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Recently, we suggested a type of self-trapped optical beams that can propagate in a stable form in (2
+1)D self-focusing Kerr media: Necklace-ring beafi. Soljadc, S. Sears, and M. Segev, Phys. Rev. Lett.
81, 4851(1998]. These self-trapped necklaces slowly expand their ring diameter as they propagate as a result
of a net radial force that adjacent “pearlgazimuthal spotsexert on each other. Here, we revisit the
self-trapped necklace beams and investigate their properties analytically and numerically. Specifically, we use
two different approaches and find analytic expressions for the propagation dynamics of the necklace beams.
We show that the expansion dynamics can be controlled and stopped for more than 40 diffraction lengths,
making it possible to start thinking about interaction-collision phenomena between self-trapped necklaces and
related soliton effects. Such self-trapped necklace-ring beams should also be observable in all other nonlinear
systems described by the cubic42)D nonlinear Shrdinger equation—in almost all nonlinear systems in
nature that describe envelope waves.

PACS numbds): 42.65.Tg, 41.20.Jb

[. INTRODUCTION However, this solution works well only in a limited range of
necklace parameters. Consequently, in Sec. V we present a
S . . ) different analytical technique that allows one to predict the
cant attention in opticgl], as well as in other fields of phys- yynamics of any necklace as a function of its initial param-
ics [2]. Most often, envelope scalar waves in2)D,  eters. This technique can also predict what happens with the
propagating in isotropic media can be described by nonlineagynamics of the necklace once we manipulate the necklace’s
Schralinger equationNLSE) [3]. This equation is just the instantaneous radial velocity. However, the technique from
paraxial slowly varying wave equation modified by an addi-Sec. V gives us no information whatsoever about the instan-
tional nonlinear term; thus, its universality particularly for taneous necklace shape. In Sec. VI we conclude by summa-
envelope solitons is not surprising. If in addition, the me-rizing our predictions and propose new experiments.
dium is centrosymmetric, and only the lowest-order nonlin-
earity is important, the system can be modeled by the (2
+1)D cubic NLSE. Because of its universality, this equation
models very many physical systems. Consequently, it would In the optics community, it was a commonly held belief
be desirable to have (21)D bright solitons in this equation. that physical systems described by {2)D cubic self-
Unfortunately, for a long time all known solitons of this focusing NLSE cannot be used for soliton observations since
equation were thought to be unstalpg. Nevertheless, re- all known self-trapped beams in such systems were thought
cently we were able to construct stable self-trapped brighto be unstable. For example, cylindrically symmetric solu-
beams in (2-1)D cubic self-focusing NLSES5], so-called tions of all orders of this equatiof8] suffer from cata-
necklace-ring beams, and their existence as stable entitiestrophic collapséor diffraction, depending on their power
propagating in Kerr media was shown experimentfly’].  [4,9]; i.e., any small deviation from the equilibrium shape
Necklace beams are beams shaped like rings, whose intensityakes them contract to a point, or diffract to infinity. Since
is azimuthally periodically modulated as in Fig. 1. In our first solitons of (1+1)D cubic self-focusing NLSE are known to
paper on this subje¢b] we have demonstrated the existencebe stable, one might think that a beam that is self-tragped
of self-trapped necklaces numerically, and demonstratedoliton) in one transverse dimensidgay, x) and uniform in
their stability to numerical noise. Here we show analyticallythe other transverse dimensi@y), while propagating along
how to predict and control the radial dynamics of necklacez, should be stable. Unfortunately, such a beam is also un-
beams, and present analytic solutions for necklace beams stable: it suffers from transverse modulation instab{lt@].
several parameter regimes. Small perturbations in the transverse directlovhich was
This paper is organized as follows. In Sec. Il we provideinitially uniform (y)], grow on top of the pulse as the pulse
a brief introduction to necklace beams. In Sec. lll we de-propagates, and the pulse eventually disintegrates. Similarly,
scribe a procedure that facilitates control over the instantaeylindrically symmetrical ringgof radius large compared to
neous radial velocity of any necklace. In Sec. IV we presentheir thickness,suffer from modulation instability in the azi-
analytical solutions to necklace beams in some specific remuthal direction, both when they do carry topological
gimes of parameters as a function of the propagation discsharge, and also when they do nat,12.
tance. This enables a direct prediction of the radial accelera- Nevertheless, it was shown that beams in planar Kerr-
tion of a necklace when its radial velocity is manipulated.nonlinear waveguides can be accurately described by (1

