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Influence of charge variation on particle oscillations in the plasma sheath

A. V. Ivlev,* U. Konopka, and G. Morfill
Max-Planck-Institut fu Extraterrestrische Physik, D-85740 Garching, Germany
(Received 8 March 2000

The theory of dust particle oscillations in the plasma sheath is presented, taking into account particle
charging kinetics and neutral gas friction. Effects of “regular” and stochastic charge variations are considered.
It is shown that whilst regular variations generally enhance the damping of horizontally propagating dust lattice
waves, they can also cause an instability in the vertical oscillations of single particles. The stochastic charge
variations, if sufficiently strong, result in exponential growth of the mean energy of both types of oscillations.

PACS numbes): 52.25.Zb, 52.25.Gj, 52.359g

I. INTRODUCTION This implies that the charge never reaches its equilibrium
value(corresponding to the instantaneous position of the par-
Oscillations of charged dust particles trapped in a lowticle), even if we consider only regular variations. Recent
temperature plasma sheath have been considered in detailemperiments by Nunomurat al. [12] performed in a low-
many publicationg1—-14]. The most interesting types of os- pressure dc discharge show that the delayed particle charging
cillations are the vertical oscillations of single partidés-3] can result in an instability of the vertical oscillations. In the
and the horizontal dust lattid®L) waves[4,5]. Experimen-  absence of the neutral gas friction this type of instability was
tal study of these oscillations allows us to evaluate basigredicted by Nitteret al.[1]. In addition, Morfill et al. [11]
parameters of the system—the particle charge, interparticlgemonstrated theoretically that the stochastic charge varia-
coupling parameter, et¢8—10]. It is usually assumed that tions may cause an instability of the DL wave for sufficiently
particles have an equilibrium charge, which is determined bysmal| gas pressure. Numerical simulations of particle heating
the balance of the average ion and electron fluxes on thgy the charge fluctuations were performed by Vaulital.
particle surface. However, the actual charge varies randomiy 4 byt the stochastic modulation of the vertical resonance
around this mean value, because the fluxes are discrete. T quency was not taken into account. In this paper, we con-
particle charge distribution is then a stationary Gaussian, an§%der both vertical oscillations of single particles a'nd hori-

its disp[ersioa is directly proportional to the mean partiClezontal DL waves, and we study separately the role of regular
charge[15,16. In addition, the electron temperature and e o N
' . R : and stochastic charge variations, taking into account the
plasma_ potential(density fluctuate locally in any real qparging kinetics anc? gas friction. We asgsume a pressure to
lasma. Since the particle size is much less than the electr h ' i o
b P cl)e sufficiently small, so that the particle oscillations are

Debye length, this “noise” can significantly increase the X -
magnitude of the random charge fluctuationa]. weakly dampedotherwise, the charge variation effects are

Along with the stochastic charge fluctuations, there are hidden” by strong damping due to the friction
also “regular” variations caused by the particle motion. In
the plasma sheath, the equilibrium particle charge is a strong
function of distance from the electrode surface, and thus ver- Il. REGULAR CHARGE VARIATION
tical oscillations are always accompanied by regular charge . . :
variations. In sufficiently dyense plas?"na cryst)r:lls,?he horizo%—_ In this sectpn we neglect the st_oc_hast|c charge _fluctua-
tal DL waves also produce regular charge variations. Therdons and consider only regular variations caused either by
are two independent reasons for that. The first one is thEelative horizontal displacements, or by vertical motion.
charge variation due to the mutual decrease of electron fluxes Horizontal oscillations (DL wave)in order to describe
as particles approach each oth&8]. This mechanism could the DL wave of small amplitude we apply the simplified
be especially important in a two-dimensioriaD) layer as a model of the 1D particle string4,5,11. In a steady state,
result of surface density perturbations. The second mechgarticles of the mass! and chargeQ,<0 are separated by
nism arises in 3D crystals: It is caused by a depression of théhe distanced and interact via a shielded Coulomb potential;
electron-to-ion density ratio due to the local decrease ofhe screening length approximately equals the electron De-
plasma potential in regions of increased diy&tlume den-  bye length\p.. For simplicity, we assumé=\p,, i.€.,
sity [19]. Below we focus on the case of a 2D plasma crystalonly the nearest neighbor interactions are essential. Perturba-
and thus on the first mechanism of regular charge variatiortions of particle position in the wave result in a variation of
The important peculiarity of the charging process is thathe charges. Let us present the charge of each particle as
the particle charging time is finit€‘delayed” charging. Qn=Qg+ 8Q,, whered5Q,,~0O(y,,,Yn+1), andy, is the di-
mensionless displacement of thé particle. Then, we can
directly use the equations for the dimensionless displacement
*Permanent address: High Energy Density Research Center RAggrived in Ref.[11] [Egs. (2) and (3)]. Neglecting terms
127412 Moscow, Russia. O(Y?,YnYn=1), We obtain
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wherey is the damping rate due to neutral gas frict{@9],
n=1+A/\pe, the displacement, is normalized toA,

