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We introduce and investigate the stochastic dynamics of the density of local exXtreni@a and maxima
of nonequilibrium surface fluctuations. We give a number of analytic results for interface fluctuations described
by linear Langevin equations, and for on-lattice, solid-on-solid surface-growth models. We show that, in spite
of the nonuniversal character of the quantities studied, their behavior against the variation of the microscopic
length scales can present generic features, characteristic of the macroscopic observables of the system. The
guantities investigated here provide us with tools that give an unorthodox approach to the dynamics of surface
morphologies: a statistical analysis from the short-wavelength end of the Fourier decomposition spectrum. In
addition to surface-growth applications, our results can be used to solve the asymptotic scalability problem of
massively parallel algorithms for discrete-event simulations, which are extensively used in Monte Carlo simu-
lations on parallel architectures.

PACS numbsg(s): 05.40—a, 02.50-r, 05.45.Df, 68.35.Ct

[. INTRODUCTION AND MOTIVATION rive a number of analytical results about these quantities for
a large class of nonequilibrium surface fluctuations described
The aim of statistical mechanics is to relate macroscopiby linear Langevin equations and solid-on-sol{09
observables to the microscopic properties of the system. Beattice-growth models. Besides its obvious relevance to sur-
fore attempting such derivation, one always has to specifyace physics, our technique can be used to sh@jvthe
the spectrum of length scales the analysis will compriseasymptotic scalability of conservative massively parallel al-
while “macroscopic” is usually defined in a unique way by gorithms for discrete-event simulation, i.e., the fact that the
the everyday-life length scale, the “microscopic” is never soefficiencyof such computational schemes does not vanish
obvious, and the choice of the best lower-end scale is highlyith increasing number of processing elements. Rather, it
nonuniversal. It is system dependent, usually left to outhas a nontrivial lower bound. The solution of this problem
physical “intuition,” or it is set by the limitations of the not only is of practical importance from the point of view of
experimental instrumentation. It is obvious that in order toparallel computing, but has important consequences for our
derive the laws of gaseous matter we do not need to employnderstanding of systems wigtsynchronougarallel dynam-
the physics of elementary particles; it is enough to start fromcs in general. There are numerous dynamical systems, both
an effective microscopic modébr Hamiltonian on the level  artificial and found in nature, that contain a “substantial
of molecular interactions. Then starting from the equationsamount” of parallelism, like the following examples.
of motion on the microscopic level and using a statistical and (1) In wireless cellular communications the call arrivals
probabilistic approach, the macroscale physics is derived. Iand departures are occurring in continuous tif@eisson ar-
this “long-wavelength” approach most of the microscopic rivals), and the discrete eventsall arrivalg arenot synchro-
or short-wavelength information is usually redundant, and inized by a global clock. Nevertheless, calls initiated in cells
is scaled away. substantially far from each other can be processed simulta-
Sometimes, however, microscopic quantities are imporneously by the parallel simulatevithout changing the Pois-
tant and directly contribute to macroscopic observables, e.gsonian nature of the underlying process. The problem of de-
the nearest-neighbor correlations in driven systems detesigning efficient dynamic channel allocation schemes for
mine the current, in phase separation with conserved ordevireless networks is a very difficult one, and currently it is
parametetmodel B the mobility, in kinetic Ising models the done by modeling the network as a system of interacting
domain-wall velocity, in parallel computation the utilization continuous-time stochastic automata on parallel architectures
(efficiency) of conservative parallel algorithms, etc. Once a[3].
lower length scale is set, on which we can define an effective (2) In magnetic systems the discrete events are the spin-
microscopic dynamics, it becomes meaningful to ask questip attempts (e.g., Glauber dynamics for Ising systems
tions about local propertiest this length scalee.g., nearest- While traditional single-spin-flip dynamics may seem inher-
neighbor correlations, contour distributions, extremal-pointently serial, systems with short-range interactions can be
densities, etc. These quantities are obviously not universasimulated in parallel: spins sufficiently far from each other
However, theirbehavioragainst the variation of the length with differentlocal simulated times can be updated simulta-
scales can present qualitative and universal feafddeslere  neously. Fast and efficient parallel Monte Carlo algorithms
we study the dynamics of macroscopically rough surfaces byre extremely welcome when studying metastable decay and
investigating an intriguing miscroscopic quantity: the densityhysteresis of kinetic Ising ferromagnets below their critical
of extrema(local minima and its finite-size effects. We de- temperature; seft] and references therein.

1063-651X/2000/6@)/276(19)/$15.00 PRE 62 276 ©2000 The American Physical Society



PRE 62 EXTREMAL-POINT DENSITIES OF INTERFAE . .. 277

(3) Financial markets, and especially the stock market, are
an extremely dynamic, high-connectivity network of rela-
tions: thousands of trades are being made asynchronouskh
every minute[5].

(4) The human brain, in spite of its low weight of approxi-
mately 1 kg and volume of 1400 émcontains about 100
billion neurons, each neuron being connected through syn-
apses to approximately 10 000 other neurons. The total num-
ber of synapses in a human brain is about 1000 trillion
(10%). The neurons of a single human brain, placed end to
end, would make a “string” of an enormous length: 250 000
miles [6]. Assuming that each neuron of a single human
cortex can be in two states onfgesting or actiny the total

number of different brain configurations would b¥2 Ac-
cording to Carl Sagan, this number is greater than the total
number of protons and electrons of the known Univé&e
The brain does an incredible amount of parallel computation:
it simultaneously manages all of our body functions, we can "*®¢
talk and walk at the same time, etc.

(5) Evolution of networks such as the internet has asyn- 1o
chronous parallel dynamics: the local network connectivity
changes “concurrently”(within a small time interval as S ol
many sites are attached or removed in different locations. As
a matter of fact, the physics of such dynamic networks is |
currently a heavily investigated and rapidly emerging field
[7].

In order to present the basic ideas and notions in the sim-
plest way, in the following we restrict ourselves to one-
dimensional interfaces that have no overhangs. The restric-
tion on overhangs may actually be lifted with a proper
parametrization of the surface, a problem to which we will
return briefly in the concluding section. The first visual im- g1, 1. (@) The functionWy,(a,b;x) at a=2, b=3, andM
pression when one looks at a rough surfége,t) is the  =0,1,2.34.(b) The scaling of the number of local minima,
extent of the fluctuations perpendicular to the substrate, in-\M for b= 2.8 (pluse$ andb=1.8 (crosses The inset showa
other words, thevidth of the interface. The widtkor the rms  vs b while keepinga constanta=2. The solid lines indicate the
of the heighth of the fluctuationsis probably the most ex- slopes 5/3 and 1, respectively.
tensively studied quantity in interface physics, due to the fact

that its definition is simply quantifiable and therefore Mea-Figure 1a) shows the graph oV, ata=2 andb=3 (arbi-

surable: trary valueg for M=0,1,2,3,4 in the intervat e [0,4m]. As
\/ > 5 one can see, by increasih we are adding more and more
w(L,t)= V[h(x,t)]*=[h(x,t)]%, (1) detalil to the graph of the function on finer and finer length

where the overbar denotes an average over the substrate. 1563/€S- ThusM plays the role qua regulator for the micro-
well known that this quantity characterizes the long-SCOPIC cutoff length which i® ™", and forM=c and b
wavelength behavior of the fluctuations, the high-frequency” & the function becomes nowhere differentiable as was
components being averaged out in EG). The short- Shown by Hardy8]. _
wavelength end of the spectrum has been ignored in the lit- Comparing the graphs diy, for lower M values with
erature mainly because of its nonuniversal character, antioSe for higheM we observe that the width effectively does
also because it seemed to lack such a simple quantifiabRPt change; however, the curves look qualitatively very dif-
definition as the widthw. ferent. This is obvious from Ed2): adding an extra term

In the following we present a quantity that is almost asdo€s not change the long-wavelength modes, but adds a
simple and intuitive as the widtiu, but characterizes the higher-frequency component to the Fourier spectrum of the
high-frequency components of the fluctuations. For illustra-9raph. We need to operationally define a quantity that makes

tive purposes, let us consider the classic Weierstrass functidh distinction between a much “fuzzier” graph, such as for
defined as theM—c limit of the smooth functions M =4, and a smoother one, such as Mr=1. The natural

(a)

W,(2,3x)
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Wy, (a,b:x): choice based on Fig.(d) is thenumber of local minimdor
extrema in the graph of the function. In Fig.(fh) we present
W(a,b;x)= lim Wy(a,b;x) the number of local minima,, vs M for two different values
M—eo of b, b=2.8 andb= 1.8, while keeping at the same value