In recent years, solitons in (21)D have drawn signifi-

IIl. WHAT ARE NECKLACE-RING BEAMS?
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+1)D cubic self-focusing NLSE as long as the dimension ofwrapped them around their own tails, thus producing neck-
the beam parallel to the platdthe trapping directionis  lace beam$5]. Necklace beams are beams shaped like rings,
much larger than the distance between the plgt8§ thus, whose radius is large compared to their radial thickness. In
solitons of such a configuration are stable. In fact, in 1985prder to avoid modulation instability in the azimuthal direc-
Barthelemyet al. have produced the first optical spatial Kerr tion, the intensity is periodically modulated in the azimuthal
solitons using an idea that was driven by this understandingdirection [like the interference pattern between the (1
[14]. They superimposed two beams that were both narrow- 1)D solitons of[14]]. An example of a self-trapped neck-
in one transverse directiofx), uniform in the other trans- lace beam is shown in Fig. 1. Such a shape can be thought of
verse direction, but propagating at a small angle with respeds a superposition of two equal uniform-intensity rings car-
to each other, thus producing an interference pattern in theying the same but opposite charges, thus resulting in an
direction in which each of the beams by itself was uniforminterference pattern in the azimuthal direction.

(the y direction. The self-focusing Kerr nonlinearity trans-  In general, propagation of a necklace beam is not station-
lated the interference grating into a periodic modulation ofary: the beams exhibit slow radial expansion as they propa-
the index. The spatial wavelength of this modulation wasgate. The expansion is a result of a net radial “force” that
much smaller than the beam’s width i Therefore, at a results from the azimuthally alternating phase, and is typi-
proper intensity, the structure self-trappedxirieach beam cally much slower than diffractive expansion. In some cases
created a soliton irx), whereas irny the nonlinearity effec- the nonlinear expansion is even negligible over all propaga-
tively produced a nonlinearly-induced multiple waveguidetion distances of experimental interest.

structure from each of the interference fringes. Becausg the  The main feature of necklace beams is that the radial dy-
width of each induced-waveguide was much narrower thamamics rate of necklaces is typically many orders of magni-
the soliton width(in x), the structure was stable and no trans-tude slower than the rate at which each of the pearls of the
verse instability was observed yn necklace would suffer catastrophic collapse if it were stand-

Unfortunately, experimentally, neither of the beams coulding by itself. In other words, the necklace-ring beam exhibits
be infinite in the transverse direction. Consequently, thestationary propagation for a very large distance, during
beams eventually walked off from each other and stoppedvhich neither the ring diameter nor the width of each spot
interfering, thereby destroying the configuration. In addition,(“pearl”) on the ring change significantly. For, example,
the described solution is not completely satisfactory since theonsider Fig. 1, where after By, the radius of the necklace
shapes produced are really only{1)D shapes. Clearly, grew by less than a factor of 2. In contrast, each péérl
one would like to have higher dimension solitons, whichstanding by itself undergoes catastrophic collapga dif-
would enable exploring 2D soliton interactions and other in-fraction) within only a fewL . (Please see the Appendix.
teresting features of higher dimensionality. Therefore, with interactionsgcollisiony between necklace-

In Ref. [5] we have built on the idea described in the ring “solitons” in mind, two self-trapped necklaces can mu-
previous paragraptand in Ref[14]) to produce stable self- tually interact over a large distance during which they do not
trapped beams in (21)D Kerr media. In our imagination, change their shapes appreciably. Thereby, one can use
we took the shapes described in the previous paragraph, ameécklace-ring self-trapped beams to explore nonlinear inter-
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action phenomena and collisiofwhich are the most fasci- growth. Such a radial phase is trivial to impose experimen-
nating features of all solitonsin (2+1)D; this was previ- tally: one just shines a necklace through a “sharpened pen-
ously thought to be undoable in §21)D self-focusing Kerr ~ cil” phase object, made from glass.

media (i.e., in a medium represented by the cubic self- The fact that we can produce a shrinking necklace in this

focusing NLSE. manner is not inconsistent with the intuition that the neigh-
boring pearls should repel each other. The procedure we
IIl. CONTROLLING THE EXPANSION RATE have just suggested to make a shrinking necklace does not in
OF THE SELE-TRAPPED NECKLACE BEAMS general make the radial acceleration negative, and thus does

