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Stochastic spreading of intracellular Ca2¿ release
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We study the spreading of calcium-induced calcium release with the stochastic DeYoung-Keizer-model of
the inositol 1,4,5-trisphosphate receptor channel. The model shows a transition from isolated release events to
steadily propagating waves with increasing IP3 concentration. A state—stochastic backfiring—was found in
the regime of steady propagation. The model can be reduced by an adiabatic elimination of the partial differ-
ential equation for the Ca21 concentration to a lattice of stochastic channel clusters.

PACS number~s!: 87.16.Xa, 05.40.2a, 82.20.Mj
e
n
s

e
u

l
m
i

m
ti

k

le

e
ed
er
es
g
no

ti
se
R
ep
b-

n
he
st

ca

s
g

c

at-
s
to

t as
ed
f
r
has-
d
ath-
d in
ex-

-
es.
ted

the
s a
tial
a
n

e

el,
to

k-
el
eri-
ved

ath-
by
can
d by

ub-

for
dif-
the
I. INTRODUCTION

Calcium often acts as a second messenger in living c
so as to regulate multiple cellular functions. These functio
include processes as diverse as muscle contraction and
aptic transmission@1,2#. The Ca21 signal initially employed
in these processes consists of a transient increase in th
tracellular concentration. This increase can arise from infl
through the cell membrane or via Ca21 release from interna
stores. The release from internal stores like the endoplas
reticulum is a nonlinear process, since calcium induces
own further release. That allows for the formation of co
plex spatiotemporal signals in form of localized stochas
release events~puffs, sparks! or waves of high Ca21 concen-
tration traveling across the cell.

Intracellular calcium waves were first observed in meda
eggs@3# and later on in, e.g., Xenopus oocytes@4,5#, hepa-
tocytes@6#, articular chondrocytes@7#, and cardiac myocytes
@8,9#. Puffs have been observed in Xenopus oocytes, ske
muscle cells, and heart muscle cells@10–16#. Most relevant
for our work, Sunet al. @14# showed for a single cell type
~the Xenopus oocyte! that there exists a continuum of wav
phenomena. At low excitability, isolated puffs are observ
Abortive waves occur at higher excitability and a furth
increase of excitability leads to steadily propagating wav

Ca21 is released from the endoplasmic reticulum throu
channels. As we have already mentioned, this process is
linear since, as a general pattern, increased Ca21 concentra-
tion in the cytosol favors channel opening. This autocataly
amplification is called calcium-induced calcium relea
~CICR!. There are a variety of channels showing CIC
Here, we will focus on the inositol 1,4,5-trisphosphate rec
tor channel IP3R. This channel consists of four identical su
units. Each subunit has an activating binding site for IP3, an
activating site for Ca21, and an inhibiting Ca21 binding site.
Experimental findings suggest that the channel is ope
both Ca21 and IP3 are bound to the activating sites and at t
same time Ca21 is not bound to the inhibiting site, at at lea
three out of the four subunits. Binding of Ca21 to the inhib-
iting site of one of these subunits closes the channel. It
reopen after dissociation of Ca21 from the inhibiting sites.
The bindings of Ca21 to the activating and inhibiting site
are stochastic events rendering the opening and closin
the channel a stochastic process.
PRE 621063-651X/2000/62~2!/2636~8!/$15.00
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There is a vast literature devoted to intracellular Ca21

waves approximating the Ca21 channels as a deterministi
and spatially continuous source term@17–21,23–25#. These
reaction-diffusion models explain the observed wave p
terns as nonlinear waves in~depending on model parameter!
an excitable, oscillatory, or bistable medium. Extensions
these models which include the fact that the channels ac
discrete Ca21 sources elucidate the transition from localiz
to traveling structures@26–28#. However, the observation o
localized stochastic Ca21 puffs and the rather small numbe
of channels creating the localized event suggest that stoc
tic effects are relevant for Ca21 wave propagation and nee
to be taken into account when waves are modeled m
ematically. Indeed, abortive waves cannot be understoo
terms of deterministic models, since in these models an
citation travels steadily if it travels at all.

