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We report on experimental studies of synchronization phenomena in a pair of analog electronic neurons
(ENs). The ENs were designed to reproduce the observed membrane voltage oscillations of isolated biological
neurons from the stomatogastric ganglion of the California spiny loffeulirus interruptus The ENs are
simple analog circuits which integrate four-dimensional differential equations representing fast and slow sub-
cellular mechanisms that produce the characteristic regular/chaotic spiking—bursting behavior of these cells. In
this paper we study their dynamical behavior as we couple them in the same configurations as we have done
for their counterpart biological neurons. The interconnections we use for these neural oscillators are both direct
electrical connections and excitatory and inhibitory chemical connections: each realized by analog circuitry and
suggested by biological examples. We provide here quantitative evidence that the ENs and the biological
neurons behave similarly when coupled in the same manner. They each display well defined bifurcations in
their mutual synchronization and regularization. We report briefly on an experiment on coupled biological
neurons and four-dimensional ENs, which provides further ground for testing the validity of our numerical and
electronic models of individual neural behavior. Our experiments as a whole present interesting new examples
of regularization and synchronization in coupled nonlinear oscillators.

PACS numbes): 05.45.Xt, 84.35+i, 87.80~y, 87.18.Sn

[. INTRODUCTION Building on biological experiments and on numerical

analysis of models for the oscillations of isolated neurons,
we have constructed low-dimensional analog electronic neu-
rons (EN’s) whose properties are designed to emulate the
membrane voltage characteristics of the individual neurons.

ciently and sensitively achieve desired functional gggls ~ USing these simple, low dimensional EN's we report here
The analysis of biological systems may, beyond their intrintheir synchronization and regularization properties, first
sic interest, often provide physicists with novel dynamicalWhen they are coupled electrically as the sign and magnitude
systems possessing interesting properties in their componeft the coupling is varied, and then when they are coupled by
oscillators or in the nature of the interconnections. excitatory and inhibitory chemical synapses. We have also
We have presented our analysis of the experimental syrstudied the behavior of a hybrid system, i.e., one EN and one
chronization of two biological neurons as the electrical cou-biological neuron coupled electrically. As our models were
pling between them is changed in sign and magnitiile  developed on data acquired from biological neurons in syn-
Subsequent to that analysis we have developed computaptic isolation, the results we present here on pairs of inter-
simulations of the dynamics of the neurons which are basedcting ENs and hybrid systems serve to provide further con-
on conductance based Hodgkin—HuxléstH) [7] neuron firmation of the properties of those model neurons, numerical
models. These numerical simulations quantitatively reproand analog.
duced the observations in the laboratpy8—10.
The study of isolated neurons from the stomatogastric Il. ELECTRONIC NEURON MODEL
ganglion(STGQ) of the California spiny lobstePanulirus in-
terruptususing tools of nonlinear time series analyi4,12|
shows that the number of active degrees of freedom in the

Synchronization of nonlinear oscillators is widely studied
in physical and biological systeni$,?2] for underlying inter-
ests ranging from novel communications strategi®g| to

We have studied and built three-dimensiogaD) and
four-dimensional4D) models of HR type having the form

membrane potential oscillations typically ranges from three dx(t)
to five [2]. The appearance of low dimensional dynamics in ———=ay(t)+bx%(t)—cx(t) —dz(t) +]1,
this biological system led us to develop models of its action dt
potential activity, which are substantially simpler than the dy(t)
HH models we and otheif88] have used to describe these y_:e_fxz(t)_y(t)_gw(t)’
systems. We adopted the framework established by Hind- dt
marsh and RosgHR) [13] in which the complicated 1
current—voltage relationships of the conductance based mod- dz(t) —(
o , . p(=z(t)+ S(x(t) +h)),
els are replaced by polynomials in the dynamical variables, dt
and the coefficients in the polynomials are estimated by ana- dw(t)
i wi
B/riljne% ;rt]sd;bserved current/voltage curves for the neurons = = p(—Kw(t) +r(y(t)+1)),
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FIG. 1. Time series of the dynamical variablegt),y(t),z(t),w(t) of our 4D HR model, Eq.(1), and various 3D projec-
tions (x(t),y(t),z(t)), (x(t),y(t),w(t)) and (x(t),z(t),w(t)) of the 4D phase space orbits. Units are dimensionless in the numerical
simulations.