not turn the repulsion between adjacent “pearls” into attrac-

As shown in[5] necklaces typically grow as they propa- tion. To illustrate the idea, consider a necklace with 16
gate. The intuition behind this growth is that the amplitudespearls, as we show in Fig. 1, and let it propagate for a while.
of the neighboring pearls are out of phase, thereby repel- After 55L, we measure its instantaneous radial velogify
ling each othef1,15]; consequently there is a net radial force and multiply the whole shape with expivor). As one can
outwards on each pearl. For numerous reasons, it is impoeee in Fig. 2, the instantaneous velocity is significantly re-
tant to have a means to control the expansion of theluced. A more careful measurement shows that the reduction
necklace-ring self-trapped beam. For example, it would bén this particular case was from, to approximately—2% of
nice to be able to stop the expansion, and perhaps even rg;. However, the instantaneous radial acceleration stays
verse it, at least for some finite propagation distance. In factpositive, so the radial velocity of the necklace keeps increas-
there is a natural way to obtain precisely this goal. Namelying even after the application of the radial phase, as shown in
one can take the necklace at any given propagation distanggg. 2. In the subsequent sections we analyze analytically
z, and multiply the whole shape with expi(lr), wherer is  what exactly happens with the radial acceleration as a result
the radial coordinate. Imposing such a radistnsversg  of the application of such a radial phase.
phase influences the radial velocity of each pearl. If the ra-
dial velocity of a pearl before applying the radial phase,is
then after the application of the phase, the net radial velocity
is roughlyv-Q). Therefore, the instantaneous expansion ve- In this section we use the action minimization approach in
locity can be reduced to zero. Furthermore, one can evearder to obtain an approximate analytical solution to the
reverse this velocity so that the necklace immediately aftenecklace shape as a function of the propagation distance
the application of the radial phase initially shrinks. This tool The solution we find works well only in certain regimes of
provides control over the instantaneous necklace radiusecklace parameters. However, in these regimes it gives an

IV. APPROXIMATE ANALYTIC SOLUTIONS
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excellent prediction for the radius of a necklace, the shape of Our Lagrangian density therefore becomes
the necklace, and its radial velocity as a function of the . .
propagation distance. It also provides us with a quantitative L=i{ wﬁl/f _w*ﬂ_lﬂ] +(%><a¢ )
understanding about what happens with the necklace once ar ar ar |\ or
we multiply it with a radial phase, as proposed in Sec. Ill.

We seek an approximate analytic solution in the regime i(ﬁ_'v”
where the radius of the necklatg is much larger than its r2l o6
thicknessw, as defined in the last plot of Fig. 1. In addition, ) ) ) )
we consider only the cases where the thickness of the neck- Using the Lagrangian equations of motion
lacew is much larger than the rate of the az.|muthal vgnatlon gl oL 19 [ aL g oL } L
L#/(4Q). (Note that since we are comparing the width of —— |+ == — |+ —=|—|—-—=0,
the typical feature in the azimuthal direction with the thick- az| gy | v ar| ayr| 96|y | Y
ness in the radial directioh,7/(4(}) is the correct measure one can obtain Eq(1) from Eq. (5). In the notation we are
using, the action is given by

gl L ®)

5

(6)

of the characteristic size of the azimuthal variatidn. this
regime the (2-1)D cubic self-focusing NLSE

o 2 ©
1(d%y 1 1 42 _
Y ra_¢+ W 1Y FlPu=0. S Ldzfo deforer. )

I S —
0z 2
In order to evaluate the action, we need to evaluate a few
integrals. To illustrate how we deal with the singularity at the

arZ " roar 12 962

can be approximated as

oy 1 a2¢+ 1 8y NP , origin, we present some of the integrals here. For example,
It 5ozt 2 gz TlHU=0. ()

fmr x sech[a(r—L)]dr= fx(r —L)secK[a(r—L)]dr
0 o

Thus, one can attempt to write a solution to E2). as

wr.02)=e 3 3 {aymcof(2n-1)06] f_m sechia(r—L)ldr
2L
x sech™ [ (r—L)/wl}, 3 ==

with T'(w,L,€Q), anm(w,L,Q), andQ is an integer. In this  gjnce the first integrand is odd around L. Similarly, in the
case, there exists a solution like EE) that hasa;, of integral [ (dr/r)secR{a(r—L)], we can replace
O[(4wQ/Lm)?] larger than any other, ,, and (a;1)?

~4/(3w?). Consequently, our intuition tells us that the real 1 1 r—L w2

solution can probably be well described by L 1= L +0 INERIE
P(r,0,2)=a(z)cod Q1 0)secHa(z)[r —L(2)]} and integrate from-o to « instead, not worrying about what

. . happens at the origin because of the presence of the modu-
xex —il(Z)ztiv(2)r], @ lating function which annihilates the singularity, as ex-

provided that a?(z=0)=4a2(z=0)/3, v(z=0)=0, w/L plained above. The other integrals are evaluated in a similar

<1, andw>L 7/(4Q). We intend to fook fora(z) ’a(z) manner. After a few additional lines of algebra, we obtain

