ratia, (or equivalenty) and the frequency
displays soliton-soliton and kink-kink excitations, respectively. detuningQ) are two important parameters for controlling the
property of the soliton solutions, as shown below. Equations
earity and hence,#0 [13]. Consequently, realistic lattice (98) and (99) form a Hamiltonian system in which andf
systems display more types of coupled gap solitons thaplay, respectively, the roles gfandq, and the Hamiltonian
those obtained from a simple model based on symmetriis
potentials. 1 1 1 1
The single-mode excitation(ge., F1;#0, G;;=0 orFq; L T f24 T w2 T2 2\ T 2 2
=0, G,;,#0) for Egs.(23)—(25 have been studied before Tt 23/1f T 4(f 9 2 7f'g”. (100

[13]. Here we note that the type of each single-mode excita-

tion can be changed when the coupling between two cutoffY introducing the functiorh(z) =g(2)/f(2), Eqgs.(98) and
modes is taken into account. The physical reason for thié?9 can be solved exactly through integration of the equa-

change is the cross-phase modulation, as pointed out recenﬂ)‘?n
in Ref.[32].

dh
4, =~ Sl yh)?—4E(1+24h*+h")]"
B. Coupled soliton solutions for small band gap(l) (101

Let us now discuss the coupled soliton solutions of the

) . - wheres;==*1 andE is the value of the “energy” corre-
coupled mode eq_uat|or(§8) aEd (39). To use the original sponding to the particular orbit associated with the Hamil-
variables we set=eF,; andg=€G,;. Then we have

tonianH. The solutions forf andg may be found with the
9 9 help of the relations
2mw IE—’_‘QO f—szW—6K4(|f| +2|g| )f
" _ vt vh?E[(y1+ y2h?)?—4E(1+2ph?+hH)]H2

3| e 2 ¢ 1+27h2+h? ’
+8K,| r— 7| f*g?=0, (94) (102
g=fh. (103
2m ii—Q +K di—GK (lgl?+2|f]|?)
@\ 15 o) 9T Rabn 419 9 In the phase planef(g), the separatrixes correspond to soli-

ton or kink solutions of different types. The phase portrait of
g*f2=0, (95 the system depends on the parametgrand (). For a given

ry, as{) increases a number of subsequent bifurcations in

the plane take place. By analyzing the critical points on the
with x,=nd and Qo= e2w/2. For convenience we have set phase plane, we can distinguish three different regim(_es.
A=1 and hences?= (M —m)/(M+m)=(1—r)/(1+r). (1) Q<__QO'_ In this regime bothy;, an_dlz are negatllve
A generalized version of Eq§94) and(95) was obtained by ~and the oscillating frequency of the lattice ¢ (1) satisfies

3
+8K4( I’k— Z

de Sterkeet al. in the context of nonlinear optidg9]. the condition

We seek stationary soliton solutions of E¢@&4) and(95) 5 \12 143
by use of the method developed by Kivshar and Flytzanis ;+Q<( o, (104)
[3]. Thus we set 1+ry/  2(1+ry)
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We find that the origin (0,0) is the only fixed point and that TABLE I. The positions of the critical points in the phase plane
it is a stable center. Thus there is no soliton solution. (f,g) for O>Q,. The definitions of the parametets, y,, and 7

(2) —Qu<Q<Q,. This is the case fory;>0 andy, have been given in the text.
<0, and hence

Type f g
2 \Y21+3r, —
wi<w+Q l 0 0
(1+fm 2(1+ry) "t [ 0 =y,
or \Y2 341, Il 9 0
Ttr,) 2(1+ry “% v N2 L
(105 1-7 1-7

In this situation the systen®8) and (99) has a saddle at

(0,0) and two centers at(y/y;,0). Independent of, the ~ Through the saddles we have E=(y3+73
only type of localized solution corresponds to the separatrix- 25y, v,)/[4(5?—1)]. Integrating Eq.(101) for this case
connecting (0,0) with itselfthusE=0), corresponding to a we find that

bright soliton. Solving Eqs(101)—(103), we obtain

h=—(y1/|y,|)*tanhy, (106) h=s,C, tanhy (110
f=s, V2ysecty ' with $p==1, C1=(y17=72)/(v27—y1), and y=[(y17
[1+29(y /| yo)) tantty + (y1 /| y,|) tantty ]2 —bvz_)/(n —1)]"(z—12,). Using Egs.(102 and (103 we
(1070  obtain

