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Vortices in relativistic electron beams
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We demonstrate that a relativistic electron beam is properly described in the moving frame by the electron-
magnetohydrodynamic equations of plasma physics. For large beam currents, the accelerator magnetic field is
expected to be unstable to the fast magnetic reconnection. We present a plausible saturated state of the fast
reconnection, in the form of a complex vortex pattern. The nonlinear dispersion equations of the vortex are
derived and the relationship between the vortex structure and the background magnetic field is discussed.

PACS numbgs): 29.27.Bd, 41.75.Ht, 52.35.Py, 52.35.Mw

[. INTRODUCTION predominantly from density perturbations, i.e., from space
charge and finite thermal pressure effects. Due to the large
Relativistic non-neutral particle beams with high intensi-ion mass for beam currents that are technically realizable at
ties are of broad interest in present day physics and engineethe present time, the collisionless skin depth (d;
ing. Their applications range from experiments in high-=c/w, ;) is several orders of magnitude larger than the beam
energy physics and pumping of free-electron lasers andadius. As a consequence, the magnetic phenomena con-
masers by electron beams to inertial confinement fusion byected with torsion of the magnetic flux tubesich as the
light ion beams, and production of tritium, transmutation ofgeneration of diamagnetic vortices, magnetic field reconnec-
nuclear waste, and production of short-lived isotopes for us¢on, etc) are, for the ion beams, of small significance. How-
in medicine by heavy ion beams. In all the applications, aever, magnetic phenomena of this type may develop in large
high beam intensityor a large electric currents desirable intensity electron beams, whose radius may be clesthin
in order to have a higher yield in the nuclear and other reacan order of magnitudeto the electron collisionless skin
tions in which the beam is involved. With increase of thedepthd,, whered.=c/w, .. As examples, we mention the
beam current, the collective interactions within the beanfuture 5 TeV collider[6], designed to operate with particle
gain in importance, and thus highly intensive beams behavbunches that are 10&m long and with 3 um radius, con-
predominantly as a continuous medium, rather than a colledaining 4x 1 particles; the density of such a bunched beam
tion of individual particles. The collective interaction is re- is 10t" cm™ 2, corresponding to the electron collisionless
alized via the self-consistent fields produced by the beanskin depthd.=15.35 um. The Dutch free-electron maser
space charges and currents. For a review of the early resulig] is energized with an electron beam whose currentis 12 A,
on the self-consistent evolution of the beam distributionwhich corresponds to/d.= 1/20. Furthermore, diamagnetic
function and the electric and magnetic fields, with the use oklectron vortices at the collisionless skin depth scale are
the Vlasov-Maxwell system of equations, see Hé&f. and  known to arise in inductive acceleratdi®], where they are
references therein. Recent experiments with debunchegsponsible for the emergence of unsteady electron flows,
beamg 2] also revealed a number of kinetic collective phe-and for the turbulent mixing of the electron flows in the
nomena in the beam behavior, which are known in plasm&eam. However, a stability study of electron beams that
physics, such as plasma echo, etc. A fluid description hawould include magnetic effects in realistic geometries, such
been utilized in the study of relativistic beam phenomenaas fast reconnection, has not yet been developed.

such as electromagnetic filamentati@] and intense equi- In this paper we investigate some aspects of the perpen-
librium flow [4]. A warm-fluid study of ion beam stability is dicular dynamics of high-intensity electron beams whose ra-
described in Ref5]. dius is comparable with the corresponding collisionless skin

In the case of ion beams, the collective interactions ariselepth. Adopting the thermal equilibrium model for the par-
ticle distribution[9], we regard the electron beam as a per-
fectly conductive, warm fluid. Since the space charge of the