wherea,b,c,d,l,e,f,g,u,Sh,v,k,r, andl are the constants a=1, b=3, c=1, d=0.99,1=3.024,e=1.01, f=5.0128,
that embody the underlying current and conductance baseg=0.0278, ©=0.0021, S=3.966, h=1.605, »=0.0009, k
dynamics in this polynomial representation of the neural dy—=0.9573,r=3.0, and =1.619. The implementation of these
namics.x(t) is the membrane voltage in the modglt) constants in analog circuits always has about 5% tolerance in
represents a “fast” current in the ion dynamics, and wethe components. The main parameters we used in controlling
chooseu<1, soz(t) is a “slow” current. Taken alone the the modes of spiking and bursting activity of the model are
first three equations of the model can reproduce severdhe dc external currertand the time constan{g and v of
modes of spiking—bursting activity observed in STG cells.the slow variables.
The first three equations were used in analog realization for Figure 1 shows a chaotic time series of the four variables
our earlier experiments with 3D EN&4]. using the parameters above. Note hewmodulates the
The equation forw(t) represents an even slower dynami- length of the bursts ix. Each local minimum in the global
cal process(r<u<1), and it is included because a slow oscillations ofw coincides with a short burst period. The
process, such as the calcium exchange between intracaloemplexity achieved by the addition efcan be observed in
lular stores and the cytoplasm, was found to be requiredhe projections of X,y,z,w) space to various 3D spaces,
in HH modeling[8] to fully reproduce the observed chaotic (x,y,z),(x,y,w), and &,z,w), respectively, as shown in
oscillations of STG neurons. Both the 3D and 4D modelsFig. 1.
have regions of chaotic behavior, but the 4D model has Table | presents the Lyapunov exponeitscalculated
much larger regions in parameter space where chaos occufspm the vector field15] of Eq. (1) for the 3D and 4D EN's.
presumably for many of the same reasons the calcium dyA positive Lyapunov exponent is present in both models,
namics gives rise to chaos in HH modeling. The calciumindicating conclusively that they are oscillating chaotically.
dynamics is an additional degree of freedom with a timeFrom this spectrum of Lyapunov exponents, we can evaluate
constant three times slower than the characteristic burstinghe Lyapunov dimensioD, which is an estimate of the
times. In addition, the 4D model allows a better adjustmenfractal dimension of the strange attractor for the EN'4].
of the behavior of the EN when connecting it to living neu- The Lyapunov dimension is defined by finding that number
rons. In particular, we can adjust several details of the shapef Lyapunov exponents; satisfying
of the spiking—bursting activity, for example the width of
the bursts, before setting the model neuron into the chaotic

N
regime. o o 2 \i>0,
In our analog circuit realization of the EN model we used i=1
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TABLE I. Lyapunov exponents; and Lyapunov dimensiob
calculated from the vector fieltEq. (1)] for the 3D and 4D elec- in L, .
tronic neuron models. As a reminder to the reader: the sum of all 1 —fa X NAS o
Lyapunov exponents must be negative, and this is so for our results. —) , L®«
Also, one Lyapunov exponent must be 0 as we are dealing with a X*/10
differential equation.
X3/100
Model: N1 o N3 WA D,
1 Y(©)
3D 0.010  0.000 —7.752 2.001 Ja
4D 0.004 0.000 -—0.001 —8.034 3.000 ¢
. -Z(1)
while h -3 J dr
N+1 F
; \;<O0. ) g |

| X A

e e 4] -

ThenD, is defined as

y E !
2\ | :
D =N+ =% 3) | | |

Ansal”
D, for each EN is displayed in the last column of Table I. e it

FIG. 2. Block diagram for the 4D HR neuron used in our
Ill. ANALOG IMPLEMENTATION OF THE EN'’s experiments. These neurons were designed to replicate the behavior

We desi d and built | lectronic circuit th of individual, isolated neurons from the lobster STG. In our ex-
€ designed and built an analog €lectronic circul atperiments they were coupled electrically as well as via an elec-

integrates Eq(l). We c_hose_z to bui!d an analog device i_n- tronic implementation of inhibitory and excitatory chemical
stead of using numerical integration of the mathematlcals?mapses_

model on the CPU of a PC or on a DSP board because digita

integration of these equations is a slow procedure associated ] o ) ]
with the three different time scales in the model. Further-NOte that this rescaling is responsible for the different am-

