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Self-trapping of ‘‘necklace-ring’’ beams in self-focusing Kerr media
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Recently, we suggested a type of self-trapped optical beams that can propagate in a stable form in (2
11)D self-focusing Kerr media: Necklace-ring beams@M. Soljačić, S. Sears, and M. Segev, Phys. Rev. Lett.
81, 4851~1998!#. These self-trapped necklaces slowly expand their ring diameter as they propagate as a result
of a net radial force that adjacent ‘‘pearls’’~azimuthal spots! exert on each other. Here, we revisit the
self-trapped necklace beams and investigate their properties analytically and numerically. Specifically, we use
two different approaches and find analytic expressions for the propagation dynamics of the necklace beams.
We show that the expansion dynamics can be controlled and stopped for more than 40 diffraction lengths,
making it possible to start thinking about interaction-collision phenomena between self-trapped necklaces and
related soliton effects. Such self-trapped necklace-ring beams should also be observable in all other nonlinear
systems described by the cubic (211)D nonlinear Shro¨dinger equation—in almost all nonlinear systems in
nature that describe envelope waves.

PACS number~s!: 42.65.Tg, 41.20.Jb
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I. INTRODUCTION

In recent years, solitons in (211)D have drawn signifi-
cant attention in optics@1#, as well as in other fields of phys
ics @2#. Most often, envelope scalar waves in (211)D,
propagating in isotropic media can be described by nonlin
Schrödinger equation~NLSE! @3#. This equation is just the
paraxial slowly varying wave equation modified by an ad
tional nonlinear term; thus, its universality particularly f
envelope solitons is not surprising. If in addition, the m
dium is centrosymmetric, and only the lowest-order nonl
earity is important, the system can be modeled by the
11)D cubic NLSE. Because of its universality, this equati
models very many physical systems. Consequently, it wo
be desirable to have (211)D bright solitons in this equation
Unfortunately, for a long time all known solitons of th
equation were thought to be unstable@4#. Nevertheless, re
cently we were able to construct stable self-trapped br
beams in (211)D cubic self-focusing NLSE@5#, so-called
necklace-ring beams, and their existence as stable en
propagating in Kerr media was shown experimentally@6,7#.
Necklace beams are beams shaped like rings, whose inte
is azimuthally periodically modulated as in Fig. 1. In our fir
paper on this subject@5# we have demonstrated the existen
of self-trapped necklaces numerically, and demonstra
their stability to numerical noise. Here we show analytica
how to predict and control the radial dynamics of neckla
beams, and present analytic solutions for necklace beam
several parameter regimes.

This paper is organized as follows. In Sec. II we provi
a brief introduction to necklace beams. In Sec. III we d
scribe a procedure that facilitates control over the insta
neous radial velocity of any necklace. In Sec. IV we pres
analytical solutions to necklace beams in some specific
gimes of parameters as a function of the propagation
tance. This enables a direct prediction of the radial accel
tion of a necklace when its radial velocity is manipulate
PRE 621063-651X/2000/62~2!/2810~11!/$15.00
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However, this solution works well only in a limited range o
necklace parameters. Consequently, in Sec. V we prese
different analytical technique that allows one to predict t
dynamics of any necklace as a function of its initial para
eters. This technique can also predict what happens with
dynamics of the necklace once we manipulate the neckla
instantaneous radial velocity. However, the technique fr
Sec. V gives us no information whatsoever about the inst
taneous necklace shape. In Sec. VI we conclude by sum
rizing our predictions and propose new experiments.

II. WHAT ARE NECKLACE-RING BEAMS?

In the optics community, it was a commonly held beli
that physical systems described by (211)D cubic self-
focusing NLSE cannot be used for soliton observations si
all known self-trapped beams in such systems were thou
to be unstable. For example, cylindrically symmetric so
tions of all orders of this equation@8# suffer from cata-
strophic collapse~or diffraction, depending on their power!
@4,9#; i.e., any small deviation from the equilibrium shap
makes them contract to a point, or diffract to infinity. Sin
solitons of (111)D cubic self-focusing NLSE are known t
be stable, one might think that a beam that is self-trappe~a
soliton! in one transverse dimension~say,x! and uniform in
the other transverse dimension~y!, while propagating along
z, should be stable. Unfortunately, such a beam is also
stable: it suffers from transverse modulation instability@10#.
Small perturbations in the transverse direction@which was
initially uniform ~y!#, grow on top of the pulse as the puls
propagates, and the pulse eventually disintegrates. Simila
cylindrically symmetrical rings~of radius large compared to
their thickness,! suffer from modulation instability in the azi
muthal direction, both when they do carry topologic
charge, and also when they do not@11,12#.

