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Vortices in relativistic electron beams
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We demonstrate that a relativistic electron beam is properly described in the moving frame by the electron-
magnetohydrodynamic equations of plasma physics. For large beam currents, the accelerator magnetic field is
expected to be unstable to the fast magnetic reconnection. We present a plausible saturated state of the fast
reconnection, in the form of a complex vortex pattern. The nonlinear dispersion equations of the vortex are
derived and the relationship between the vortex structure and the background magnetic field is discussed.

PACS number~s!: 29.27.Bd, 41.75.Ht, 52.35.Py, 52.35.Mw
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I. INTRODUCTION

Relativistic non-neutral particle beams with high inten
ties are of broad interest in present day physics and engin
ing. Their applications range from experiments in hig
energy physics and pumping of free-electron lasers
masers by electron beams to inertial confinement fusion
light ion beams, and production of tritium, transmutation
nuclear waste, and production of short-lived isotopes for
in medicine by heavy ion beams. In all the applications
high beam intensity~or a large electric current! is desirable
in order to have a higher yield in the nuclear and other re
tions in which the beam is involved. With increase of t
beam current, the collective interactions within the be
gain in importance, and thus highly intensive beams beh
predominantly as a continuous medium, rather than a col
tion of individual particles. The collective interaction is r
alized via the self-consistent fields produced by the be
space charges and currents. For a review of the early re
on the self-consistent evolution of the beam distribut
function and the electric and magnetic fields, with the use
the Vlasov-Maxwell system of equations, see Ref.@1# and
references therein. Recent experiments with debunc
beams@2# also revealed a number of kinetic collective ph
nomena in the beam behavior, which are known in plas
physics, such as plasma echo, etc. A fluid description
been utilized in the study of relativistic beam phenome
such as electromagnetic filamentation@3# and intense equi-
librium flow @4#. A warm-fluid study of ion beam stability is
described in Ref@5#.

In the case of ion beams, the collective interactions a
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predominantly from density perturbations, i.e., from spa
charge and finite thermal pressure effects. Due to the la
ion mass for beam currents that are technically realizabl
the present time, the collisionless skin depthdi (di

5c/vp,i) is several orders of magnitude larger than the be
radius. As a consequence, the magnetic phenomena
nected with torsion of the magnetic flux tubes~such as the
generation of diamagnetic vortices, magnetic field reconn
tion, etc.! are, for the ion beams, of small significance. Ho
ever, magnetic phenomena of this type may develop in la
intensity electron beams, whose radius may be close~within
an order of magnitude! to the electron collisionless skin
depthde , wherede5c/vp,e . As examples, we mention th
future 5 TeV collider@6#, designed to operate with particl
bunches that are 100mm long and with 3 mm radius, con-
taining 43108 particles; the density of such a bunched be
is 1017 cm23, corresponding to the electron collisionle
skin depthde515.35 mm. The Dutch free-electron mase
@7# is energized with an electron beam whose current is 12
which corresponds tor /de51/20. Furthermore, diamagneti
electron vortices at the collisionless skin depth scale
known to arise in inductive accelerators@8#, where they are
responsible for the emergence of unsteady electron flo
and for the turbulent mixing of the electron flows in th
beam. However, a stability study of electron beams t
would include magnetic effects in realistic geometries, su
as fast reconnection, has not yet been developed.

In this paper we investigate some aspects of the perp
dicular dynamics of high-intensity electron beams whose
dius is comparable with the corresponding collisionless s
depth. Adopting the thermal equilibrium model for the pa
ticle distribution@9#, we regard the electron beam as a p
fectly conductive, warm fluid. Since the space charge of
beam is almost fully neutralized by the effects of the se
magnetic field for relativistic beam velocities, the electr
fluid behaves as a quasineutral plasma. On the spatial
2782 ©2000 The American Physical Society
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PRE 62 2783VORTICES IN RELATIVISTIC ELECTRON BEAMS
temporal scales of interest, it is described by the electr
magnetohydrodynamic~EMHD! equations@10,11#.