M of a=2. For allb values(not only for these twpthe leading
= lim >, a Mcogb™), a,b>1. (2) behavior is exponentialuy,~AM. The inset in Fig. (b)
M—ec M=0 shows the dependence of the rateas a function ofb for
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fixed a. We observe that fdo>a, A=b, but belowb=athe by a criticalz value,z; . In the fractal case, the interface has
dependence crosses over to another, seemingly linear funi¥finitely many minima and cusps, just as in the case of the
tion. For b>a the amplitude of the extra added term in nondifferentiable Weierstrass functi¢?), and the extremal-
Wy 41 is large enough to prevent the cancellation of thepoint densities become infinitdf the problem is discretized
newly appearing minima by the drop in the local slope ofonto a lattice with spacing, a power-law diverging behavior
W,,. At b<a the number of canceled extrema starts to in-is observed for these densities as-0".) This sudden
crease drastically with an exponential trend, leading to thehange of the “intrinsic roughness” may be conceived as a
crossover seen in the inset of Figbl It has been shown phase transition, even in an experimental situation. On
that the fractal dimension of the Weierstrass functionlfor changing a parameter, such as the temperaturdathele-
>a is given byDgy=Inb/Ina [9,10. For b<a the Weier- scribing the fluctuations can change since the mechanism
strass curve becomes nonfractal with a dimensioBgf1.  responsible for the fluctuations can change character as the
By varying b with respect toa, we are crossing a fractal- temperature varies. For example, it has been recently shown
smooth transition ab=a. The very intriguing observation using scanning tunneling microscope measurenidisthat
we have just come across is that, even though we are in tHée fluctuations of single-atom-layer steps on(Tli) below
smooth regime if<<a), the density of minima is still ali-  T=300°C correspond to the periphery diffusion mechanism
verging quantity [the b=1.8 curve in Fig. )]. It is thus  (z=4), but above this temperatufesuch asT=500°C in
possible to have an infinite number of “wrinkles” in the these measurementsthe mechanism is attachment-
Weierstrass function without having a diverging length,detachment, for whiclz=2 (see also Refd.14,15)).
without having a fractal in the classical sense. The transition The paper is organized as follows. In Secs. Il and Il we
from fractal to smooth ab is lowered appears as a nonana-define and investigate the minimum-point density for several
lyticity in the divergence rate of the curve’s wrinkledness. Awell-known on-lattice models, and derive exact results in the
rigorous analytic treatment of this problem seems to besteady statet(—<), including finite-size effects. As a prac-
highly nontrivial, and we propose it as an open question tdical application of these on-lattice results, we briefly present
the interested reader. in Sec. llIB a lattice surface-growth model that exactly de-
The simple example above shows that there is interestingcribes the evolution of the simulated time horizon for con-
and nontrivial physics lying behind the analysis of extremal-servative massively parallel schemes in parallel computation,
point densities, and it gives extra information on the mor-solving a long-standing asymptotic scalability question for
phology of interfaces. Given an interfabéx,t), we propose these update schemes. In Sec. IV we lay down a more rigor-
a quantitative form that characterizes the density of minimaus mathematical treatment for extremal-point densities, and
via a “partition-function-like” expression, which is hardly stochastic extremal-point densities on the continuum, with a
more complex than Edq1) and gives an alternate description detailed derivation for a large class of linear Langevin equa-
of the surface morphology: tions (which are in fact the continuum counterparts of the
discrete ones from Sec.)lIThe more rigorous treatment al-
1 lows for an exact analytical evaluation not only in the steady
ug(L,Lh])= L Z [K(x]%  9>0, state, but for all times. We identify characteristic exponents
that separate regimes with divergent extremal-point densities
from convergent ones, and which give insight into the short-
wavelength physics behind these kinetic roughening pro-

with K(x;) denoting thecurvatureof h at the local(nonde-  C€SS€s.

generatg minimum pointx;. The variableq can be con-

ceived as an inverse temperature. Obviously, der0 we Il. LINEAR SURFACE-GROWTH MODELS
obtain the number of local minima per unit interface length. ON THE LATTICE

The rigorous mathematical description and definitions lying
at the basis of EQ.3) are presented in Sec. IV. The quantity di
in Eq. (3) is reminiscent of the partition function used in the
definition of the thermodynamical formalism of one-
dimensional chaotic mafg4.1], and also of the definition of
the dynamical or Raeyi entropies of these chaotic maps. In

X; are nondegenerate minimalof 3

In the present section we focus on discrete, one-
mensional models from the linear theory of kinetic rough-
ening[16,17]. Let us consider a one-dimensional substrate
consisting ofL lattice sites with periodic boundary condi-
tions. For simplicity the lattice constant is taken as unity,
W(Jwich clearly represents the lower cutoff length for the ef-

by cylinder intervals and/or the visiting probabilities of these?ect've equation of motion. For the moment let us study th_e
general Langevin equation on a lattice that describes the lin-

cylinders. . )
We present a detailed analysis of the above quantity for & theory of molecular beam epitatyiBE) [18,19;
large class of linear Langevin equations of typle/Jt= a:hi(t)=vV2h, (1) — kV4h, () + 7;() ()

—v(—V?h)?2+ 5(x,t), where  is a Gaussian noise term

andz a positive real number. These Langevin equations arguhere 7;(t) is Gaussian white noise with

found to describe faithfully the fluctuations of monatomic

steps on various substratder a review, see Ref12]). One (mi(t)mi(t"))=2Dg ;6(t—t"), (5)
of the interesting conclusions we came to by studying the

extremal-point densities for such equations is that, dependingnd V2 is the discrete Laplacian operator, i.§.?fj=fj+1
on the value ofz, the typical surface morphology can be +f;_;—2f;, applied to an arbitrary lattice functidp. This
fractal, or locally smooth, and the two regimes are separatedquation arrises in MBE with both surface diffusidthe



PRE 62 EXTREMAL-POINT DENSITIES OF INTERFAE . .. 279

fourth-order or curvature tenrand desorptiorithe second- we want to find the density of local minima for the surface
order or diffusive termy and it has been studied extensively described by Eq(4). The operator that measures this quan-
by several authorfl8,20. Since we will study bothk—0  tity is
and »—0 limiting cases, generic stability requires=0 and

x=0. Starting from a completely flat initial condition, the
interface roughens until the correlation lengtieaches the u=r > O(hi_;—h)O(hj,1—hy). (12
size of the systend=L, when the roughening saturates and =t

the system enters a steady-state regime. The process of
netic roughening is controlled by the intrinsic length scale
Jklv [20]. Below this length scale the roughening is domi-
nated by the surface diffusion or Mullin®1] term (the
fourth-order operatgy while above it is characterized by the L
evaporation term(the diffusion or Edwards-Wilkinson _ a0 .

(EW) [22] term. Since Eq(4) is translationally invariant and u= .21 O(=¢i-)0(4), (13
linear inh, it can be solved via the discrete Fourier transform

L

his expression motivates the introduction of the local slopes
¢;=h;.1—h;. In this representation the operator for the
density of local minimgfor the original surfackis

and its steady-state average (8)=(O(— ¢i_1)0O(¢;))
=(0(—¢1)0O(¢,)), due to translational invariance. The av-
erage density of local minima is the same as the probability
(6)  that a randomly chosen site of the lattice corresponds to a
local minimum of the surface. It is governed by the nearest-
Then Eq.(4) translates into neighbor two-slope distribution, which is also Gaussian and

fully determined by( ¢2)=(¢3) and(d,d,):

P 27N
Ekzz e*”"'hi, k:T, n=0,12...,L—1.
=0

o (t)=—{21[1—cogk)]+4«[1—cogk) ]2 h(t)

+ (D), (7) P™ by, bp)ce YAKN/2 | k=12, (14)
with where
(M) 70 (1)) =2DL 817 mod 2m,08(t—t").  (8) Ann:( (67 <¢1¢2>)_1 (15)
(102) (9D

Following the definition of the equal-time structure factor

S"(k,t) , namely, _ _ . .
As we show in Appendix A, the density of local minima

S'(K, )L Sy mod 2m0= (PO (1)), (99  depends only on the ratih; ¢,)/($7):
one obtains for an initially flat interface 1 (p1b2)
(u)y= 5-arcco > |- (16)
S(k,t)=S"(k)(1— e—{4v[l—cos(k)]+8K[1—cos(k)]2}t)_ ™ (d7)
(10)
_ Finite-size effects iqu) are obviously carried through from
In the above equation, the correlations. First we find the steady-state structure factor
5 for the slopes. Sincep,=(1—e *)h,, we have S?(k)
S'(k) = lim S(K,t) = =2[1-cosK)]S'(k). Then from Eq.(11) one obtains
to 2v[1—cogk)]+4«[1—cogk)]?
D
(1) S?(k)= for k#0

, v+2k[1—cogk)]
is the steady-state structure factor.

For v#0, and in the asymptotic scaling limit whete
> \/k/v, the model belongs to the EW universality class and
the roughening exponent i&=1/2 (it is defined through St(K)=0 for k=0 1
the scaling L?* of the interface width (w?(t)) (k) ' {7
= (LL)(={_y[hi(t)—h]?) in the steady stajeThe presence The |atter automatically follows from thE-_,¢,=0 rela-

of the curvature term does not change the universal scalings, Then we obtain the slope-slope correlations
properties for the surface width, and one finds the same ex-

ponents as for the pure EW case=0) in Eq. (4). For v 1Lt 2N

=0 the surface is purely curvature driven<(4) and the Cl)=(pipis))=— > ei(2wn/L)IS¢(_)_ (18)
model belongs to a different universality class where the Li=1 L
steady-state width scales with a roughness exponent of

=3/2. With the help of Poisson summation formulas, in Appendix
In the following we will be mostly interested in some B we show a derivation for the exact spatial correlation func-
local steady-state properties of the surfége In particular,  tion, which yields
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D bl 1 1 Now, employing Eq.(16), we can obtain the density of
A1) = - — minima as
el v+2k\ . /1—a2 1—alL n

c1

b b'+b~! _ (u)Lzziarccoé ;( )

+mﬁ =L, (19 T CP(0)
h 1 b1+ 1 /1-b +al -
w = o AT N T p Ve %9

= 2x and b= 17vizat ‘1_6‘_ (200  Again, for thek=0 case one has a compact exact expression
vt2k a and the corresponding lardebehavior:
We havela]<1 andb=<1. The second term in the parenthe- 1 1 1 11

ses in Eq(19) gives auniform power-law correction, while (u),_=ﬁarcco% =172 + oAl (27)

the third one gives an exponential correction to the correla-
tion function in the thermodynamic limit. For#0 andL

: which can also be obtained by taking tke-»0 limit in Eq.
— one obtains

(26). To summarize, as long as# 0, the model belongs to
the EW universality class, and in the steady state, the density

et
ce()= D b!" — D el 21) of local minima behaves as
* v+2k J1—-a2 v+2k J1—-a?’
+const o8
where we define the correlation length of the slopes for an (up={w)- L’ (28)

infinite system as
where(u)., is the value of the density of local minima in the

B 1 27 thermodynamic limit:

1
In the »— 0 limit it becomes the intrinsic correlation length, (u)wzﬂarccosb). (29)
which diverges as~ V2

Note that this quantity can be small, but does not vanish if

»—0 is close but not equal to 0. Further, the system exhibits the
£L = \klv scaling(298) for asymptotically large systems, where>£2.
It is important to see in detail how).. behaves ag—0:
and
v—0 1
o = l_ \ I_
c P \/; [ y I 23 W T et B

1 v
=zarccosl— /.
In this limit the slopegseparated by any finite distandee-
come highly correlated, and one may start to anticipate that 1 ( \ﬁ) vz 1
K