Nevertheless, it was shown that beams in planar Ke
nonlinear waveguides can be accurately described by
2810 ©2000 The American Physical Society
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FIG. 1. Example of evolution of a necklac
beam with initial shape given byc(r ,u,z)
5a cos(Vu)sech@(r2L)/w#, where a51, w51,
V58, andL/V51.707. The necklace slowly ex
pands as it propagates. The axes are the same
all plots. Dark color indicates high intensity. I
all figures in this paper, contrast is enhanced
better clarity.
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11)D cubic self-focusing NLSE as long as the dimension
the beam parallel to the plates~the trapping direction! is
much larger than the distance between the plates@13#; thus,
solitons of such a configuration are stable. In fact, in 19
Barthelemyet al. have produced the first optical spatial Ke
solitons using an idea that was driven by this understand
@14#. They superimposed two beams that were both nar
in one transverse direction~x!, uniform in the other trans-
verse direction, but propagating at a small angle with resp
to each other, thus producing an interference pattern in
direction in which each of the beams by itself was unifo
~the y direction!. The self-focusing Kerr nonlinearity trans
lated the interference grating into a periodic modulation
the index. The spatial wavelength of this modulation w
much smaller than the beam’s width inx. Therefore, at a
proper intensity, the structure self-trapped inx ~each beam
created a soliton inx!, whereas iny the nonlinearity effec-
tively produced a nonlinearly-induced multiple wavegui
structure from each of the interference fringes. Because ty
width of each induced-waveguide was much narrower t
the soliton width~in x!, the structure was stable and no tran
verse instability was observed iny.

Unfortunately, experimentally, neither of the beams co
be infinite in the transverse direction. Consequently,
beams eventually walked off from each other and stop
interfering, thereby destroying the configuration. In additio
the described solution is not completely satisfactory since
shapes produced are really only (111)D shapes. Clearly
one would like to have higher dimension solitons, whi
would enable exploring 2D soliton interactions and other
teresting features of higher dimensionality.

In Ref. @5# we have built on the idea described in th
previous paragraph~and in Ref.@14#! to produce stable self
trapped beams in (211)D Kerr media. In our imagination
we took the shapes described in the previous paragraph
f
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wrapped them around their own tails, thus producing ne
lace beams@5#. Necklace beams are beams shaped like rin
whose radius is large compared to their radial thickness
order to avoid modulation instability in the azimuthal dire
tion, the intensity is periodically modulated in the azimuth
direction @like the interference pattern between the
11)D solitons of@14##. An example of a self-trapped neck
lace beam is shown in Fig. 1. Such a shape can be thoug
as a superposition of two equal uniform-intensity rings c
rying the same but opposite charges, thus resulting in
interference pattern in the azimuthal direction.

In general, propagation of a necklace beam is not stat
ary: the beams exhibit slow radial expansion as they pro
gate. The expansion is a result of a net radial ‘‘force’’ th
results from the azimuthally alternating phase, and is ty
cally much slower than diffractive expansion. In some ca
the nonlinear expansion is even negligible over all propa
tion distances of experimental interest.

The main feature of necklace beams is that the radial
namics rate of necklaces is typically many orders of mag
tude slower than the rate at which each of the pearls of
necklace would suffer catastrophic collapse if it were sta
ing by itself. In other words, the necklace-ring beam exhib
stationary propagation for a very large distance, dur
which neither the ring diameter nor the width of each sp
~‘‘pearl’’ ! on the ring change significantly. For, exampl
consider Fig. 1, where after 55LD , the radius of the necklace
grew by less than a factor of 2. In contrast, each pearl~if
standing by itself! undergoes catastrophic collapse~or dif-
fraction! within only a few LD . ~Please see the Appendix!
Therefore, with interactions~collisions! between necklace
ring ‘‘solitons’’ in mind, two self-trapped necklaces can m
tually interact over a large distance during which they do
change their shapes appreciably. Thereby, one can
necklace-ring self-trapped beams to explore nonlinear in
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FIG. 2. Stopping the neck-
lace’s instantaneous radial veloc
ity. We take the necklace at th
output of Fig. 1, and measure it
instantaneous radial velocityv0 .
Then we multiply the whole shape
with exp(2iv0 r). The subsequen
instantaneous radial velocity
drops to 2% of the initial value.
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action phenomena and collisions~which are the most fasci
nating features of all solitons!, in (211)D; this was previ-
ously thought to be undoable in (211)D self-focusing Kerr
media ~i.e., in a medium represented by the cubic se
focusing NLSE!.

III. CONTROLLING THE EXPANSION RATE
OF THE SELF-TRAPPED NECKLACE BEAMS

As shown in@5# necklaces typically grow as they prop
gate. The intuition behind this growth is that the amplitud
of the neighboring pearls arep out of phase, thereby repe
ling each other@1,15#; consequently there is a net radial for
outwards on each pearl. For numerous reasons, it is im
tant to have a means to control the expansion of
necklace-ring self-trapped beam. For example, it would
nice to be able to stop the expansion, and perhaps eve
verse it, at least for some finite propagation distance. In f
there is a natural way to obtain precisely this goal. Name
one can take the necklace at any given propagation dist
z, and multiply the whole shape with exp(2iVr), wherer is
the radial coordinate. Imposing such a radial~transverse!
phase influences the radial velocity of each pearl. If the
dial velocity of a pearl before applying the radial phase isv,
then after the application of the phase, the net radial velo
is roughlyv-V. Therefore, the instantaneous expansion
locity can be reduced to zero. Furthermore, one can e
reverse this velocity so that the necklace immediately a
the application of the radial phase initially shrinks. This to
provides control over the instantaneous necklace ra
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growth. Such a radial phase is trivial to impose experim
tally: one just shines a necklace through a ‘‘sharpened p
cil’’ phase object, made from glass.

