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Synchronous behavior of two coupled electronic neurons
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We report on experimental studies of synchronization phenomena in a pair of analog electronic neurons
~ENs!. The ENs were designed to reproduce the observed membrane voltage oscillations of isolated biological
neurons from the stomatogastric ganglion of the California spiny lobsterPanulirus interruptus. The ENs are
simple analog circuits which integrate four-dimensional differential equations representing fast and slow sub-
cellular mechanisms that produce the characteristic regular/chaotic spiking–bursting behavior of these cells. In
this paper we study their dynamical behavior as we couple them in the same configurations as we have done
for their counterpart biological neurons. The interconnections we use for these neural oscillators are both direct
electrical connections and excitatory and inhibitory chemical connections: each realized by analog circuitry and
suggested by biological examples. We provide here quantitative evidence that the ENs and the biological
neurons behave similarly when coupled in the same manner. They each display well defined bifurcations in
their mutual synchronization and regularization. We report briefly on an experiment on coupled biological
neurons and four-dimensional ENs, which provides further ground for testing the validity of our numerical and
electronic models of individual neural behavior. Our experiments as a whole present interesting new examples
of regularization and synchronization in coupled nonlinear oscillators.

PACS number~s!: 05.45.Xt, 84.35.1i, 87.80.2y, 87.18.Sn
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I. INTRODUCTION

Synchronization of nonlinear oscillators is widely studi
in physical and biological systems@1,2# for underlying inter-
ests ranging from novel communications strategies@3,4# to
understanding how large and small neural assemblies
ciently and sensitively achieve desired functional goals@5#.
The analysis of biological systems may, beyond their intr
sic interest, often provide physicists with novel dynamic
systems possessing interesting properties in their compo
oscillators or in the nature of the interconnections.

We have presented our analysis of the experimental s
chronization of two biological neurons as the electrical co
pling between them is changed in sign and magnitude@6#.
Subsequent to that analysis we have developed comp
simulations of the dynamics of the neurons which are ba
on conductance based Hodgkin–Huxley~HH! @7# neuron
models. These numerical simulations quantitatively rep
duced the observations in the laboratory@6,8–10#.

The study of isolated neurons from the stomatogas
ganglion~STG! of the California spiny lobsterPanulirus in-
terruptususing tools of nonlinear time series analysis@11,12#
shows that the number of active degrees of freedom in t
membrane potential oscillations typically ranges from th
to five @2#. The appearance of low dimensional dynamics
this biological system led us to develop models of its act
potential activity, which are substantially simpler than t
HH models we and others@8# have used to describe thes
systems. We adopted the framework established by H
marsh and Rose~HR! @13# in which the complicated
current–voltage relationships of the conductance based m
els are replaced by polynomials in the dynamical variab
and the coefficients in the polynomials are estimated by a
lyzing the observed current/voltage curves for the neur
under study.
PRE 621063-651X/2000/62~2!/2644~13!/$15.00
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Building on biological experiments and on numeric
analysis of models for the oscillations of isolated neuro
we have constructed low-dimensional analog electronic n
rons ~EN’s! whose properties are designed to emulate
membrane voltage characteristics of the individual neuro
Using these simple, low dimensional EN’s we report he
their synchronization and regularization properties, fi
when they are coupled electrically as the sign and magnit
of the coupling is varied, and then when they are coupled
excitatory and inhibitory chemical synapses. We have a
studied the behavior of a hybrid system, i.e., one EN and
biological neuron coupled electrically. As our models we
developed on data acquired from biological neurons in s
aptic isolation, the results we present here on pairs of in
acting ENs and hybrid systems serve to provide further c
firmation of the properties of those model neurons, numer
and analog.

II. ELECTRONIC NEURON MODEL

We have studied and built three-dimensional~3D! and
four-dimensional~4D! models of HR type having the form

dx~ t !

dt
5ay~ t !1bx2~ t !2cx3~ t !2dz~ t !1I ,

dy~ t !

dt
5e2 f x2~ t !2y~ t !2gw~ t !,

~1!
dz~ t !

dt
5m„2z~ t !1S~x~ t !1h!…,

dw~ t !

dt
5n„2kw~ t !1r ~y~ t !1 l !…,
2644 ©2000 The American Physical Society
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FIG. 1. Time series of the dynamical variablesx(t),y(t),z(t),w(t) of our 4D HR model, Eq.~1!, and various 3D projec-
tions „x(t),y(t),z(t)…, „x(t),y(t),w(t)… and „x(t),z(t),w(t)… of the 4D phase space orbits. Units are dimensionless in the nume
simulations.
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wherea,b,c,d,I ,e, f ,g,m,S,h,n,k,r , and l are the constants
that embody the underlying current and conductance ba
dynamics in this polynomial representation of the neural
namics.x(t) is the membrane voltage in the model,y(t)
represents a ‘‘fast’’ current in the ion dynamics, and w
choosem!1, soz(t) is a ‘‘slow’’ current. Taken alone the
first three equations of the model can reproduce sev
modes of spiking–bursting activity observed in STG ce
The first three equations were used in analog realization
our earlier experiments with 3D ENs@14#.