L(z), I'(z), and v(z) using the action minimization ap- o 4u.a2L2 4La? 9 2aa2L

proach. Before proceeding, we emphasize that(&Eqwhen S= wf dz(z—— —[I'z]+ 3

substituted into Eq(1), produces an undesired singularity at - a a oz

the origin. Consequently, in our simulations, we actually 20202 20242 4La?

multiply Eq. (4) at the input ¢=0) with a smoothly varying + a + L 32 |- (8)

function that behaves proportional té close to the origin,
but assumes values close to unity in the regions where most
of the energy of Eq(4) is concentrated. An example of such
a function is siA(ra/2L). Expanding this function around

r=L(z), we conclude that this fur;ction's presence influ-¢.5n Eq (8) in terms of the other variables. We substitute
ences our action integrals y((w/L)*), so we are justified a=2ma?L/E in Eq. (8), whereE is a constant. Finally, we

in ignoring its presence when evalu_ating our integral-s; thefequire the minimization of the action in E(B) as
only place where it actually matters is closerte 0, and its

only purpose there is to eliminate the singularity. Therefore, S oS 6S 6S

when evaluating the action integrals in cylindrical coordi- ST(&) = SL(&) = Sal(€) = 50 () =0, 9
nates below, we first integrate ovérand when integrating

overr, we keep in mind that the only important contributions thereby obtaining ZalL/E=1, L,=v, and v,=(Q?
to the integral are close to=L(z), while the contributions —E?/1272)/L2 (the subscriptz denote derivatives with re-
of the regions close to=0 are negligible. spect toz) while the minimization with respect tb(£) does

In order to save ourselves some algebra, we also impose
energy conservation for the ansatz in E@). E
=[[|¢|?d*r=2ma’L/a. We can use this to eliminatz)
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not yield any useful result. From these equations we als@approximate necklace solution given by HEd) that hadL
obtaina=E/(2L ). Integrating these ODEs we obtain =130.04 was approximately 97%. In other words, if we de-

note the final necklace witky,, and the approximate neck-
L(z)= \/ ! 02 —EZ +p2
D=V 1272 V0

lace solution withi,, we get that the overlap is
19 | [ aeluaiz=1uat

where the subscript zero denotes the initial conditiong at ) 5 )

%o | [+l

Note that our ansatz therefore describes a solution whose

intensity and shape scale simply as a functioz,gireserv-  Fyrthermore, we check our prediction fofz) as given by

ing the total energy as the necklace expands, which is corq, (10) against our numerical simulations. The result pre-

sistent with our intuition from Ref.S]. __sented in Fig. 4 shows a very good agreement between the

a few necklaces using the split-step Fourier method and we | addition to these excellent agreemeit@tween the

compare the necklace beams evolvigpanding during  analytics and the numerici the shape and the radius of the

propagation with the approximate analytic solution presente@ecklaces, we measure the radial velocifg=165) of the

in Eq. (4). Given the insight provided by Ed3), we ex-

pected to obtain the best results when our input conditions

22+ 2L gugz+ L35,

~0.03. (12)

O Numerical simulation

were 1301 | — Least action prediction
(r,0,z=0)=a cogQ H)secH[r—L]/w}, (11 _, 120}
=
where a?=4/(3w?), w/L<1, andL7/(4Q)<w. Note that § 110}
the solution from Eq(4) satisfies Eq(1) best if the initial E
radial velocity,v (z=0)=0, so we take it to be zero. Further, S 100¢
in the simulations, the input waveform given by Edl) is é

©
o

multiplied by sirf(7rr/2L) in order to eliminate the singular-
ity at the origin. Nevertheless, as explained above, this
modulation to a very good approximation has no other influ- 80t
ence on subsequent dynamics or necklace shape. For the ex- . - .

ample presented in Fig. B=76.8,w=5, and() =50. At the 0 50 2 [Lo] 100 150

output of the propagation, after=165, the width of the

necklace isL=130.04. The intensity overlap of the final  FIG. 4. Predicting the instantaneous necklace radius of the neck-
necklace(which evolved throughout propagatiowith the  lace from Fig. 3, using the least action principle.
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necklace at the output, and find that it disagrees with the ) )
prediction given by Eq(10) by less than 3%. Furthermore, E:f f d*x|y(z=0)|?, (13
we take the output at=165, and multiply the whole shape space

with exp{—iv(z=165)r}. According to our analytical predic- o

tions, this should have reduced the instantaneous radial v&d also the Hamiltonian

locity of the necklace to zero. Indeed, it reduced the instan-

taneous radial velocity to less than 2.5% of its initial value. H ZJ f d?x{(V ¢(z=0))-(V¢* (z=0))— |¢(z=0)|*}.
To conclude this section, the agreement between the ana- (14)

lytical theory and the numerical results is very good. Since ,
we expect our results to be valid only @{[ L #/(4Qw)12}, Both E andH are conservgd. Energy is conserved because of
or O[(w/L)?], one should not have expected the agreeme Ehe symmetry of Eq(1) with respect to a phase shift. The