"z 2VH E

the density of local minima will vanish for the original sur- -
face{h;}. In the following two subsections we investigate the

Thus, the density of local minima for anfinite system van-
ishes as we approach the purely curvature-driven-Q)

density of local minima and its finite-size effects for the
Edwards-Wilkinson and Mullins cases.

limit. Simply speaking, the local slopes become “infinitely”
A. Density of local minima for the Edwards-Wilkinson regime correlated, such theﬁfﬁ(l) diverges{according to Eq(23)],

To study the finite-size effects for the local minimum den-and the raticC?(1)/C2(0) for any fixed! tends to 1. This is
sity, we neglect the exponentially small correction in Eg.the physical picture behind the vanishing density of local
(19), so in theasymptotidimit, whereL>¢2, CP(l) decays minima.
exponentially withuniform finite-size corrections:

(30

B. Density of local minima for the Mullins regime

I1
ct()= b 1 1) (24) Here we take thev—O limit first and then study the
Vi-a® 1l-al finite-size effects in the purely curvature-driven model. The
slope correlations are finite for finile as can be seen from
This holds for the special case=0 as well(in fact, there the  gq. (18), since then=0 term is not included in the sum.
exponential correction exactly vanisheleaving Thus, in the exact closed formuld9) a careful limiting
procedure has to be taken, which indeed yields the internal
cancellation of the apparently divergent terms. Then one ob-

tains the exact slope correlations for the 0 case,

v+ 2k

D 1
Cff('):;(@,o— [)- (25
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DL 1 | D' 2{1-co§(2an/L)I]}
cth==—|= 1———|(1——) : 31 Gl(lhy=— . (40
L( ) 2K 6 LZ) | | L ( ) L( ) L =4 V{Z[l—COSZ’n’n/L)]}(Z_Z)IZ (

and for the local minimum density, )
4 For small wave vectors we can again deduce thatzfeb

(32 (41)

1 6
(u),_zﬁarcco§1—— Ge(1)~LZ 512,

It vanishes in the thermodynamic limit, and hence one ObOne may refer to this form as “anomalous” Sca"['[g?] for
serves that the limits—0 andL— are interchangeable. the slope-difference correlation function in the following
Forv=0, L is directly associated with the correlation length sense. Foz<5 the scaling form foiG#(l) follows that of
and we can defing’=L/6. Then the correlations and the C?(0) [Eq. (39)], i.e., GP(I)~17"3. Forz>5 [Eq. (41)] it

density of local minima take the same scaling form as Eqsgpyiously features a differemtdependence and an additional

(23) and (30):

D
Clh=5_(&l~Il) (33

and

J2 1
<U>L:ﬂ\/?i,-

C. Scaling considerations for higher-order equations

(34

Let us now consider another equation with a generalized
relaxational term that includes the Edwards-Wilkinson and

the noisy Mullins equation as particular cases:

dathi(t)=—v(= V) ?hi(t) + 7(1) (35

wherez is a positive real numbemot necessarily integer
Otherz values of experimental interest aze=1 (relaxation
through plastic flow[17,21]) and z=3 (terrace-diffusion
mechanisnj12,14,15). For early times, such thatL?, the
interface width(w?(t)) increases with time as

(Wi (1)) ~t2#, (36)

where B=(z—1)/2z [16,17. In the t—co limit, where t

power ofL, and it diverges in th& — o limit.

Having these scaling functions for large we can easily
obtain the scaling behavior for the average density of local
minima. Exploiting the identity

1
cl(h=cf(0)-5G¢(), (42)

we use the general form for the local minimum density:

{Cﬁn
ct(o)

1G{(1)

(43

Note that this is the scaling behavior fall z>5. It simply
shows the trivial lower bound fofu): since there is always
at least one minimurfand one maximumamong the. sites,
it can never be smaller thanlLl/

>L7 the interface width saturates for a finite system, but

diverges withL according to(w?())~L2* where a=(z
—1)/2 is the roughness expondi6,17.

For z=4 (curvature-driven interfagewe saw that the
slope fluctuation behaves &(0)=(¢?)~L. For higherz
the slope-slope correlation function can be obtained as

D L-1 gi(2mn/L)l

L i 2[1-cog2mn/L) 22

cl() (37)

It is divergent in theL—oo limit, as a result of infinitely
small wave vectors-2«/L, and we can see that

cf(0)~L?8, (39

D. The average curvature at local minima

The next natural question to ask is how the average cur-
vatureK at the minimum points scales with the system size
for the general system described by E85). This can be
evaluated as the conditional average of the local curvature at
the local minima:

(K)min={(®i— #i-1)) min
((di—di-1)O(—di-1)0(¢))
(O(—¢i—1)0(e))
:<(¢2_¢1)(_¢1)®(¢2)>
(u) '

(44)

It is also useful to define the slope-difference correlation

function
GP(Hh=((¢i+1— #)?), (39)

for which one can write

where translational invariance is exploited again. The nu-
merator in Eq.(44) can be obtained after performing the
same basis transformatigAppendix A) that was essential to
find (u). Then, after elementary integrations, we find
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1 1 cfo)-c?(1) Thus, the exact finite-size effect for the local minimum den-
(KYmin=7~ S = sity (which is also the average growth rate of the surfdde
(W V2m  Jcl(o) is
27 ct(0)—ce(1) 1 L 1 1 -
= 2 L ) L P . (45) <U>L=ZQ=Z+I+O(L 2), (51
VC{(0) arccosCl(1)/Cf(0)]

in agreement with the general scaling behaviofwf_ in the

Using the explicit results for the slope correlation function EW universality clas§Eq. (28)].

for z=2 andz=4 and its scaling forms for highergiven in
the previous subsections, one can easily deduce the follow-

ing. Forz<5 the average curvature at the local minimum B The massively parallel exponential update model

pointson a latticetends to aconstantin the thermodynamic One of the most challenging problems in parallel comput-
limit. For z=2 ing [26] is the efficient implementation of dynamic Monte
Carlo (MC) algorithms for discrete-event simulations on

22 b 1 massively parallel architectures. As already mentioned in the

<K>min:ﬁ P O(f), (46)  Introduction, it has numerous practical applications ranging

from magnetic system&he discrete events are spin-flip at-

temptg to queueing networksgthe discrete events are job

arrivalg. A parallel architecture by definition contaifissu-

ally) a large number of processors, or processing elements

<K>min2\/;1 /22+O %) (47) (PEs. Durin_g the simulation each processor has to j[z_ickle
v only a fraction of the full computing taske.g., a specific

block of sping, and the algorithm has to ensure through syn-
The behavior of this quantity drastically changes #0f5,  chronization that the underlying dynamics is not altered. In a

and forz=4

where itdivergeswith the system size as wide range of models the discrete events are Poisson arrivals.
o Since this stochastic process is reproductihe sum of two
(K)min~ L7, (48 Poisson processes is also a Poisson process with a different

arrival frequency, the Poisson streams can be simulated si-
multaneously on the subsystems carried by each PE. As a
consequence, the simulated timddsal andrandom) incre-

IIl. OTHER LATTICE MODELS AND AN APPLICATION mented by exponentially distributed random variables on
TO PARALLEL COMPUTING each PE. However, the algorithm has to ensure that causality

_ across the boundaries of the neighboring blocks is not vio-

A. The single-step model lated. This requires a comparison between the neighboring

In the single-step model the height differendes., the  simulated times, and waiting, if necess@cpnservative ap-
local slopesare restricted ta- 1, and the evolution consists Proach. In the simplest scenarigone site per PE this
of particles of height 2 being deposited at the local minimameans that the only PEs allowed to attempt to update the
While the full dynamic behavior of the model belongs to thestate of the underlying site and increment their local time are
Kardar-Parisi-ZhangKPZ) universality clasg23], in one  those for which the local simulated time idacal minimum
dimension the steady state is governed by the EW Hamilof the full simulated time horizon of the systefm;}, i
tonian[24]. Thus, the roughness exponentis1/2, andwe =1,...L. Here, we consider a chainlike connectivity
expect the finite-size effects f@u) to follow Eq. (28). The ~among the PEs but connectivities of higher degree can be
advantage of this model is that it can be mapped onto #eated as well. Also note that the “mean-field-like”
driven hard-core lattice gas for which tiseeady-statgrob- ~ K-random interaction modefeach site compares its local
ability distribution of the configurations is known exactly Simulated time toK randomly chosen other sitebas been
[24,25 (each configuration has equal weighthis enables investigated by Greenbewg al. [28].
us to find arbitrary moments of the local minimum density One can think of the time horizon as a fluctuating surface
operator_ Sinceﬁi: +1, it can be S|mp|y written as with helght variableri . Other examples where the Update
attempts are independent Poisson arrivals include arriving
Ll 1t 1o calls in the wireless cellular network of a large metropolitan
> — 5 L 21 (I-ni—pni, (49  area[3], or the spin-flip attempts in an Ising ferromagnet.
This extremely robust parallel scheme was introduced by
. . Lubachevsky[27], and it is applicable to a wide range of
whereni_—(1+ ¢i)/2 corresponds to the hird-core IattICe'gasstochr:lstic cz[llular automata I\C/)vlcijth local dynamics whgre the
ochupatlon number. The constrainf., ¢ =0 tra}nslates 0 discrete events are Poisson arrivals. The local random time
2i_1ny=L/2. Note that hergu)=((1—n;_1)n;) iS Propor-  jhcrements are, in the language of the associated surface,
tional to the average current. Knowing the exact steady—statgquiva|ent to depositing random amounts of “material”

1
u=—
L=

probability distribution[24,25, one can easily find that (with an exponential distributiorat the local minima of the
surface(Fig. 2). This defines a simple surface-growth model
(n)= 1 (i), :E L-2 (50) which we shall refer to as the massively parallel exponential
2 PEI AL -1 update(MPEU) model. The main concern about a parallel
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FIG. 2. The MPEU model. The arrows show the local minima, 0.246 ‘ : . :
where random amounts of material will be deposited in the next 0  0.002 0.004 0.006 0.008 0.01
time step. 1/L

implementation is its efficiency. Since in the next time step FIG. 3. Density of minima vs 1/ for the MPEU model.

only a fraction of PEs will attempt the update, i.e., those thatf
are in the local minima of the time horizon, while the rest
idle, the efficiency is simply the average number of non- const
idling PEs divided by the total number of PEk)( This is (U =(u),,+ 3
equivalent to theverage number of minima per unit length
or the minimum-point density. The fundamental question . _ :

of scalabilityarises: will the efficiency of the algorithm go to with {u)..=0.246 41(7)(see Fig. 3.
zero as the number of PEs is increased indefinitehs¢o),

or not? If the efficiency has a nonzero lower bound Kor
— o0, the algorithm is calledcalable and certainly this is the
preferred type of scheme. Can one in principle design suc
efficient algorithms?