more, a digital version of an EN requires digital to analogPlitudes in the numericaFig. 1) and analogFigs. 3, 5, 6, 8,
and analog to digital converters to connect the model to bio9—no longer dimensionlessxperiments.
logical cells. Analog circuits are small, simple, and inexpen-  This circuit design allows us to easily switch from a 3D to
sive devices; it is easy to connect them to a biological cell, a& 4D model of the neuron. We can connect or disconnect one
we discuss belowsee also Ref[14]). In a practical sense wire, indicated as point A in Fig. 2, to enable or disable the
nearly an unlimited number of them can work together incircuit block shown in the rectangle with a dashed outline. In
real-time experiments. Finally, looking ahead to the con-Eq. (1) this corresponds to setting=0 in the dy(t)/dt
struction of real-time networks of large numbers of theseequation.
neurons, analog implementation is a necessity. The block indicated as NA in Fig. 2 is an adjustable non-
The block diagram of the analog circuit we use to repredinear amplifier. We use it to rescale and change the shape of
sent the 3D and the 4D EN's is shown in Fig. 2. It includesthe output signak(t). It can shrink or stretch different parts
four integrators indicated byfdt, two multipliers, two of the wave form, change the amplitude, and move the trace
adders, and two inverters. We used off-the-shelf general puas a whole up or down. This shape adjustment is particularly
pose operational amplifieréNational Instruments Model important in experiments with groups of biological and elec-
TLO82) to build the integrators, adder and inverter, and usedronic neurons interconnected with each other. Living neu-
Analog Devices Model AD633 as analog multipliers. Therons, even taken from the same biological structure, may
integrator at the top of the diagram receives all componentgenerate considerably different wave forms. The relative size
of dx(t)/dt, e.g.,ay(t), bx?(t), etc. It has an additional of spikes and the interburst hyperpolarization is variable
input (called in) which can be used for connections with from cell to cell. In our circuits we can precisely adjust the
other circuits or neurons. The integrators invert the sign ofvave form of the EN to be very close to that of each bio-
their input, so the output signal will be x(t) multiplied by  logical neuron in our experiments.
a time constantr chosen to make the EN oscillate on the  Another reason to use circuits with variable wave forms
same time scale as the biological neurons. The signalis that it opens up the possibility of studying how the action
—x(t) is used to generate the nonlinear functioiét) and  potential wave forms affect the interactions among the neu-
x3(t) and these values go to the second and third integratorsons, electronic and biological. Indeed, the ability to vary
Similarly, the other integrators generate voltages proporthe details of the wave forms provides an interesting
tional toy(t), —z(t), andw(t). A renormalization was made handle on design of biometric circuitry for a variety of
in the rest of the time constants in the circuit to makel.  applications.
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FIG. 3. Regimes of oscillations in two uncoupled electronic neuf&hs). (A) Time series of the membrane voltagegt),x,(t) for
the uncoupledEN'’s. (a) Phase space portraits ®j(t) vs x;(t). (B) Membrane potentials after 20-Hz low-pass filtering to emphasize the
bursting behavior(b) Phase space portraits of filtered membrane potentgals) Vs xfl(t).

IV. SYNAPTIC CONNECTIONS BETWEEN EN's rate of 5 kHz. For each value @¢ we waited at least 40 s
avoid transient dynamics and then recorded a data series

In living nervous systems one finds three general types o, 0's long.

synaptic connections among _neurg[ﬂﬁ]: ohmic electrical Natural biological networks do not have negative conduc-
connections(also called gap junctiomsand two types of . . ) : . )
tance electrical coupling. Using an active device placed be

chemical connections; excitatory and inhibitory. For our - : .
. . . , ,fween the neurons we implemented negative electrical cou-
studies of the interconnections among EN’s and among EN'S

; ) . R plings in our experiments on two electrically coupled
and olgia neuionl, e bl secionic creute . biologal nurons as epored n Rl To compre e
y y synap esults of our work there with the properties of coupled

well as the ohmic electrical connections. The STG neura N's, we use negative coupling here as well
circuits are dominated by inhibitory interconnections and by ' '
ohmic electrical connections. We now describe how we
implemented each, and then we turn to the results of our
synchronization experiments with these network connec- We first implemented mutual chemical synapses between
tions. the two EN’s using analog circuitry. Here we report on re-
sults obtained by using a software implementation of the
A. Implementation of the electrical synapses chemical synapses which allows us to investi_gatg t_he role of
the synaptic time constant;. In the analog circuit imple-

We implemented an electrical synafs&’] between the  mentation of the chemical synapses we need to replace a
EN’s by injecting into one of the neurons (ENa current  capacitor every time we want to change the time constant,
proportional to the voltage difference between the two mempyt in the software version this time constant is just a param-
brane potentials of the EN’s and into the other neuronEN eter, so it is easier to study the role of these time constant in
injecting the same current but with the opposite strength. Théne software version. In this paper the time constant is fixed,
current into EN is and our observations on the role of a changing time constant

will be reported in another paper. The results using a soft-

14(t) = Ge (Xo(1) —X4(1)): ware version of th_e chemicgl synapse, and the results using