; nHamiltonian is conserved because of the invariance of Eq.
to be better tharD(few%) for the particular necklace pre- (1) with respect to a shift ire. Therefore, using Noether's q

sented in Fig. 3. _ _ theorem one can prove thBtandH as defined in Eqg13)
Unfortunately, our analytical solution works only when and(14) are conservetalternatively, one can use the method

the required smallness parameters are truly small. In particigiven in Ref.[4] to show thig. Defining

lar, [L#/(4QwW)]?=1/17.18, and W/L)?=1/236 for the

necklace of Fig. 3. When the required smallness parameters R2(z)= Ef f d2x{| ¥ (2)|?r2, (15)

are closer to unity, one can probably still obtain reasonable E

analytical solutions by including more terms from the expan

sion in Eq.(3) (rather than including only the lowest-order

terms into the ansatz of Eq4). However, one of the re- d[R%(2)] _H

quirements for the stability of any necklace beam is that the dZ ZE’ (16)

azimuthal width of the pearls has to be of the same order or | ) ,
smaller than the radial width of the pearl. In addition, the'VNich thus provides us with another very useful conserved

radius of any necklace should be significantly larger than jrgiuantity. Defining the local current in the usual way,

thickness. Therefore, typical stable necklace-ring beams that i

“after a few lines of algebra, one can show

we expect to be stable in self-focusing Kerr media naturally i(r,0,2)=2{y(r,0,2)Vy*(r,6,2)
have the required parameters small, which makes the pro-
posed expansion seem promising. Extending the regime of = (r,0,2)Vi(r,0,2)}, 17

validity of our approximate method by including higher- one can show that
order terms is beyond the scope of this paper, and we leave it ,
to future research. d[R(2)] 2 o
T—EJ f d“x{j(r,0,z)-r}. (18
space
V. PREDICTING AND CONTROLLING THE EXPANSION

Therefore, given the initial conditiogi(r,8,z=0), we can
RATES OF ARBITRARY SELF-TRAPPED NECKLACES

integrate Eq(16) to obtain

As shown in the preceding section, an excellent analytical H 27
solution for self-trapped necklace beams can be found in R2(2)2E22+ Ef f d?x{j(r,6,z=0)-r}+R?(z=0).
certain regimes of parameters. However, the approach of the space
preceding section does not work in some rather interesting (19)
regimes of necklace parameters; consequently, we are not
able to write down the explicit analytical solution in those = How can we use this result? Well, if it is a valid assump-
regimes. In this section we present another analytical aption that most of the initial necklace energy stays bound to
proach that gives a good prediction for the radius of thethe necklace as the necklace propagaies, only a negli-
necklace as a function of the initial necklace shape and thgible amount ofe andH are carried away from the necklace
propagation distance. This approach works even though or&s the necklace propagates, as we fully expect from self-
does not know the instantaneous analytical solution for thérapped propagation and as we have found numericall§lin
necklace shape. It can also be used to predict the dynamics afid in the examples in this papethen Eq.(19) lets us
a necklace after multiplication with an arbitrary radial phase predict the instantaneous necklace radi(g). [By L(z) we
But, this approach below worksnly for the (2+1)D self- mean the distance from the origin wheig(r, 6,z)| is larg-
focusing cubic NLSE, whereas the approach from Sec. I\est; see Fig. 1.This is because it is trivial to show that for
seems to be adaptable for any number of dimensions, and foypical necklace4. (z)~ VR?(z) up to O(w?/L?) as long as
any form of nonlinearity. In any case, it is worthwhile to w/L is small, which is naturally satisfied by all self-trapped
present both approaches in this paper, and also to use themecklaces of interedfi.e., those that propagate in a stable
as a mutual check on each other. fashion in Kerr media

We follow the approach given ifl6,17 to derive the It is now instructive to compare the prediction from Eq.
instantaneous radius of the necklace radius as a function @19) with the prediction we obtained using the action mini-
the propagation distance, and the initial necklace shapemization approach in Sec. IV, like Eq10). Adapting Eq.
First, we need to define the energy (19) for the necklace of Fig. 3, we find
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1 3E2 8 pearls 16 pearls
L(z)~R%(z)= \/[—2(92— 5| |22+ R3. (20 15 , 20
Lo 64
- -