The equation forw(t) represents an even slower dynam
cal process~n,m!1!, and it is included because a slo
process, such as the calcium exchange between intra
lular stores and the cytoplasm, was found to be requ
in HH modeling@8# to fully reproduce the observed chaot
oscillations of STG neurons. Both the 3D and 4D mod
have regions of chaotic behavior, but the 4D model h
much larger regions in parameter space where chaos oc
presumably for many of the same reasons the calcium
namics gives rise to chaos in HH modeling. The calciu
dynamics is an additional degree of freedom with a ti
constant three times slower than the characteristic burs
times. In addition, the 4D model allows a better adjustm
of the behavior of the EN when connecting it to living ne
rons. In particular, we can adjust several details of the sh
of the spiking–bursting activity, for example the width
the bursts, before setting the model neuron into the cha
regime.

In our analog circuit realization of the EN model we us
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a51, b53, c51, d50.99, I 53.024, e51.01, f 55.0128,
g50.0278, m50.0021, S53.966, h51.605, n50.0009, k
50.9573,r 53.0, andl 51.619. The implementation of thes
constants in analog circuits always has about 5% toleranc
the components. The main parameters we used in contro
the modes of spiking and bursting activity of the model a
the dc external currentI and the time constantsm and n of
the slow variables.

Figure 1 shows a chaotic time series of the four variab
using the parameters above. Note howw modulates the
length of the bursts inx. Each local minimum in the globa
oscillations ofw coincides with a short burst period. Th
complexity achieved by the addition ofw can be observed in
the projections of (x,y,z,w) space to various 3D space
(x,y,z),(x,y,w), and (x,z,w), respectively, as shown in
Fig. 1.

Table I presents the Lyapunov exponentsl i calculated
from the vector field@15# of Eq. ~1! for the 3D and 4D EN’s.
A positive Lyapunov exponent is present in both mode
indicating conclusively that they are oscillating chaotical
From this spectrum of Lyapunov exponents, we can evalu
the Lyapunov dimensionDL which is an estimate of the
fractal dimension of the strange attractor for the EN’s@11#.
The Lyapunov dimension is defined by finding that numb
of Lyapunov exponentsl i satisfying

(
i 51

N

l i.0,
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while

(
i 51

N11

l i,0. ~2!

ThenDL is defined as

DL5N1
(
i 51

N

l i

ulN11u
. ~3!

DL for each EN is displayed in the last column of Table

III. ANALOG IMPLEMENTATION OF THE EN’s

We designed and built an analog electronic circuit t
integrates Eq.~1!. We chose to build an analog device i
stead of using numerical integration of the mathemat
model on the CPU of a PC or on a DSP board because di
integration of these equations is a slow procedure assoc
with the three different time scales in the model. Furth
more, a digital version of an EN requires digital to anal
and analog to digital converters to connect the model to b
logical cells. Analog circuits are small, simple, and inexpe
sive devices; it is easy to connect them to a biological cell
we discuss below~see also Ref.@14#!. In a practical sense
nearly an unlimited number of them can work together
real-time experiments. Finally, looking ahead to the co
struction of real-time networks of large numbers of the
neurons, analog implementation is a necessity.

The block diagram of the analog circuit we use to rep
sent the 3D and the 4D EN’s is shown in Fig. 2. It includ
four integrators indicated by*dt, two multipliers, two
adders, and two inverters. We used off-the-shelf general
pose operational amplifiers~National Instruments Mode
TL082! to build the integrators, adder and inverter, and u
Analog Devices Model AD633 as analog multipliers. T
integrator at the top of the diagram receives all compone
of dx(t)/dt, e.g., ay(t), bx2(t), etc. It has an additiona
input ~called in) which can be used for connections wi
other circuits or neurons. The integrators invert the sign
their input, so the output signal will be2x(t) multiplied by
a time constantt chosen to make the EN oscillate on th
same time scale as the biological neurons. The sign
2x(t) is used to generate the nonlinear functionsx2(t) and
x3(t) and these values go to the second and third integra
Similarly, the other integrators generate voltages prop
tional toy(t), 2z(t), andw(t). A renormalization was made
in the rest of the time constants in the circuit to maket51.

TABLE I. Lyapunov exponentsl i and Lyapunov dimensionDL

calculated from the vector field@Eq. ~1!# for the 3D and 4D elec-
tronic neuron models. As a reminder to the reader: the sum o
Lyapunov exponents must be negative, and this is so for our res
Also, one Lyapunov exponent must be 0 as we are dealing wi
differential equation.