6Qn+1=06Q,+1/Q, is the dimensionless charge variation,
and the DL frequency scale is

0 /2 n
KA

FIG. 1. Squared frequency of the DL wave with regular charge

(2) variations,w(z)/Q%L [normalized to the DL frequency scafep, ,
QZDL=—3(1+ n?)et= . see Eq.(6)] vs the dimensionless wave vectdfA. The curves
MA correspond ta4d=0 (1), A=0.1(2), and.A=0.4 (3).
The kinetic equation for the particle charge is of the form %L
. Imwzw—AQ (1—cosKA). (6)
Qn=—Qc(Qu—QF), 2 o

_ , _Figure 1 shows the dependenceaff/ )3, on KA for dif-

where€, IS the steady-state chfa_rg|_ng frequency of a part'(:Ie¥erent values of the parametdr. This parameter grows rap-

[21]. The “instantaneous” equilibrium charg@”, is @ igly with the dust density. While the density is small and

function of the displacement of theth particle with respect  4<1/4, the phase velocity of long waves decreases with

to the (1+1)th and @—1)th particles. Assumingy,  ascy |« o=+1—4.AAQp, . For sufficiently high density,

—Yn+1/<1, we can approximate these dependencies by thgnen 4> 1/4, long-wavelength perturbations are unstable

factors I+ a(yn,1—yn) and 1+ a(yn—yn-1), respectively,  anq grow exponentially without oscillation§Rew)?<0].

or This is because the charge decreases too rapidly and the en-

(eq) ergy of interparticle coupling diminishes as particles ap-

Qn=Qol 1+ a(Yn+1=Yn-1)1, (3 proach. The delayed chargin@(! is finite) does not affect

the frequency of oscillations, but increases the damping rate

in Eq. (6) (see Fig. 2 Note, that the damping rate is maxi-

mal atKA = 7/2 and it tends toy for KA—0,7. The physi-

cal background of the delayed charging damping is consid-

) ered in the next subsection.

0Qn=—Qc] 6Qn—a@Qo(Yn+1~Yn-1)]- 4 Vertical oscillations The equation of vertical motion for a

. ) ) single particle is
For the traveling wave, all the variables are proportional to

wherea>0 is some coefficientl8]. Substituting Eq(3) in
Eqg. (2), we obtain the following equation for the charge
variation

expli(ot+KnA)}, where K is the wave vector,— m<KA . . Q
<. Substituting this form fory,, and Q,, in Egs. (1) and Z+2y2= =9 @)
(4), we get the dispersion relation for the DL wave with the
regular charge variation and delayed charging, where E is the electric field E<O0. The particle oscillates
around the steady-state positior=0, E(0)=E, and
(iw+ Qe[ — w?+2i yo+2Q03, (1—cosKA)] Q9(0)=Qy<0. For sufficiently small amplitude of oscil-
5 lations we can seéE=E,+ E(z (a prime denotes the deriva-
=2AQ0p Qe(1-cos KA), )  tive at z=0). Substituting this expression together wigh

o . =Qp+8Q in Eg. (7) and using the conditioQ.Eqx=Mg,
where A= an/(1+ »°) is a measure of regular charge varia- e optain

tions in the wave. The derived dispersion relation has simple
structure. The left-hand side is the product of two factors.