The fact that we can produce a shrinking necklace in t
manner is not inconsistent with the intuition that the neig
boring pearls should repel each other. The procedure
have just suggested to make a shrinking necklace does n
general make the radial acceleration negative, and thus
not turn the repulsion between adjacent ‘‘pearls’’ into attra
tion. To illustrate the idea, consider a necklace with
pearls, as we show in Fig. 1, and let it propagate for a wh
After 55LD , we measure its instantaneous radial velocityv0 ,
and multiply the whole shape with exp(2iv0r). As one can
see in Fig. 2, the instantaneous velocity is significantly
duced. A more careful measurement shows that the reduc
in this particular case was fromv0 to approximately22% of
v0 . However, the instantaneous radial acceleration st
positive, so the radial velocity of the necklace keeps incre
ing even after the application of the radial phase, as show
Fig. 2. In the subsequent sections we analyze analytic
what exactly happens with the radial acceleration as a re
of the application of such a radial phase.

IV. APPROXIMATE ANALYTIC SOLUTIONS

In this section we use the action minimization approach
order to obtain an approximate analytical solution to t
necklace shape as a function of the propagation distancz.
The solution we find works well only in certain regimes
necklace parameters. However, in these regimes it give
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excellent prediction for the radius of a necklace, the shap
the necklace, and its radial velocity as a function of t
propagation distance. It also provides us with a quantita
understanding about what happens with the necklace o
we multiply it with a radial phase, as proposed in Sec. II

We seek an approximate analytic solution in the regi
where the radius of the necklaceL, is much larger than its
thicknessw, as defined in the last plot of Fig. 1. In additio
we consider only the cases where the thickness of the n
lacew is much larger than the rate of the azimuthal variat
Lp/(4V). ~Note that since we are comparing the width
the typical feature in the azimuthal direction with the thic
ness in the radial direction,Lp/(4V) is the correct measur
of the characteristic size of the azimuthal variation.! In this
regime the (211)D cubic self-focusing NLSE

i
]c

]z
1

1

2 H ]2c

]r 2 1
1

r

]c

]r
1

1

r 2

]2c

]u2J 1ucu2c50, ~1!

can be approximated as

i
]c

]z
1

1

2 H ]2c

]r 2 1
1

L2

]2c

]u2J 1ucu2c50. ~2!

Thus, one can attempt to write a solution to Eq.~2! as

c~r ,u,z!5e2 iGz(
n51

`

(
m51

`

$an,m cos@~2n21!Vu#

3sech2m21@~r 2L !/w#%, ~3!

with G(w,L,V), an,m(w,L,V), andV is an integer. In this
case, there exists a solution like Eq.~3! that hasa1,1 of
O@(4wV/Lp)2# larger than any otheran,m , and (a1,1)

2

'4/(3w2). Consequently, our intuition tells us that the re
solution can probably be well described by

c~r ,u,z!5a~z!cos~Vu!sech$a~z!@r 2L~z!#%

3exp@2 iG~z!z1 iv~z!r #, ~4!

provided that a2(z50)54a2(z50)/3, v(z50)50, w/L
!1, andw@Lp/(4V). We intend to look fora(z), a(z),
L(z), G(z), and v(z) using the action minimization ap
proach. Before proceeding, we emphasize that Eq.~4!, when
substituted into Eq.~1!, produces an undesired singularity
the origin. Consequently, in our simulations, we actua
multiply Eq. ~4! at the input (z50) with a smoothly varying
function that behaves proportional tor 2 close to the origin,
but assumes values close to unity in the regions where m
of the energy of Eq.~4! is concentrated. An example of suc
a function is sin2 (rp/2L). Expanding this function around
r 5L(z), we conclude that this function’s presence infl
ences our action integrals byO„(w/L)2

…, so we are justified
in ignoring its presence when evaluating our integrals;
only place where it actually matters is close tor 50, and its
only purpose there is to eliminate the singularity. Therefo
when evaluating the action integrals in cylindrical coor
nates below, we first integrate overu, and when integrating
overr, we keep in mind that the only important contributio
to the integral are close tor 5L(z), while the contributions
of the regions close tor 50 are negligible.
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e
ce

e

k-

l

st

e

,

Our Lagrangian density therefore becomes

L5 i H c
]c*

]r
2c*

]c

]r J 1S ]c

]r D S ]c*

]r D
1

1

r 2 S ]c

]u D S ]c*

]u D2ucu4, ~5!

