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Spontaneous symmetry breaking and switching in planar nonlinear optical antiwaveguides
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We consider guided light beams in a nonlinear planar structure described by the nonlineafir§ehnro
equation with a symmetric potential hill. Such an “antiwaveguid@WG) structure induces a transition from
symmetric to asymmetric modes via a transcritical pitchfork bifurcation, provided that the beam’s power
exceeds a certain critical value. It is shown analytically that the asymmetric modes always satisfy the
Vakhitov-Kolokolov (necessarystability criterion; nevertheless, the application of a general Jones’ theorem
shows that the AWG modes are always unstable. To realize the actual character of the instability, we perform
direct numerical simulations, which reveal that a deflecting instability, which drives the asymmetric beam into
the cladding without giving rise to fanning or stripping of the beam, sets in after a propagation distance of
approximately 16 transverse widths of the AWG'’s core. The symmetry-breaking bifurcation, in combination
with the deflecting instability, may be used to design an all-optical switch. The switching can easily be
controlled by means of a symmetry-breaking “hot spot” that acts upon an initial symmetric beam launched
with a power exceeding the bifurcation value.

PACS numbes): 42.65.Wi, 42.65.Tg

I. INTRODUCTION length. However, the actual purport of the study of AWG
modes is not an attempt to make them less unstable, but,
It is commonly known that the bound states in the one-instead, their potential for use in all-optical switching de-
dimensional linear Schdinger equation with a symmetric vices, as proposed below. In fact, the moderate instability of
potential well are always symmetric or antisymmetric. It maythe modes will be quiteuseful in this context, making it
seem plausible that this is also true for nonlinear waveguidepossible to control the switching efficiently and reduce the
(WGs), which are described by the nonlinear Salinger necessary size of the switch.
(NLS) equation. In the present work, we demonstrate that, AWG-based switching includes two stages which, in fact,
while this is indeed true for the NLS equation with a sym-can be integrated together. In the first stage, an initial sym-
metric potential well, which describes the nonlinear WGmetric beam with a power exceeding the bifurcation-
proper, spontaneous symmetry breaking occurs, via a tramgenerating value is converted into an asymmetric beam un-
scritical bifurcation, in the case when the NLS equation conder the action of an external controllable disturbance in the
tains a potential hill, rather than a well. This configurationform of a small “hot spot.” The particular asymmetric state
corresponds to a nonlineantiwaveguide(AWG), i.e., a is chosen, out of the two mutually symmetric ones, by the
structure with the reverse refractive-index difference bed{ocation of the hot spot relative to the system’s axis. In the
tween the core and cladding. second stage, the asymmetric beam develogeflacting in-
In the linear approximation, i.e., when the optical powerstability, which drives it into the cladding. The instability
is small, the light is repelled by an AWG. The beam’s powerdoes not violate the coherent structure of the beam, giving
must exceed a certain threshold level for trapping by amise to no conspicuous fanning or stripping. In fact, the same
AWG, the threshold power being of the same order of maghot spot that controls the choice of the bifurcation branch
nitude as that for self-focusinid]. The symmetry-breaking plays the role of a push that initiates the development of the
bifurcation takes place when the power exceeds anothafeflecting instability.
(slightly largep critical value. An advantage of AWGs for potential applications is that
A very important issue is the stability of modes trappedthey have small cross sections of both the core and the
by the AWG. It might naturally be expected that they maytrapped light beam. The cross-section size is near the physi-
never be completely stable. Below, we confirm this expectaeal limit, i.e., on the order of the wavelengtit is quite
tion, using a general theorem by Jo&s Our direct simu-  possible technologically to fabricate structures with cross-
lations demonstrate that, in some cases, the instability isection size of this order of magnitude
slow, allowing for the propagation of AWG modes over a A characteristic feature of AWGS, which is not possible at
distance essentially exceeding the characteristic diffractiomll in WGs, is the existence of special values of the propa-
gation constant, in very narrow vicinities of which the dif-
fraction is balanced by the self-focusingfinite intervalsof
*Electronic address: gisin@eng.tau.ac.il values of the optical powgd]. This feature suggests that the
"Electronic address: malomed@eng.tau.ac.il corresponding AWG modes, provided that their instability is
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slow enough, can be used in the presence of losses, as thwereW(x) is the same potential as defined by E2). but
losses would decrease the power without changing thevith U, substituted byA [see Eq.(3)]. If R(x) does not
propagation constant. This implies effective stability of thedepend orz thenR(x) is a real function corresponding to the
modes against dissipative degradation. Moreover, in thground state of the linear Schilinger equation in quantum
same situation the losses may additionally suppress the dynechanics, i.e.R(x) has no zeros at finite values xf and
namical instability. exponentially decays ak|—cc. In this case, after rescaling
In this work, we focus on the study of asymmetric AWG and carrying out straightforward integration separately in the
modes produced by the above-mentioned spontaneous symere and cladding, we obtain the equations
metry breaking at a bifurcation point. Note that asymmetric
modes can also bifurcate from symmetric ones in another
nonlinear symmetric planar structure, consisting of a linear
core and nonlinear claddiri@]. However, they are different
from the modes to be found in the present work. Moreover, (dR/dx)?2=ER?>—R?*, |x|=1, (6)
the core and the cladding in that structure are made of dif-
ferent materials. The homogeneity of both the core thicknesghereC is an arbitrary integration constant, aAds positive
and refractive-index difference at the core-clad interface ino; \WGs and negative for AWGs. Here, a difference of the
this heterogeneous structure can be problematic from thgresent problem from similar problems for the linear $ehro
technological viewpoint. In contrast, an AWG structure canginger equation in quantum mechanics should be stressed. In
be fabricated by means of diffusing an appropriate dopantne Jinear case, the energy parameenkes discrete eigen-
which alters the linear refractive index but does not con-yes corresponding to the boufidcalized states. In the
spicuously affect the Kerr coefficient, into a silica substratengnlinear case, the spectrum of the values of(teeormal-
This fabrication mode has a great technological advantage;zeq) propagation constanE pertaining to the localized
The rest of the paper is organized as follows. The AWGgtates iscontinuous because a new parameter comes into
model is formulated, and the asymmetric modes are investiy|ay, viz., the solution’s amplitude, which, obviously, played
gated in it by means of analytical methods, in Sec. Il. Theng role in the linear case.
instability of the modes is studied in Sec. lll, the switching  Note that Eq(1) allows one to define diffraction length
scheme based on the asymmetric modes and their instability  \hich provides for a characteristic scale of the propaga-
is discussed in Sec. IV, and the results of the work are sumyjon gistance(below, we will need it to compare with the