Model: l1 l2 l3 l4 DL

3D 0.010 0.000 27.752 2.001
4D 0.004 0.000 20.001 28.034 3.000
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Note that this rescaling is responsible for the different a
plitudes in the numerical~Fig. 1! and analog~Figs. 3, 5, 6, 8,
9–no longer dimensionless! experiments.

This circuit design allows us to easily switch from a 3D
a 4D model of the neuron. We can connect or disconnect
wire, indicated as point A in Fig. 2, to enable or disable t
circuit block shown in the rectangle with a dashed outline.
Eq. ~1! this corresponds to settingg50 in the dy(t)/dt
equation.

The block indicated as NA in Fig. 2 is an adjustable no
linear amplifier. We use it to rescale and change the shap
the output signalx(t). It can shrink or stretch different part
of the wave form, change the amplitude, and move the tr
as a whole up or down. This shape adjustment is particul
important in experiments with groups of biological and ele
tronic neurons interconnected with each other. Living ne
rons, even taken from the same biological structure, m
generate considerably different wave forms. The relative s
of spikes and the interburst hyperpolarization is varia
from cell to cell. In our circuits we can precisely adjust th
wave form of the EN to be very close to that of each b
logical neuron in our experiments.

Another reason to use circuits with variable wave form
is that it opens up the possibility of studying how the acti
potential wave forms affect the interactions among the n
rons, electronic and biological. Indeed, the ability to va
the details of the wave forms provides an interest
handle on design of biometric circuitry for a variety o
applications.

ll
ts.
a

FIG. 2. Block diagram for the 4D HR neuron used in o
experiments. These neurons were designed to replicate the beh
of individual, isolated neurons from the lobster STG. In our e
periments they were coupled electrically as well as via an e
tronic implementation of inhibitory and excitatory chemic
synapses.
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FIG. 3. Regimes of oscillations in two uncoupled electronic neurons~EN’s!. ~A! Time series of the membrane voltagesx1(t),x2(t) for
the uncoupledEN’s. ~a! Phase space portraits ofx2(t) vs x1(t). ~B! Membrane potentials after 20-Hz low-pass filtering to emphasize
bursting behavior.~b! Phase space portraits of filtered membrane potentialsx2

f (t) vs x1
f (t).
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IV. SYNAPTIC CONNECTIONS BETWEEN EN’s

In living nervous systems one finds three general type
synaptic connections among neurons@16#: ohmic electrical
connections~also called gap junctions! and two types of
chemical connections; excitatory and inhibitory. For o
studies of the interconnections among EN’s and among E
and biological neurons@14#, we built electronic circuits to
emulate excitatory and inhibitory synaptic connections
well as the ohmic electrical connections. The STG neu
circuits are dominated by inhibitory interconnections and
ohmic electrical connections. We now describe how
implemented each, and then we turn to the results of
synchronization experiments with these network conn
tions.

A. Implementation of the electrical synapses

We implemented an electrical synapse@17# between the
EN’s by injecting into one of the neurons (EN1) a current
proportional to the voltage difference between the two me
brane potentials of the EN’s and into the other neuron (EN2)
injecting the same current but with the opposite strength.
current into EN1 is

I 1~ t !5
GE

470 kV
„x2~ t !2x1~ t !…;

while

I 2~ t !52I 1~ t !.

We chose the dimensionless synaptic strengthGE in the
rangeGEP@21,1#. Over this range we observed the effec
of positive and negative electrical coupling on the spiki
and bursting behavior of the EN’s. We recorded the electr
voltage signals corresponding to the membrane potentia
the EN’s using an analog to digital converter with a sampl
of
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rate of 5 kHz. For each value ofGE we waited at least 40 s
to avoid transient dynamics and then recorded a data se
20 s long.

Natural biological networks do not have negative cond
tance electrical coupling. Using an active device placed
tween the neurons we implemented negative electrical c
plings in our experiments on two electrically couple
biological neurons as reported in Ref.@6#. To compare the
results of our work there with the properties of coupl
EN’s, we use negative coupling here as well.

B. Implementation of the chemical synapses

We first implemented mutual chemical synapses betw
the two EN’s using analog circuitry. Here we report on r
sults obtained by using a software implementation of
chemical synapses which allows us to investigate the role
the synaptic time constantts . In the analog circuit imple-
mentation of the chemical synapses we need to replac
capacitor every time we want to change the time const
but in the software version this time constant is just a para
eter, so it is easier to study the role of these time constan
the software version. In this paper the time constant is fix
and our observations on the role of a changing time cons
will be reported in another paper. The results using a s
ware version of the chemical synapse, and the results u
our hardware version were identical.