*Email address: djovanov@phy.bg.ac.yu beam is almost fully neutralized by the effects of the self-
"Email address: renato.fedele@na.infn.it magnetic field for relativistic beam velocities, the electron
*Email address: ps@tp4.ruhr-uni-bochum.de fluid behaves as a quasineutral plasma. On the spatial and
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temporal scales of interest, it is described by the electron- It is convenient to expand the total magnetic field into
magnetohydrodynamitEMHD) equationg10,11]. cylindrical harmonics,
The magnetic field in an electron accelerator typically has
a very complex geometry, whose possible role is to support N -
the beam and provide its focusing in the perpendicular direc- B(r,t)—; By(r,z,t)codnb+¢y), @
tion. However, such complex magnetic geometries, contain-
ing magnetic separatrices and null akicpoints, are kKnown 4 we restrict our analysis only to the main contributions in
to be unstable in conductive fluids, such as plasmas. Magne expansion. In a linear accelerator, the external magnetic

netic field reconnection, which occurs in the presence o}q|q must not possess a dipolar< 1) component, which in
magnetic shear and/or tepoints, is a well known phenom- ;. o,jar (ring) machines is used for beam bending. We as-

enon, existing in both collisional and highly collisionless that the | ¢ litude in 1B ion is that
plasmas, such as that in the Earth’s magnetoXaiines are sume that the fargest amplitude In g, expansion IS tha
of the quadrupoler{=2), which is used for beam focusing.

localized singularities of the magnetic field that arise at the

intersection of two separatrix surfaces. In fusion machined'S the Lorentz force associated with the quadrupolar mag-

with divertor chambers they are introduced by the appropri—ne'[i.C field produces_ b.Oth beam pinching and _stretcmf_ng
iusmg and defocusingn two mutually perpendicular direc-
i

ate design of external magnetic coils, but they also evolve th tic | th iodic al the b .
self-consistently in the space between neighboring magnet ons, the magnetic lenses must be periodic along the beam In
order to prevent its destruction. The focusing is provided by

islands in the course of development of the tearing instabil;[h L o f th ficles. We will al
ity. The propagation of linear waves in the vicinity ¥fines € average Lorenlz force on the particies. We will also ac-

in the MHD regime was studied if12,13. In the EMHD count for small monopolar and octupolar components of the
regime[ 14,15 a similar behavior of small amplitude pertur- total magnetic field, which we assume to be homogeneous in

bations was found, while in the strongly nonlinear regime a‘;h?dd]recu%n ofdbea:;n propa?atldonbAtrr?oEopolar B|ot—tSa\;1§|rt
self-similar magnetic collapse was anticipated. Similar insta, €'d IS produced sei-consistently by the béam current, while

bilities are expected to develop in EMHD relativistic elec- the octupolar component has two origins. A part of it IS
tron beams also, described by our E(6) and (17) (see externally applied to achieve the fine tuning of the magnetic

below) lenses, and another part arises accidentally, from small errors

We demonstrate that a feasible saturated state in the rén the quadrupolar_ coils. More details of the magnetic field
connection of the quadrupolar and octupolar components Oqeometry will be given later.

the magnetic field in an electron beam has the form of an o
octupolar vortex pattern in the velocity field of the electrons. A. Equations in the beam reference frame
As such a pattern introduces new bifurcations, with finer e study the evolution of the electron beam in the co-

scales, in the magnetic field topology, one might expect thag,oying reference frame, which is described by the standard
this branching process would continue, multiplying the nuM-| grentz transformations

ber of vortices with diminishing scale size, eventually lead-

ing to stochasticity of the beaior parts of ij. The stochas- Vz y2\ 12 v2\| Y2
ticity would occur in the vicinity of the original linearly t'=|t—— - , Z=(z-VY | 1-— ,
unstable critical points. ¢ ¢ ¢

Il. BASIC EQUATIONS - - - - ( vz Y

El=(E,+e,VXB))|1-— ,
We study the nonlinear dynamics of a relativistic electron c

beam. The beam consists of particles whose rest mass and 3
charge are equal tm, and — e, respectively, and which are -, I VA v2| 12
propagating in the direction of theaxis with a velocitye,V Bi={B.— €2 xXE || 1= 2

that is highly relativistic ¥~c). The velocity of an indi-

vidual ele_ctron may deviate ffo_m _the average bea_m Vek_)cr%vhere the primes denote the quantities in the moving frame.
by a relatively small, nonrelativistic, amount. For simplicity,