The first one, (v +Q ), represents the dust chargi(igCh) (f 2

branch[22] and describes the charge variation decay, the 3

second one represents the DL branch. The right-hand side of Fe

Eq. (5) describes the coupling of these branches. We assume E 1r

that the damping of the DL oscillations due to neutral fric- :

tion is small, Rev> vy, and that the dust charging branch is E

weakly coupled with the DL branch, i.eQq>|w| [22]. E .

Then Rew>Im w, and Eq.(5) can be solved approximately 00 /2 n
for the DL branch. Extracting the real and imaginary parts in KA

Eqg. (5) we obtain the solution for the frequency Reand

. FIG. 2. Relative variation of the damping rate of the DL wave
damping rate Inw of the DL wave,

with regular charge variations, (lm/y—1) [normalized to the

) ) 5 friction dampingy, see Eq(6)], vs the dimensionless wave vector,
(Rew)*=20p, [(1-cosKA)—A(1—cos KA)]=wg, KA, in units of AQ3, /yQq.
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z rate Imw is negative(region Il). This instability was ob-
served and explained qualitatively by Nunometeal. [12].
Due to delayed charging, the particle motion is not a poten-
[ R tial one (even in the absence of frictipnOn the way down,
|Q(2)| is always less than the equilibrium vall@©9(z)],
whereas on the way up the opposite inequality holds. There-
fore, the particle gains energy during the whole circle of
oscillation, and if this exceeds the energy dissipation due to
friction, then oscillations are unstable. Note that in the ab-
FIG. 3. Qualitative dependence of the equilibrium particle sence of friction the condition of the instabili®,E,<0
charge Q(®9, and the vertical electric field in a plasng, as func-  was obtained for the first time by Nittet al. [1].
tion of the distance from the lower electrode. In regions | and Il In contrast with the vertical oscillations, thkorizonta)
the particle motion can be unstable. DL wave is damped due to delayed chargisge Eq.(6)].
The physics of this damping is the same as that of the insta-
. . QoE} ~ bility considered above. As particles approach in the DL
z+2yz— —4—2=9Q. (8 wave, the absolute value of their equilibrium chatgede-
crease. ThereforéQ,|>|Q'%%| during compression, and the

The kinetic equation for the charge is similar to E®), Q  OPposite during rarefaction, so that delayed charging causes

v

1 pre- | bulk
sheath} plasma

= —Q.(Q— Q) where the equilibrium charge is particles to lose energy in the DL oscillations.
QP=Qo+Qqz. 9 lll. STOCHASTIC CHARGE VARIATION
Thus, we get the following kinetic equation for the charge Let us consider the role of stochastic fluctuations. We
variation: assume that the random variations of charge are much stron-
_ ger than the regular ones, so that the kinetic of stochastic
8Q=—-0(Q—Q\2). (100  variations only is taken onto account. This approach allows
us to determine the conditions when one or the other kind of
For a harmonic solution of Eq$8) and(10) we obtain the variation is more important. The charge is no longer a

self-consistent variable, but is an independent random func-
tion with certain stochastic properties. Below we assume that
the random charge variation is a stationary process, and the
mean charge equals the equilibrium value.
The structure of Eq(11) is completely similar to that of the Horizontal oscillations (DL wave)We can present the
dispersion relatiott5): The left-hand side represents the DCh charge of each particle ad,=(Q,)+ 6Qn(t), where the
branch and the branch of vertical oscillations, and the rightaverage chargéQ,) equalsQ{*? from Eq.(3) and 6Q,(t) is
hand side describes the coupling between them. Solving th& random function. Let us consider a solution of the form
obtained equation with the same assumptions, we get ag,,=y(t)exp(KnA). Using results of Ref11] [Egs.(2) and
proximate expressions for the frequency and damping rate qB)] we readily obtain the following stochastic equation for
the oscillations, the amplitude of the traveling DL wave with a randomly
varying particle charge:

QoEo| Qoo

(io+ Q)| —0?+2iyo— M

Qo (1)

E !
(Rew)?=— @ )OEQ\Z/, 2 2

M y+2yy+wg[ 1+ &0 Ty=f(1), (13
M e 1( QEo | Q2 12 wherewy is determined by Eq6) and the random functions
"2 Qe 12 are

where(}, is the eigenfrequency of the vertical oscillations.
Figure 3 shows a qualitative dependenceQf? and E as
functions of the vertical position. The charge is practically
independent of in the bulk plasma, but as the electrode is
approached it decreases rapidlyQ{¢¥| increasek in the f(t):LQ%L(5©7_5©+)_ (14)
presheath and just below the sheath edge. At even snzaller 1+ 72
the charge attains a minimum and then starts increasing.
Normally, particles are trapped near the sheath edge, wheigg e 80=050,, 50, , and5Q_ denote the dimensionless
(QE)(<0. But, if the amplitude of oscillations is too large charge fluctuations on the “central,” “right,” and “left’
and a particle enters the region |, whe@H),>0, the mo-  particles, respectively. The only difference of E#3) from
tion becomes unstablg Rew)?<0] and the particle drops the similar equation derived in Rdfl1] is that now we take
onto the electrode. into account the regular variationgssuming them to be
There is one more region of instability, whereQyEq is  equilibrium), which change the wave frequeney, and the
positive and exceeds a certain threshold, so that the dampimgndom functioné(t).

~ [Qp\2 - ~ ,
f(t)=5Q—(w—E:) [6Q. (%4 ~1)+6Q (e 2~ 1)],
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We suppose that correlations of the charge fluctuations on
neighboring particles are negligibkesQ(t) 5Q-. (t— 7))=0.
This assumption is reasonable, since the spatial scale of
plasma fluctuationgwhich determine the charge fluctua-

-~ o

'
N

(/7 -D/I8°Qf 0]

tions) is always less than the electron Debye lenith., -3

whereas the interparticle distande=Ape. In the Langevin 4l 3/

approach for particle charging, the autocorrelation function

is [15] 5 T2 m
KA

(8Q(1)6Q(t— 1)) =02 exp — Qex7), (15 FIG. 4. Relative variation of the “energy damping rate” of the
~ DL wave with stochastic charge quctuationéI(g/ v—1) [normal-

whereg? is the dimensionless dispersion of the charge disized to the friction dampingy, see Eq(16)] vs the dimensionless
tribution (normalized toQ3). Note that the autocorrelation wave vectorK A, in units of 7?Q3,/yQ¢,. The curves correspond
time is the inverse charging frequency. This result is naturalko .4=0 (1), A=0.1(2), and.4=0.2 (3).
since relaxation of both regular and stochastic charge pertur-
bations is described by the same kinetic equation. Equation(17) has real coefficients and therefore is simpler

Of course, we cannot solve E(L3) exactly, since itis a for analysis than Eq(13). Using results from Ref.23], we
stochastic differential equation, and each solution of thigeadily obtain that the mean amplitude) obeys the equa-
equation is determined by a particular realization of the rantion of a damped harmonic oscillator, as well. The corre-
dom variableé. However, properties of the stochastic pro- sponding damping rate is y and the frequency=Q,. The
cessy(t;[£]) can be studied using the approximate methodequation for the second moments gives the following thresh-
of expansion over small Kubo numbgtl]. This method old of the energy-wise instability:
allows us to derive nonstochastic equations for moments of
y: mean displacementy), mean squared displacement and 1 1/( .~ QoEy
velocity, (yy*) and (yy*), etc. In principle, the first two Fle=v=5 7 QE)!
moments ofy—the average and dispersion—allow us evalu- 0
aFe the main peculiarities of the stochaspc process. We can, o “energy damping rate’(18) has the same structure as
directly use the results of Ref11], replacingw, and &(t) that in Eq.(16)
with those from Eqgs(13) and(14). It was shown in Ref11] ' '
that for reasonable parameters of a discharge, the equation
for (y) is that of a damped harmonic oscillator with the IV. DISCUSSION AND CONCLUSIONS