The magnetic field in an electron accelerator typically h
a very complex geometry, whose possible role is to supp
the beam and provide its focusing in the perpendicular dir
tion. However, such complex magnetic geometries, cont
ing magnetic separatrices and null andX points, are known
to be unstable in conductive fluids, such as plasmas. M
netic field reconnection, which occurs in the presence
magnetic shear and/or theX points, is a well known phenom
enon, existing in both collisional and highly collisionle
plasmas, such as that in the Earth’s magnetotail.X lines are
localized singularities of the magnetic field that arise at
intersection of two separatrix surfaces. In fusion machi
with divertor chambers they are introduced by the appro
ate design of external magnetic coils, but they also evo
self-consistently in the space between neighboring magn
islands in the course of development of the tearing insta
ity. The propagation of linear waves in the vicinity ofX lines
in the MHD regime was studied in@12,13#. In the EMHD
regime@14,15# a similar behavior of small amplitude pertu
bations was found, while in the strongly nonlinear regime
self-similar magnetic collapse was anticipated. Similar ins
bilities are expected to develop in EMHD relativistic ele
tron beams also, described by our Eqs.~16! and ~17! ~see
below!.

We demonstrate that a feasible saturated state in the
connection of the quadrupolar and octupolar component
the magnetic field in an electron beam has the form of
octupolar vortex pattern in the velocity field of the electron
As such a pattern introduces new bifurcations, with fin
scales, in the magnetic field topology, one might expect
this branching process would continue, multiplying the nu
ber of vortices with diminishing scale size, eventually lea
ing to stochasticity of the beam~or parts of it!. The stochas-
ticity would occur in the vicinity of the original linearly
unstable critical points.

II. BASIC EQUATIONS

We study the nonlinear dynamics of a relativistic electr
beam. The beam consists of particles whose rest mass
charge are equal tome and2e, respectively, and which ar
propagating in the direction of thez axis with a velocityeW zV
that is highly relativistic (V'c). The velocity of an indi-
vidual electron may deviate from the average beam velo
by a relatively small, nonrelativistic, amount. For simplicit
we consider a linear accelerator with a debunched beam,
we assume that the beam is an infinitely long cylinder w
radiusr b , placed inside a conductive~metallic! tube whose
inner radius isr w , satisfyingr w@r b . The unperturbed beam
number densityn0 is assumed to be constant both longitu
nally and transversely. The beam is immersed in the m
netic fieldBW , which can be expressed as

BW 5BW ext1BW beam, ~1!

where the magnetic fieldBW ext is produced by the currents i
the magnetic coils and in the cylindrical metallic vessel t
encloses the vacuum chamber of the accelerator, andBW beamis
produced by the electric current of the electron beam.
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It is convenient to expand the total magnetic field in
cylindrical harmonics,

BW ~rW,t !5(
n

BW n~r ,z,t !cos~nu1wn!, ~2!

and we restrict our analysis only to the main contributions
the expansion. In a linear accelerator, the external magn
field must not possess a dipolar (n51) component, which in
circular ~ring! machines is used for beam bending. We a
sume that the largest amplitude in theBW ext expansion is that
of the quadrupole (n52), which is used for beam focusing
As the Lorentz force associated with the quadrupolar m
netic field produces both beam pinching and stretching~fo-
cusing and defocusing! in two mutually perpendicular direc
tions, the magnetic lenses must be periodic along the bea
order to prevent its destruction. The focusing is provided
the average Lorentz force on the particles. We will also
count for small monopolar and octupolar components of
total magnetic field, which we assume to be homogeneou
the direction of beam propagation. A monopolar Biot-Sav
field is produced self-consistently by the beam current, wh
the octupolar component has two origins. A part of it
externally applied to achieve the fine tuning of the magne
lenses, and another part arises accidentally, from small er
in the quadrupolar coils. More details of the magnetic fie
geometry will be given later.

A. Equations in the beam reference frame

We study the evolution of the electron beam in the c
moving reference frame, which is described by the stand
Lorentz transformations

t85S t2
Vz

c2 D S 12
V2

c2 D 21/2

, z85~z2Vt!S 12
V2

c2 D 21/2

,

EW'8 5~EW'1eW zV3BW'!S 12
V2

c2 D 21/2

,

~3!

BW'8 5S BW'2eW z

V

c2
3EW'D S 12

V2

c2 D 21/2

,

where the primes denote the quantities in the moving fra
Correspondingly, the charge densityr and the parallel cur-
rent densityj z are transformed as

r85S r2
V

c2
j zD S 12

V2

c2 D 21/2

,

~4!

j z85~ j z2rV!S 12
V2

c2 D 21/2

,

while the other physical quantities are not transformed as
goes from the laboratory to the moving frame,

x85x, y85y, Ez85Ez , Bz85Bz , jW'8 5 jW' . ~5!
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Equations~4! are further simplified usingjW5rvW , wherevW is
the hydrodynamic velocity of the beam. For a highly relat
istic beam with a small parallel velocity spread,

u vz2Vu!u c2Vu!c,

the charge density and the parallel current in the mov
frame are negligibly small,

r8

r
;

j z8

j z
;

vz2V

c2V
!1. ~6!