. ; ; ' Correspondingly, the charge densjyand the parallel cur-
we consider a linear accelerator with a debunched beam, L. €ant deelsityj %E/e transforrged as fya P
z

we assume that the beam is an infinitely long cylinder with
radiusry,, placed inside a conductivenetallic tube whose

inner radius ig,, satisfyingr,,>r,. The unperturbed beam o' = _
number densityn, is assumed to be constant both longitudi- c?
nally and transversely. The beam is immersed in the mag- (4)

netic field B, which can be expressed as Vz) -1
1_ J—
2 1
c

where the magnetic fielB,,, is produced by the currents in While the other physical quantities are not transformed as one
the magnetic coils and in the cylindrical metallic vessel thatgoes from the laboratory to the moving frame,

encloses the vacuum chamber of the acceleratorBggghis .

produced by the electric current of the electron beam. x'=x, y'=y, E;=E;, B,;=B;, ji=].. (5

Y v2| 12
P_?jz

j;z(jz_PV)

é = B)ext"' B)beamv (1)
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Equations(4) are further simplified using=puv, wherev is  arising from the coupling with the rapid fields. With accu-
the hydrodynamic velocity of the beam. For a highly relativ-racy to the leading order, we calculatg using the follow-

istic beam with a small parallel velocity spread, ing solution of the linearized rapid momentum equation:
|v,—V|<|c—V|<c, R e . .
v=———€,XBy(rg) cos 29’ sin(w't+k'z"),
the charge density and the parallel current in the moving mek

frame are negligibly small, .
where we assumed that the electric figlgl, Eq. (9), is the
pl 1z v~V only high-frequency field present in the system. The corre-
<l ©) sponding ponderomotive potential is then given by

Following [5] we adopt the model of a warm fluid that is in ’ Me -,
thermodynamic equilibrium, neglecting the particle diffusion ®,=— 2—e<vr )=
due to collisions and turbulent effects. Thus, the pressure

tensor is taken to be anisotropic but purely diagomal,

=nT, (e +€,€,) +nTje,e,. We also assume small, non- The ponderomotive forcee(m)V ¢/, represents the average

relativistic, deviations of the particle velocities from the av- focusing strength of an alternating-gradient lattice of mag-

erage beam velocitg,V. Thus, the electron beam dynamics netic quadrupoles, discussed[h5].

is described by the hydrodynamic momentum equation in the Obviously, in order to avoid solutions of the slow equa-

moving frame tion (10) that are secularly growing in tim@nd thus cannot
be regarded as slowthe leading order curl-free term on the

By (r')|*(1+cos40").
(11)

8mgk’?

g . . \. e . V'p right-hand side must be identically equal to zero,
—+u'V' |v'=——| E'+v'XB'+ ——|, (7)
at’ Me n'e p(o)/
. . . ¢~ —>+¢;=0. (12
where the effective pressupg models the beam defocusing en’

by the particle thermal motion, but accounts also for other . _ _ .
stochastic processes, including turbulent and quantum effhis expression describes the leading-order hydrodynamic
fects, etc. Equatiofi7) will be studied for a debunched coast- Stability of the electron beam.

ing beam, with a negligible velocity spregd,—V|—0 in The leading-order slow potentig®", using Eqs(3) and
the unperturbed state. (4), can be expressed as
. . 0)' _ ! 0)’
B. The separation of time scales »O) = Y ('Z)ext’ (13
A quadrupolar magnetic field that is periodic along the /
axis, where¢?) , in accordance with Eq4), is determined from
B,=B, o(r)cos 20 coskz, (8) 2\ ~1/2

2= B2 €,2¢(0),:i1 l_sz _V_

is observed in the moving frame as an electromagnetic wave, + Teeam g c? c?

whose electric field is equal to
and Ag‘?z)ext is the z component of the slow vector potential

that is associated with external curreii€., those in the

R - B magnetic coils and the metallic tubédere we used the fact
/ N — _\/2/~2\—1/2 r— _\/2

where = By o(r') =Bao(r)(1—-V7/c%) ™5 k'=k(1-V7 that the slow magnetic field is strictly two dimensioraé.,