damping rate=y and frequency=w,. However, equations  ajthough both the regular and stochastic variations of
for the second moments can be unstahy. Actually, func- charge have the same relaxation tiniey!, the effect of

tions(yy*) and(yy*) determine the mean energ§) ofthe  these variations is different. If the damping rate due to fric-
DL wave. It implies, that the plasma crystal can be unstabljon js sufficiently small, random fluctuations of charge result
energy wise, due to the random charge variations. The meaR an instability of both types of oscillations—vertical and
energy changes with time gg(t))e exp(~I'¢t), with the  horizontal. In contrast, the regular variations can cause an

29\2/
Qch.

(18

“energy damping rate” instability of the vertical oscillations, but increase the damp-
ing rate of the DL wave.
1 1~ZQ§,L wo \2  [Qp\? The reason for this difference is the following: The regu-
2= 5 g, (Q_DL) 4(w—0> (1- COSKA)}- lar charge variation is a self-consistent variable depending on

the particle displacement; the sign of the work done by the
(16) ) .

nonpotential force due to delayed chargilageraged over a
period of oscillation is determined by the signs of the coef-
ficientsQg and « in the expansion of the equilibrium charge

different values of the parametet (see Fig. 4. In contrast [see _Eqs.((_%)_ and (9)]. For vertical oscilla_tions, the_ work
with regular charge variatiorjsvhich increase the DL damp- Qo IS Positive, for the DL wave the work is proportional to
ing, see Eq(6) and Fig. 4, the random variations can induce _ @ and is negative. In the case of stochastic charge varia-

the instability at low pressures, and their influence does noionS: the particle motion is governed by equations of a para-
vanish forK A— 0. metric oscillator[see Eqs(13) and (17)] with a randomly

Vertical oscillations The vertical particle oscillations V&TYing frequency. For both types of oscillationeertical
with a randomly varying charge are described by Ed). and horizontal the time dependence of the frquency is
with the chargeQ=(Q)+ 5Q(t), where(Q) equalsQ(®¢®  characterized by the stochastic variation of cha@(t).
from Eq. (9). Using a linear expansion of the electric field, The sign of the average work of the random fo@@(t)r
we get the stochastic equation (wherer is y or z) equals the sign of the spectral density

S(w) of the charge variation ab=2w, [24]. For any sta-

Using expression fow2/Q3, from Eq.(6), we plot the rela-
tive variation of the damping ratg[’ ./ y— 1, versuK A for

) QoEy B tionary random process with a monotonic autocorrelation
z+2yz+ Q2 1+ -6Q(t) |z=g8Q(t). (17  function[in particular, with that from Eq(15)], S(w)>0 at
(QBE)o any o, so that the random fluctuations of charge always
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cause the mean energy of oscillations to grow. increase significantly the damping of the DL wave, when
Comparing expressions for damping rates obtained for thes3 Pa anca<1 wm. The charge dispersion for stochastic
regular and stochastic fluctuations, we can judge which kingj,ctuations decreases witn as 32«<a-1. If 52~10"2 for

of the charge variation might cause an instabilty damp- 51, then the random variations might cause the insta-
ing) of oscillations in the case of a finit@c‘hl. Let us con- bility for p<1 Pa anda<1 pum.

sider typical experimental conditions of discharges: argon gy vertical oscillations, the role of the delayed charging
plasma at pressurgs~1-10 Pa, plasma number density can pe evaluated from EqeL2) and(18) for damping rates.