Following @5# we adopt the model of a warm fluid that is
thermodynamic equilibrium, neglecting the particle diffusi
due to collisions and turbulent effects. Thus, the press
tensor is taken to be anisotropic but purely diagonal,p̂

5nT'(eW xeW x1eW yeW y)1nTieW zeW z . We also assume small, non
relativistic, deviations of the particle velocities from the a
erage beam velocityeW zV. Thus, the electron beam dynami
is described by the hydrodynamic momentum equation in
moving frame

S ]

]t8
1vW 8¹W 8D vW 852

e

me
S EW 81vW 83BW 81

¹W 8p̂8

n8e
D , ~7!

where the effective pressurep̂8 models the beam defocusin
by the particle thermal motion, but accounts also for ot
stochastic processes, including turbulent and quantum
fects, etc. Equation~7! will be studied for a debunched coas
ing beam, with a negligible velocity spreaduvz2Vu→0 in
the unperturbed state.

B. The separation of time scales

A quadrupolar magnetic field that is periodic along thez
axis,

BW 25BW 2,0~r !cos 2u coskz, ~8!

is observed in the moving frame as an electromagnetic w
whose electric field is equal to

EW 285eW zV3BW 2,08 ~r 8!cos 2u8 cos~v8t81k8z8!, ~9!

where BW 2,08 (r 8)5BW 2,0(r )(12V2/c2)21/2, k85k(12V2/
c2)21/2, v85k8V, r 85r , andu85u. Note that for relativis-
tic velocities we havek8@k. We will conveniently separate
the high- and low-frequency components of the moment
equation~7!. As the amplitude of the ‘‘rapid’’ component i
much larger than that of the ‘‘slow’’ one, by performing th
average over the rapid oscillations we readily obtain the
lowing slow momentum equation:

S ]

]t8
1vW s8¹W 8D vW s852

e

me
S EW s81vW s83BW s81

¹W 8p',s8

n8e
2¹W 8fp8D .

~10!

The subscripts is used to denote the slow components. T
last term on the right-hand side of Eq.~11! is the pondero-
motive potentialfp8 , which is the leading nonlinear term
-
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re

e

r
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e

arising from the coupling with the rapid fields. With acc
racy to the leading order, we calculatefp8 using the follow-
ing solution of the linearized rapid momentum equation:

vW r852
e

mek8
eW z3BW 2,0~r 08! cos 2u8 sin~v8t1k8z8!,

where we assumed that the electric fieldEW 28 , Eq. ~9!, is the
only high-frequency field present in the system. The cor
sponding ponderomotive potential is then given by

fp8[2
me

2e
^vW r8

2&52
e

8mek82
uBW 2,0'

8 ~r 8!u2~11cos 4u8!.

~11!

The ponderomotive force (e/m)¹W fp8 represents the averag
focusing strength of an alternating-gradient lattice of ma
netic quadrupoles, discussed in@1,5#.

Obviously, in order to avoid solutions of the slow equ
tion ~10! that are secularly growing in time~and thus cannot
be regarded as slow!, the leading order curl-free term on th
right-hand side must be identically equal to zero,

fs
(0)82

p',s
(0)8

en8
1fp850. ~12!

This expression describes the leading-order hydrodyna
stability of the electron beam.

The leading-order slow potentialfs
(0)8 , using Eqs.~3! and

~4!, can be expressed as

fs
(0)85f

beam

(0)82VAs,zext

(0)8 , ~13!

wheref
beam

(0)8 , in accordance with Eq.~4!, is determined from

¹W '8
2f

beam

(0)85
en

e0
S 12

Vvz

c2 D S 12
V2

c2 D 21/2

,

and As,zext

(0)8 is the z component of the slow vector potentia

that is associated with external currents~i.e., those in the
magnetic coils and the metallic tube!. Here we used the fac
that the slow magnetic field is strictly two dimensional~i.e.,
homogeneous in the direction of beam propagation! and thus
can be expressed as

BW s85eW zBs,z8 2eW z3¹W '8 As,z8 . ~14!