Using the Lagrangian equations of motion

]

]z F ]L

]cz*
G1

1

r

]

]r F r
]L

]c r*
G1

]

]u F ]L

]cu*
G2

]L

]c*
50, ~6!

one can obtain Eq.~1! from Eq. ~5!. In the notation we are
using, the action is given by

S5 È`

dzE
0

2p

duE
0

`

r dr L . ~7!

In order to evaluate the action, we need to evaluate a
integrals. To illustrate how we deal with the singularity at t
origin, we present some of the integrals here. For examp

E
0

`

r 3sech2@a~r 2L !#dr>È`

~r 2L !sech2@a~r 2L !#dr

1E
2`

`

L3sech2@a~r 2L !#dr

5
2L

a
,

since the first integrand is odd aroundr 5L. Similarly, in the
integral*0

`(dr/r )sech2@a(r2L)#, we can replace

1

r
5

1

L H 12
r 2L

L
1OF S w

L D 2G J ,

and integrate from2` to ` instead, not worrying about wha
happens at the origin because of the presence of the m
lating function which annihilates the singularity, as e
plained above. The other integrals are evaluated in a sim
manner. After a few additional lines of algebra, we obtain

S5pE
2`

`

dzH 4vza
2L2

a
2

4La2

a

]

]z
@Gz#1

2aa2L

3

1
2a2v2L

a
1

2V2a2

aL
2

4La4

3a J . ~8!

In order to save ourselves some algebra, we also imp
energy conservation for the ansatz in Eq.~4!. E
5** ucu2d2r >2pa2L/a. We can use this to eliminatea(z)
from Eq. ~8! in terms of the other variables. We substitu
a52pa2L/E in Eq. ~8!, whereE is a constant. Finally, we
require the minimization of the action in Eq.~8! as

dS

dG~j!
5

dS

dL~j!
5

dS

da~j!
5

dS

dv~j!
50, ~9!

thereby obtaining 2paL/E51, Lz5v, and vz5(V2

2E2/12p2)/L3 ~the subscriptsz denote derivatives with re
spect toz! while the minimization with respect toG~j! does
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FIG. 3. A necklace whose parameters are
the regime that can be analyzed by the least
tion principle. At the input of this necklace,w
55, L576.8, V550, and a254/(3w2). The
analytical solutions we find approximate the su
sequent evolution of the shape of this necklace
within a few percent. The regime that can be u
derstood analytically is described by the para
eters that satisfya254/(3w2), w/L!1, and
Lp/(4V)!w.
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not yield any useful result. From these equations we a
obtaina5E/(2Lp). Integrating these ODEs we obtain

L~z!5AF 1

L0
2 S V22

E2

12p2D1v0
2Gz212L0v0z1L0

2,

~10!

where the subscript zero denotes the initial conditions az
50.

Note that our ansatz therefore describes a solution wh
intensity and shape scale simply as a function ofz, preserv-
ing the total energy as the necklace expands, which is c
sistent with our intuition from Ref.@5#.

To test our analytical results, we simulate the evolution
a few necklaces using the split-step Fourier method and
compare the necklace beams evolving~expanding! during
propagation with the approximate analytic solution presen
in Eq. ~4!. Given the insight provided by Eq.~3!, we ex-
pected to obtain the best results when our input conditi
were

c~r ,u,z50!5a cos~Vu!sech$@r 2L#/w%, ~11!

wherea254/(3w2), w/L!1, andLp/(4V)!w. Note that
the solution from Eq.~4! satisfies Eq.~1! best if the initial
radial velocity,v(z50)50, so we take it to be zero. Furthe
in the simulations, the input waveform given by Eq.~11! is
multiplied by sin2(pr/2L) in order to eliminate the singular
ity at the origin. Nevertheless, as explained above,
modulation to a very good approximation has no other in
ence on subsequent dynamics or necklace shape. For th
ample presented in Fig. 3,L576.8,w55, andV550. At the
output of the propagation, afterz5165, the width of the
necklace isL5130.04. The intensity overlap of the fina
necklace~which evolved throughout propagation! with the
o

se

n-

f
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d

s

is
-
ex-

approximate necklace solution given by Eq.~4! that hadL
5130.04 was approximately 97%. In other words, if we d
note the final necklace withc1 , and the approximate neck
lace solution withc2 , we get that the overlap is

E E d2r uc1u22uc2u2u

E E d2r $c1u21uc2u2%
'0.03. ~12!

Furthermore, we check our prediction forL(z) as given by
Eq. ~10! against our numerical simulations. The result p
sented in Fig. 4 shows a very good agreement between
analytic ~approximate! prediction and direct simulation.