\/ -3 . . . .
Ne;i~10'-1C° cm"?, electron temperaturé.~1 eV, elec-  \ye can rewrite these expressions in the following form:
tron Debye length\p,~10°—10° um, particle radiusa

~1-10 um, particle charge numbeZ~10°-~10*. The ' 1 /el/q \ Q8

value of the charging frequency in the region of the sheath Regular:  IMw=y-7 1+ /el /o) Qe
edge has been estimated @s,~acs/\3, [11], where c,

=/Te/m; is the ion acoustic velocity. For our conditions, 1 1 o ZQ\Z,

gBT 10°-10 s L. The friction damping isy~0.3-3 s*! Random: ZIe=y—3 T+ /el/g) Ou

First, we investigate the DL wave. From E¢8) and(16)  where/4=Q,/Qq and/g=E,/E, are the spatial scales of
for damping rates we see that the regufandom variations  change of the charge and electric field, respectively. Com-
of charge are more important when the scale of regular varigparing these expressions we see that the regudardom
tions, A, is much greatefsmalley than that of random varia- variations of charge are more important when the dispersion

tions, o2. Unfortunately, processes of the particle charging ing2 is much smaller (greatey than the value el q
dense plasma crystals are studied very little. For the consid+(/E//Q)2. Therefore, if particles are smalaE€l pm)

ered parameters of discharge, numerical simulatidi®  and are levitated in the presheath, where the charge is prac-
predict.A~0.03-0.1 for two particles separated horizontallytically constant {'//o=<10"?), the stochastic variation of

in the sheath byA ~\p.. However, direct measurements of charge may drive an instability of the vertical oscillations,
the interparticle interactioj6,7] do not show noticeable since2 could be rather high for small particles. If particles
variation of the particle charge for this separation. Appar-re Jarge and trapped below the sheath edge, where the value
ently, value ofA does not exceed 0.1 in real experiments, of ,/,/, might be of order of unity, a vertical oscillation
and therefore the squared frequeneyof the DL wave[see  instability may be caused by regular charge variations.

Eq. (6)] is always positive. It is also difficult to estimate the  For our conditions, the eigenfrequency of vertical oscilla-
value of the dispersionr. The lower limit for the dispersion tions is Q,~10-1¢ s %, and Q2/yQy~1 for p~3 Pa

is determined by the charge discreteness?~z 1 anda~3 um. Let us suppose théjxp [25]; Then Q2
~103-10"* [15,16. Plasma fluctuations can strongly in- «p/a?, and Q% yQq=1lpa. If we set/g//o~10"1 be-
creases?, but we do not know reliable measurements of thislow the sheath edge, then the instability due to regular varia-

effect in the sheath. Thus, botd and 2 are somewhat UONS can start foa~3 umatp~0.3 Pa. For smaller par-
uncertain parameters. ticle, it is more I!kely to expect the instability due to
The damping rate of the DL wave is changed significantlyStochastic fluctuations: &~0.3 wm, then the pressure

; 2 - threshold is estimated as~1 Pa.

dug t.o delayed charging, Vzr;engDL/de‘~l [reguIa.r Thus, at low pressure®f order of one Paboth regular
variations, see Eq(6)], or oQp /yQe=1 [stochastic  4ng stochastic variations of charge can influence oscillations
variations, see Eq(16)]. For our conditions, the EL fré- of micron size particles in the sheath. Vertical oscillations
quency scale varies in the ran@i, ~30-3x10° s[5, ¢an pe unstable: For small particles, this is due to stochastic
and Qp, /yQe~1 for p~10 Pa anda~10 pm. The role  fiyctuations, whereas for relatively large particles regular
the delayed charging increases at low pressures, especialgriations might be responsible for the instability. Horizontal
for small particles, sinceycp/a, Qf xa™!, andQ¢xpa DL waves are damped by regular variations, but stochastic
(we suppos@.xp), so that3, /yQ..<1/p?a. Parameterd  fluctuations can cause the wave instability. We believe that
presumably does not depend neitherapmor onp [18]. If  varying the gas pressure and the particle size, the magnitude

we setA~ 102, then the regular variations are expected toof these effects can be measured in experiments.
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