As mentioned in the Introduction, we know of one ex-
ample that nature provides with an efficient algorithm for a
very large number of processing elements: the human brai
with its 10! PEs is the largest parallel computer ever built.
Although intuition suggests that indeed there are scalable
parallel schemes, it has been proved only receside Ref.

[2] for detaily, by using the aforementioned analogy with  In this subsection we briefly present a curvature-driven
the simple MPEU surface-growth model. While the MPEU SOS surface deposition model known in the literature as the
model exactly mimics the evolution of the simulated time larger curvature model, and show a numerical analysis of the
horizon, it can also be considered as a primitive model fodensity of minima in this model. This model was originally
ion sputtering of surfacegetching dynamics to see this, introduced by Kim and Das Sarmia0] and Krug[31] inde-
define a new height variable via=—r,, i.e., flip Fig. 2  pendently, as an atomistic deposition model that fully con-
upside down. This means that, instead of depositing materialorms to the behavior of the continuum fourth-order linear
we have to take “etch,” and this has to be done at the locaMullins equation[ v=0, x>0 in Eq.(4)]. Note that the dis-
maximaof the {h;} surface. In sputtering of surfaces by ion crete analysis we presented in Sec. Il is based on the discreti-
bombardement an incoming ion projectile will most likely zation of the continuum equation using the simplest forward
break off a piece from theop of a mound instead of from a Euler differencing scheme. The larger curvature model, how-
valley, very similar to our “reversed” MPEU model. It has ever, is agrowth model where the freshly deposited particles
been shown that the sputtering process is described by thiffuse on the surface according to the rules of the model
KPZ equation16,29. This qualitative argument is in com- until they are embedded. Since in all the quantities studied so
plete agreement with the extensive MC simulations andar the correspondenden the level of scalingbetween the
coarse-grained approximation of REZ]. The MPEU model larger curvature model and the Langevin equation is very
is similar to the single-step model in that it also belongs togood, we would expect the dynamic scaling properties of the
the KPZ dynamic universality class. In one dimension thedensity of minima for both the model and the equation to be
macroscopic landscape is governed by the EW Hamiltoniaridentical.

The slope variableg; for MPEU are not independent in The larger curvature model has rather simple rules: a
the L—c limit, but short-range correlated. This already freshly deposited atorflet us say at sité) will be incorpo-
guarantees that the steady-state behavior is governed by thated at the nearest-neighbor site that has largest curvature
EW Hamiltonian, and thus that the density of local minima(i.e., K;=h; ., +h;_;—2h; is maximun). If there are more
does not vanish in the thermodynamic limit. Our results conneighbors with the same maximum curvature, then one is

irm that the finite-size effects fgu) follow Eq. (28):

(52

We concluded 2] that the basic algorithnfone site per
PE) is scalable for one-dimensional arrays. The same corre-
spondence can be applied to model the performance of the
Igorithm for higher-dimensional logical PE topologies.
hile this will involve the typical difficulties of surface-
growth modeling, such as an absence of exact results and
very long simulation times, it establishes potentially fruitful
connections between two traditionally separate research ar-

C. The larger curvature model
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00 ' y ' ' ' i ing the total number of extrema bin the[0,L ] interval. The
ooss | ] topology of continuous curves in one dimension allows for
three possibilities on the nature of a poixt for which
f’|xi=0, namely,x; is a local minimum iff”|xi>0, a local
maximum iff”|xi<0, and degenerate if’|xi=0. We call the
point x; a degenerate flat of ordet, if fI[, =0 for j
=12,...k and f&D|, 0, k=2, assuming that the
higher-order derivative$()) implied exist. The counterlike

quantity
0.015
1L
oot | C(L’[f])E[f dx|f"|8(f), (53
0.005 | 0
ok 1 . - - : : : where § is the Dirac delta, gives the number of extremum
] 0.05 0.1 0.15 0.2 0.25 0.3 0.35 04 . . . A . . ..
]//E points per unit length in the intervfD,L ], which in the limit

of L—0 is the extremum-point density bfn the origin. For
our purposes. will always be a finite number; however, for
the sake of briefness we shall referdsimply as the density
of extrema. Note that counting the extrema of a funcfid
chosen randomly. If the original sit@) is among those with  equivalent to counting the zeros of its derivate The diver-
maximum curvature, then the atom is incorporated at gence ofc for finite L implies the existence of either com-
Figure 4 shows the scaling of the density of mini(g,  pletely flat regiong(infinitely degenerate or an “infinitely
in the steady state vs JL. According to Eq.(32), for the  wrinkled” region, such as for the truncated Weierstrass func-
fourth-order equation on the lattice, the behavior of the dention shown in Fig. 2(in this latter case the divergence is
sity of minima in the steady state scales with system size agnderstood by taking the limM — ). As already explained
1/JL. And, indeed, Fig. 4 shows the same behavior for then the Introduction, this infinitely wrinkled region does not
larger curvature model, as expected. Note that this behavig{ecessarily imply that the curve is fractal, but if the curve is
has already set in at rather small system sizes, about fractal, then regions of infinite wrinkledness must exist. The
=100, meaning that the finite-system-size effects are rath&fjyergence or nondivergence otan be used as an indicator

small for the larger curvature model. This is a very fortunat€ys ihe existence of such regiofsompletely flat or infinitely
property since increasing the system size means decreasiinleq)

the density of minima, and therefore relative statistical errors

will increase. the counte: if x; is an extremum point df of at most finite

This can be improved only by better statistics, which, ner nd if there exist mall enoughsuch that
however, quickly becomes a daunting task, since the cros regene ack, a ere exists a smalfl enoughsuch tha

over time toward the steady state scales with system size 445 analytic in the neighborhodd — €,x; + €], and there are
L. As we shall see in Sec. VA, a mathematically rigorousn® Other extrema in this neighborhood, then
approach to the continuum equation yields the samé. 1/ -
behavior. Since the density of minima does decay to zero, an N <
algorithm corresponding t% the larger curvaturey mofhel I(Xi)_J dx|f"[a(f")=1, O<e<l, 54
the Mullins equatiopwould not be asymptotically scalable.

Fina”y, we would like to make a brief note about the In the fo”owing we give a proof of this statement.

observed morphologies in the steady state for the Mullins Using Taylor-series expansions around one writes
equation, or the related models. It has been shown previously

[32] that in the steady state the morphology typically shows

FIG. 4. Density of minima in the steady state for the larger
curvature model.

One can make the following precise statement related to

Xj—€

a single large moun¢br macroscopic grooveAt first sight f'(x)= a—:‘(x—xi)k+ B 1 | (x—x)*"1+..., (55
this may appear as a surprise, since we have shown that the k! (k+1)!

number of minimaor maxima diverges as/L (the density

vanishes as 1/L). There is, however, no contradiction, be- F1(x) = A (X_X,)k71+%(x_xl)k+ o
cause that referoota a mound that expands throughout the (k—=1)! ! k! ! '
system, i.e., it is a long-wavelength structure, whereas the (56)

number of minima measuredl the minima, and thus it is a )
short-wavelength characteristic. In the steady state we indeehere we introduced the shorthand notatiay= {01, .
have a single large, macroscopic groove; however, there aieor the nondegenerate casekef 1, Eq.(54) follows from a
numerous small dips and humps generated by the constaslassical property of thé function, namely,

coupling to the noise.

_ -1
IV. EXTREMAL-POINT DENSITIES ON THE CONTINUUM a(g(x))= EI 19" (x)| ™ 8(x—x)),

Let us consider a continuous and at least two times dif-
ferentiable functiorf:[0,L]—R. We are interested in count- X; are simple zeros of g. (57)
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Let us now assume that is degenerate of ordér (k=2).  Sincek=2, q(1—1k)=3q>0, i.e.,
Using the expansion&b5) and (56), the variable change

=x—x;, and the well-known property(ax)=|al *5(x), I{(x;)=0 forx; degenerate. (65)
we obtain
. o (k=1)! ag This means thatj>0 eliminates the degenerate points from
I(xi):kf dulul* 1+ >, SR AR Y the count. To nondegenerate poirits=(1) Eq.(63) gives the
—e S (k=140 &y weight of
x 8| |ul 1+§ L%uj (58) lo(xi)=]|as|9=|f"],|* forx; nondegenerate. (66)
G T A IR bl TS ? |
Next we split the integral58) in two, [€ - ~-=f96- . In other words,
+[§- -+, make the variable change— —u in the first one,
and thenz=uX in both integrals. The final expression can 1
then be written in the form CLLfD=1 > K|,
I
ek
I(xi)zfﬁekdz|A(z)|5(zB(z)), (59 g>0, x; nondegenerate extremafqof (67)
h
where where K(x)=f" is the curvature of f at x. The_limit o}
% (k=1 ayy; [l —0" in Eq. (67) gives the extremum-point densityL,[f])
A(z)—1+j:1 k=111 a 27| of f of nondegenerate extrema:
and ~ — i — i 1 - mq+1 ’
c(L,[f])—I|m0+cq(L,[f])—I|m0+E dx|f"[9"S(f7).
. - - 0
B=1+3 M (g q q ©9
z)= — ——7|z .
=1 (k+))1 ay

It is important to note that taking tre— 07" limit in Eq. (67)
We haveA(0)=B(0)=1, and is not equivalento takingg=0 in Eq.(63), i.e., the limit and
the integral on the right-hand side of E§8) are not inter-

, - Kl agy (] otilk=] changeable. The difference is the set of degenerate points.
[2B(2)] :1+]§=:1 k+)! ag PREdEar Until now, we did not make any distinction between
maxima and minima. In a natural way, we expect that the
=[2B(2)]'|,-0=1. (61  quantity