Comparing this with Eq(10), after settinguo=0 in that ¢ g 18 o
equation, we see that the relative error in the term propor-Z& g 5
tional to z2 is 7E2/(192m%Q02)=7L3/(270%)w?, which is 8 4o %16
tiny for that necklace. Similarly, as we have already shown,s k) o
the error in the term proportional &9 is O(w?/L?) whichis 2 4 3
again negligible. Extending this analysis for the cases where® 5 B 144
vo# 0 is a bit more involved, but the result is again that the
two approaches differ only by a tiny amount which is set by 5 12
the smallness parameters of the necklace. 0 10 20 30 0 10 20 30

In order to test our results, we simulate numerically sev- Z[Lo] Z[Lo]
eral typical examples of self-trapped necklaces and compar 32 pearls 64 pearls
them with the prediction given by Eq19). We obtain best 31 57
results if the initial shapes are as close to the true “equilib-
rium” shape as possible, because in that case only a negli— 30 ~ 565
gible amount of energy is carried away with radiation 8 g 56
through subsequent breathing of the necklada. other ¥ 29 3
cases, some energy is lost to radiation in the formation pro-£ 2 g 55.5
cess of the necklace, as always occurs in the formation o° 28 °
solitons from a nonperfect inputHowever, since there are 1, 2
no analytical solutions for necklaces in all regimes, a typical = 27 = 54.5
necklace at the input is only an approximation to the equi-
librium neck!aqe shape. Nevertheless, this technique gives u 260 7 20 0 540 T 20 30
a good prediction of the subsequent necklace dynamics, pro 2 [Lo] 2[Lo]

vided that not much energy is eventually scattered into ra-
diation. In any case, experimentally, all necklaces are ex- FIG. 5. Predicting the expansion rates of arbitrary self-trapped
pected to be launched with &(z=0) real, soL(2) necklaces: comparison between numerical beam-propagation results
~\(H/E)z’+L?(z=0). Our necklaces at the input are and analytical predictions. All necklaces here havé)=1.707,
given by a=1, andw=1. Their respectivé) =4, 8, 16, and 32. The analyti-
cal approach used here is based on using some conservation laws of
the (2+1)D cubic NLSE, in order to find the instantaneous neck-
#(r,0,2=0)=a cog 9)3904 )S|n2< ) (21) lace radius directly. This approach works for a necklace of arbitrary
parameters as long as most of its initial energy and Hamiltonian are
wherelL/Q=1.7072,w=1, anda=1; according to our ex- Self-trapped to the necklace as it propagates.
perience this input shape is close to the equilibrium necklace
shape. As examples, we consider the cases wherd, 8, for the dynamics even for necklace beams whose shape is not
16, and 32. The purpose of the $tberm in Eq.(21) is again initially very close to the existence curve. For example, we
only to eliminate the singularity at the origin; we can ignorelaunch a few necklaces that have very similar dimensions to

Z2+L%z=0). (22

this term when performing the relevant integrals, as we didhose in Fig. 5, but with a Gaussian instead of a sech shape at
in Sec. IV, since the relative mistake is on@(w?/L?) the input. This shape is not close to the equilibrium necklace
which is negligible for our necklaces. All the relevant inte- shape; nevertheless, the agreement between the numerical
grals needed to obtain the Hamiltonian and energy are evaluesults and the analytical predictions for the expansion of the
ated in exactly the same manner as in Sec. IV. Therefore, weecklace beams is still reasonably good, as shown in Fig. 6.
obtain Now that we have an analytical expression for the neck-
lace dynamics, as given by E@2), we can study the feasi-
\/ 1 Q% o° bility of making a stationary necklace. That is, we would like
L2~ WJF Lz 2 to know whether it is possible to construct a necklace that
would not change its radius at all as it propagates. Looking at
For each of the necklaces, we compare the prediction giveRqg. (22) it seems that all we have to do is construct a neck-
by Eq.(22) with the actual numerical experiment. The resultlace whose parameters make the term proportionaf tim
is shown in Fig. 5. The circles represent numerical dataEg.(22) to zero. For example, we can fix= o= 1, and pick
while the solid lines represent the predictions given by EqL that will make the given term zero. However, in that case
(22). As we can see, our analytical prediction is a fairly goodwe conclude that the azimuthal width of each pearl,
approximation for reasonable propagation distanee$ew L #/(4Q)=1.92, which is bigger than the radial width of the
tenths of diffraction lengths Keeping in mind that the larg- pearl, and therefore such necklace beam is not stable in self-
est propagation distance observed so far for spatial solitons fecusing Kerr media. For the given intensity, the pearl will
roughly 20, ; being able to make analytical predictions up self-focus in the azimuthal direction, and this will eventually
to a distance of 30y is very useful. However, the real value destabilize the necklace and disintegrate it. We run the simu-
of the prediction in Eq(22) is that it gives a good estimate lation with these precise parameters, and our expectations
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= 28 FIG. 7. A necklace with no radial dynamics. Our analytical
275 54.5 understanding of radial dynamics of necklaces lets us design a
o7 54 necklace whose radius is stationary as the necklace propagates. The