In addition to these excellent agreements~between the
analytics and the numerics! in the shape and the radius of th
necklaces, we measure the radial velocityv(z5165) of the

FIG. 4. Predicting the instantaneous necklace radius of the n
lace from Fig. 3, using the least action principle.
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necklace at the output, and find that it disagrees with
prediction given by Eq.~10! by less than 3%. Furthermore
we take the output atz5165, and multiply the whole shap
with exp$2iv(z5165)r %. According to our analytical predic
tions, this should have reduced the instantaneous radia
locity of the necklace to zero. Indeed, it reduced the inst
taneous radial velocity to less than 2.5% of its initial valu

To conclude this section, the agreement between the
lytical theory and the numerical results is very good. Sin
we expect our results to be valid only toO$@Lp/(4Vw)#2%,
or O@(w/L)2#, one should not have expected the agreem
to be better thanO(few%) for the particular necklace pre
sented in Fig. 3.

Unfortunately, our analytical solution works only whe
the required smallness parameters are truly small. In part
lar, @Lp/(4Vw)#251/17.18, and (w/L)251/236 for the
necklace of Fig. 3. When the required smallness parame
are closer to unity, one can probably still obtain reasona
analytical solutions by including more terms from the expa
sion in Eq.~3! ~rather than including only the lowest-orde
terms! into the ansatz of Eq.~4!. However, one of the re
quirements for the stability of any necklace beam is that
azimuthal width of the pearls has to be of the same orde
smaller than the radial width of the pearl. In addition, t
radius of any necklace should be significantly larger than
thickness. Therefore, typical stable necklace-ring beams
we expect to be stable in self-focusing Kerr media natura
have the required parameters small, which makes the
posed expansion seem promising. Extending the regim
validity of our approximate method by including highe
order terms is beyond the scope of this paper, and we lea
to future research.

V. PREDICTING AND CONTROLLING THE EXPANSION
RATES OF ARBITRARY SELF-TRAPPED NECKLACES

As shown in the preceding section, an excellent analyt
solution for self-trapped necklace beams can be found
certain regimes of parameters. However, the approach o
preceding section does not work in some rather interes
regimes of necklace parameters; consequently, we are
able to write down the explicit analytical solution in tho
regimes. In this section we present another analytical
proach that gives a good prediction for the radius of
necklace as a function of the initial necklace shape and
propagation distance. This approach works even though
does not know the instantaneous analytical solution for
necklace shape. It can also be used to predict the dynami
a necklace after multiplication with an arbitrary radial pha
But, this approach below worksonly for the (211)D self-
focusing cubic NLSE, whereas the approach from Sec.
seems to be adaptable for any number of dimensions, an
any form of nonlinearity. In any case, it is worthwhile
present both approaches in this paper, and also to use
as a mutual check on each other.

We follow the approach given in@16,17# to derive the
instantaneous radius of the necklace radius as a functio
the propagation distance, and the initial necklace sha
First, we need to define the energy
e
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E5E E
space

d2xuc~z50!u2, ~13!

and also the Hamiltonian

H5E E d2x$„“c~z50!…"„“c* ~z50!…2uc~z50!u4%.

~14!

Both E andH are conserved. Energy is conserved becaus
the symmetry of Eq.~1! with respect to a phase shift. Th
Hamiltonian is conserved because of the invariance of
~1! with respect to a shift inz. Therefore, using Noether’s
theorem one can prove thatE andH as defined in Eqs.~13!
and~14! are conserved~alternatively, one can use the metho
given in Ref.@4# to show this!. Defining

R2~z![
1

EE E d2x$uc~z!u2r 2%, ~15!

after a few lines of algebra, one can show

d2@R2~z!#

dz2 52
H

E
, ~16!

which thus provides us with another very useful conserv
quantity. Defining the local current in the usual way,

j ~r ,u,z![
i

2
$c~r ,u,z!“c* ~r ,u,z!

2c* ~r ,u,z!“c~r ,u,z!%, ~17!

one can show that

d@R2~z!#

dz
5

2

EE E
space

d2x$ j ~r ,u,z!"r%. ~18!

Therefore, given the initial conditionc(r ,u,z50), we can
integrate Eq.~16! to obtain

R2~z!5
H

E
z21

2z

E E E
space

d2x$ j ~r ,u,z50!•r%1R2~z50!.

~19!

How can we use this result? Well, if it is a valid assum
tion that most of the initial necklace energy stays bound
the necklace as the necklace propagates~i.e., only a negli-
gible amount ofE andH are carried away from the necklac
as the necklace propagates, as we fully expect from s
trapped propagation and as we have found numerically in@5#
and in the examples in this paper!, then Eq.~19! lets us
predict the instantaneous necklace radiusL(z). @By L(z) we
mean the distance from the origin whereuc(r ,u,z)u is larg-
est; see Fig. 1.# This is because it is trivial to show that fo
typical necklacesL(z)'AR2(z) up to O(w2/L2) as long as
w/L is small, which is naturally satisfied by all self-trappe
necklaces of interest~i.e., those that propagate in a stab
fashion in Kerr media!.

It is now instructive to compare the prediction from E
~19! with the prediction we obtained using the action min
mization approach in Sec. IV, like Eq.~10!. Adapting Eq.
~19! for the necklace of Fig. 3, we find
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L~z!'AR2~z!5AF 1

L0
2 S V22

3E2

64p2D Gz21R0
2. ~20!