We used the nonlinear amplifiers to reshape the sign
corresponding to the membrane potential of the EN’s in s
a way that the new signals had amplitudes, spike/burst ra
and voltage offsets close to the signals generated by liv
neurons. With these reshaped signals we used new dyn
clamp software@18# to generate in real time the curren
corresponding to the graded chemical synapses as desc
by the first-order kinetics

I C5213GcS~ t !~xrev2xpost!, ~4!

and
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FIG. 4. Normalized standard deviationsN(GE) and normalized maximal deviationDN(GE) computed after 20-Hz low-pass filtering th
membrane potential of two electrically coupled EN’s for different values of the synaptic conductanceGE . For GE*0 the behavior of the
EN’s is nearly independent and chaotic. The region labeled as IA represents out-of-phase bursting activity forGE50.05 and the region
labeled as IP represents intermittent behavior with both EN’s showing very long and simultaneous bursts observed inGE520.02.
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~12S`!ts

dS~ t !

dt
5„S`2S~ t !…, ~5!

where

S`~xpre!5tanhFxpre2xth

xslope
G , ~6!

whenxpre.xth . OtherwiseS`(xpre)50.
Gc is the maximal synaptic conductance,S(t) the instan-

taneous synaptic activation,S` the steady-state synaptic a
tivation,xrev the synaptic reversal potential, andxpre andxpost
are the presynaptic and postsynaptic voltages, respecti
ts is the synaptic time constant,xth the synaptic threshold
voltage, andxslope the synaptic slope voltage.

The synaptic reversal potentials were selected so tha
currents injected into the postsynaptic EN’s were alwa
negative for inhibitory synapses and positive for excitato
synapses, emulating the biological synapses@16#. The synap-
tic threshold voltages were set in the middle of the amplitu
of the bursts, and the synaptic slope voltage was adjuste
make the output of the hyperbolic tangent slightly satura
at the spikes. In our experimentsGc was varied as we col
lected different data sets. We used standard values for
other parameters in the dynamic clamp program:xrev5280
mV ~inhibitory synapses! or xrev5220 mV ~excitatory syn-
apses!; ts510 ms; xth5250 mV; andxslope510 mV. As
before we waited for at least 40 s after connecting the E
with the chemical synapses before starting the recording
the 20 s of data from the membrane potential of the EN’

V. EXPERIMENTS

To analyze the degree of synchronization of slow bur
between two coupled neurons~electrically or chemically! we
proceed in the same manner as we used for our experim
on synchronized living neurons@6#. This was based on a
ly.

he
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e
to
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of

s

nts

method developed for the experimental studies of synchr
zation of chaotic oscillations in electronic circuits@19–21#.
We used an overlap-add method of finite impulse respo
with a Hamming window, and used a fast Fourier transfo
and a cutoff frequency of 5 Hz to suppress the spikes,
taining the filtered data seriesxi

f(t); i 51,2. The synchroni-
zation of the EN’s is quantified by calculating the differen
xd

f (t)5x1
f (t)2x2

f (t), and studying the normalized standa
deviationsN5sx

d
f /sx

1
f and the normalized maximal devia

tion DN5uxd
f umax/(x1

f,max2x1
f,min) as a function ofGE for the

electrical coupling or as a function ofGc for the chemical
coupling. For notational convenience, we indicate excitat
couplings with values ofGc.0 and inhibitory couplings
with values ofGc,0.

A. Isolated neurons

The parameters of the isolated neurons were set in
chaotic spiking–bursting regime. An example of the beh
ior of an isolated EN is shown in Fig. 3. Note that the sc
for x is double that of the numerical simulations shown
Fig. 1 because of the rescaling time constant in the ana
integrator~units have dimensions in the analog implemen
tion of the model, see Sec. III!. The relative behavior of the
spikes and slow oscillations can be seen in the plots ofx2 vs
x1 @Fig. 3~A!# andx2

f vs x1
f @Fig. 3~B!#, respectively.

B. Electrical coupling between two EN’s

We began with electrical coupling between two 4D an
log circuit models implementing Eq.~1!. We varied onlyGE
keeping all other parameters fixed. A convenient represe
tion of the range of behavior we observed is presented in
4. Here, overlying values ofsN(GE) andDN(GE), we give a
verbal description of the quantitative behavior of time ser
in each regime. To illustrate the phenomena seen in e
regimeGEP@21,1# of Fig. 4 we show examples of the tim
series for the membrane potentialsx1(t),x2(t) of the two
neurons in Figs. 5 and 6.
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FIG. 5. Positive electrical coupling of two chaotic EN’s. Characteristic time series of the membrane potentialsx1(t),x2(t) @~A!–~F!# as
we vary GE . Phase portraitx2(t) vs x1(t) @~a1!–~f1!#. Phase protraits after 20-Hz low-pass filteringx2