10 20 30

z [Lo]

z[Lo]

necklace presented here has=1.16, w=1, =8, and L/Q)
=1.707. Unfortunately, this necklace hagar away from the equi-

o ) . librium shape. Thus, each pearl has its own dynamics that eventu-
FIG. 6. Predicting the expansion rates of arbitrary necklacesyly [after O(40Lp)] destabilizes the necklace. Nevertheless, as

whose shapes are not close to the equilibrium shapes |n|t|a”y|0ng as the necklace is stalflentil O(4O|_D):|, its radius does not
These necklaces have the same full width at half maximum, radichange as was predicted by our analytics.

uses, energies, ands as their counterparts in Fig. 5. But, their
radial profiles are initially Gaussian instead of sech shaped. Thugould produce a necklace beam that would be stable and
they are not close to the equilibrium self-trapped shapes. Neverthstationary for a fairly long distance, s&y(40Lp). Eventu-
less, the analytic approach used in Fig. 5 still gives a useful apally, the necklace would disintegrate since its initial shape
proximation when predicting the radial necklace dynamics. would be too far away from the equilibrium necklace shape
[18]. However, the propagation distance during which such a
were confirmed. The radius of the necklace does not changsecklace is stable is sufficient for experimental interest and
almost at all. However, each pearl keeps shrinking in thets conditions are not too stringent. Finally, as the result from
azimuthal direction, and the necklace destabilizes withinFig. 7 clearly demonstrates, our previous intuition, that the
O(40Lp). Therefore, settingv=a=1 and choosing al.  force holding the necklace together results from repulsion
that eliminates the term proportionalz6in Eq. (22), yields ~ between adjacent “pearl” solitons, needs to be reexamined
a nonexpanding necklace that is basically unstable but cafore carefully. In particular, Eq22) implies that by choos-
survive for tens olLp’s. Another option to stop the expan- ing the proper parameters, one can make both the initial ra-
sion is to increase only. We take the necklace from Fig. 1, dial velocity and_ the initial radial acceleration of the neck-
and keeping all of its other parameters fixed, we increase 'ace to be negative. Sure enough, such a necklace eventually
till the term proportional t@? in Eq. (22) vanishes. Unfor- turns out to be unstab!e, but this fact does not d|m|n|s_h the
tunately, the necessauyis equal to 1.16, which is too far off fact that the necklace is held together by a force that is not

the equilibrium necklace shape. As shown in Fig. 7, thiSnet repulsion only. One can think about this force as “sur-

alternative also leads to nonstationary propagation becau{%‘ig dtensmn, yet thus far the analogy is not really substan-

the pearls keep shrinking, even though the necklace radius is We now proceed to use the analytical tools from above to

largely unchanged tilD(40Lp). Thus, choosing parameters 5,76 what happens if one introduces an arbitrary radial

so that the term proportional & in Eq. (22) is set to zero phase to any necklace, at an arbitrary monzgntn particu-

seems not to be a fully satisfactory method for stopping th?ar, we assumel(r, 6,2o.) = (1, ,z5)explur), wherez,

necklace expansion. o _denotes the moment immediately after imposing the radial
Even though the structure in Fig. 7 is clearly nonstation-phase, and, denotes the moment immediately before. After

ary, there are important lessons to be learned from it. The few lines of algebra, we g&(z,)=E(z,.), and also

first lesson is that our analytical expression E§) seems to

work well, giving correct predictions even when the iniial ~ d[R*(2)]|  d[R*2)]]  2v f f 2 )

shapes are far away from the equilibrium necklace shapes. dz T dz | + E X| (20|

Furthermore, by increasing the azimuthal width of each pearl i space

a little, and also increasing the peak amplitude slightly, one

|ZO+

(23
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Note that for typical necklaces the last term in EZ0) is 2=0.01L, z=40L, z=8.01L,
very close to 2L(z,). ApproximatinglL?(z)~R?(z) in Eq.
(23), we therefore obtain o, e, e,
- - - - -
dL(z)| _dL(z)‘ 04 . - . . - -
dz |Z ~ T dz ‘Z v, (24) '.'-i T ".'n
0+ 0
which is exactly as expected. Furthermore, we can also find =12l L= B 7=200L,
out what happens with the Hamiltonian after imposing this 20
. LE ] ahs
radial phase Ll Y0, . P
. - - - - - -
- - - - - -
— + 2 + 2y f; Nas - - - L -
H(zy.)=H(zo) +v°E ZUJ fd x{j(r,0,zp)f} N "ean® st EP
space (25) =20 E 20
Since the last term in Eq.25) is negative for a negative z=00L, z=40L, =801,
radial phase, it is not clear whether imposing a radial phase 10
in order to stop the instantaneous radial expansion would
typically decrease or increase the Hamiltonian. Thus, we do % . .
not know how would it influence the term proportionalo
in Eq. (19). Note that this term is relate@ut not equal to
the instantaneous radial acceleration of each pearl. To pro- -10
ceed with our analysis, we assume that at the ingstQ) 10 % 20