Comparing this with Eq.~10!, after settingv050 in that
equation, we see that the relative error in the term prop
tional to z2 is 7E2/(192p2V2)57L0

2/(27V2)w2, which is
tiny for that necklace. Similarly, as we have already show
the error in the term proportional toz0 is O(w2/L2) which is
again negligible. Extending this analysis for the cases wh
v0Þ0 is a bit more involved, but the result is again that t
two approaches differ only by a tiny amount which is set
the smallness parameters of the necklace.

In order to test our results, we simulate numerically s
eral typical examples of self-trapped necklaces and com
them with the prediction given by Eq.~19!. We obtain best
results if the initial shapes are as close to the true ‘‘equi
rium’’ shape as possible, because in that case only a ne
gible amount of energy is carried away with radiati
through subsequent breathing of the necklace.~In other
cases, some energy is lost to radiation in the formation p
cess of the necklace, as always occurs in the formation
solitons from a nonperfect input.! However, since there ar
no analytical solutions for necklaces in all regimes, a typi
necklace at the input is only an approximation to the eq
librium necklace shape. Nevertheless, this technique give
a good prediction of the subsequent necklace dynamics,
vided that not much energy is eventually scattered into
diation. In any case, experimentally, all necklaces are
pected to be launched with ac(z50) real, so L(z)
'A(H/E)z21L2(z50). Our necklaces at the input ar
given by

c~r ,u,z50!5a cos~Vu!sechS r 2L

w D sin2S rp

2L D , ~21!

whereL/V51.7072,w51, anda51; according to our ex-
perience this input shape is close to the equilibrium neckl
shape. As examples, we consider the cases whereV54, 8,
16, and 32. The purpose of the sin2 term in Eq.~21! is again
only to eliminate the singularity at the origin; we can igno
this term when performing the relevant integrals, as we
in Sec. IV, since the relative mistake is onlyO(w2/L2)
which is negligible for our necklaces. All the relevant int
grals needed to obtain the Hamiltonian and energy are ev
ated in exactly the same manner as in Sec. IV. Therefore
obtain

L~z!;AH 1

3w2 1
V2

L2 2
a2

2 J z21L2~z50!. ~22!

For each of the necklaces, we compare the prediction g
by Eq.~22! with the actual numerical experiment. The res
is shown in Fig. 5. The circles represent numerical da
while the solid lines represent the predictions given by E
~22!. As we can see, our analytical prediction is a fairly go
approximation for reasonable propagation distances~a few
tenths of diffraction lengths!. Keeping in mind that the larg
est propagation distance observed so far for spatial soliton
roughly 20LD ; being able to make analytical predictions u
to a distance of 30LD is very useful. However, the real valu
of the prediction in Eq.~22! is that it gives a good estimat
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for the dynamics even for necklace beams whose shape is
initially very close to the existence curve. For example,
launch a few necklaces that have very similar dimension
those in Fig. 5, but with a Gaussian instead of a sech shap
the input. This shape is not close to the equilibrium neckla
shape; nevertheless, the agreement between the nume
results and the analytical predictions for the expansion of
necklace beams is still reasonably good, as shown in Fig

Now that we have an analytical expression for the ne
lace dynamics, as given by Eq.~22!, we can study the feasi
bility of making a stationary necklace. That is, we would lik
to know whether it is possible to construct a necklace t
would not change its radius at all as it propagates. Lookin
Eq. ~22! it seems that all we have to do is construct a ne
lace whose parameters make the term proportional toz2 in
Eq. ~22! to zero. For example, we can fixw5a51, and pick
L that will make the given term zero. However, in that ca
we conclude that the azimuthal width of each pea
Lp/(4V)51.92, which is bigger than the radial width of th
pearl, and therefore such necklace beam is not stable in
focusing Kerr media. For the given intensity, the pearl w
self-focus in the azimuthal direction, and this will eventua
destabilize the necklace and disintegrate it. We run the si
lation with these precise parameters, and our expectat

FIG. 5. Predicting the expansion rates of arbitrary self-trapp
necklaces: comparison between numerical beam-propagation re
and analytical predictions. All necklaces here haveL/V51.707,
a51, andw51. Their respectiveV54, 8, 16, and 32. The analyti
cal approach used here is based on using some conservation la
the (211)D cubic NLSE, in order to find the instantaneous nec
lace radius directly. This approach works for a necklace of arbitr
parameters as long as most of its initial energy and Hamiltonian
self-trapped to the necklace as it propagates.
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were confirmed. The radius of the necklace does not cha
almost at all. However, each pearl keeps shrinking in
azimuthal direction, and the necklace destabilizes wit
O(40LD). Therefore, settingw5a51 and choosing anL
that eliminates the term proportional toz2 in Eq. ~22!, yields
a nonexpanding necklace that is basically unstable but
survive for tens ofLD’s. Another option to stop the expan
sion is to increase onlya. We take the necklace from Fig. 1
and keeping all of its other parameters fixed, we increasa
till the term proportional toz2 in Eq. ~22! vanishes. Unfor-
tunately, the necessarya is equal to 1.16, which is too far of
the equilibrium necklace shape. As shown in Fig. 7, t
alternative also leads to nonstationary propagation bec
the pearls keep shrinking, even though the necklace radiu
largely unchanged tillO(40LD). Thus, choosing paramete
so that the term proportional toz2 in Eq. ~22! is set to zero
seems not to be a fully satisfactory method for stopping
necklace expansion.