The condition~12! can be met by the appropriate shaping
the magnetic coils. Technically, this is performed in tw
stages. First, the quadrupolar magnets are designed so
the monopolar component of the ponderomotive poten
produces aninward force that fully balances the beam def
cusing due to the residual space charge and other effe
discussed earlier. Such an inward ponderomotive force
be produced by the wiggler quadrupolar magnetic field~8! if
its amplitude has a minimum at the beam axis (r 50). How-
ever, such a magnetic field inevitably also produces an o
polar component of the ponderomotive potential@see Eq.
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PRE 62 2785VORTICES IN RELATIVISTIC ELECTRON BEAMS
~11!#, which is then in the second design stage balanced
the fine tuning of the octupole magnets.

For phase velocities that are much smaller than the sp
of light, u(]2/]t2)BW s8u!c2u¹W '8

2BW s8u, we can neglect the dis

placement current on the slow time scale, and usevW s8

52@c2e0 /(n8e)# (¹W 83BW s8), while for d/dt!vp,e @vp,e
2

5n8e2/(mee0)# the beam density may be regarded as ne
gible. Then, calculating the curl of Eq.~10!, we readily ob-
tain the following equation for the slow time evolution of th
magnetic field:

]

]t8
~12de

2¹W 82!BW s82
e

me
de

2¹W 83@~¹W 83BW s8!

3~12de
2¹W 82!BW s8#50, ~15!

where de5@c2e0me /(n8e2)#1/2 is the electron collisionless
skin depth.

Equation ~15! is identical to the electron
magnetohydrodynamic equations@10#, which describe the
fast phenomena~compared to the typical ion response tim!
involving the electron population in collisionless magnetiz
quasineutral plasmas. In plasma physics, these equation
ply to phenomena occurring on spatial scales shorter than
ion skin depthdi[c/vpi and in the frequency range that lie
both between the electron and ion gyrofrequencies and
low the electron plasma frequency. In other words, EMHD
the regime where the ions are immobile, while both t
charge separation and the displacement current are n
gible. In our case, the role of the ions is played by the m
netic field of the beam, since for relativistic velocitiesV the
Lorentz force associated with it almost fully compensates
the space charge effects@see Eqs.~4! and~6!# and the beam
behaves as if neutralized.

Using the two-dimensionality of the slow magnetic fie
and Eq.~14!, we can rewrite Eq.~15! as a system of two
coupled scalar equations~for details, see, e.g., Ref.@15# and
references therein!

S ]

]t
1~eW z3¹W 'Bz!•¹W 'D ~12¹W '

2 !Bz

2~eW z3¹W 'Az!•¹W ~12¹W '
2 !Az50, ~16!

S ]

]t
1~eW z3¹W 'Bz!•¹W 'D ~12¹W '

2 !Az5 f ~ t !, ~17!

where the magnetic field is normalized to an arbitrary fi
B0 , BW →BW 8/B0, time to the corresponding electron gyrop
riod t→2t8eB0 /me , distance to the collisionless ski
depth,rW→rW8/de , and f (t) is an arbitrary function of time.

C. Stationary solution

For a stationary solution, the arbitrary functionf (t) in Eq.
~17! must be set to zero. Using]/]t50, i.e., assuming the
y

ed

i-

ap-
he

e-
s
e
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-

r

functionsAz and Bz to be dependent only onx and y, Eqs.
~15! and ~17! take the forms of complete mixed product
and are readily integrated as

~12¹W '
2 !Az5F~Bz!, ~18!

~12¹W '
2 !Bz1Az

dF~Bz!

dBz
5G~Bz!. ~19!

HereF andG are arbitrary functions of the given argumen
which in each particular case are to be determined from
appropriate boundary and continuity conditions.

III. OCTUPOLAR VORTEX

Multipolar vortices are characteristic for plasmas that
the unperturbed state feature both velocity and magn
shears~see Refs.@16–18#!. Since in the EMHD plasma re
gime the parallel magnetic field has the role of a perpend
lar stream function, multipoles are expected to arise wh
the perpendicular and parallel components of the unp
turbed magnetic field are nonlinear functions ofr and contain
higher harmonics inu. However, such fields inevitably con
tain also magnetic separatrices andX points, which are
known to be unstable.