(Take the derivatives separately to the right and to the left of 1L
z=0.) Thus, sincez=0 is asimplezero ofzB(z), property u(L,[f])= Ef dx f"8(f")6(f"), (69
(57) can be applied for sufficiently smadt 0

1(x)=|A(0)[=1, (62)  whered(x) is the Heaviside step function, will give the den-

. . N hat b ‘ sity of minima (due to the step function, here we can drop
proving our assertion. Note that, because o Esp), c the absolute valugsHowever, performing a similar deriva-
counts all the nondegenerate and the finitely degenerate?Ion to the one above, one concludes that E§) is some-
points as well, giving equal weight of unity to each. Can WE\yhat ill defined, in the sense that the weight given to degen-

c?fgnt the nﬂndegenergdte egtremadsiparatelr?/? fTITe answeleibite points depends on the definition of the step function at
affirmative, if one considers instead of B§3) the following the origin[however,u(L,[f]) is boundedl Introducing aq

quantity: regulatoras above, the weight of degenerate points is pulled

1 (L down to zero:

o LID=1 [ ol o), a=0. (63
0

1 (L
= nq+1 ’ ”
Performing the same steps as above we obtain for a degen- Ua(L,LT]) Lfo AT 6(1"), >0, (70

erate point

Xi+e and
0= [ e s

Xj—€ 1
[ lad Ug(L [T = 2 [KOWT,
~\(k=1)!

arx
f 422|C"|A(2)|9 1 5(zB(2)).

(64) g>0, x; nondegenerate minima 6f (71
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Note that in the equation above the absolute values are not C(L t)= I|m Cq(L,t) and U(L )=lim Uq(L,t)

needed, since we are summlng over the curvatures of all gq—0% (78
local minima The density u(L,[f]) of nondegenerate
minima of f is obtained after taking the limig—0": and in the second case we obtain the stochastic average of

_ the mean curvature at extrema and minima:

u(L,LfD=Ilim uq(L.[T]), (72)

q—0"
— . : . . — Cy(L,1) Uy(L,t)

and the limit is not interchangeable with the integral in Eq. Kex(L,t)= = and Kmm(L t)=— (79

(70). To obtain densities for maxima, one only has to replace ' U(L.1)

the argument” of the Heaviside function with-f". . .
(we need to normalize with the number of extrema or

minima per unit length to get the curvature per extremum or
minimum).

We are interested in exploring the previously introduced In the following we explore the quantiti€g4)—(79) for a
guantities for a stochastic function subject to time evolutionlarge class of linear Langevin equations. To simplify the cal-
h(x,t). This function may, for example, be the solution to aculations, we will assume thafis a positive integer. Then
Langevin equation. We define the two basic quantities in thave will attempt analytic continuation on the final result as a
same way as before, except that now one performs a stochasmnction ofg. In the calculations we will make extensive use
tic average over the noise, as well: of the standard integral representations of thend step

A. Stochastic extremal-point densities

. functions:
Lo <1de 9?h | 5<9h
= X —_— o) . n
T Ao ] [ Ly [ S,
oy)= o 271'e _n§=:O — 27 Nl Yo (80)
and
* izy
1L [62n]%t [on\ [o?h o(y) = lim f dz e*’
Uq(L,)= j dx — 1) —)0 —1 ). (73 e—0" 27 e+iz
0o | ox? X\ gx? » . n
eHo+ =0 J_w 27 e+iz n! ye

For systems preserving translational invariance, the stochas-
tic average of the integrand becomemdependent, and the |f g s a positive odd integer, we may drop the absolute value

integrals can be dropped: signs in Eq.(74). In general, the absolute values make the
oy [q+1 calculation of stochastic averages very difficult. We can get

c _ /| eh dh around this problem by employing the following identity:

qLt)= P 8 = (74)
ly|"=y™"(=1)"+6(y)[1- (- 1)"]}. (82)
2.\ a+1 2
Uq(L,t)= < ((9_2) 5( @) g(ﬂ) > _ (75)  This brings Eq(74) to
X Ix) -\ gx?
Ca(L,D)=[1= (= 1) Uqg(L, ) + (= 1)T 1Bg(L 1),
According to Egs(67) and(71), C4(L,t) andU,4(L,t) can (83

be thought of as time-dependent “partition functions” for
the nondegenerate extremal-point densities of the underlyinghere
stochastic process, wittp playing the role of “inverse tem-

perature”; 1L [a?h\% (oh
Bo(LD= fo M e x> 6(&)
q(l— t < 2 |K(X > ﬁzh q+1 oh
=152 5(5) . (84)

1 Obviously, forq an odd integerB,=C,. Forq even,B is
Uq(L,t)=<— E [K(xi)]q> , an interesting quantity by itself. In this case the weight of an
L5 extremumy; is sgriK(x;)1|K(x;)|9. If the analytic continu-
o ation can be performed, then tge=0* limit will tell us if
q>0, x nondegeneratminima (77) " there are more nondegenerate maxima than mirfonath-
erwise on average. Using the integral representati®3®
€and (81) we find

g>0, x; nondegeneratextrema (76)

It is important to mention that in the above equations the
average(- - -) and the summation areot interchangeable:

particular realizations ofi have particular sets of minima. e dz (i)"] [ o%h Al o
Two values forq are of special interesgj—0" and g By(L,t)= E gz iz - (_) ,
=1. In the first case we obtain the stochastic average of the n=0 J - 27 n! x> ax

density of nondegenerate extrema and minima: (85
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= dz (iz)™ Equation(87) has been analyzed in great detail by a number
PO of authors(see Ref[17] for a review. It was shown that
there exists an upper critical dimensidg=z for Eq. (87)

o(L,H=1lim E E

e—0t nj=0n,=0 J-= 27 ny!

y * dz, (izy)" 1 which separates the rough regime wihk<z from the non-
- N, e+iz, roughening regime>z. In.c.Jne dimensjon, the rough regime
R N corresponds to the conditian>1, which we shall assume
><<(‘?—2 2 @) 1>. (86)  from now on, since this is where the interesting physics lies.
L IX X Next, we evaluate the quantiti€s4)—(79) by directly cal-
culating the expressions in Eq85) and(86). This amounts
V. EXTREMAL-POINT DENSITIES OF LINEAR to computing averages of the type
STOCHASTIC EVOLUTION EQUATIONS
N
Next we calculate the densiti€¢85) and (86) for the fol- On = <72_h @ M (95)
lowing type of linear stochastic equations N.M ox2| \ox| |-
f: =—»(=V3?h+ p(x,t), »D,z>0, xe[OL], Expressing with its Fourier series according to EQO), we
write
(87)
with initial conditionh(x,0)=0, for all xe [OL]. Here, 7 is (_) i o kF e B e itk £
a white noise term drawn from a Gaussian distribution with X 2 E v -Kuh(ka, t)---hik 1)
zero mean( 7(x,t))=0, and covariance s gilkat - +yx (96)
(n(x,0)7(x',t'))=2D8(x—x")8(t—t'). (88
We also performed our calculations with other noise types, ( ) —(—DNY D K2k ERKL Y - R(KG D)
such as volume conserving and long-range correlated ones; Ix* k] Ky,

however, the details are to lengthy to be included in the ) )
present paper and will be the subject of a future publication. X @l (ke k)X (97
As boundary condition we choose periodic boundaries:
which then is inserted in Eq(95). Thus one needs to
h(x+nL,t)=h(x,t), #n(x+nLt)=n(x,t) forallneZ.  calculate averages in Fourier space of the type

B9 Rkyt)- - Pk DR - Rk, 1)) According to Eq.
The general solution to Eq87) is obtained simply with  (93) h is anti->-correlated; therefore these averages can be
the help of Fourier seriegl7]. The Fourier series and its performed in the standard w&$3] by taking all the possible
coefficients for a functiori defined ol 0O,L] is pairings of indices and employing E@3). In our case there
are three types of pairinggk; .k}, {kj.k/}, and{k/ k/}.
f)=> Fkek, Fk) = EJL dxf(x)e" ¥, (90) Let us pick a “mixed” pair{k; k| } containing a primed and
K ' L/ ’ a nonprimed index. The corresponding contributiomigq

will be
wherek=(2#/L)n, n=...,-2,—-1,0,1,2... . TheFou-
rier coefficients of the general solution to E§7) are Vot e
2 2 kikiPS(k] DeltTiog . (98)
~ t 2 rn~ ik
h(k,t)zf dt’e KAk ). (92) '
0
Since the structure fact@(k,t) is an even function ik, Eq.
The correlations of the noise in momentum space are (99 becomesEkjka(kj ,t)=0, because the summand is an
odd function ofk; and the summation is symmetric around
(77(k H7(K’ t'))= 95 S(t—t'). (92) zero. Thus, it is enough to consider nonmixed index pairs
' ’ kok only. This means tha®y y decouples into
Due to the Gaussian character of the noise, the two-point 2p\N gh\ M
correlation of the solutio91) is also 6 correlated, and it M= (_> <(_ > (99)
completely characterizes the statistical properties of the sto- ax? X

chastic dynamic$87). It is given by
The averages are calculated easily, and we find

(h(k,HYR(K’ ")) =S(K,t) 8 ', (93
oh\M (M=) (L, 1)]M?2 for M even
whereS(k,t) is the structure factor, X =10 forM odd
D ' (100
_ *ZV‘k‘Zt). (94)

vL|K| and
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2\ M\ [(N=1)11[ 4(L,)]V2 for N even
X2 _[0 for M odd,
(101

where

¢>m<L,t>EEk |k|™S(k,t). (102

Employing Eqs(100) and(101) in Eq.(85), it follows that if
g is an even integelg=2s, s=1,2, ... ,then

B,(t)=0, s=1,2,..., (103

whereas forg an odd integerg=2s—1,s=1,2,...,

zsl’zr(s+ 1)[¢4<L,t>]s
& 2] Jpy(Lit)

(104

Bas—1(1)=Cys_1(t)=

s=1,2,...,

where we used the identityP@p—1)!!/(2p)!=1/p! and
performed the Gaussian integral.
The calculation ol is a bit trickier. The sum over, in

Eq.(86) is easy and leads to the Gaussiar?2(-972 How-

ever, the sum oven, is more involved. Let us make the

temporary notation for the sum oves:

Ry 2

n2
(2r=D"[da(L,)]", n,+q+1=2r.
np=0 Ny!