we start with a necklace beam that has zero radial velocity.
Then, we propagate the necklace for saggeat which point
according to our analysis in Ed19), its radial velocity
should be given by approximately,=Hz,/[EL(zp)].
Therefore, we multiply the whole shape with exp(qr).
Then, we notice the similarity between the last term in Eq.
(25), and the Eq(18) to conclude

FIG. 8. (a) The radial dynamics of a necklace. The initial neck-
lace shape ig/(r,0,z=0)=0.56 secf(r—13.66)/3 (times a modu-
lation function that removes the singularity at the origin while leav-
ing everything else unchanged\s shown here, this necklace has a
rather slow radial dynamics.(b) The propagation dynamics of a
single pearl taken from the self-trapped necklacéapfafter 8L .
Shown are the dynamics of the isolated rightmost pearl. As shown
here, a stand-alone pearl diffradesxpands much faster than the
expansion dynamics of the whole neckldas shown in the bottom
row of (a)].
This is telling us that after imposing the radial phase, the
necklace will have the same dynamics as the scaled-up ver-
sion of the necklace we started withzat 0. This is consis-
tent with our picture from Ref{5] that the intensity of the We revisit self-trapped necklace-ring beams in self-
necklace to a good approximation simply scales as the neckiecusing Kerr media, and, with collision experiments in
lace propagates, according to the rescaling properties of Emind, we investigate the possibility of controling the dynam-
(1) which conserve the energy in the beam. Notice that irics of these structures. Using the action minimization ap-
addition to extinguishing the instantaneous radial velocity proach, we find analytical solutions for the necklace shapes
we have also slowed down the subsequent dynamics, as omespecific regimes of necklace parameters, and present ana-
can see by comparing Figs. 1 and 2. In a way, this is exlytical techniques for predicting the radial dynamics of a
pected, because it is natural that a scaled-up necklace woultecklace of any arbitrary initial shape, even if the shape is
have a slower dynamics, exactly by the factor given in Egnot close to the equilibrium necklace shape. We also present
(26). a procedure that enables us to control and reverse the instan-

By imposing a large enough negative radial phase, théaneous necklace radial dynamics. All the tools that we pre-
radial acceleration can in principle be turned into zero, orsented in this paper enable us to design many different neck-
even negative. But, this is not a stable solution because thaces which are essentially stationary over most propagation
radial phase needed to obtain this is huge compared to othdistances of physical interest: tens of diffraction lengths.
necklace parameters, making this proposal infeasible. Alsd&Such self-trapped necklaces resemble solitons in many ways:
in that case the necklace would keep contracting until it dea necklace conserves energy and momentum and does not
stroys itself (each pearl undergoes the equivalent of catachange its shapes over the experimentally reachable propa-
strophic collapse Consequently, in typical experimental re- gation distances. Therefore, for all practical purposes, we can
alizations, one would probably want to let the necklacetreat the self-trapped necklaces as “quasisolitons” of the
expand for a while, then impose a large enough negativé2+1)D self-focusing cubic NLSE. This is in sharp contrast
radial phase to make it contract for a while, until it startsto the previously held belief that this equation does not sup-
expanding again. Then one would impose a negative radiadort solitons. Consequently, as an avenue of further research,
phase again, etc. we envision studying all solitonic effects with necklaces,

L%(z=0)

H(ZO+):H(ZO)E2(ZTZO)' (26)

VI. CONCLUSION
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both experimentally and theoretically, including interactionsthis radial dynamics of a stable necklace is much slower than
of such necklaces. Finally, we emphasize that this work omwhat the growth rate of each pearl would be if the pearl was
self-trapped necklace-ring beams is of direct relevance anstanding by itself. The reason for this is that the stabilizing
should be observable in all other nonlinear systems describadlechanism for a pearl in a necklace is much different than
by the cubic (2-1)D nonlinear Schrdinger equation: prac- for a pearl standing by itself. If a pearl is standing alone, it
tically in almost all centrosymmetric nonlinear systems inhas to be self-trapped in both dimensions by its self-trapping.
nature that describe envelope way8s However, if it is in a necklace, the self-focusing traps it
(arrests the expansiprin the radial direction only(In the
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