Even though the structure in Fig. 7 is clearly nonstatio
ary, there are important lessons to be learned from it.
first lesson is that our analytical expression Eq.~22! seems to
work well, giving correct predictions even when the initi
shapes are far away from the equilibrium necklace sha
Furthermore, by increasing the azimuthal width of each pe
a little, and also increasing the peak amplitude slightly, o

FIG. 6. Predicting the expansion rates of arbitrary neckla
whose shapes are not close to the equilibrium shapes initi
These necklaces have the same full width at half maximum, r
uses, energies, andVs as their counterparts in Fig. 5. But, thei
radial profiles are initially Gaussian instead of sech shaped. T
they are not close to the equilibrium self-trapped shapes. Neve
less, the analytic approach used in Fig. 5 still gives a useful
proximation when predicting the radial necklace dynamics.
ge
e
n

an

s
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e

-
e
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rl
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could produce a necklace beam that would be stable
stationary for a fairly long distance, sayO(40LD). Eventu-
ally, the necklace would disintegrate since its initial sha
would be too far away from the equilibrium necklace sha
@18#. However, the propagation distance during which suc
necklace is stable is sufficient for experimental interest a
its conditions are not too stringent. Finally, as the result fr
Fig. 7 clearly demonstrates, our previous intuition, that
force holding the necklace together results from repuls
between adjacent ‘‘pearl’’ solitons, needs to be reexamin
more carefully. In particular, Eq.~22! implies that by choos-
ing the proper parameters, one can make both the initial
dial velocity and the initial radial acceleration of the nec
lace to be negative. Sure enough, such a necklace event
turns out to be unstable, but this fact does not diminish
fact that the necklace is held together by a force that is
net repulsion only. One can think about this force as ‘‘s
face tension,’’ yet thus far the analogy is not really subst
tiated.

We now proceed to use the analytical tools from above
analyze what happens if one introduces an arbitrary ra
phase to any necklace, at an arbitrary momentz0 . In particu-
lar, we assumec(r ,u,z01)5c(r ,u,z0)exp(ivr), wherez01

denotes the moment immediately after imposing the ra
phase, andz0 denotes the moment immediately before. Aft
a few lines of algebra, we getE(z0)5E(z01), and also

d@R2~z!#

dz U
z01

5
d@R2~z!#

dz U
z0

1
2v
E E E

space

d2xuc~z0!u2r .

~23!

s
y.
i-

s,
e-

p-

FIG. 7. A necklace with no radial dynamics. Our analytic
understanding of radial dynamics of necklaces lets us desig
necklace whose radius is stationary as the necklace propagates
necklace presented here hasa51.16, w51, V58, and L/V
51.707. Unfortunately, this necklace hasa far away from the equi-
librium shape. Thus, each pearl has its own dynamics that eve
ally @after O(40LD)# destabilizes the necklace. Nevertheless,
long as the necklace is stable@until O(40LD)#, its radius does not
change as was predicted by our analytics.
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Note that for typical necklaces the last term in Eq.~20! is
very close to 2vL(z0). ApproximatingL2(z)'R2(z) in Eq.
~23!, we therefore obtain

dL~z!

dz U
z01

5
dL~z!

dz U
z0

1v, ~24!

which is exactly as expected. Furthermore, we can also
out what happens with the Hamiltonian after imposing t
radial phase

H~z01!5H~z0!1v2E12vE E
space

d2x$ j ~r ,u,z0!"r̂%.

~25!

Since the last term in Eq.~25! is negative for a negative
radial phase, it is not clear whether imposing a radial ph
in order to stop the instantaneous radial expansion wo
typically decrease or increase the Hamiltonian. Thus, we
not know how would it influence the term proportional toz2

in Eq. ~19!. Note that this term is related~but not equal! to
the instantaneous radial acceleration of each pearl. To
ceed with our analysis, we assume that at the input (z50)
we start with a necklace beam that has zero radial veloc
Then, we propagate the necklace for somez0 , at which point
according to our analysis in Eq.~19!, its radial velocity
should be given by approximatelyv05Hz0 /@EL(z0)#.
Therefore, we multiply the whole shape with exp(2iv0r).
Then, we notice the similarity between the last term in E
~25!, and the Eq.~18! to conclude

H~z01!5H~z0!
L2~z50!

L2~z5z0!
. ~26!