More recently, Keizeret al. @29,30# introduced a stochas
tic, spatially discrete model for waves in cardiac myocyt
Using direct stochastic simulations, this group demonstra
the existence of a spark to wave transition. In this work,
dynamics of the ryanodine receptor channel is treated a
stochastic process, coupled to the evolution of the spa
profile of the Ca21 concentration which is modeled by
reaction diffusion equation. In Sec. II, we will present a
analogous model for the IP3R system. It is based on th
DeYoung-Keizer model@31,32# for the channel kinetics of
the IP3 receptor channel. Some simulations of this mod
demonstrating the transitions from spark to abortive wave
steady wave, are shown in Sec. III. Also, we find a ‘‘bac
firing’’ state which is due to the stochasticity in the chann
dynamics. This state appears to be consistent with exp
mental findings where persistent wave activity was obser
in a regime where spiral waves do not exist@21,22#.

Next, we present a more general approach to the m
ematical modeling of discrete, active elements coupled
fast diffusion. In the paradigm used to date, the channels
be perceived as an array of stochastic elements couple
the Ca21 concentration fieldc(r ,t) (r and t denote the spa-
tial and time coordinates, respectively!. The state of the com-
plete system is determined by the states of all channel s
units at the current time andc(r ,t). The Ca21 concentration
affects the transition probabilities between different states
the individual subunits and thereby couples channels by
fusion. We will argue that it is reasonable to assume that
2636 ©2000 The American Physical Society
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PRE 62 2637STOCHASTIC SPREADING OF INTRACELLULAR Ca21 . . .
concentration profile evolves on a time scale much fa
than that of the channel dynamics and in fact merely exhi
relaxation dynamics to an asymptotic state, as long as
channel configuration remains unchanged. Then, one ca
nore this transient period and use instead the tim
independent transition rates derivable from the asympt
state of the concentration profile for the actual configurat
of channel states. This then reduces the complete model
Markov process in the channel configuration space alo
We will present this approach in Sec. IV and derive a
duced IP3R model.

In Sec. V, we compare the results of simulating the ori
nal model and the reduced one. Our results indicate that
can in fact recover the correct dynamics in a reasona
quantitative manner. In particular, the aforementioned ba
firing state is obtained in the reduced model. Finally,
summarize our results in a brief concluding section.

II. MODEL

In this section, we introduce a model describing the int
cellular calcium dynamics arising via diffusion and via t
IP3 receptor. It has been observed experimentally@11# that
the channels are spatially organized in clusters. We there
consider a regular array of channel clusters with spacind
and with NK channels per cluster. In most calculations t
cluster radiusR was fixed to be 0.225mm. That size can
accommodate up to 40 channels. We do not spatially res
the location of individual channels inside a cluster. The
clusters interact with the Ca21 in two ways. First, the open
channels act as calcium sources. Second, the transition
between different channel states are calcium dependent
describe each of these effects in turn.

The dynamics of@Ca21#—denotedc—is modeled by a
diffusion equation with spatially discrete source terms cor
sponding to the clusters. Let us define the maximum fl
coefficientJK to be the coefficient relating calcium flux t
concentration difference~across the ER membrane! if chan-
nels are open. Then, the actual calcium release flux for
i th cluster is given bya@JL1(No

i /NK)JK#(cER2c) with cER

denoting the Ca21 concentration in the endoplasmic retic
lum, a the ratio of ER volume to cell volume, andNo

i the
number of open channels. The constantJL determines the
leak flux. Following Keizeret al. @29,32#, we approximate
cER by the local conditionacER1c5C0 with Co constant;
this guarantees the conservation of the total Ca21 content of
the ~closed! cell.

In addition, Ca21 is removed from the cytosol back int
the endoplasmic reticulum by SERCATPases pump
against the concentration gradient. We model this flux b
term JPc. It would be more realistically modeled by
second-order Hill dynamics but was approximated by a
ear dependence onc for the sake of obtaining an analyti
solution of the diffusion equation~see below!. We assume
that there is no room for SERCA’s inside channel clust
and that they are distributed uniformly outside cluste
Hence Ca21 is pumped back into the ER only in region
outside of clusters, with a spatially continuous flux dens
Denoting the Ca21 diffusion coefficientD and the cluster
locationsRi , we obtain a pair of coupled equations for th
Ca21 profile inside a clustercin and outsidecout :
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]cin

]t
5D

]2cin

]r 2
1~11a!S JL1

No
i

NK
JKD S Co

11a
2cinD ,

urW2RW i u<R, ~1!