470 K our hardware version were identical.

We used the nonlinear amplifiers to reshape the signals

while corresponding to the membrane potential of the EN’s in such
a way that the new signals had amplitudes, spike/burst ratios,

Lo(t)=—14(t). and voltage offsets close to the signals generated by living
neurons. With these reshaped signals we used new dynamic

We chose the dimensionless synaptic strer@ghin the clamp softv_vare[18] to generate in real time the currents
rangeGe e [ — 1,1]. Over this range we observed the eﬁectscorresppndmg to the g_raded chemical synapses as described
of positive and negative electrical coupling on the spikingby the first-order kinetics
and bursting behavior of the EN’s. We recorded the electrical _ _
voltage signals corresponding to the membrane potentials of 0= 2136S(1) (Xrew™ Xposi: @
the EN’s using an analog to digital converter with a samplingand

B. Implementation of the chemical synapses
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FIG. 4. Normalized standard deviatien(Gg) and normalized maximal deviatiaky(Gg) computed after 20-Hz low-pass filtering the
membrane potential of two electrically coupled EN’s for different values of the synaptic condu€@andeor Ge=0 the behavior of the
EN’s is nearly independent and chaotic. The region labeled as IA represents out-of-phase bursting actty @05 and the region
labeled as IP represents intermittent behavior with both EN’s showing very long and simultaneous bursts obsggwvee th02.

dS(t) method developed for the experimental studies of synchroni-
(1—5m)TsT=(Sw—S(t)), (5  zation of chaotic oscillations in electronic circu[ts9—21].
We used an overlap-add method of finite impulse response
with a Hamming window, and used a fast Fourier transform

where and a cutoff frequency of 5 Hz to suppress the spikes, ob-
. —x taining the filtered data serieé(t); i=1,2. The synchroni-
S.(x rgztam‘{ pre ‘h}’ (6)  zation of the EN's is quantified by calculating the difference
P Xslope x(t)=xI(t)—x5(t), and studying the normalized standard

deviation aNzaXL/axfl and the normalized maximal devia-

tion Ay=|x}| ™t —xIMM as a function ofGg for the

taneous synaptic activatio, the steady-state synaptic ac- electrical coupling or as a function @, for the chemical
us synapti vatl y ynapt coupling. For notational convenience, we indicate excitatory

tvation, Xy the synaptic reversal potgntial, amgeandxpost. couplings with values ofG,>0 and inhibitory couplings
are the presynaptic and postsynaptic voltages, respectively;iih values ofG.<0
<0.

75 IS the synaptic time constanty, the synaptic threshold
voltage, andkg o, the synaptic slope voltage. A. Isolated neurons
The synaptic reversal potentials were selected so that the

currents iniected into the postsvnaotic EN's were alwavs The parameters of the isolated neurons were set in the
) postsynap Y<haotic spiking—bursting regime. An example of the behav-

negative for inhib.itory synapses and positive for excitatoryior of an isolated EN is shown in Fig. 3. Note that the scale
synapses, emulating the biological synafjd#. The synap-  ¢o; y js double that of the numerical simulations shown in

tic threshold voltages were setin the middle of the amplltudq:ig_ 1 because of the rescaling time constant in the analog
of the bursts, and the synaptic slope voltage was adjusted {Qiegrator(units have dimensions in the analog implementa-

make the output of the hyperbolic tangent slightly saturatedion of the model, see Sec. JliThe relative behavior of the

at the spikes. In our experimen®; was varied as we col-  gnikes and slow oscillations can be seen in the plots,ofs
lected different data sets. We used standard values for t@gl [Fig. 3(A)] andxfz VS Xfl [Fig. AB)], respectively.

other parameters in the dynamic clamp program,= — 80
mV (inhibitory synapsesor x,.,= —20 mV (excitatory syn-
apseg 7s=10 ms; x=—50 mV; andXgqe,e=10 mV. As
before we waited for at least 40 s after connecting the EN's We began with electrical coupling between two 4D ana-
with the chemical synapses before starting the recording dbg circuit models implementing Eql). We varied onlyGg
the 20 s of data from the membrane potential of the EN’s. keeping all other parameters fixed. A convenient representa-
tion of the range of behavior we observed is presented in Fig.
V. EXPERIMENTS 4. Here, overlying values QfN(QE)_andAN(G.E), We_give a
verbal description of the quantitative behavior of time series
To analyze the degree of synchronization of slow burstsn each regime. To illustrate the phenomena seen in each
between two coupled neurofelectrically or chemicallywe  regimeGg e[ —1,1] of Fig. 4 we show examples of the time
proceed in the same manner as we used for our experimergeries for the membrane potentiadg(t),x,(t) of the two
on synchronized living neuroni$]. This was based on a neurons in Figs. 5 and 6.