(dR/dx)%2=(E—A)R*—R*+C, |x|<1, (5)

marized in Sec. V. distance over which a newly found mode remains effectively
stablé: zp~X?, X being the characteristic size of the beam
Il. ANALYSIS OF THE ANTIWAVEGUIDE MODES in the transverse direction. In a typical ca¥eis about the

core thickness, or, in terms of the rescaled variables defined
in Eq. (3), we simply havezp~2.

The eigenfunctions determined by E¢S) and (6) must
be nonsingular solutions exponentially vanishingat— .
A straightforward consideration of the equations allows us to
prove that, if the solution has a single extremum point inside

where ¢ and 7 are the propagation and transverse coordithe core, then the solution is symmetric and monotonically

nates in the WG or AWGK=2mn/\, n is the linear refrac- decaying asx varies between 0 and-e. Solutions with
tive index, \ is the light wavelength, the nonlinearity coef- more than one extremum point in t_he core region are only
ficient is normalized to be 1, and possible for AWGs. Obviously, solutions with more than one

extremum are nonmonotonic. Both symmetric and asymmet-
U l< ric nonmonotonic solutions are thus possible.
U(p)= or 7= Te ) The symmetric AWG eigenmodes were considered in
0, |#n=n Ref. [4]. A characteristic feature of the eigenmodes in the
AWG is their multiplicity, i.e., one may have more than one
(which corresponds to a step-index struciu@, being the  solution belonging to the same set of valuésE). When
core thickness. For the WG and AWG, respectivély>0  the eigenmodes are multiple, they may indeed have several
and Uy<0. To look for stationary AWG modes with a maxima and minima in the core. A typical example of a full
propagation constang, we substitute into Eq(l) V¥ (Z,7) set of symmetric and asymmetric AWG eigenmodes which
=®(Z,n)expBL), and rescale the equation according to  have a single maximum in the coif®ut may also have
minima) is shown in Fig. 1. Note that they all have no zeros
X=nl e, 2=1(2kn?), E=ByZ, A=Ugn?, R=0ney2,  atfinite|x|. . .
3 The origin (_)f the asymmetric mogles can be easily under-
stood. After simple manipulations, it follows from Eq%)

which produces the basic propagation equation in a reno@nd (6) that the values of botiR*(x) and @dR/dx)? must