2\—1/2 " r_ r_ Wi
%) 7% o'=K'V, r’=r, and¢"=¢. Note that for relativis-  homogeneous in the direction of beam propagatiomd thus
tic velocities we have’>k. We will conveniently separate g pe expressed as

the high- and low-frequency components of the momentum
equation(7). As the amplitude of the “rapid” component is 3I_Z2R! 2 G A
much larger than that of the “slow” one, by performing the Bo=€:Bs,~€X V. Asz (149
average over the rapid osciIIat_ions we readily obtain the fol-rpqo condition(12) can be met by the appropriate shaping of
lowing slow momentum equation: the magnetic coils. Technically, this is performed in two
stages. First, the quadrupolar magnets are designed so that
_V*,d)/ the monopolar component of the ponderomotive potential
ne Pl- produces arnward force that fully balances the beam defo-
cusing due to the residual space charge and other effects,
(10 discussed earlier. Such an inward ponderomotive force can
be produced by the wiggler quadrupolar magnetic fig)df
The subscrips is used to denote the slow components. Thets amplitude has a minimum at the beam axis- Q). How-
last term on the right-hand side of E@.1) is the pondero- ever, such a magnetic field inevitably also produces an octu-
motive potential¢r’), which is the leading nonlinear term polar component of the ponderomotive potenfis¢ée Eq.

E;=€,VXBj(r')cos2¢’ cogw't' +k'z'),  (9)

>
!

’
L,s

7 N e - -
Eﬁ-véV’)U;Z—H(Eé-FUéXBé-F
e
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(11)], which is then in the second design stage balanced bjunctionsA, and B, to be dependent only oxandy, Egs.

the fine tuning of the octupole magnets. (15) and (17) take the forms of complete mixed products,
For phase velocities that are much smaller than the speeghq are readily integrated as

of light, |(#%/dt2)B.|<c?|V|?B.|, we can neglect the dis- -,
placement current on the slow time scale, and uge (1=VI)A,=F(B,), (18)
=—[c?¢y/(n'€)] (ﬁ’xég), while for d/dt<w, . [w,ﬁqe
=n'e?/(meey) ] the beam density may be regarded as negli-
gible. Then, calculating the curl of E¢L0), we readily ob-
tain the following equation for the slow time evolution of the
magnetic field: Here F and g are arbitrary functions of the given argument,
which in each particular case are to be determined from the
appropriate boundary and continuity conditions.

dF(B,)

(1-VHB,+A g

J 2eing S 2 = S
—(1-diV'9)B.—— diV' X[ (V' XB))
o’ e S ' 'm e S

€ Ill. OCTUPOLAR VORTEX

X (1-d2V'?)B.]=0, (15) Multipolar vortices are characteristic for plasmas that in
the unperturbed state feature both velocity and magnetic
shears(see Refs[16—18). Since in the EMHD plasma re-
gime the parallel magnetic field has the role of a perpendicu-
lar stream function, multipoles are expected to arise when
the perpendicular and parallel components of the unper-

where dg=[c%egm./(n'€?)]*? is the electron collisionless
skin depth.

Equation (15 is identical to the electron-
magnetohydrodynamic equatiof$0], which describe the e : . ;
fast phenomen&ompared to the typical ion response tjme Luir%ee? hmz;?nnoertllif:sﬂierlg i'rgvcgche:JJﬁ?g;gg?n?/g;&mggnn_
involving the electron population in collisionless magnetizedt ign also maanetic .se aratric,es axd boints whichy are
guasineutral plasmas. In plasma physics, these equations ﬂgﬁown 10 be l?nstable P P ’
ply to phenomena occurring on spatial scales shorter than t In thi fion. W ' K tationar lutivith 4/t
ion skin depthd;=c/w,; and in the frequency range that lies _ n this section, we seek a stationary Solution

both between the electron and ion gyrofrequencies and be- 0) in the magne'gic configurat!qn 'ghat proyides the leading-
low the electron plasma frequency. In other words, EMHD iSorder hydrodynamic beam stability in both its monopolar and

the regime where the ions are immobile, while both theOCtuDOI"’lr components, as discussed in S?.C' . As. a simple

charge separation and the displacement current are negmo.del’ which satisfies the necessary stability condltl_on_s de-

gible. In our case, the role of the ions is played by the mag§cr|bed by Eq(12), we adopt the background magnetic field

netic field of the beam, since for relativistic velocitiéshe in the form

Lorentz force associated with it almost fully compensates for 1

Lheehzszgeagr;?;geisgﬁjgee Eqgs(4) and(6)] and the beam BQO): D+ I(r2+sr4 cos 40), (20)
. z