whenXpe> X, . OtherwiseS.,. (X, = 0.
G, is the maximal synaptic conductan&t) the instan-

B. Electrical coupling between two EN's
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FIG. 5. Positive electrical coupling of two chaotic EN’s. Characteristic time series of the membrane pote(it)als(t) [(A)—(F)] as
we vary G . Phase portraik,(t) vs x,(t) [(@al)—(f1)]. Phase protraits after 20-Hz low-pass filterigt) vs x| (t) [(a2—(f2)]. (A) G
=0.05 intermittent out-of-phase bursting activifd) Gg=0.1 nearly independent chaotic spiking—bursting patté@h.Gg=0.2 chaotic
oscillations with most bursts synchronizé®) Gg=0.3 periodic oscillations with partial synchronization of the EN'’s, the spikes are not

synchronized.(E) Gg=0.6 periodic oscillations with the complete synchronization of the EN®.Gg=0.9 chaotic but completely
synchronized oscillations.
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1. Results for0=Gg=<1 our Fig. 4 and Fig. 5 of Ref.6] as in excellent qualitative

(i) When Gg~0.0 the two neurons are uncoupled angagreement.
display independent chaotic oscillations as shown in Fig. 3.

(i) For small, positive coupling 0:0G<0.2, regions of C. Chemical synapses between two EN's
nearly independent chaotic spiking—bursting activity are ob- e have observed the behavior of two 4D EN’s coupled
served as well as some regions of synchronized bursting agyith identical chemical synapses. Two dynamic clamp ver-
tivity as shown in Fig. 8) where we seGg=0.1. There is  sjons of chemical synapses, based on the integration of Eq.
a small range ofGg (Gg~0.05) in which intermittent an- (5), were built with identical parameters and then used to
tiphase bursting behavior can be found. The burst length idouple two 4D EN’s. We then varie, in each chemical
this case is kept nearly regular from burst to burst as showBynapse over the range<GG,=< 200 ns for an excitatory syn-
in Fig. 5(A). apse, namelyx,,= —20 mV, and over the range<0G,

(iii ) For 0.2<Gg< 0.3 the behavior is still chaotic for the <500 ns for an inhibitory synapse, namely,,= —80 mV.
two neurons but most of the bursts are synchronized ashe other parameters were held fixedzat10 ms, Xy,=
shown in Fig. $C) where we seGg=0.2. —50 mV, andxgepe= 10 MV. In Fig. 7 we collect the statis-

(iv) From 0.3<Gg<0.8 the bursting activity becomes tical results, expressed in our usual quantitiggG.) and
regular going from a region in which there is partial synchro-  (G,), for both excitatory and inhibitory synaptic connec-
nization (spikes not synchroniz¢das shown in Fig. ®)  tions. Negative values o6, represent inhibitory connec-
where we seGg=0.3, to a region of total synchronization tjons. This, perhaps apparently peculiar method of presenta-
(bursts and spikes synchronizeghown in Fig. $E) where  tion allows us to see immediately the relationship between
we setGeg=0.6. excitatory and inhibitory interconnections. As earlier with

(v) From 0.8<Gg<1.0 there is total synchronization in electrical couplings we provide a verbal description of each
the spiking—bursting activity, and the oscillations are chaotiGegion of behavior over the whole range &.. We show
as shown in Fig. &) where we seGg=0.9. examples of the time series for the membrane potertdl

the two neurons in Figs. 8 and 9.
2. Results for—1=Gg=<0

For negative couplingSg<0, the oscillations are pre- 1. Excitatory chemical synapses
dominantly chaotic and the hyperpolarizing regions, where When coupled with implementations of excitatory chemi-
the membrane voltage is quite negative, of the signals are afal synapses the EN’s displayed the following behaviors:
in antiphase. The average burst length decreases as the cou-(i) When G.~0 ns the two neurons are uncoupled and
pling becomes stronger as shown in Fig. 6. For a small rangetisplay independent chaotic oscillations as shown in Fig. 3.
of Gg (Gg=~—0.02) very long bursts were observed as (ii) For positive coupling 6G,<100 ns a transition

shown in Fig. 6A). from the chaotic behavior to regular spiking/bursting is ob-
served. For small coupling the independent chaotic spiking/

3. Comparison of coupled EN'’s with electrically coupled bursting activity of the uncoupled neurons is replaced by a
biological neurons behavior in which most of the bursts are synchronized, but

on(Ge) and Ay(Gg) provide quantitative measures of the oscillations are s_tiII chaotic as shown in FigA8 for
the synchronization between two EN’s. In our report on theGc=10 ns. AsGc is increased all the bursts become syn-
experimental wor6] with two biological cells, the results chronized, and the activity becomes periodic as shown in
for oy (Gg) andAy(Gg) can be seen in Fig. 5 of that paper. Fig- 8B) for Gc=100 ns. . .