(105

We have to distinguish two cases according to the parit)F

of g.
(1) gis odd,q=2s—1, s=1,2,... . Inthis caseR, be-
comes

o (12279 (2n) 1 r
st—l—r_sm7<§¢4(L,t))

2s

d
=(2,)"*(~ 1)5{ ZS(e_ ¢4(Lvt)Z§x2/2)]
X -

(106)

TOROCZKAI, KORNISS, DAS SARMA, AND ZIA

PRE 62

(izz)z(rfs)fl (2r) (1 ;
st_rzzsﬂ [2(r—s)—1]! ! 5 %L1
2s+1 .,
=(izy) %571 W(e—qu(L,t)zzx 2) (109

x=1

or, via Hermite polynomials,

s+1/2 1
H25+1( \ §¢4(|—:t)22)

(110

) 1
Ras=i(— 1)S(§¢4(L,t)
e~ ¢4(L,t)z§x2/2_

In order to obtainU, we have to do the integral ovep in
Eq. (86). This can be obtained after using the formula

I'(n—»)/2)

F dx(x=ic)"Hy(x)e < =2""1""/x )

xet(im2)(r+n) o+
(111
Finally, the densities for the minima read as
s—1 s+1/2
[ha(L,D)]
U,g(t)= I'(s+1)————m, (112
oo Véa(L,t)
25732 1\[¢a(LD)]°
Uys 1(t)y=—1I"| s+ —)—. (113
S 2] V(L)

ormulas(103), (104), (112, and (113 combined with Eq.
(83) can be condensed very simply, and we obtain the gen-
eral result as

q/2—-1 L,'[ (g+1)/2
Uq(L,t)Z TF(%‘F 1)%, (119
2\,
Cq(L,t)= 2Uq(L,t). (115

Equations(114) and (115 together with Eq.(113 fully
solve the problem for the density of nondegenerate extrema.
Equation(115 is an expected result in one dimension, be-
cause Eq(87) preserves the up-down symmetry. The density

The Hermite polynomials are defined via the Rodrigues for-of nondegenerate minima is

mula as

n

2 d 2
Ha(X)=(—1)"e* — (™). (107)
dx

Using this, we can expred®,;_; with the help of Hermite
polynomials:

1 s 1
Ros-1=(— 1)5(5 ¢4(L,t)) st( V §¢4(L,t)22)

xXe~ ¢4(L,t)Z§X2/2. (108)

(2) q is even,q=2s, s=1,2,... . Thecalculations are
analogous to the odd case:

¢a(L,)

$o(L,1)’

and the stochastic average of the mean curvature at a mini-
mum point is

ULHh= lim UgL,t)==L
q—o0*

5 (116

KL Ul(L’t)=\/§J¢4<L,t>, (117

T O

i.e., the average curvature at a minimum is proportional to
the square root of the fourth moment of the structure factor.
In the following section we exploit the physical information
behind the above expressions for the stochastic prd8&ss

At some parameter values, a few of, or all, the quantities
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above may diverge. In this case we introduce a microscopic 1 [uea L/2a -1
lattice cutoff 0<a<1, and analyze the limia—0" in the U(L,oo)z - 2 n4—z( Z nz—z) , (125
final formulas. This in fact corresponds to placing the whole L V=1 n=1

problem on a lattice with lattice constaat It has been

shown in Ref[17] that for the class of equatiori87) there  and

are three important length scales that govern the statistical

behavior of the interfach: the lattice constard, the system [72a

sizeL, and thedynamical correlation lengtl§ defined by K(L,»)= 2(277)5*%_2*52 n4-2, (126)
n=1

E(t)=(2vt)12, (118
The convergencéivergencg properties of the sums in Egs.
According to Eqs(102 and (94) the function¢(L,t) be-  (124—(126) for a—0" generate two critical values fa,
comes namely,z=3 andz=5. In the three regions separated by
these values we obtaiqualitatively different behaviors for

o)

B E 2mn\M? —(e2mmIL)? B the extremal-point densities.
¢m(L’t)_In=0 L (1-e ), m=24. (i) z>5. All quantities are convergent a—0*. We
(119) have
Then=0 term can be dropped from the sum above, because q 2D\ 92 (@12)(5-2)
it is zero even fom<z (expand the exponential and then Ug(L,)=T|5+1 P (2)
taken=0). However, the whole sum may diverge depending 2
onm andz In order to handle all the cases, including the % [{(z—4)]@" D) L1+ @25 (12
divergent ones, we introduce the microscopic lattice clapff [L(z—2)]%2 . (127
0O<a<1, and then analyze the limi#—0" in the final ex-
ressions. Appropriately, Eq119 becomes
p ppropriately, E¢119) Do) ) .
0n)= —

2D & (2mn\™2 LNz
dm(L)=— > | —| (1-e @™V, m=24,

VL n=1 L

(120 R(L.#)= (25 D2+ /%g(z_muz—sw; (129

Equation(128 shows that there is a finite number of minima
[V¢(z—4)/{(z—2)] in the steady state, independently of the

oD [ 24\ M-z /2 system size.. [U(L,») is the number of minima per unit
dm(L, )= V_L<T) ngl n"TE, m=24. length, andLU(L,) is the number of minima on the sub-
(121 strate of sizel..] The mean curvaturk (L,~) diverges with
system size ak(?~%"2 This is consistent with the fact that
As a—07", ¢, becomes proportional to the Riemans the system size grows &s the width grows ag @Y7 je.,
function, {(z—m). Forz—m>1, ¢,, is convergent, other- faster tharlL, and thus the peaks and minima should become
wise it is divergent. In the divergent case we quote the folsleeker and sharper &s-, expecting diverging curvatures
lowing results: at minima and maxima. However, this is not always true,
N since the sleekness of the humps and mounds does not nec-
s ) essarily imply large curvatures at minima and maxima if the
gl n*=INN+C+O(IN) if s=-1 (122 ghapewf the humps also change bghanges, i.e., if there is
lack of self-affinity The existence of=5 as a critical value

A. Steady-state regime
Puttingé=« in Eq. (120, ¢, takes a simpler form:

where( is the Euler constant, and is a nontrivial result of the presented analysis.
(i) z=5. According to Eq(122), ¢4(L,) diverges loga-
N NS+ rithmically asa—0*. One obtains
> ns= [1+O(IN)] if s>—1, (123
n=1 s+l q 2D q/2 1 1 L (g+1)/2
_ ) _ ) _ Ug(®)=I"| 5+1 —) ——(In—+C ,
which we will use to derive the leading behavior of the ex- 2 ™ (3Ll 2a

tremal point densities whe./a—c. From Egs. (121), (130
(114, (116), and(117) it follows that

oD\ a2 _ 1 1 L
UgLe)=T|2+1|| =] (2m@2E-aL-1-@2)6-2 R I PR (133
q 2 TY
L/2a (g+1)/2[ L/2a -1/2 D L
x| X, nt? > n2z (124 K(L,%)=\/=—| In—-+c]. (132
n=1 n=1 2v 2a
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Equation(131) shows that, although the density of minima 1 [q 2D\ ¥2( 7\ (a/2)(5-2)

vanishes, the number of minima is no longer a constant but Uqg(L,)= EF(EJrl) (5) a

divergeslogarithmically with system siz&. The mean cur-

vature still diverges, but logarithmically, when compared to 3—7

the power-law divergence of E¢L29). X(S—z)w (138
For the mean curvaturk(«) in Eq. (126) z=5 is the

only critical value, since it only depends apy. For z<5, gn(d

using Eq.(123 we arrive at the result that the mean curva-

ture at a minimum point approaches kfindependent con- _ 3-z

stant forL/a— o, with corrections on the order @f/L: UL »)=>2 V5% (139

77(572)/2\/—[) <5. (133
a 2v5—zy 7o (139

E(L,oc):<

We arrived at the same conclusion in Sec. IID when we
studied the steady state of the discretized version of the co

tinuum equation. Coincidentally, far=4 the two constant
values from Eqs(133) and(47) are identicala=1 by defi-
nition in Eq. (47)].

(i) 3<z<5. In this casep,(L,»)—0 and ¢,(L,»)
<o asa—0",

q 2D\ U2 7\ (@2)(5-2) ) 1 \(5-2)/2
Ug(L)=T|5+1 ;) 3 >
|~ (z-3)2
><(5_2)(q+1)/2\/m’ (134)
and
(5-2)12 L-(z-3)2
U(L,»)= >a Nk (135

and the mean curvature is just given by Ef33).
Comparing Eqgs(127), (130), and(134) we can make an

interesting observation: while faz=5 the dependence on

the system sizé is coupled to the “inverse temperaturej,
for 3<z<5 the dependence dndecoupledrom q, i.e., it

becomes independent of the inverse temperature. Equati
(135 shows that the density of minima vanishes with system

size as a power law with an exponert{(3)/2, but thenum-

ber of minima diverges as a power law with an exponent of

(5—12z)/2.
(iv) z=3. In this casep,(L,»)—o and ¢,(L,%)— o0
logarithmically asa—0". One obtains

1 (q (m)“’z 1
UgL,o)=——T| —+1 || —| — |
d 2\2a va?]  \In(L/2a)+C
(136)
and
1 1
U(L,) (137

223 Vin(Liza) < C.

Note that to leading order bott,(L,>) and the density of

minima U(L ©) become system-size independent. The
system-size dependence comes ic@sectionson the order

r?f a/L and higher. The fact that the efficiency of the mas-

sively parallel algorithm presented in Sec. IlIB is not van-
ishing is due precisely to the above phenomenon: the fluc-
tuations of the time horizon in the steady state belong to the
z=2 class(Edwards-Wilkinson universalijy and according

to the results undefiv) the density of minimgor the effi-
ciency of the parallel algorithhtonverges to a nonzero con-
stant, ad.— oo, ensuring the scalability of the algorithm. An
algorithm that would map into a=3 class would have a
vanishing efficiency with increasing number of processing
elements. In particular, fa=2, one obtains from Eq139

U(L,»)=(a23) 1=0.28% . ../a. Note that the utiliza-
tion we obtained is somewhat different from in the discrete
case, which was approximately 1/4. This is due to the fact
that this number is nonuniversal and it may show differences
depending on the discretization scheme used. However, it
cannotbe zero.