Using the two-dimensionality of the slow magnetic field

and Eq.(14), we can rewrite Eq(15) as a system of two 1

coupled scalar equatiortfor details, see, e.g., RdfL5] and A§°)= - E(r2+ srcos 49), (21

references therejn L

where D is the (normalized uniform solenoidal focusing
magnetic field,L, and L, are the characteristic lengths of
inhomogeneities in the parallel and perpendicular directions,
L _ . respectively, and the parametadetermines the amplitude of
—(e,X VLAZ)~V(1—Vf)AZ=0, (16)  the octupolar component. The magnetic fi€d) possesses
an X line in the perpendicular magnetic field rat 0, while
the parallel magnetic field is adopted so as to have the same
separatrix surfaces. Similar magnetic structures were shown
to be subject to the fast magnetic reconnection instability in
the plasma EMHD regimé¢l4], where it manifested itself
o ) ) . either by the formation of magnetic islands in the process of
where the magnetic field is normalized to an arbitrary fieldnagnetic field merging in a current sheet, or as the formation
Bo, B—B'/B,, time to the corresponding electron gyrope- of singularities near magnetic field separatrices in the course
riod t——t'eBy/me, distance to the collisionless skin of propagation of small-amplitude whistler waves, or as the
depth,r —r'/d,, andf(t) is an arbitrary function of time. ~ formation of singularities in the electron flow near the three-
dimensional zero points.
_ ) In order to construct the octupole, we solve our basic
C. Stationary solution equations(18) and (19) assuming linear function& andg,

For a stationary solution, the arbitrary functibt) in Eq.
(17) must be set to zero. Using/dt=0, i.e., assuming the F(é)=Fo+F& G(&)=Gy+G&, (22

d . - >
(W(ezvaBz)-vL)(l—VE)Bz

%+(észZBz).V*L)<1—V*i>Az=f<t>, (17
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FIG. 1. The perturbation of the component of the vector po- FIG. 2. The parallel magnetic fieldB, of an octupole.The pa-
tential 5A,, associated with the octupole at the axis of an electrorrameters are the same as in Fig. 1.
beam. The background magnetic field satisfies=1, L,=0.9r,
s=2.5k3, and the core radius adoptedrig=0.1.

2\ 1/2
SAY=Bo1Ko(pal), p1=|1——]| ,
allowing for different values of the parameters inside and 20~ BoKolpal), 1 LE

outside the vortex core, which is a circle in tRey plane (28)
with the radiusr . L,
(1) In the external regiom=r, for a solution which is 68%2— r(l—pi)ﬁoleo(plr),
finite for r—o we obviously have z
-D 1 L2 while the fourth cylindrical harmonic is equal to
Fout_ Ggul: _ 7_D72
0 L, L, Lf B
4,2
5 (23 5A§,Lzllt: ,34,1K4(P1r)+rTa
LZ LZ
FiY=r G‘l’“t=1+L—2, (29)
) - L Baz
out_ L _ 2 e
(2) Inside the vortex core<ry, using linear functions- and 0Bz4= L, (1=p1)BasKalpar) + P

G, Egs.(18) and(19) may be decoupled to give a linear wave

equation of the fourth order, Likewise, forr<r, we have

(V2 + k) (V2 + k2) (AP +b)=0. (24) 2
- SAN =— —b+ ag,J +ag
The wave numbers, and «, are related to the slopes;’ 2041, ool Kaf) + o 2Jo( K2t ),
and G} via (30)
2
' . : . r 1 .
Kkik=F[?+1-Gf', «i+x3=Gf'-2, (25 0Bo=— 40 * gl D= F8+ (14 kD g dol )
z 1
and 2
+(1+k3)ag2do( kol )],
b=— —5[Fg(1-G)+FI'Gy]. (26 and
K1K3
4
Noting that, due to the explicit presence of the temhsnd SAN =2 4] )t s o] r
r*cos 4 in the unperturbed fielda!” ,B{?), the perturbed 247, 4 alral)+ ag2laliar),
fields must also involve the zeroth and fourth cylindrical (32
harmonics, 4 1
BN = — —— + —[(1+ k) g 1d4( Kql)
SA,=A,— AL = 57, o+ GA, ,COS 46, 24 4L, i P
0 27) +(1+ Kk2) g 234k r]
6B,=B,—B{")= B, o+ 6B, 4c0s 4, 2) g 234(Kor)].