2 P 12
9="Sm N[, s y1+ v,C% tanify —s,C,C, seciy a1

*\ 1+29C2tanify+C?tanHy '

tanhy sec
1+ 290717 r;/ W/||2 Hy v
+ tan + tan
[ 7(y1!|yal) y+(y1/lval) yl 05 ety Y1+ 7,C2 taniy — ,C,C, sechy | 2
2> 1+27C3 tantfy + C? tanty

wherey = \/y1| y,|(z— z,) with z, an arbitrary constant. We (112

see that in this case both envelopes of the vibrations for

heavy and light particles are solitons. However, they are dif- 2 2
) . ) . wheres;=*1 and C,=[(y17— v2)/(»°—1)]"< Each of

fere_nt k|r_1ds of sollt_ons_smce the sohtd_n(for the heavy_ these solutionsfor differents; ,j=2,3) is a kink connecting

particleg is symmetric with only one maximum but the soli- !

ton g (for the light particleyis asymmetric and there are two a saddle to another saddle. . .
extrema We note that the three regimes discussed above corre-

(3) 0>0,. In this regime bothy, and y, are positive spond to the cases that the oscillating frequencies of the lat-
0- 1 2 .

The corresponding oscillating frequency is located in the re:[ice are located below, within, and above the band gap of the
P 9 g req Y phonon spectrum, respectively. For instance, wkerD.1

glon we haver,,=0.98. The regimes expressed in Eq$04),
. 2r \ Y2 341, (105, and (109 are w+0<0.9%,;, 0.9 <w+
w+Q> Tor.) 2(14r,) %2 (109  <1.0ww,, andw+Q>1.01w,, respectively. Ifr ,—1, they

correspond respectively to+Q<w;, 01<o+Q<w,,
There exists now a larger number of critical points, the charand w+ Q> w,. Thusr,, is the parameter controlling the
acter of which depends on the relative sizes of the forcepscillating frequency of the system.
constant ratia', and the the detunin@. Four possible types ~ we know that all standard two-body interatomic poten-
of critical points for this regime are listed in Table I. The tjals display cubic nonlinearitgi.e., r,#0); and for different
critical point at the origin (0,0jtype |) is always a center for potentialsr, takes different value$13]. The results pre-
all r andQ (>€y), and hence no soliton is possible. The sented above can be applied to two-body potentials from
nature of the other types of critical points dependspand | ennard-Jonesr(=63/53) and Toda and Morse (= 3/2)
(). Details can be found in Table Il. For each separatrix thao Born-Mayer-Coulombr(,=31/2, | >1; some typical val-
shape of the soliton excitation may be found explicitly by yes ofl have been given in Ref13]). From Table Il we see
integrating Eq.(101) using the corresponding value of the that there are different critical points for different two-body
“energy” E. For example, in the case of<0r,<3/2 and interaction potentials and hence different gap solitons. Thus
Q>(1+7)Qo/(n—1), the critical points (Q:\y,) and the introduction of the cubic nonlinearity gives rise to many
(=/y1,0) are centers while the critical points+[(y; defferent types of coupled gap soliton excitations in the sys-
—ny) (1= 7)) 1Y% [ (v~ ny)/(1—7*)]) are saddles. tem.
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TABLE II. Nature of the critical points and their existence conditions for the c8se(},. ry
= K%/(K2K4) is the force-constant ratio of the system. The paramejexsd(), have been given in the text.
In the last column the standard two-body potent[aks., Lennard-Joned_-J), Toda, Morse, Born-Mayer-
Coulomb(B-M-C)] are listed in the corresponding regionsrgf