Another important conclusion can be drawn from the final
results listed above: at and belaxw=5, all the quantities
divergewhena—0", andL is fixed. This means that the
higher the resolution, the more details we find in the mor-
phology, just as for an infinitely wrinkled or fractal-like sur-
face. We call this transition acrogs-5 a “wrinkle” transi-
tion. As shown in the Introduction, wrinkledness can assume

C%WO phases depending on whether the curve is a fractal or not

and the transition between these two phases may be con-
ceived as a phase transition. However, one may be able to
scale the system sidewith a such that the quantities calcu-
lated will not diverge in this limit. This is possible only in
the regime 3<z<5, when we impose

L2-35(a+1)(5-2) =

const. (140

This shows that the rescaling cannot be done for all inverse
temperatureg at the same time. In particular, for the density
of minima andz=4, La=const.

B. Scaling regime

The full temporal behavior of the extremal-point densities
can be obtained after employing the Poisson summation for-
mulas (B4) from Appendix B in Eq.(120). Due to lack of

with a logarithmically vanishing density of minima, and the space, we will only present the results, leaving the presenta-

dependence on the system size in E6) is not coupled
to q.

(v) 1<z<3. Now both ¢, and ¢, diverge asa—0".
Employing Eq.(123 yields

tion of the details of the derivation to a forthcoming publi-
cation. It is important to note that the scaling properties of
the dynamics are determined by the dimensiontates L/ ¢
and ¢/a. The scaling regime is defined lay<é<L.
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0.1 - - - vide us with interesting information and give an alternative
description of surface morphologies. This analysis gives a
more detailed characterization and can be used to distinguish
interfaces that are “fuzzy” from those that locally appear to
be smooth. The central quantities, the extremal-point densi-
ties, are numerically and analytically accessible. The
partition-function-like formalism enables us to access a wide
range ofg moments of the local curvature distribution. In the
case of the stochastic evolution equations studied, we could
) ) ) exactly relate thesg moments to the structure function of
1 10 100 , 1000 10000 the process via the simple quantiti¢s and ¢,. The wide
spectrum of results accessed through this technique shows
FIG. 5. Density of minima for the larger curvature model as athe richness of short-wavelength physics. This physics is
function of time (the number of deposited laygrgor two system there, and the long-wavelength approach simply cannot re-
sizes,L =100 (diamond$ and L =120 (crossep The straight line  produce it, but instead may suggest an oversimplified picture
corresponds to the behavitr 8. of reality. For example, the MPEU model has been shown to

Just as in the case of steady state, one has to distinguidf¢!0nd in the steady state to the EW universality class; how-
five situations depending on the valueszpfvith respect to ~ €Ver,it cannot be described exacthyy the EW equation in
the critical values 3 and 5. all respects, not even in the steady state. For example, the
(i) z>5. The time behavior is a clean power la;(L,t) utilization (or density of minima of the MPEU model is
decaysas ~t 295022 (L t)~t~12, and K(L,t) di- 0.246 41, which for the EW model on a lattice is 0.25. Also,
verges as-t~5/Z for L/’§>1.’ ’ ’ if one just simply looks at the steady-state configuration, one

(i) z=5. In this case the leading temporal behavior has £Pserves higrskewnessor the MPEU model2], whereas
logarithmic component due to the borderline situation:g:soEt\)’;/ Q]?)dert 's C(??ngglne;trgggutﬂéd?:\glz Slggg‘?tr('jc-s I-:—'JI:)I; ggpr
__4+—1/5 +1)/2 17 __+—1/5 1/2 wn oy I u WO- -
Uq(L 1) decaysas ~t (|nt)(;2 % UL~ Iy elators. For a number of models that belong to the KPZ
)7 universality class, this broken-symmetry property compared
to the EW case has recently received attenfiaB85,3¢ and
has been extensively investigated by Neergard and den Nijs
[35]. The difference on the short-wavelength scale between
two models that belong to the same universality class lies in
< the existence of irrelevant operatdia the renormalization
Is;gtlsﬁed by the larger curvature model from Sec. Ilisee group sense Although these operators do not change uni-
ig. 5. .versal properties, the quantities associated with them may be

Our final expressions also show that the leading term 'ng very practical interest. The parallel computing example

andK(L,t) divergesas ~(Int
(i) 3<z<5. Belowz=5 the leading time dependence of
the partition functionU(L,t) becomesindependenbf the
inverse temperaturg, and it presents a clean power-law de-
cay ~t~#=3/Z which is the same also fdd(L,t). In par-
ticular, forz=4 this means & *® decay, which is very well

system-size independent. Indeed, this property is also in ver . oS )
good agreement with the numerics on the larger curvatur hows that the fundamental question of algorithmic scalabil-

model from Fig. 5, where the two data sets ko= 100 and ity _is angwered based on the fact that the simula_lted time
L =120 practically coincide. horizon in the st_eady state belo_ngs to the EW_unlversallty
Since the mean curvature depends @ only, for all class, and thus it has fajlte density qf _Ioca_l minima. The
cases belovz=5 the dependence is given by the same for_actugl \{alge of the density of local minima in the thermody—
mula (one just needs to replace the corresponding valu@amic limit, however, strongly depends on the microscopic

for 2). details, which in principle can be described in terms of irrel-
(iv) z=3. This is another borderline situation, and the €vant operatorg35]. o _

leading time dependences argq(L,t)N(mt)*l/Z and The extremal-point densities introduced in the present pa-

U(L t)~(Int)~2 per may actually have a broader application than stochastic

(v) 1<z<3. In this case the partition function and the surface fluctuations. The main geometrical characterization

density of minima all converge to a constant which to Iead-Of fractal curves 1s baged on the const‘fuctlon of . thf'r
ing order is independent of the system size. The density dffaussdorff-Besikovich dimension, or the “box-counting”
minima was shown in Sec. Il to have this property in thedlmensmn: one covers thg set with small boxes of linear size
steady state. Here we saw not only that, but also afiag e and then track; the d|y9rgence of the number of'boxes
moments show the same behavior, and, even more, the tinf¢€ded to cover in a minimal way the whole seteats
behavior before reaching the steady-state constant is not!gwered to zero. For example, a smooth line in the plane has
clean power law, but rather a decaying correction in the ap@ dimension of unity, but the Weierstrass curve of @jhas

proach to this constant. The leading term in the temporaft dimension of I/Ina (for b>a). The actual length of a
correction is ~t~®2’2 and the next-to-leading term is fractal curve whose dimension is larger than unity diverges

~t~(6-2)/z, when e—0". The total length at a given resolutianis a
global property of the fractal; it does not tell us about the
way it curves. The measure we propose in Ejjis meant to
characterize the distribution of a local property of the curve,
In summary, based on the analytical results presented, igs bending which in turn is a measure of the curve’s
short-wavelength analysis of interface fluctuations can prowrinkledness. For simplicity we formulated it for functions,

VI. CONCLUSIONS AND OUTLOOK
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i.e., for curves that are single valued in a certain direction. 1

This can be remedied and generalized by introducing a pa- P(x;,X,)= ——=ex

rametrizationye[0,1] of the curve, and then plotting the 2m\D

local curvaturevs this parameteK(y). The plot will be a

single-valued function on which E@3) is easily defined. _ 1 exp{ _ —(x2+x2—ZE
Other desirable extensions of the present techniqué&lare 27D 2D\ "t 72 d

to include a statistical description of the degeneracies of (A2)

higher order and?2) to repeat the analysis for high@uch as

d:2) substrate dimensions. The latter promises an evem/here DEd2_02>0_ We aim to find the average of the

richer spectrum of results, since in higher dimensions there igiochastic variablei= 0 (—x;)© (xs):

a plethora of singular pointsV(f =0) which are classified by

1 21 42
- ﬁ(dxﬁ dx5—2CX1Xp)

X1X2>

the eigenvalues of the Hessian matrix of the function at the [

singular point. Deciphering the statistical behavior of these (U)=(O(—x1)0(xz))= fﬁw %dxldXZ

various singularities for randomly evolving surfaces is an

interesting challenge. The studies performed by Kondev and XO(—Xq1)O(X2)P(Xq,X5), (A3)

Henley [37] on the distribution of contours on random
Gaussian surfaces should be a good aid in achieving thi@hich is simply the total weight of the densi(x;,X,) in
goal. In particular, we may find the method developed heréhex;<0, x,>0 quadrant. Ifc=0, the density is isotropic,
useful in studying the spin-glass ground state, and the spir@nd(u)=1/4. In the general case it is convenient to find a
glass transition problent3) Another set of interesting exten- new set of basis vectors where the probability density is iso-
sions would be to analyze the effect of nonlinearities on thdropic (of course the shape of the original quadrant will trans-
extremal-point densities. It is conceivable that in certainform accordingly. Introducing the linear transformation
cases linear stochastic equations of typ@) will describe

well only the long-wavelength limit, and the full description _ \/? Y1 . Y2

would in fact imply the existence of irrelevant nonlinear ) Jd+c Jd—c/’

terms in the model. These nonlinearities are thus not affect-

ing the universality class of the model but they perhaps can D v Vs

affect the critical valuez, at which the phase transition be- Xp= \ﬁ( — + —) , (A4)
tween the fuzzy and smooth behavior sets in. Last but not 2 vyd+c  vd-c

least, we invite the reader to consider, instead of the Lange- " _
vin equations studied here, noisy wave equations, with a se@£nd exploiting the fact thad (Ax) =8 (x) for A >0, we have

ond derivative of the time component, or other stochastic e y y y
evolution equations. u :j f dv.d @( R N )@ _ 1
W )R yd+c yd—c vd+c
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From their dot product one obtains
APPENDIX A: (®(—x,)®(x,)) FOR GENERAL COUPLED
GAUSSIAN VARIABLES Vi-Vo C
: L : L cog 6)= =, (A7)
The expression we derive in this Appendix, despite its Val[vo| d
simplicity, is probably the most important one concerning
the extremal-point densities of one-dimensional Gaussian ir@"d: thus, foKu),
terfaces on a lattice. If the correlation matrix for two possibly 1 c
coupled Gaussian variables is given by (uy= 2_"”“0%6 ) (A8)
a