We start with the standard NLS equation,

2

A
2ik—+ — +U(n)V+|V|*¥ =0, 1)
i gn?

malized form, coincide at the two core-cladding interfacgss =1, but the
signs of dR/dx at these points may be opposite or equal,
JR R which gives rise, respectively, to the symmetric and asym-
i— + — +[W(x)—E]R+2|R|2R=0, (4y ~ metric solutions. Accordingly, aeparatrix between these
Jz x2 two types of solutions is that withlR/dx=0 at x==*1.
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FIG. 1. An example of the full set of the antiwaveguide eigen_asymmetric eigenmodes in the nonlinear antiwaveguide=at-4.

modes with one maximum in the core and no zeros, in the Base ) )
=—4.0, E=2.5. Here and in other figures normalized distance is 1€ power of the WG or AWG mode is naturally defined

defined by Eq(3). asN=[”_R2dx, which can be transformed into the expres-
sion
Asymmetric solutions with zeros at finifx| are also pos-

sible, but we do not consider them, as it seems likely that w2 [1—sirfa sirf¢
they are strongly unstable. N=2JVE—-Al,+2VE, |,= Jo T 1t cola de.
o

We now proceed to a detailed consideration of the asym- 11
metric AWG solutions. The maximum and minimum values (11)
of the eigenfunctiofR(x) inside the coreR.andRy,,, are

Using the Cauchy-Bunyakovsky inequalityl 14,= 72, we
related as follows from Eq(5): 9 y-buny y inequality 4,=>

obtain a bound from below for the power of the AWG
) ) modes:
RiinT Rma= E—A, (7)
_ N=72/2+2JE. (12)
and Eq.(5) may be written as
The equality in Eq(12) is attained for the above-mentioned
dRr . > degenerate mode witR(x) = /2 inside the core.

T V(REa RH)(RZ=R%,). 8 The transition from the symmetric to asymmetric AWG
modes with increase of the intensity is, in fact, a typical
example of atranscritical pitchfork bifurcation(see, e.g.,
d6)), as is illustrated by Fig. 2, showing a deviation of the
eigenmode’s maximum from the core cent®k (which is a

Equation(8) can be solved in terms of incomplete elliptic
integrals. However, for the actual analysis, it proves to b
more convenient to define a variakjeand a parameter as
follows:

3

R?=R2_.coe+R2, sirfe, sifa=(R%,,— Rﬁqm)/Rana(ﬁ)
9

and then obtain from Ed8)

l_fvrlz [ 1+cofa doe JEZR 10
Yo 1—sirPa sirfe - .

Equation(11) defines the eigenvalues af, and, accord-
ingly, Rmax, as functions of E—A). It can be demonstrated
that the integral 1, as a function ofe, attains a minimum
value/+/2 at the pointe=0. Therefore, for the asymmetric 0
modes, the parameteE( A) is bounded from belowE
—A=72/2, and the equality in this relation is attained when
Rmin=Rmax= /2, i.e., on a degenerate mode with the con- F|G. 3. An example of the evolution of the asymmetric anti-
stant valueR(x) = /2 inside the corgit can be easily dem- waveguide’s eigenmode with increase of the beam’s pdwpast
onstrated that, in this casE=— A= 7%/4). the bifurcation point.

N

Amplitude R(x)

] 1
-3 -1 0 1 3
Distance from the core center
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general Jones theoreffi], which states that aufficient in-
stability condition can be formulated in terms of an auxiliary
Hermitian linear operator

14

12
. d?
~ L= F+W(x)+6RZ(x,E)— E (13
= X
510
% [which is written in terms of the notation defined by Egs.
> 8 (3)]: for instability of a given mode, it is sufficient that the

operatorl has, at least, two positive eigenvalueasting the
Jones’ theorem into this form, simplified in comparison with
the original formulation given in Ref2], we make use of
the fact that we consider a mode with no zerdghe Jones
) theorem was earlier applied to show the instability of a sym-
E (arb. units) metric model in the usual WG with a linear core and nonlin-
ear claddind 8].