In this section, we seek a stationary solution~with ]/]t
50) in the magnetic configuration that provides the leadin
order hydrodynamic beam stability in both its monopolar a
octupolar components, as discussed in Sec. II. As a sim
model, which satisfies the necessary stability conditions
scribed by Eq.~12!, we adopt the background magnetic fie
in the form

Bz
(0)5D1

1

4Lz
~r 21sr4 cos 4u!, ~20!

Az
(0)52

1

4L'

~r 21sr4 cos 4u!, ~21!

where D is the ~normalized! uniform solenoidal focusing
magnetic field,Lz and L' are the characteristic lengths o
inhomogeneities in the parallel and perpendicular directio
respectively, and the parameters determines the amplitude o
the octupolar component. The magnetic field~21! possesses
an X line in the perpendicular magnetic field atr 50, while
the parallel magnetic field is adopted so as to have the s
separatrix surfaces. Similar magnetic structures were sh
to be subject to the fast magnetic reconnection instability
the plasma EMHD regime@14#, where it manifested itself
either by the formation of magnetic islands in the process
magnetic field merging in a current sheet, or as the forma
of singularities near magnetic field separatrices in the cou
of propagation of small-amplitude whistler waves, or as
formation of singularities in the electron flow near the thre
dimensional zero points.

In order to construct the octupole, we solve our ba
equations~18! and ~19! assuming linear functionsF andG,

F~j!5F01F1j, G~j!5G01G1j, ~22!
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allowing for different values of the parameters inside a
outside the vortex core, which is a circle in thex,y plane
with the radiusr 0.

~1! In the external regionr>r 0 for a solution which is
finite for r→` we obviously have

F0
out5

12D

L'

, G0
out52

1

Lz
2D

Lz
2

L'
2

,

~23!

F1
out5

Lz

L'

, G1
out511

Lz
2

L'
2

,

~2! Inside the vortex corer ,r 0, using linear functionsF and
G, Eqs.~18! and~19! may be decoupled to give a linear wav
equation of the fourth order,

~¹W '
2 1k1

2!~¹W '
2 1k2

2!~Az
in1b!50. ~24!

The wave numbersk1 and k2 are related to the slopesF1
in

andG1
in via

k1
2k2

25F1
in2112G1

in , k1
21k2

25G1
in22, ~25!

and

b52
1

k1
2k2

2 @F0
in~12G1

in!1F1
inG0

in#. ~26!

Noting that, due to the explicit presence of the termsr 2 and
r 4 cos 4u in the unperturbed fieldsAz

(0) ,Bz
(0) , the perturbed

fields must also involve the zeroth and fourth cylindric
harmonics,

dAz[Az2Az
(0)5dAz,01dAz,4cos 4u,

~27!
dBz[Bz2Bz

(0)5dBz,01dBz,4cos 4u,

and using Eq.~23!, we can readily write the solution that i
applicable forr .r 0. Its zeroth cylindrical harmonic is given
by

FIG. 1. The perturbation of thez component of the vector po
tential dAz , associated with the octupole at the axis of an elect
beam. The background magnetic field satisfiesL'51, Lz50.9r 0 ,
s52.5/r 0

2, and the core radius adopted isr 050.1.
d

l

dAz,0
out5b0,1K0~r1r !, r15S 12

Lz
2

L'
2 D 1/2

,

~28!

dBz,0
out52

L'

Lz
~12r1

2!b0,1K0~r1r !,

while the fourth cylindrical harmonic is equal to

dAz,4
out5b4,1K4~r1r !1

b4,2

r 4
,

~29!

dBz,4
out52

L'

Lz
S ~12r1

2!b4,1K4~r1r !1
b4,2

r 4 D .

Likewise, for r ,r 0 we have

dAz,0
in 5

r 2

4L'

2b1a0,1J0~k1r !1a0,2J0~k2r !,

~30!

dBz,0
in 52

r 2

4Lz
1

1

F1
in

@2b2F0
in1~11k1

2!a0,1J0~k1r !

1~11k2
2!a0,2J0~k2r !#,

and

dAz,4
in 5

sr4

4L'

1a4,1J4~k1r !1a4,2J4~k2r !,

~31!

dBz,4
in 52

sr4

4Lz
1

1

F1
in

@~11k1
2!a4,1J4~k1r !

1~11k2
2!a4,2J4~k2r !#.