2 2
= =d>
) =(x3)=d>0, APPENDIX B: POISSON SUMMATION FORMULAS
In this Appendix we recall the well-known Poisson sum-
mation formula and adapt it for functions with finite support
in R. In the theory of generalized functioh38] the follow-
then the distribution follows as ing identity is proven:

(x1%g)=c, (A1)
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“ * .- 1 cog (2w/L)I]
S sx-m= X e, (81) SO+ L-D)=5 T em - (89

m=—o m=—o

Let f:[@,8]—R be a continuous function with continuous The next term becomes

derivative on the intervdla, 8]. Multiply Eg. (B1) on both

sides byf(x) and then integrate both sides framto 3. In 1

the evaluation of the left-hand side we have to pay attention Lfld fx) = a 1-VJl-a

to whether either or both the numbersaand3 are integers or 1 x 1(x)= 2k\1—a? a

nonintegers. In the integer case the contribution of the end

point is calculated via the identity a JZW/L cosxl| B10

27Kk Jo X1—acosx’ (B10)

n+r 1
f dx5(x—n)f(x)=§f(n), Yr>0. (B2)
" where during the evaluation of the integral we made a simple
Assuming thaf is absolutely integrable 8=, and choos- change of variables and used a well-known integral from

ing «=0, the classical Poisson summation formula is ob-random-walk theory10,34:

tained:

. . )
ngo f(n):zf(0)+fo dx f(x)

+2 21 :dx f(x)cog27mx). (B3)

Let us also write out explicitly the case when beitand 8
are integers:

B 1 B
nza f(n)= E[f(a)+f(3)]+f dx f(x)

—
+22 f dx f(x)cog2mmx) when «,B e Z.
m=1 Ja

(B4)

Next we apply these equations to give an exact closed ex-

pression for the slope correlation function fiimite L [Eq.

(18)]:
D L-1 gi(@mniL)l

D)= —
CL(I)_ L nzl V—|—2K[1—CO$2’7Tn/L)] '

(B5)

wherel €{0,1,2 ... ,L—1}, andv,xke R". Let us denote

B 2k 56
a= v+2k’ (B6)
We have|a|<1, and
L—-1 i
Da e|(27-rn/L)I
d) =
crd) 2kl zl 1—acog2mn/L)’ ®7)

In order to apply the Poisson summation formu), we
introduce the function

L-1 gi(@mx/L)l

Isx<L-1,
(BY)

and identify in Eq.(B4) a=1 and B=L—1. The non-
integral terms of Eq(B4) give

F(X)= = >
(=24l & T-acog2mxiL)’

1-y1-a®

a

1=0.

- eiX| 2
f dx =
-» 1l—acosx 1—32

(B11)

The sum over the integrals in E@4) can also be evaluated,
and one obtains

* L-1
2> dxf(x)cog 2mnx)
n=1J1

_a(b'+b7") bt

2k\1—a® 1—bt

a <. (2wl ilx
27k z‘l f,zﬂ,decos(an) 1—acosx’

(B12)
where
1-J1-a°
b= ———— and lbj<1. (B13

To compute the sum on the right-hand side of B{L2), we
recall another identity from the theory of generalized func-
tions (see Ref[38], p. 155:

. ” i (x| 1
inx_ _ — —| ==
nzl e Wm;x S(x 2m7-r)+200t(2) 5

(B14)

Combining Eq.(B14) and identity(B1), one obtains:

oo ©

> cognx)=m >, 5(x—2m7-r)+%.

n=1 m=—o

(B15)

Performing the sum ovar directly on the right-hand side of
Eq. (B12) via Eq. (B15), yields
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a

cognLx)e'™
1—acosx

27/L
> f dx
—2m/L

2TK =1

©

27
J
-2

coslx
X——.
1—acosx

a

ey s(y—2mm)
B 2kl m=—o

1—acosy

27/L

)

Only m==*=1,0 contribute in Eq.(B16). With the help
of Eq. (B2):

a

5 (B16)
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a 27/l cognLx)e'™

27K 4=1 ) —2m/L 1—acosx

B a 1 cog (27/L)I]

~ 2«kL\1-a 1—acog2mw/L)
a fZW/Ld coslx B1
27K o Xl—acosx' (B17)

Using Eq.(B17) in Eqg. (B12), we can add the result to the
rest of the contribution$B9) and (B10) to obtain the final
expressiorfEq. (19)] after cancellations.

[1] J. Krug and P. Meakin, J. Phys. 238, L987 (1990.

[2] G. Korniss, Z. Toroczkai, M. A. Novotny, and P. A. Rikvold,
Phys. Rev. Lett84, 1351(2000.

[3] A. G. Greenberg, B. D. Lubachevsky, D. M. Nicol, and P. E

Wright, in Proceedings, 8th Workshop on Parallel and Dis-

tributed Simulation (PADS '94), Edinburgh, U,kedited by D.
K. Arvind, R. Baprodia, and J. Y.-B. LiriSociety for Com-
puter Simulations, San Diego, 1994. 187.

[4] G. Korniss, M. A. Novotny, and P. A. Rikvold, J. Comput.
Phys.153 488(1999.

[5] M. B. Gorman, J. Financial Eco8, 257 (1976.

[6] See, for example,
neurotransmission.htmi

[7] R. Albert, H. Jeong, and A.-L. Barasia Nature(London) 401,
130(1999; A.-L. Barabai, R. Albert, and H. Jeong, Physica
A 272 173(1999; A.-L. Barabai and R. Albert, Scienc286,
509 (1999.

[8] G. H. Hardy, Trans. Am. Math. Sod7, 301(1916.

[9] B. R. Hunt, Proc. Am. Math. Sod.26, 791 (1998.

[10] B. D. HughesRandom Walks and Random Environments, Vol-

ume 1: Random Walklarendon Press, Oxford, 1995

[11] D. Ruelle, Thermodynamic Formalism(Addison-Wesley,
Reading, MA, 1978 T. Bohr and D. Rand, Physica 25, 387
(1987.

[12] H.-C. Jeong and E. D. Williams, Surf. Sci. Rep4, 171
(1999.

[13] M. Giesen and G. S. Icking-Konert, Surf. Sdi12413 645
(1998.

[14] Z. Toroczkai and E. D. Williams, Phys. Tod&2(12), 24
(1999.

[15] S. V. Khare and T. L. Einstein, Phys. Rev.58, 4782(1998.
[16] A.-L. Barabai and H. E. Stanleykractal Concepts in Surface
Growth (Cambridge University Press, Cambridge, 1995
[17] J. Krug, Adv. Phys46, 137(1997; S. Das Sarma, C. J. Lanc-
zycki, R. Kotlyar, and S. V. Ghaisas, Phys. Rev5g 359

(1996.

[18] J. Villain, J. Phys. 11, 19(1991); Z. W. Lai and S. Das Sarma,
Phys. Rev. Lett66, 2348(1991); D. D. Vvedensky, A. Zang-
will, C. N. Luse, and M. R. Wilby, Phys. Rev. B8, 852
(1993.

[19] S. Das Sarma and P. Tamborenea, Phys. Rev. 66tt325

http://www.csuchico.edu/psy/BioPsych/

(1992); D. E. Wolf and J. Villain, Europhys. Lettl3, 389
(1990.
[20] S. Majaniemi, T. Ala-Nissila, and J. Krug, Phys. Rev5B,

. 8071(1996.

[21] W. W. Mullins, J. Appl. Phys28, 333(1957); 30, 77 (1957);
in Metal Surfaces edited by W. D. Robertson and N. A.
Gjostein (American Society of Metals, Metals Park, OH,
1962, p. 17.

[22] S. F. Edwards and D. R. Wilkinson, Proc. R. Soc. London, Ser.
A 381, 17 (1982.

[23] M. Kardar, G. Parisi, and Y.-C. Zhang, Phys. Rev. L&,

889 (1986.

[24] P. Meakin, P. Ramanlal, L. M. Sander, and R. C. Ball, Phys.
Rev. A 34, 5091 (1986; M. Plischke, Z. Raz, and D. Liu,
Phys. Rev. B35, 3485(1987; L. M. Sander and H. Yan, Phys.
Rev. A 44, 4885(1991)).

[25] F. Spitzer, Adv. Math5, 246 (1970.

[26] R. M. Fujimoto, Commun. ACM33, 30 (1990.

[27] B. D. Lubachevsky, Complex Sysi, 1099(1987; J. Comput.
Phys.75, 103(1988.

[28] A. G. Greenberg, S. Shenker, and A. L. Stolyar, Performance
Eval. Rev.24, 91 (1996.

[29] B. Bruisma, inSurface Disordering: Growth, Roughening and
Phase Transitionsedited by R. Jullien, J. Kersz, P. Meakin,
and D. E. Wolf(Nova Science, New York, 1992

[30] J. M. Kim and S. Das Sarma, Phys. Rev. L&g, 2903(1994).

[31] J. Krug, Phys. Rev. Letf72, 2907 (1994).

[32] J. G. Amar, P.-M. Lam, and F. Family, Phys. Rev4E 3242
(1993; M. Siegert and M. Plischke, Phys. Rev. L8, 2035
(1992.

[33] C. Itzykson and J-M. DrouffeStatistical Field TheoryCam-
bridge University Press, 1989Vol. 1.

[34] I. S. Gradshteyn and I. M. RyzhiK,able of Integrals, Series,
and Products edited by Alan JeffreyfAcademic Press, New
York, 1994.

[35] J. Neergard and M. den Nijs, J. Phys.38, 1935(1997.

[36] P. A. Rikvold and M. Kolesik, J. Stat. Phygo be publishey
e-print cond-mat/9909188.

[37] J. Kondev and C. L. Henley, Phys. Rev. Lét, 4580(1995.

[38] D. S. JonesThe Theory of Generalized Functiof@ambridge
University Press, Cambridge, 198d. 153.