and using Eq(23), we can readily write the solution that is This kind of solution is possible also if one of the “inside”
applicable for >r. Its zeroth cylindrical harmonic is given wave numbers is imaginary, e.g., f;a§<0, when the Bessel
by function J;(«,r) should be substituted bly(|x,|r), i=0,4.
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At the edge of the vortex come=r, the usual continuity and that the function$A,, (d/dr)5A,, and @/dr) 6B, are
conditions must be satisfied for each cylindrical harmonic.continuous,
We require that the functiong and G are continuous, _
. AT (ro)= A% (ro),
Fo +Fla=F5 "+ F!"a,

- , (32 d _d ;
GI'+ Gi"a= G+ G, aTO5AIzr,1i(ro)— (?705'0\2? (fo), (34)
that the core edge is an isoline Bf with the valuea, P _ 9
2 2 o= 0Bi(ro)= 2~ 0B(ro), 1=0.4.
. re . rg 0 0
58';0(r0)+I=5B;LIO(I’O)+I=8., ) )
z z Eliminating the constants of integratiay Fg', Gg', Bo1,

(33 ag 1, andag,, as well asB4 1, B42, a4, anday , from Egs.
(32)—(34), we obtain the nonlinear dispersion relation in the
form

in Sl'g _ out SI’S —
582’4(I’0)+ 4_|-z_ 582’4(I’0)+ 4—LZ—O,

(1_CK§)«70,1 (1_CK§)x70,2 (C_d)PiKo,l

2T51+ Tok5T01 2752+ T ok5T0.2 2KCh 1~ TopiKos
Do(k1,K2)= L, 1+«? . L, 1+«3 2 =0, (35
— - + — - p1iko,
L, 1+Fn)0 L. 1+Fin) 02 e
(14 K5)Tas (1+K3) Ja2 0
Jaa T2 Kaa
Dy(k1,K2)= L, 1+&2 L, 1+ x> , =0, (36)
T Fin Y Fin Jaz Kaa
where
oL ( L )rz}
1 il z 0
c= Fi+——F{'+—|—|-1,
el LT T a
_ 1 in, EL|+7P1
d——ﬁ(F'ﬁL—) >
K1K3 2 P

Other notations arg/; ;=Ji(«jro) andk; ;=K;(p;ro), while the primes denote derivatives with respect o

A typical octupole is shown in Figs. 1 and 2. We adopted the background magnetic field parameters BsL,
=0.9r,, ands=2.5f 2, with the core radius,=0.1. Thus, the vortex size is 10% of the collisionless skin depth,, which
is comparable with the beam radii of the devices describg@,ifi. This kind of structure is expected to emerge as the result
of saturation of fast magnetic reconnection in the complex geometry of the accelerator's magnetic field which pos3esses an
line. The full dynamics of such a process is not studied here. It is expected to involve kinetic effects, such as the cyclotron
damping of singular current layers, electron trapping, etc.

IV. CONCLUSIONS

We have shown that a high-intensity, relativistic electron beam that is in thermodynamic equilibrium can be properly
described by the EMHD equations of plasma physics.

As the typical beam size in large machines is comparable to the electron collisionless skin depth, magnetic effects associ-
ated with the torsion of the flux tubes may develop in such systems. Most importantly, the complex magnetic geometry of the
focusing magnetic field, possessing)apoint at the beam axis, is unstable to fast magnetic reconnection. A plausible saturated
state of the fast reconnection is presented, in the form of an octupolar vortex, which is characterized by a fully three-
dimensional magnetic field perturbation. The nonlinear dispersion equations of the vortex have been derived and the relation-
ship between the vortex structure and the background magnetic field has been discussed.

Our solution consists of localized octupoles, in béthandB,, located at the originaK point, which introduce a new
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circular separatrix. As a consequence, néyoints are created at the typical distanee, from the original one. Such a
multiplication of X points, resulting from the saturation of small-scale collisionless reconnection, provides a physically
intriguing mechanism for introducing stochasticity into the beam.
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