This kind of solution is possible also if one of the ‘‘inside
wave numbers is imaginary, e.g., fork2

2,0, when the Besse
function Ji(k2r ) should be substituted byI i(uk2ur ), i 50,4.

n
FIG. 2. The parallel magnetic fielddBz of an octupole.The pa-

rameters are the same as in Fig. 1.
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At the edge of the vortex corer 5r 0, the usual continuity
conditions must be satisfied for each cylindrical harmon
We require that the functionsF andG are continuous,

F0
in1F1

ina5F0
out1F1

outa,
~32!

G0
in1G1

ina5G0
out1G1

outa,

that the core edge is an isoline ofBz with the valuea,

dBz,0
in ~r 0!1

r 0
2

4Lz
5dBz,0

out~r 0!1
r 0

2

4Lz
5a,

~33!

dBz,4
in ~r 0!1

sr0
4

4Lz
5dBz,4

out~r 0!1
sr0

4

4Lz
50,
.
and that the functionsdAz , (]/]r )dAz , and (]/]r )dBz are
continuous,

dAz,i
in ~r 0!5dAz,i

out~r 0!,

]

]r 0
dAz,i

in ~r 0!5
]

]r 0
dAz,i

out~r 0!, ~34!

]

]r 0
dBz,i

in ~r 0!5
]

]r 0
dBz,i

out~r 0!, i 50,4.

Eliminating the constants of integrationa, F0
in , G0

in , b0,1,
a0,1, anda0,2, as well asb4,1, b4,2, a4,1, anda4,2 from Eqs.
~32!–~34!, we obtain the nonlinear dispersion relation in t
form
sult
ses an
yclotron

roperly

s associ-
ry of the
urated

three-
relation-
D0~k1 ,k2![U ~12ck1
2!J0,1 ~12ck2

2!J0,2 ~c2d!r1
2K0,1

2J0,18 1r 0k1
2J0,1 2J0,28 1r 0k2

2J0,2 2K0,18 2r 0r1
2K0,1

S 11
Lz

L'

11k1
2

11F1
inDJ0,18 S 11

Lz

L'

11k2
2

11F1
inDJ0,28 r1

2K0,1 U50, ~35!

D4~k1 ,k2![U ~11k1
2!J4,1 ~11k2

2!J4,2 0

J4,1 J4,2 K4,1

S 11
Lz

L'

11k1
2

F1
in DJ4,18 S 11

Lz

L'

11k2
2

F1
in DJ4,28 K4,18 U50, ~36!

where

c5
F1

in

k1
2k2

2 FF1
in1

L'

Lz
2S F1

in1
Lz

L'
D r 0

2

4 G21,

~37!

d52
F1

in

k1
2k2

2 S F1
in1

L'

Lz
D12r1

2

r1
2

21.

Other notations areJi , j5Ji(k j r 0) andKi , j5Ki(r j r 0), while the primes denote derivatives with respect tor 0.
A typical octupole is shown in Figs. 1 and 2. We adopted the background magnetic field parameters asL'51, Lz

50.9r 0, ands52.5/r 0
2, with the core radiusr 050.1. Thus, the vortex size is;10% of the collisionless skin depthde , which

is comparable with the beam radii of the devices described in@6,7#. This kind of structure is expected to emerge as the re
of saturation of fast magnetic reconnection in the complex geometry of the accelerator’s magnetic field which possesX
line. The full dynamics of such a process is not studied here. It is expected to involve kinetic effects, such as the c
damping of singular current layers, electron trapping, etc.

IV. CONCLUSIONS

We have shown that a high-intensity, relativistic electron beam that is in thermodynamic equilibrium can be p
described by the EMHD equations of plasma physics.

As the typical beam size in large machines is comparable to the electron collisionless skin depth, magnetic effect
ated with the torsion of the flux tubes may develop in such systems. Most importantly, the complex magnetic geomet
focusing magnetic field, possessing anX point at the beam axis, is unstable to fast magnetic reconnection. A plausible sat
state of the fast reconnection is presented, in the form of an octupolar vortex, which is characterized by a fully
dimensional magnetic field perturbation. The nonlinear dispersion equations of the vortex have been derived and the
ship between the vortex structure and the background magnetic field has been discussed.

Our solution consists of localized octupoles, in bothAz and Bz , located at the originalX point, which introduce a new
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circular separatrix. As a consequence, newX points are created at the typical distance;r 0 from the original one. Such a
multiplication of X points, resulting from the saturation of small-scale collisionless reconnection, provides a phy
intriguing mechanism for introducing stochasticity into the beam.
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