]cout

]t
5D

]2cout

]r 2
1~11a!JLS Co

11a
2coutD2JPcout ,

urW2RW i u>R, ~2!

Next, we discuss the role of calcium in regulating t
transition rates between the different possible states of
channel. We adopt the DeYoung-Keizer-model for the I3
receptor channel@31,32#. The three binding sites on eac
subunit allow for eight different statesXi jk for each subunit.
The indexi stands for the IP3 site, j for the activating Ca21

site, andk for the inhibiting Ca21 site ~see Fig. 1!. An index
is 1 if an ion is bound and 0 if not. The transition rat
between the statesX0 jk andX1 jk (IP3 binding and dissocia-
tion! are two orders of magnitude faster than the other tr
sition rates~see Table I!. Therefore we assume these pairs
states to equilibrate immediately and lump them into sin
statesXjk5X0 jk1X1 jk . The kinetic scheme then reduces
the one shown in Fig. 2. The state with no Ca21 ion bound is
X00, the activated state isX10, and the inhibited states ar
X11 andX01.

We have already mentioned that a channel consists
four subunits, of which three have to be activated for t
channel to open. However, DeYoung and Keizer in th
original paper derived expressions for the opening proba
ity of a channel based on the~inaccurate! assumption that
three out of three subunits are in the stateX110 @31#. For our
initial investigation, we decided to stick to this approac
thereby allowing us to use their parameters~given in the
table!; calculations which assume that a channel opens w
three out of four subunits are in X110 will be reported in the
future.

III. SIMULATIONS

We perform simulations of the complete model by int
grating Eqs.~1! and~2! with the actual configuration of ope
channelsNo

i (t), the value of which is obtained from stocha
tic simulations of the channel dynamics withc(r ,t). The

FIG. 1. StatesXi jk of a subunit of the IP3 receptor channel. An
index is 1 if an ion is bound and 0 if not. The indexi stands for the
IP3 site, j for the activating Ca21 site, andk for the inhibiting Ca21

site. The transition rates are given at the edges of the cube.
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2638 PRE 62MARTIN FALCKE, LEV TSIMRING, AND HERBERT LEVINE
initial state for the Ca21 concentration was alwaysc(r ,0)
5Cs @see Eq.~A7!#. For all parameter values used in th
paper,Cs is very small, leading to the initial state~0,0! for
the channel subunits. For the stochastic part of the sim
tion, each subunit was independently updated. For
model, there are two possible transitions out of each sub
state, with transition probabilities~rates multiplied by the
time step of typically 531024 s) pi andpj . A random num-
ber r between 0 and 1 was drawn from a uniform distrib
tion for each update step. The subunit was set to statei if
r<pi , to statej if pi,r<pi1pj , and remained in its cur
rent state otherwise. Subunits inX10 are in the activated sub
stateX110 with the conditional probabilityI b ~see Table I!
that IP3 is bound, given the stateX10.

Experiments show that the spatiotemproal patterns of
cium in Xenopus oocytes change from isolated puffs at l
@ IP3#, to abortive waves at intermediate@ IP#3, and finally
steady waves. Our model reproduces this basic finding
shown in Fig. 3. The transition can be explained by the
crease in IP3 binding probability with increasing@ IP3# and

TABLE I. Parameters of the model. The parameters of rece
binding and dissociation are taken from@31#.