The positive eigenvalues of the operator can be found
numerically, for a given mod®&(x). We have checked that,
jp all the cases considered, the Jones’ criterion does predict
an instability of the modes. For instance, in the case of the
asymmetric mode witlh= —4 andE=4, which turns out to
natural measure of the solution’s asymmgtns the power D€ relatively weakly unstable in direct simulatiofsee Fig.
N, as obtained from the numerical solution. Note that spon5), the positive eigenvalues of the operatoare 22.4, 12.0,
taneous symmetry breaking described by a similar bifurcaand 1.20 for the solution without, with one, and with two
tion diagram is well known in another nonlinear optical sys-zeros, respectively. The next solution with three zeros has
tem, viz., a dual-core fibdf7]. negative eigenvalue-0.47. It may be relevant to mention

A typical example of the evolution of the AWG eigen- here that in another nonlinear optical system where cw
mode, starting from the bifurcation point, is displayed in (continuous-wave beams demonstrate formation of an
detail in Fig. 3, where it is seen that the asymmetry mayasymmetric mode through a similar bifurcation, viz., a dual-
become very strong. Note that in the case illustrated by Figeore optical fiber[7], the asymmetric cw states, although
3, the bifurcation starts from the simplest symmetric modethey were tacitly assumed to be stalpid, were recently
having a maximum at the centers=0. A similar bifurcation —demonstrated to be strongly unstafg.
starting from a more complicated symmetric mode which, The VK and Jones stability/instability criteria do not pre-
instead, has aninimumat the center, has also been founddict particular features of the instability, which are most im-
(not shown here portant for applications, and must be studied by means of

An example of the dependenbevs E for the symmetric  direct simulations. The simulations concur with the Jones
mode and the evolution of this mode/At —4 is shown in  theorem in showing that all the AWG modes are unstable.
Fig. 4. The pitchfork bifurcation poirtt is not geometrically ~ Typically (for moderate values dg), in the simulations the
singled out on this curve. Note the presence of anotaer, asymmetric modes persist over a propagation distanzg
gentbifurcation pointa, at which two solution branches with (recall thatzy is the diffraction length,~2 in the present
opposite signs of the derivativiN/dE merge and disappear. notation (see the example in Fig. 5 f@#=4 andA=—4).
Other conclusions clearly following from Fig. 4 are the ex- Nevertheless, other simulations show that, with increase of
istence of the above-mentioned finite threshold power for thé, the propagation distance before the onset of a conspicuous
formation of the symmetric mode, and the existence of dnstability increases, and may become essentially larger then
gap, in terms of the propagation constaft for a given zp. Eveninthe case when the AWG mode persists only over
AWG potential-hill amplitudeA. a propagation distance zp , in units of the core’s half-width
7. it is, with regard to Eq(3), ¢/(2k72) ~zp . Usually, 7,
~\ and, as we said abovey~ 2, hence a final estimate for
the undisturbed propagation distance for the AWG mode is

A very important issue is stability of the AWG modes. A {~33um (in the typical casen~1.5, A~ 1.5um) which is
simple necessary stability condition is given by the quite sufficient for switching applicationsee below, and
Vakhitov-Kolokolov(VK) criterion [5], dN/dE>0 [obvi- may be enough for direct experimental observation of the
ously, Egs.(10) and (11) defineN as a function of; see, asymmetric mode.
e.g., Fig. 4. Using the above results, it is possible to prove The instability leads either to self-focusing of the beam in
analytically, after lengthy transformations, that the asymmetthe core’s center or to its expulsion into the cladding, simi-
ric AWG mode, unlike the symmetric oneslwayssatisfies larly to what is shown in Fig. 6. In the latter case, the angle
the VK criterion. Nevertheless, it does not seem feasible thabetween the obligue beam propagation direction and the
any AWG-trapped mode may be fully stable. Indeed, theAWG axis is determined by the AWG parameters and the
instability of the modes can be checked by means of a quitbeam’s power.

FIG. 4. An example of the dependendess E for the symmetric
modes and evolution of these modesfat —4; a is the tangent-
bifurcation point,b the pitchfork-bifurcation point, and the point
corresponding to the degenerate solution with constant amplitude i
the core.