Note that, as in the case of coupled biological neurons, we (iii) For Gc>100 ns the bursts remain synchronized and
have here a bifurcation between positive and negative eled€come longer, but there are no longer any spikes during the
trical coupling. In the experimental work on electrically €nding part of the bursts as shown in FigCg for G,
coupled biological neurons a value for the external coupling=200 ns.
0.~ — 200 ns serves to null out the natural coupling of about

that amount, so the figures here and in the earlier paper are to

be compared by sliding=0 here tog,~ —200 ns there. Finally we report on our experiments with an electronic
Both in the biological and electronic experiments, the sharersion of an inhibitory chemical synapse. This inhibitory
phase transition from very smadty,Ay for positive cou-  synaptic coupling occurs in the lobster central pattern gen-
pling to large, nearly constant values is associated with therator (CPG as well as many other CPGs, and we have
rather rapid change from nearly and then fully synchronousuggested?2] that inhibitory chemical coupling will lead to
behavior for positive couplings to out-of-phase oscillationsregularization of the chaotic oscillations of the individual
for negative couplings. neurons.

The oy(Gg) andAy(Gg) curves in the paper on coupled (i) For smallG,, the oscillations are still chaotic, but all of
biological neurong6] shows far fewer points and conse- the hyperpolarizing regions of the membrane voltages are in
quently less detail that our curves for coupled 4D EN's.antiphase as shown in Fig(/) for G.=8 ns.

Clearly this is because of the resolution in the biological (ii) When G:~20 ns the oscillations become periodic,
experiments and the difficulty in performing experiments atand all the hyperpolarizing regions are in out-of-phase as
such closely chosen valuesGE . At this time the details of shown in Fig. 9B).

behavior revealed in the present experiments on EN’s have (iii) For 25 nssG.<50 ns the out-of-phase behavior of
not been verified in the biological setting. One should viewthe hyperpolarizing regions remains, but the oscillations are

2. Inhibitory chemical synapses
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FIG. 7. Normalized standard deviatien(G.) and normalized maximal deviatiay(G.) computed after 20-Hz low-pass filtering in
the membrane potential of two EN’s coupled with identical chemical synapses for different values of the synaptic con@ydiambeth
excitatory G.>0) and inhibitory G.<0) connections. For very small excitatory couplin@.&0) the behavior of the EN’s is nearly
independent and chaotic.
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FIG. 8. Excitatory chemical coupling of two chaotic EN’s. Characteristic time series of the membrane poxe(tjaks(t) [(A) to (C)].
Phase portraitg,(t) vs x,(t) [(@l)—(c1)]. Phase portraits after 20-Hz low pass filterixigt) vs x!(t) [(a2—(c2)]. (A) Gc=10-ns chaotic
but nearly synchronized bursting behaviéB) G-=100-ns periodic and synchronized bursting activity of the EN®. G.=200--ns
periodic and synchronized activity with long bursts and spikes vanishing before the end of the bursts.