Parameter Description Valu

Ca21

JL Leak current 0.05 s21

JK Current per cluster Varies
JP Pump capacitiy Varies
a volume endopl.ret./volume cell 0.18
Co total @Ca21# Varies
I @ IP3# Varies
I b I

I1d1

Varies

NK Number of channels per cluster Varie
No

i Number of open channels
of the ith cluster Varies

D Ca21 diffusion coefficient 30mm2 s21

Receptor binding
a1 IP3 400 mM21 s21

a2 Ca21, inhibiting site 0.2mM21 s21

a3 IP3 400 mM21 s21

a4 Ca21, inhibiting site 0.2mM21 s21

a5 Ca21, activating site 20mM21 s21

a6 a2I

I1d1
1

d1a4

I1d1

0.2 mM21 s21

Receptor dissociation
di5bi /ai ,i 51 – 5

d1 IP3 0.13mM
d2 Ca21, inhibiting site 1.049mM
d3 IP3 0.9434mM
d4 Ca21, inhibiting site 0.1445mM
d5 Ca21, activating site 0.08234mM
b6 b2I

I1d3
1

d3b4

I1d3

varies
a-
is
it

-

l-

as
-

hence an increased fraction of the stateX110 of the lumped
stateX10. Additionally, inhibition decreases with increasin
@ IP3#.

Simulations of this system also lead to a type of sp
tiotemporal pattern that is characterized by backfiring. He
propagating pulses can lead to the creation~in their wake! of
oppositely propagating pulses~in one dimension! or of new
signaling centers~in higher dimension!. A typical picture in
two dimensions is shown in Fig. 4.1 One interesting new
possibility concerns the formation of a spatiotemporally d
ordered calcium concentration pattern, as shown, for
ample, in Fig. 5. This simulation shows that there is no ne
for pacemakers to generate continuing wave patterns w
are not spirals. In fact, once a single channel opens spo
neously, the wave activity can sustain itself via backfirin
We will return to a further discussion of backfiring after w
discuss the idea of reduced modeling based on adiab
elimination of the calcium concentration field.

IV. REDUCTION OF THE MODEL

Our complete model, as derived in the previous secti
consists of a partial differential equation, Eqs.~1! and ~2!,
and forc and a stochastic scheme for the set of subunits
this section, we discuss an approximation in which the c
cium dynamics is adiabatically eliminated so as to obtai
stochastic Markov process for the channel configurati
alone. This elimination can be justified by a comparison
the time scales of the Ca21 dynamics and the channel dy
namics. The diffusion time for a distance of the cluster sp
ing d and the rise time for Ca21 after channel opening ar
both of order 0.1 s or faster. On the other hand, time sca
for the channel dynamics are perhaps 1 s orlonger. In Ref.
@33#, we used this notion to motivate the study of a~postu-
lated! stochastic channel model; here, we show how this ty
of model can be derived in detail.

To proceed, we introduce the activation probability for
given subunitj as p1( j ,$No%); this probability depends on
the set ofNo

i , the entire configuration vector of the numb

1The values ofJK used in the simulation may seem large com
pared to continuous models. However, values on this order of m
nitude arise naturally by concentrating the flux in a volumeR2d.

r

FIG. 2. Lumped statesXjk of a subunit of the IP3 receptor chan-
nel. An index is 1 if an ion is bound and 0 if not. The indexj stands
for the activating Ca21 site andk for the inhibiting Ca21 site. The
transition rates are given at the edges of the rectangle.
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PRE 62 2639STOCHASTIC SPREADING OF INTRACELLULAR Ca21 . . .
of open channels in each of theNcl clusters,i 51, . . . ,Ncl .
There is a similar probability for subunit inhibition, whic
we denote asp2. These probabilities depend on the calciu
concentration at positionRj . In our adiabatic elimination
scheme, we calculate this concentration by solving
steady-state calcium reaction-diffusion equation that res
from having these open channels. In Appendix A, the c
centration profile is derived for two simple cases: that o
single open cluster of channels and that of a periodic arra
open clusters. For the former, the full solution exhibiting t
rate of approach to the steady state is also obtained.
single-cluster situation is what might be typical of a syst
exhibiting isolated puffs.

Note that the remaining processes—that of deinhibit
and deactivation—are calcium independent. If the rates
denoted, respectively, asb5 andb6, the probabilities are ob
tained merely by multiplying these by the time stepdt. We
append to all these transition probabilities the method in
duced in the previous section to determine the numbe
open channels given the number of activated subunits.
have thereby defined a stochastic process for channel su
dynamics.