f (t) vs x1
f (t) @~a2!–~f2!#. ~A! GE

50.05 intermittent out-of-phase bursting activity.~B! GE50.1 nearly independent chaotic spiking–bursting pattern.~C! GE50.2 chaotic
oscillations with most bursts synchronized.~D! GE50.3 periodic oscillations with partial synchronization of the EN’s, the spikes are
synchronized.~E! GE50.6 periodic oscillations with the complete synchronization of the EN’s.~F! GE50.9 chaotic but completely
synchronized oscillations.
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1. Results for0ÏGEÏ1

~i! When GE'0.0 the two neurons are uncoupled a
display independent chaotic oscillations as shown in Fig

~ii ! For small, positive coupling 0.0,GE,0.2, regions of
nearly independent chaotic spiking–bursting activity are
served as well as some regions of synchronized bursting
tivity as shown in Fig. 5~B! where we setGE50.1. There is
a small range ofGE (GE'0.05) in which intermittent an-
tiphase bursting behavior can be found. The burst lengt
this case is kept nearly regular from burst to burst as sho
in Fig. 5~A!.

~iii ! For 0.2<GE,0.3 the behavior is still chaotic for th
two neurons but most of the bursts are synchronized
shown in Fig. 5~C! where we setGE50.2.

~iv! From 0.3<GE,0.8 the bursting activity become
regular going from a region in which there is partial synch
nization ~spikes not synchronized!, as shown in Fig. 5~D!
where we setGE50.3, to a region of total synchronizatio
~bursts and spikes synchronized!, shown in Fig. 5~E! where
we setGE50.6.

~v! From 0.8<GE,1.0 there is total synchronization i
the spiking–bursting activity, and the oscillations are chao
as shown in Fig. 5~F! where we setGE50.9.

2. Results forÀ1ÏGEÏ0

For negative couplingGE,0, the oscillations are pre
dominantly chaotic and the hyperpolarizing regions, wh
the membrane voltage is quite negative, of the signals ar
in antiphase. The average burst length decreases as the
pling becomes stronger as shown in Fig. 6. For a small ra
of GE (GE'20.02) very long bursts were observed
shown in Fig. 6~A!.

3. Comparison of coupled EN’s with electrically coupled
biological neurons

sN(GE) and DN(GE) provide quantitative measures o
the synchronization between two EN’s. In our report on
experimental work@6# with two biological cells, the results
for sN(GE) andDN(GE) can be seen in Fig. 5 of that pape
Note that, as in the case of coupled biological neurons,
have here a bifurcation between positive and negative e
trical coupling. In the experimental work on electrical
coupled biological neurons a value for the external coupl
ga'2200 ns serves to null out the natural coupling of ab
that amount, so the figures here and in the earlier paper a
be compared by slidingGE50 here toga'2200 ns there.
Both in the biological and electronic experiments, the sh
phase transition from very smallsN ,DN for positive cou-
pling to large, nearly constant values is associated with
rather rapid change from nearly and then fully synchron
behavior for positive couplings to out-of-phase oscillatio
for negative couplings.

ThesN(GE) andDN(GE) curves in the paper on couple
biological neurons@6# shows far fewer points and cons
quently less detail that our curves for coupled 4D EN
Clearly this is because of the resolution in the biologi
experiments and the difficulty in performing experiments
such closely chosen values ofGE . At this time the details of
behavior revealed in the present experiments on EN’s h
not been verified in the biological setting. One should vi
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our Fig. 4 and Fig. 5 of Ref.@6# as in excellent qualitative
agreement.

C. Chemical synapses between two EN’s

We have observed the behavior of two 4D EN’s coup
with identical chemical synapses. Two dynamic clamp ve
sions of chemical synapses, based on the integration of
~5!, were built with identical parameters and then used
couple two 4D EN’s. We then variedGc in each chemical
synapse over the range 0<Gc<200 ns for an excitatory syn
apse, namelyxrev5220 mV, and over the range 0<Gc
<500 ns for an inhibitory synapse, namely,xrev5280 mV.
The other parameters were held fixed atts510 ms, xth5
250 mV, andxslope510 mV. In Fig. 7 we collect the statis
tical results, expressed in our usual quantitiessN(Gc) and
DN(Gc), for both excitatory and inhibitory synaptic conne
tions. Negative values ofGc represent inhibitory connec
tions. This, perhaps apparently peculiar method of prese
tion allows us to see immediately the relationship betwe
excitatory and inhibitory interconnections. As earlier wi
electrical couplings we provide a verbal description of ea
region of behavior over the whole range ofGc . We show
examples of the time series for the membrane potentialx of
the two neurons in Figs. 8 and 9.