Condition 1 Condition 2 Type Il Type Il Type IV Application
3 1+ n .
0<r<s Q<_1 Qp saddle center nonexistence L-J
—
Q>1+—77 Qo center center saddle
re=> saddle center nonexistence Toda and Morse
3<r<? Q<;I:+_7790 saddle center nonexistence B-M-C
-n
Q>1+_77QO saddle saddle center
-7
C. Coupled soliton solutions for small band gap(ll ) vs d
To solve Eqs(50—(52), we integrate Eqs(50) and (52) Wy =——= ( ~a 15 sechi 7oX,)tanh 7oX,)
with respect toé, once, and make the transformation VoA
=eF 19, W= €eF 1, expli[Ksd/(mw)]t}, andw,;=€?F,;. Then A
we have —is, —arctarsinh noxnn) exdi[3 75t~ do)].
au 16K3
2
— == w|?+Cy, 113 118

From Egs.(116—(118 we see that the principal component
of the lattice vibrationw, is an envelope soliton and the dc
backgroundy, is a kink; while the companion component,
w4, consists of two parts, an asymmetric envelope soliton
with two extrema and an envelope kink.
If r,>1/2 (the potentials of Toda, Morse, and Born-
dow A Mayer-Coulomb belong to this caseve can also solve Egs.
Wl_Z,y_xn_'Slﬁj W(Xn,)dx,+Cay (119 (113 and (115. The result shows that botw and u are
kinks. However, when solving fav, from Eq. (115, there
- . . is a divergence unles§=0. Thus we conclude that, fat,
when we return to the original variables. Hexg-vot again -~ 15 these solutions are not physically meaningful and
with v,=K,d/(2mw). Cy andC, are two integration con- hence not allowed. This is due to the cubic nonlinearity as

stants.C, may be taken as zero since it represents a translgor symmetric potentials, =0 the solutiong116)—(118) are
tion of the system as a whole. always valid.

Equation(114) is the NLS equation, which has been in-
tensively studied. For, <1/2 (the Lennard-Jones potential IV. DISCUSSION AND SUMMARY
applies in this cagewe have the single-soliton solution

oW v3 Pw 12K,
——+

1) )
— 4+ —= —|r wl“w=0, (114
N 2w ﬁxﬁ mw ( w

<3

Based on an extended QDA we haamalytically investi-
gated the dynamics of coupled gap solitons in diatomic lat-
v2 . tices with cubic and quartic intersite nonlinearities. A general
1.2y

\/_—770 sechi 7oxn)exli(z mt—do)l, (118 geheme is provided for deriving several types of coupled-
wAg mode equations, without using the rotating-wave approxima-
tion or any ansatz for the solutions. The relation between

with A0:12K4(1/2—rk)/(m), where 7, and &, are two different theoretical approaches existing in the literature for

arbitrary constants. The dc component can be obtained gipe gap soliton dynamics in diatomic lattices is made clear.
integrafing Eq(113: ur results also show that two parameters of the system, i.e.,

the force-constant ratio,= K%/(K2K4) and the mass ratio
ro.=m/M, are of crucial importance for making the
16K3v§ asymptotic expansions and characterizing the gap solitons
= KodoA 70 tanh( 7oXy) + CoXp . (117 and their coupling. Furthermore, some exact coupled soliton
i solutions for the coupled-mode equations given in E2@)—
(25) (for the wide band gapand Egs.(38)—(39) and (50—
The constanC, should vanish for the excitation with finite (52) (for the small band ggpwhich have couplings to mean
energy. Using Eq(115 one gets the companion componentfield (dc) components, are explicitly presented. Effects due

W=
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APPENDIX A

to the cubic nonlinearity, in particular, types of coupled gap  1Ne expressions fap{), andQ{), (j=1,2,3...) used in
solitons that are absent in the case of symmetric potential$€C¢- !l C are defined by
are discussed in detail.