chaotic again as shown in Fig(® for G.= 25 ns. tunity for biological experiments which may be directly
(iv) For 50 ns=G.<150 ns the oscillations regularize compared to our results using EN’s.
again, and the behavior is periodic with out-of-phase burst-
ing as shown in Fig. @) for G,=50 ns and in Fig. &) for ) ) o
G.=100 ns. D. Coupling between electronic and living neurons
(v) For G;>150 ns the oscillations are chaotic and long We have previously reported experiments on replacing
out-of-phase bursts are observed as shown in Kig. ®r  the anterior burstefAB) neuron from the Pyloric CPG in its
G.=300 ns. interaction with an isolated pair of PD neurons with a 3D EN
The only experiments we know which relate to these ob{14]. For completeness in light of the work reported in this
servations on two chemically coupled EN’s are not a precis@aper, we carried out an experiment in which one of our 4D
match, but bear noting. Elsof22] has isolated a pair of neurons was coupled bidirectionally to one of the PD neu-
lateral pyloric(LP) and pyloric dilatorPD) neurons from the  rons in the AB/PD pacemaker group of the Pyloric CPG. The
pyloric circuit of the CPG of the lobster STG; these havefull description of the methods used in the biological prepa-
mutual inhibitory coupling. Elson varied the strength of theration will appear elsewher3], but here we quite briefly
chemical coupling using neuromodulators and making measummarize those points important to the main thrusts of this
surements at four values &f. over a nominal rage of 20—60 article.
ns. He observed only the behavior reported in the penulti- These experiments were carried out on one of the two PD
mate item of our experiments on inhibitory coupling. Unfor- neurons from the Pyloric CPG of the lobsfe#]. The STG
tunately, control of the identity of the mutual inhibitory cou- of the California spiny lobsterPanulirus interruptus,was
plings was not possible, nor was it possible for us to directlyremoved using standard procedures and pinned out in a dish
compare the calibration of Elson’s indication of the magni-lined with silicone elastomer and filled with normal lobster
tude of G, with our own choices in using EN’s. To date then, saline. The STG was isolated from its associated anterior
we have no direct laboratory evidence on synchronization ofjanglia, which provide activating inputs, by cutting the sto-
biological neurons mutually coupled with chemical synapsesmatogastric nerve. Two glass microelectrodes were inserted
This is in contrast to our observations on electrically coupledn the soma of the PD neuron: one for intracellular voltage
biological neurong6]. This represents an interesting oppor- recording and another one for current injection. The voltage
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FIG. 9. Inhibitory chemical coupling of two chaotic EN’s. Characteristic time series of the membrane poterttipls,(t) [(A)—(F)].
Phase portrait,(t) vs x;(t) [(@D)—(f1)]. Phase portraits after 20-Hz low-pass filterin§ S xf1 [(@2—(2f)]. (A) G¢c=8-ns chaotic
oscillations with all hyperpolarizing regions out-of-phaé®) G.=20-ns periodic pattern with hyperpolarizing regions out-of-phase and
some burst superpositioiC) G-=25-ns chaotic oscillationdD) G-=50-ns periodic out-of-phase bursting behavior with some burst
superposition(E) G.=100-ns periodic out-of-phase spiking—bursting behauiBy. G-=300-ns chaotic out-of-phase spiking—bursting
pattern. The time scale used in the time series plot is the same for all examples.
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FIG. 10. Electrical coupling of an EN and a living PD neuron from the STG of the loBsaulirus interruptus Characteristic time
series of the membrane potentialgt),x,(t) [(A)—(C)]. Phase portraits of,(t) vs x4(t) [(aD)—(c1)]. Phase portraits after 20-Hz low-pass
filtering xg(t) VS xfl(t) [(@2-(c2)]. (A) Negative coupling—out-of-phase bursting activit®) Uncoupled neurongC) Positive electrical
coupling—synchronized bursting behavior

signals were digitized at 10 000 samples/s. The two PD neu- VI. DISCUSSION
rons remained coupled to each other and to the AB neuron

i . . The EN’s described in this paper are simple analog cir-
by their natural electrical synapses, but were isolated from . L : ) : )
cuits which integrate 4D differential equations representing

the rest of the CPG by blocking chemical input SYNAPS€3 st and slow subcellular processes that give rise to the char-

with picrotoxin (7.5 uM). The artificial electrical coupling - L o : )
X L : .. acteristic spiking and spiking—bursting behavior of CPG
was provided by injecting in the EN and in the PD OpIOOSIteEeurons. The EN'’s are also able to reproduce the dynamical

currents. More details of the experimental setup can be foung. . . o
in Ref.[14]. The membrane voltage of the EN was reshape ifurcations seen in the living neurons. The performance of
’ ' he 4D EN's, compared with the earlier 3D version, showed

to make its amplitude ratio in spiking/bursting mode, its totala richer behavior with larger regions of parameter space in

amplitude, and its v.oltage off;et S|m|lgr o those of the P.thich we observed chaotic behavior. The 4D EN'’s were also
neuron. Only electrical coupling, positive and negative, is__ . . : -
reported here. easier to tune in order to reproduce the behavior of living

. : CPG cells; in particular, we can tune the width of the bursts
We connected the neurons with the analog electrical syn - N P '

before setting the EN in the chaotic regime. This study com-
apse and observed their spiking—bursting behavior as shov& Seting ! ' red! 1S SHAY

N ) ises:(a) two electrically coupled EN’s anéb) two EN’s
in Fig. 10. When uncoupled, the neurons had independeniynnected with excitatory and inhibitory chemical synapses.