1. Excitatory chemical synapses

When coupled with implementations of excitatory chem
cal synapses the EN’s displayed the following behaviors

~i! When Gc'0 ns the two neurons are uncoupled a
display independent chaotic oscillations as shown in Fig.

~ii ! For positive coupling 0,Gc,100 ns a transition
from the chaotic behavior to regular spiking/bursting is o
served. For small coupling the independent chaotic spiki
bursting activity of the uncoupled neurons is replaced b
behavior in which most of the bursts are synchronized,
the oscillations are still chaotic as shown in Fig. 8~A! for
Gc510 ns. AsGc is increased all the bursts become sy
chronized, and the activity becomes periodic as shown
Fig. 8~B! for Gc5100 ns.

~iii ! For Gc.100 ns the bursts remain synchronized a
become longer, but there are no longer any spikes during
ending part of the bursts as shown in Fig. 8~C! for Gc
5200 ns.

2. Inhibitory chemical synapses

Finally we report on our experiments with an electron
version of an inhibitory chemical synapse. This inhibito
synaptic coupling occurs in the lobster central pattern g
erator ~CPG! as well as many other CPGs, and we ha
suggested@2# that inhibitory chemical coupling will lead to
regularization of the chaotic oscillations of the individu
neurons.

~i! For smallGc the oscillations are still chaotic, but all o
the hyperpolarizing regions of the membrane voltages ar
antiphase as shown in Fig. 9~A! for Gc58 ns.

~ii ! When GC'20 ns the oscillations become periodi
and all the hyperpolarizing regions are in out-of-phase
shown in Fig. 9~B!.

~iii ! For 25 ns<Gc,50 ns the out-of-phase behavior o
the hyperpolarizing regions remains, but the oscillations
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FIG. 6. Negative electrical coupling of two chaotic EN’s. Characteristic time series of the membrane potentialsx1(t),x2(t) @~A!–~C!# as
we varyGE . Phase portraits ofx2(t) vs x1(t) @~b1! and~c1!#. Phase portraits after 20-Hz low-pass filteringx2

f (t) vs x1
f (t) @~b2! and~c2!#.

~A! GE520.02 intermittent simultaneous long bursts in the two EN’s.~B! GE520.2 chaotic out-of-phase spiking–bursting behavior.~C!
GE520.9 fast chaotic out-of-phase spiking-bursting behavior. The time scale used in the time series plot is the same for all exa

FIG. 7. Normalized standard deviationsN(Gc) and normalized maximal deviationDN(Gc) computed after 20-Hz low-pass filtering i
the membrane potential of two EN’s coupled with identical chemical synapses for different values of the synaptic conductanceGc for both
excitatory (Gc.0) and inhibitory (Gc,0) connections. For very small excitatory coupling (Gc'0) the behavior of the EN’s is nearly
independent and chaotic.
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FIG. 8. Excitatory chemical coupling of two chaotic EN’s. Characteristic time series of the membrane potentialsx1(t),x2(t) @~A! to ~C!#.
Phase portraitsx2(t) vs x1(t) @~a1!–~c1!#. Phase portraits after 20-Hz low pass filteringx2

f (t) vs x1
f (t) @~a2!–~c2!#. ~A! GC510-ns chaotic

but nearly synchronized bursting behavior.~B! GC5100-ns periodic and synchronized bursting activity of the EN’s.~C! GC5200--ns
periodic and synchronized activity with long bursts and spikes vanishing before the end of the bursts.
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chaotic again as shown in Fig. 9~C! for Gc525 ns.
~iv! For 50 ns<Gc,150 ns the oscillations regulariz

again, and the behavior is periodic with out-of-phase bu
ing as shown in Fig. 9~D! for Gc550 ns and in Fig. 9~E! for
Gc5100 ns.

~v! For Gc.150 ns the oscillations are chaotic and lo
out-of-phase bursts are observed as shown in Fig. 9~F! for
Gc5300 ns.

The only experiments we know which relate to these
servations on two chemically coupled EN’s are not a prec
match, but bear noting. Elson@22# has isolated a pair o
lateral pyloric~LP! and pyloric dilator~PD! neurons from the
pyloric circuit of the CPG of the lobster STG; these ha
mutual inhibitory coupling. Elson varied the strength of t
chemical coupling using neuromodulators and making m
surements at four values ofGc over a nominal rage of 20–6
ns. He observed only the behavior reported in the penu
mate item of our experiments on inhibitory coupling. Unfo
tunately, control of the identity of the mutual inhibitory cou
plings was not possible, nor was it possible for us to direc
compare the calibration of Elson’s indication of the mag
tude ofGc with our own choices in using EN’s. To date the
we have no direct laboratory evidence on synchronization
biological neurons mutually coupled with chemical synaps
This is in contrast to our observations on electrically coup
biological neurons@6#. This represents an interesting oppo
t-

-
e

a-

i-

y
-

f
s.
d

tunity for biological experiments which may be direct
compared to our results using EN’s.