This is telling us that after imposing the radial phase,
necklace will have the same dynamics as the scaled-up
sion of the necklace we started with atz50. This is consis-
tent with our picture from Ref.@5# that the intensity of the
necklace to a good approximation simply scales as the n
lace propagates, according to the rescaling properties of
~1! which conserve the energy in the beam. Notice tha
addition to extinguishing the instantaneous radial veloc
we have also slowed down the subsequent dynamics, as
can see by comparing Figs. 1 and 2. In a way, this is
pected, because it is natural that a scaled-up necklace w
have a slower dynamics, exactly by the factor given in E
~26!.

By imposing a large enough negative radial phase,
radial acceleration can in principle be turned into zero,
even negative. But, this is not a stable solution because
radial phase needed to obtain this is huge compared to o
necklace parameters, making this proposal infeasible. A
in that case the necklace would keep contracting until it
stroys itself ~each pearl undergoes the equivalent of ca
strophic collapse!. Consequently, in typical experimental r
alizations, one would probably want to let the neckla
expand for a while, then impose a large enough nega
radial phase to make it contract for a while, until it sta
expanding again. Then one would impose a negative ra
phase again, etc.
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VI. CONCLUSION

We revisit self-trapped necklace-ring beams in se
focusing Kerr media, and, with collision experiments
mind, we investigate the possibility of controling the dynam
ics of these structures. Using the action minimization a
proach, we find analytical solutions for the necklace sha
in specific regimes of necklace parameters, and present
lytical techniques for predicting the radial dynamics of
necklace of any arbitrary initial shape, even if the shape
not close to the equilibrium necklace shape. We also pre
a procedure that enables us to control and reverse the in
taneous necklace radial dynamics. All the tools that we p
sented in this paper enable us to design many different n
laces which are essentially stationary over most propaga
distances of physical interest: tens of diffraction lengt
Such self-trapped necklaces resemble solitons in many w
a necklace conserves energy and momentum and does
change its shapes over the experimentally reachable pr
gation distances. Therefore, for all practical purposes, we
treat the self-trapped necklaces as ‘‘quasisolitons’’ of
(211)D self-focusing cubic NLSE. This is in sharp contra
to the previously held belief that this equation does not s
port solitons. Consequently, as an avenue of further resea
we envision studying all solitonic effects with necklace

FIG. 8. ~a! The radial dynamics of a necklace. The initial nec
lace shape isc(r ,u,z50)50.56 sech@(r213.66)/2# ~times a modu-
lation function that removes the singularity at the origin while lea
ing everything else unchanged!. As shown here, this necklace has
rather slow radial dynamics.~b! The propagation dynamics of
single pearl taken from the self-trapped necklace of~a! after 8LD .
Shown are the dynamics of the isolated rightmost pearl. As sho
here, a stand-alone pearl diffracts~expands! much faster than the
expansion dynamics of the whole necklace@as shown in the bottom
row of ~a!#.
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both experimentally and theoretically, including interactio
of such necklaces. Finally, we emphasize that this work
self-trapped necklace-ring beams is of direct relevance
should be observable in all other nonlinear systems descr
by the cubic (211)D nonlinear Schro¨dinger equation: prac
tically in almost all centrosymmetric nonlinear systems
nature that describe envelope waves@3#.
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APPENDIX

As mentioned in the text, it is a well known fact th
cylindrically symmetric bright solitons of (211)D Kerr
NLSE are unstable. If their power is above the so-cal
critical power, they undergo catastrophic collapse, and if
power is below the critical power, they diffract@4#. Each
pearl ~bright spot! in a typical necklace that exhibits stab
self-trapped propagation has a power that is slightly be
the critical power, thus, the necklace slowly expands a
propagates.~If the power in this necklace is increased,
shown in Fig. 7, each pearl in the necklace shrinks and
comes unstable.! However, it is important to appreciate th
tic

d
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d
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this radial dynamics of a stable necklace is much slower t
what the growth rate of each pearl would be if the pearl w
standing by itself. The reason for this is that the stabilizi
mechanism for a pearl in a necklace is much different th
for a pearl standing by itself. If a pearl is standing alone
has to be self-trapped in both dimensions by its self-trapp
However, if it is in a necklace, the self-focusing traps
~arrests the expansion! in the radial direction only.~In the
azimuthal direction, the expansion is arrested by the rep
sion from the neighboring pearls.! Recalling that stable self
trapping in Kerr media is possible in one dimension, but n
in two dimensions, this explains why a pearl is stable in
necklace but not when standing alone. In fact, since the
muthal length of the pearl is smaller than the radial len
~and the peak intensity is chosen just right to provide s
trapping in the radial direction!, the self-focusing effects in
the azimuthal direction cannot compensate for the pea
tendency to expand in the azimuthal direction. Therefo
each pearl is far from being independent; the presence o
other pearls is crucial for arresting the azimuthal expans
of each pearl. To check this hypothesis, we take a neck
from Fig. 8~a!, and after 8LD , we remove all the pearls
except the rightmost one. The subsequent developmen
this pearl~when standing alone!, is shown in Fig. 8~b!, which
confirms that it is the mutual interaction among the pea
that leads to self-trapping of the necklace as a whole.
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