spiking/bursting activity as shown in Fig. @). For large  These two types of connections exist in almost all known
enough negative coupling the neurons are synchronized an€pGs. The range of observations summarized in Figs. 4 and
fire out-of-phase as shown in Fig. (#0. For positive cou- 7 shows the rich behavior and complexity of these minimal
pling the neurons show synchronized bursting activity asetwork configurations. It indicates how small changes in the
shown in Fig. 10C). For this value ofGg the bursts are coupling conductance can drive the cells into completely dif-
synchronized but not the spikes. ferent regimes. In particular, some of our experiments predict
This result is in agreement with the experiments madehe appearance of chaotic out-of-phase synchronization for
with a pair of electrically coupled EN'’s, as we discusseddifferent coupling configurations. These results are displayed
above, as well as for a pair of living STG neurdi6s. in Figs. §C) and 9F). In general, the experiments with the
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EN’s contribute directly to our understanding of the origin of the response of the olivary neuron when it received oscillat-
regularization of individually chaotic neurons through coop-ing electrical input from the network. There was no feedback
erative activity. from the biological neuron to the network he constructed. Le
Although the EN'’s presented here reproduce many charMassonet al. [26] developed a digital version of a neuron
acteristics of the dynamical behavior for the living cells, theycomprising a HH 7] model of various pyloric CPG neurons
fail to completely reproduce several aspects of their activitywith three compartments and eight different ion channels
In particular, the shape of the spikes in the EN’s is not ex.which ran on a DSP board located on the bus of a personal
actly the same as the one observed in the living neuronzomputer. They connected this model into a variety of dif-
Also, the EN’s do not show the adaptation characteristics oferent configurations of subcircuits of the pyloric CPG re-
the biological neurons due to plastic changes in the condu@lacing at various times the LP, a PD, or a pyloric neuron.
tances of the cell membrane, since the model does not inJsing this “hybrid” setup they verified that many aspects of
clude any mechanism to include these phenomena. the pyloric rhythm are accurately reproduced when their
How complicated should one require a model neuronDSP based neuron replaces one of the biological neurons in
to be? In our view the answer depends on the neural functiotheir system. In subsequent wdrk7,28, this group has de-
one wishes to represent. The analysis of the electrical activeloped very large scale integratédLSl) devices for inte-
vity of isolated neurons from the lobster Pyloric CPG indi- grating the HH models and has utilized them in mixed cir-
cates that the number of active degrees of freedom is natuits (EN’s and biological neurons replacing the DSP
very large, ranging from three to five in various environ- version of the conductance models in their biological prepa-
ments, and this suggests a very simple representation imtions. The complexity of these EN’s has not been needed in
terms of dynamical equations. Our analy$& of much  our modeling nor in the further experiments on their interac-
richer HH models of these individual neural oscillatorstion with each other as reported here. We have not found any
also indicates that in the regime of biological operation,reports in the literature on the mutual interaction of these
the number of active degrees of freedom is equally small. Oanalog VLSI neural circuits.
this basis we developed the HR type models of these neurons There are two interesting directions to which the results
both in numerical simulation and in analog electrical reported here may point:
circuitry. (1) Biologically realistic neural networks of much greater
This paper has moved that inquiry about the complexitysize than the elementary ones investigated here may be effi-
of representation for the components of a biologically realciently investigated numerically or in analog circuitry using
istic neural network to another level. Here we have in-the realistic, but simple HR type models. The integration of
vestigated whether the simplified neural models, wherthe model equations is no challenge to easily available com-
coupled together in small networks but in biologically real- puting power and large networks should be amenable to in-
istic manners, can reproduce our observations of biologicalestigation and analysis.
neurons alone. The striking result of the observations pre- (2) The networks investigated here are subcircuits of a
sented here, when the experimental setup matches that bifological circuit of about 15 neurons which has the func-
the biological networks, is that the observed behavior of thaional role of a control system: commands are presented from
EN'’s also matches. Further, using our EN’s, we are able tomther ganglia of the lobster and this Pyloric circuit must ex-
make distinct predictions about the behavior of biological orpress voltage activity to the muscles to operate a pump for
hybrid (biological and EN networks in settings not yet shredded food passing from the stomach to the digestive sys-
investigated. tem. Many other functions are asked of biological neural
Our experiments on coupled biological neurons and EN’shetworks. Using the full richness of HH models for the com-
provide further ground for testing the validity of numerical ponent neurons may seem attractive at one level, but the
and electronic models of individual neural behavior as wellresults presented here suggest that many interesting ques-
as presenting interesting new examples of coupled nonlinedgions may be asked of those networks using the simplified
oscillators. Hybrid circuits with biological and electronic component neurons studied here.
neurons coupled together are a powerful mechanism for un-
derstanding the modes of operation of CPG’s. The hyprlq ACKNOWLEDGMENTS
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