D. Coupling between electronic and living neurons

We have previously reported experiments on replac
the anterior burster~AB! neuron from the Pyloric CPG in its
interaction with an isolated pair of PD neurons with a 3D E
@14#. For completeness in light of the work reported in th
paper, we carried out an experiment in which one of our
neurons was coupled bidirectionally to one of the PD n
rons in the AB/PD pacemaker group of the Pyloric CPG. T
full description of the methods used in the biological prep
ration will appear elsewhere@23#, but here we quite briefly
summarize those points important to the main thrusts of
article.

These experiments were carried out on one of the two
neurons from the Pyloric CPG of the lobster@24#. The STG
of the California spiny lobster,Panulirus interruptus,was
removed using standard procedures and pinned out in a
lined with silicone elastomer and filled with normal lobst
saline. The STG was isolated from its associated ante
ganglia, which provide activating inputs, by cutting the s
matogastric nerve. Two glass microelectrodes were inse
in the soma of the PD neuron: one for intracellular volta
recording and another one for current injection. The volta
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FIG. 9. Inhibitory chemical coupling of two chaotic EN’s. Characteristic time series of the membrane potentialsx1(t),x2(t) @~A!–~F!#.
Phase portraitsx2(t) vs x1(t) @~a1!–~f1!#. Phase portraits after 20-Hz low-pass filteringx2

f vs x1
f @~a2!–~2f!#. ~A! GC58-ns chaotic

oscillations with all hyperpolarizing regions out-of-phase.~B! GC520-ns periodic pattern with hyperpolarizing regions out-of-phase
some burst superposition.~C! GC525-ns chaotic oscillations.~D! GC550-ns periodic out-of-phase bursting behavior with some bu
superposition.~E! GC5100-ns periodic out-of-phase spiking–bursting behavior.~F! GC5300-ns chaotic out-of-phase spiking–burstin
pattern. The time scale used in the time series plot is the same for all examples.
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FIG. 10. Electrical coupling of an EN and a living PD neuron from the STG of the lobsterPanulirus interruptus. Characteristic time
series of the membrane potentialsx1(t),x2(t) @~A!–~C!#. Phase portraits ofx2(t) vs x1(t) @~a1!–~c1!#. Phase portraits after 20-Hz low-pas
filtering x2

f (t) vs x1
f (t) @~a2!–~c2!#. ~A! Negative coupling–out-of-phase bursting activity.~B! Uncoupled neurons.~C! Positive electrical

coupling–synchronized bursting behavior
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signals were digitized at 10 000 samples/s. The two PD n
rons remained coupled to each other and to the AB neu
by their natural electrical synapses, but were isolated fr
the rest of the CPG by blocking chemical input synap
with picrotoxin ~7.5 mM!. The artificial electrical coupling
was provided by injecting in the EN and in the PD oppos
currents. More details of the experimental setup can be fo
in Ref. @14#. The membrane voltage of the EN was reshap
to make its amplitude ratio in spiking/bursting mode, its to
amplitude, and its voltage offset similar to those of the P
neuron. Only electrical coupling, positive and negative,
reported here.

We connected the neurons with the analog electrical s
apse and observed their spiking–bursting behavior as sh
in Fig. 10. When uncoupled, the neurons had independ
spiking/bursting activity as shown in Fig. 10~B!. For large
enough negative coupling the neurons are synchronized
fire out-of-phase as shown in Fig. 10~A!. For positive cou-
pling the neurons show synchronized bursting activity
shown in Fig. 10~C!. For this value ofGE the bursts are
synchronized but not the spikes.

This result is in agreement with the experiments ma
with a pair of electrically coupled EN’s, as we discuss
above, as well as for a pair of living STG neurons@6#.
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VI. DISCUSSION

The EN’s described in this paper are simple analog
cuits which integrate 4D differential equations represent
fast and slow subcellular processes that give rise to the c
acteristic spiking and spiking–bursting behavior of CP
neurons. The EN’s are also able to reproduce the dynam
bifurcations seen in the living neurons. The performance
the 4D EN’s, compared with the earlier 3D version, show
a richer behavior with larger regions of parameter space
which we observed chaotic behavior. The 4D EN’s were a
easier to tune in order to reproduce the behavior of liv
CPG cells; in particular, we can tune the width of the bur
before setting the EN in the chaotic regime. This study co
prises:~a! two electrically coupled EN’s and~b! two EN’s
connected with excitatory and inhibitory chemical synaps
These two types of connections exist in almost all kno
CPGs. The range of observations summarized in Figs. 4
7 shows the rich behavior and complexity of these minim
network configurations. It indicates how small changes in
coupling conductance can drive the cells into completely d
ferent regimes. In particular, some of our experiments pre
the appearance of chaotic out-of-phase synchronization
different coupling configurations. These results are displa
in Figs. 6~C! and 9~F!. In general, the experiments with th
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EN’s contribute directly to our understanding of the origin
regularization of individually chaotic neurons through coo
erative activity.