IIl. STABILITY
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FIG. 5. A typical example of
the numerically simulated evolu-
tion of the asymmetric mode
along the propagation direction at
A=—4,E=4. The input form of
the mode is as in Fig. 3.

lyl? (arb. units)

IV. APPLICATION OF SPONTANEOUS SYMMETRY 6). In numerical simulations the hot spot is approximated by
BREAKING IN THE ANTIWAVEGUIDE a small change of the refractive index10 ?-10 3 of the
TO SWITCHING refractive-index difference between the core and cladding. In

The bifurcation transforming the symmetric AWG mode _F'g' 6 the hot spot is shown having th_e same size in normal-
into asymmetric one€Fig. 2), in combination with the insta- 12€d units along thec and z axes. As it is noted above, in
bility of the resultant asymmetric modes against walking intoh@n-normalized units theaxis scale is 33 times greater than
the cladding(the deflecting instability see Fig. & can be that of thex axis. However, the results do not differ consid-
used to implement all-optical switching. The AWG offers, in erably if the longitudinal length of the hot spot is decreased
fact, the very convenient possibility otontrolling the by one order of magnitude. The naturally enhanced sensitiv-
switching: launching a symmetric beam with a power ex-ity of the system to an external disturbance near the bifurca-
ceeding(by not too muchthe critical(bifurcation value, the  tion point[6] makes it possible to considerably decrease the
choice of one of the two mutually symmetric branches at thenecessary power of the controlling beam that creates the hot
bifurcation point(see Fig. 2 can be determined by a “hot spot. It is important to stress that, as is clearly seen in Fig. 6
spot,” created off the AWG'’s center by a perpendicular laser(and in a number of other simulations performed at different
beam focused on the waveguide surface, similar to what wagalues of the parametgrsthe deflecting instability of the
proposed, in a different context, in R¢fl0]. The hot spot beam does not give rise to any conspicuous fanning or strip-
will attract the beam and break its symmetry via a localping, keeping the coherent character of the beam. We stress
refractive-index change induced by the Kerr effesge Fig. that this finding is far from being trivial. For instance, in the

FIG. 6. An example of the
controllable deflection of the

N3
/ guided beam initiated by the hot

spot atA=—4,E=4.

2 | [ Hot Spot
area
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multitrough switching model introduced in R¢fL0], where  adding to itseveraloutput WG channels that will catch and
the switching was also controlled by means of a hot spot, &rap the deflected beam, depending on the deflection angle
beam could be transferred from a given trough to an adjacerisee Fig. 6. The latter angle, in turn, can be controlled by
empty one, but this was accompanied by a strong disturbanaeeans of varying the intensity and position of the above-
(including stripping of the beam. mentioned controlling hot spot. The extension of the AWG-
As concerns the impact of the instability on the switching,based scheme in this direction demands detailed numerical
note that there is a strategy for design of nonlinear switchingalculations, which will be presented elsewhgt8].
devices assumingtimulationof the instability, when a short Lastly, we note that, in this work, we considered the sim-
switching distance is requirdd.1]. In the present case, the plest step-index AWGs. However, one can check that essen-
instability of the asymmetric mode that is generated by theially the same results are also true for graded-index AWGS.
bifurcation will help to complete the switching process in a
shorter propagation distances@3um, according to the es- V. CONCLUSION
timate obtained aboygedriving the beam into the cladding.
In fact, the same hot spot that helped to choose between the In this work, we have found that an optical antiwaveguide
two asymmetric beams that might be generated by the originduces a spontaneous transition from symmetric to asym-
nal symmetric one can also easily provide for a disturbancenetric modes via a transcritical pitchfork bifurcation, pro-
that will stimulate the onset of the asymmetric-beam instavided that the beam’s intensity exceeds a certain critical
bility, pushing the beam into the cladding. value, which is found numerically as a function of the anti-
The single-channel configuration considered in this workwaveguide’s strength. The asymmetric mode is subject to a
can be extended to include several parallel antiwaveguidewild deflecting instability, which drives it into the cladding,
(cf. Refs.[10,12)), which might be a basis for multichannel without giving rise to fanning or stripping of the beam. The
devices. Promising applications of such devices includéifurcation, in combination with the deflecting instability,
wavelength multiplexing, multichannel variable distribution may be used to design a device for all-optical switching. The
or attenuation, time-domain multiplexing, etc. Moreover,switching can easily be controlled by means of a symmetry-
even in the case of the single-input AWG channel, thebreaking “hot spot” that acts upon an initial symmetric
scheme can be made multichannel of the:M type, by  beam launched with a power exceeding the bifurcation value.
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