We have shown that the relative order of magni Pﬁ:o' (A1)
gnitude of ,

different small parameters appearing in the problem is very

important for making an asymptotic expansion. Different P =KW —o {2 =Kawi_ i —vih?  (A2)

relative orders require different spatial-temporal scalings,

and hence result in different envelope equations. For the dy- 92 92

namics of a gap soliton excitation in diatomic lattices, thesé°§13n= —2%0(1)+mA—U(1)_ K dEngr)lfl

smallness parameters include the amplitude, the spatial-

temporal extent of the excitation, and the band gap width of +2K (w(l)—u(l))(w(z) 0512%) 2K z(wi _ —p (b
the phonon spectrum if the force constaiiis(j =2,3,4) are ’ '
of order of unity. In our problem, these relative orders of X(WE 1= v+ Kaw{H— o)+ KW,
magnitude are expressed by the exponentsB, and v, (1)\3 A3
given in Eq.(12). By choosing different values af, 3, and “nn)% (A3)

v, and based on the QDA, we have arrived at several differ-
ent types of coupled-mode equations, i.e., the CNLSM equa- - - -
tions (23)—(25), the generalized coupled-mode equations

(38) and(39) [or (41) and(42)], and Eqs(50)—(52). In Table ~ and
lll, we have summarized results obtained in Secs. I B-IID.

We note that, in the context of nonlinear optics, such a sys- Q=o, (A4)

tematic procedure for deriving the coupled-mode equation

Elzrg the nonlinear Schdinger equation has been considered QB = —Ka(vBD-w)2+Ka(wM, - —wih)?2, (A5)
Realistic interatomic interaction potentials, like the P2 P

Lennard-Jones, Toda, Morse, and Born-Mayer-Coulomb po©(®) = — om—— Wﬂ—mA W%l{)# K,d— Unlr)Hl

tentials, are asymmetric and hence display strong cubic non- " tdr at? 238

linearity. This shows the interest of considering its influence (1) (1) (2) (2) (1) (1)

on gap soliton dynamics. Another parameter, i.e., the force- ~ 2K3(vpn = Wi (Unn=Win) +2Ks(vgn 0~ Wi

constant ratia,, is thus introduced into the system and we (@) _W(2) 1K (1) w3 LK (oD

see that it plays a very significant role. It helps the produc- (Wrnss )+ Ka(ogn=wy,0) 4(Unnrs

tion of the mearn(dc) fields, which are coupled to ac compo- —ngr)])% (AB)

nents, together with the appearance of some other sum- and
difference-frequency components in higher orders. In conse-
quence, the coupled-mode equations are modified by the’
mean fields, a result of much interest in the context of non-
linear optics[26,27]. The parameter, is also important for APPENDIX B

con';r_olling and characteriz_ing the c_ouplet_:l gap solitons. In The expressions foR(” and Snj) (1=1,2,3...) men-
addition, from the exact soliton solutions given in Secs. Il Ationed in Sec. 11D are given by

and Il B, we see that, relative to the case with no cubic '
nonlinearity, nonvanishing, yields many additional types
of coupled gap solitons in the system.

The theoretical scheme presented here is not limited only
to 1D diatomic lattices with nonlinear intersite potentials.
The application to on-site potentials is straightforward. A
generalization to higher dimensional and multiatomic lattice 1 (1)\2
systems also seems feasible with reasonable effort. —Ka(Wya-1=vnn)% (B2)

"

R(M=0, (B1)

2

RZ)=2mx (HD—K, d—w( )+ Kawh—o ()2

o?tafn”“ n &,
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_ 92 | 32 2 o= P Jd 1 1
RE=2m\ 2 v(n?,’]—m(zrwﬂz&_gz)v(n}g R =2\ 2w+ Kotz uf o~ Ka(w i - wii))?
n n
o 5 +Ka(vhhe = WD), (B5)
+mA —v P+ Kyl —d—w?
" 2 2 2 2
RO —omn ——w@_ml 2.7 2 |y
a2 22 , , n.n atag, ™" otor 3§ﬁ n.n
1 1 1
+ 5 W1 |+ 2KaWi— v D (Wi - o)
dE P d d? 42
—ima S a0t G ot
W Oy W@ @ g a2 " I&y ™ 2 827"
_2K3(Wn,nfl_vn,n Wn,nfl_vn,n_da_gnwn,nfl N N ) ) 1 1
o 1 1 — 2K iAW) (0= W) + 2Ka (o) —win)
+ Ky (WS =0 i3+ Ka(wi 1= v{h3, (B3) 5
X[ oRRe 1 W d S vha |+ Ka(opa—wip)?®
’ n
and +Ka(w{e 1~ Wi, (B6)
sh=o, (B4)
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