Although the EN’s presented here reproduce many ch
acteristics of the dynamical behavior for the living cells, th
fail to completely reproduce several aspects of their activ
In particular, the shape of the spikes in the EN’s is not
actly the same as the one observed in the living neuro
Also, the EN’s do not show the adaptation characteristics
the biological neurons due to plastic changes in the cond
tances of the cell membrane, since the model does no
clude any mechanism to include these phenomena.

How complicated should one require a model neu
to be? In our view the answer depends on the neural func
one wishes to represent. The analysis of the electrical a
vity of isolated neurons from the lobster Pyloric CPG ind
cates that the number of active degrees of freedom is
very large, ranging from three to five in various enviro
ments, and this suggests a very simple representatio
terms of dynamical equations. Our analysis@8# of much
richer HH models of these individual neural oscillato
also indicates that in the regime of biological operatio
the number of active degrees of freedom is equally small.
this basis we developed the HR type models of these neu
both in numerical simulation and in analog electric
circuitry.

This paper has moved that inquiry about the complex
of representation for the components of a biologically re
istic neural network to another level. Here we have
vestigated whether the simplified neural models, wh
coupled together in small networks but in biologically re
istic manners, can reproduce our observations of biolog
neurons alone. The striking result of the observations p
sented here, when the experimental setup matches th
the biological networks, is that the observed behavior of
EN’s also matches. Further, using our EN’s, we are able
make distinct predictions about the behavior of biological
hybrid ~biological and EN! networks in settings not ye
investigated.

Our experiments on coupled biological neurons and E
provide further ground for testing the validity of numeric
and electronic models of individual neural behavior as w
as presenting interesting new examples of coupled nonlin
oscillators. Hybrid circuits with biological and electron
neurons coupled together are a powerful mechanism for
derstanding the modes of operation of CPG’s. The hyb
system constitutes an easy way to change the connect
and global topology of the CPG. The roles of intrinsic d
namics of the neurons and the synaptic properties of the
work in rhythm generation can be easily studied with the
hybrid configurations@14#.

There have been previous efforts to study electronic n
rons alone and in conjunction with biological neurons. A
early example is the work of Yarom@25# where a network of
four oscillators, realized as an analog circuit, was interfa
with an olivary neuron in a slice preparation. Yarom stud
-
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the response of the olivary neuron when it received oscil
ing electrical input from the network. There was no feedba
from the biological neuron to the network he constructed.
Massonet al. @26# developed a digital version of a neuro
comprising a HH@7# model of various pyloric CPG neuron
with three compartments and eight different ion chann
which ran on a DSP board located on the bus of a perso
computer. They connected this model into a variety of d
ferent configurations of subcircuits of the pyloric CPG r
placing at various times the LP, a PD, or a pyloric neuro
Using this ‘‘hybrid’’ setup they verified that many aspects
the pyloric rhythm are accurately reproduced when th
DSP based neuron replaces one of the biological neuron
their system. In subsequent work@27,28#, this group has de-
veloped very large scale integrated~VLSI! devices for inte-
grating the HH models and has utilized them in mixed c
cuits ~EN’s and biological neurons!, replacing the DSP
version of the conductance models in their biological pre
rations. The complexity of these EN’s has not been neede
our modeling nor in the further experiments on their intera
tion with each other as reported here. We have not found
reports in the literature on the mutual interaction of the
analog VLSI neural circuits.

There are two interesting directions to which the resu
reported here may point:

~1! Biologically realistic neural networks of much great
size than the elementary ones investigated here may be
ciently investigated numerically or in analog circuitry usin
the realistic, but simple HR type models. The integration
the model equations is no challenge to easily available c
puting power and large networks should be amenable to
vestigation and analysis.

~2! The networks investigated here are subcircuits o
biological circuit of about 15 neurons which has the fun
tional role of a control system: commands are presented f
other ganglia of the lobster and this Pyloric circuit must e
press voltage activity to the muscles to operate a pump
shredded food passing from the stomach to the digestive
tem. Many other functions are asked of biological neu
networks. Using the full richness of HH models for the com
ponent neurons may seem attractive at one level, but
results presented here suggest that many interesting q
tions may be asked of those networks using the simplifi
component neurons studied here.
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