Rather than study this complex Markov process, we w
actually make an additional approximation. It is clearly t
case that the most important contributors to the calcium c
centration at clusterj are the nearby open channels. We w
therefore make a local approximation in which the dep
dence ofc(Rj ,$No%) on the overall set of open channels
replaced by a dependence on the number of open chann
a small number of nearby sites,j and j 6 i , i<4. Further-
more, we will approximate the full dependence of the c
cium concentration on the channel variables as a sum

FIG. 3. Spontaneous wave patterns in one spatial dimension
different @ IP3# from left to right: 0.25mM, 0.3 mM, 0.4 mM, and
0.5mM. Bright gray levels indicate high Ca21 concentration. Spon-
taneous, isolated sparks occur forI 50.25mM. At I 50.3mM, abor-
tive waves appear. The waves atI 50.4 mM and I 50.5 mM no
longer die out but instead disappear at the boundary or by collis
Parameters not given in Table I areJP520 mM s21, JK5135 s21,
JL50.2 s21, d52.4 mm, Co51.5 mM, and NK520. The time in-
terval shown is 625 s and the spatial extension is 600mm.
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terms that depend separately on the number of open chan
at each site, i.e., terms of the form~A15! and ~A16! in one
spatial dimension and~A17! and ~A18! in two dimensions,
both taken att5`. We have checked that this linear approx
mation is quantitatively valid as long as the channel spac
is large enough. We do not as yet linearize the depende
on the number of open channels at each site; we will see l
that this too is possible if one merely wishes to obtain qu
tative insight.

Thus, our basic model takes the form

p1~ j ,$No%!5a5dt (
i 524

4

cs~Rj1 id;No
i 1 j !. ~3!

Here,cs is the stationary concentration profile forNo open
channels; the calculation of this object is discussed in A

or

n.

FIG. 4. Backfiring in two spatial dimensions. Bright gray leve
indicate high Ca21 concentration. An expanding ring emerges fro
an initial puff. It leaves behind small excited patches. Some of th
~white arrows! set off another wave. Shown is an area
96 mm396 mm. Parameters other than those given in Table I
I 50.17mM, JP557.14mM s21, JK54500 s21 JL50.05 s21, and
d51.5 mm on a hexagonal grid,Co50.7 mM, NK556, d2

51.193 mM, d350.9437 mM, d450.164 mM, and R50.2 mm.
Numerical parameters: Crank-Nicholson alternating direct
scheme, spatial discretization 0.1mm, time discretization 0.001 s.

FIG. 5. Turbulent backfiring in two spatial dimensions. Brig
gray levels indicate high Ca21 concentration. The initial wave
leaves behind a turbulent state with wave fragments traveling in
irregular manner. Shown is an area of 96mm396 mm. Parameters
different from those in Table I areI 50.25 mM, JP550 mM s21,
JK53610 s21, JL50.05 s21, andd51.9 mm on a hexagonal grid,
Co50.8 mM, NK542, R50.2 mm. The numerical parameters ar
the same as in the preceding figure.



e
el
-

e

d
tio
in
id
n

e

in

m
it
u

a
e
w

c
w
o
fu
e

itio
ca
r
th
to

1
the

the
tion
re-

ced
as

ned
te
-

er,
ion
e

nels

b-
ew
ich
n.
the
le
is

lse

a

e
d
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pendix A. We have an analogous expression forp2( j ,$No%)
which now involvesa6. In Fig. 6, we show the dependenc
of the activation probability on the number of open chann
for the on-site term in Eq.~3! and for the next-nearest
neighbor term as well. Finally, a channel was considered
be open with the probabilityI b

3 that IP3 is bound to all three
subunits~see Table I! if all three subunits were in the stat
~10!.

The calcium response curve in the figure just discusse
clearly nonlinear. Note especially that there is a satura
effect in how the on-site probability responds to increas
numbers of open channels. Nevertheless, we might cons
taking the reduction a step further and treat the depende
of p1 and p2 on No

i as a linear relation. Specifically, w
define the slopesl 65g@p6(NK)2p6(0)#/NK , with g a fit-
ting parameter that this beO(1). Note that all the various
probabilities~on site versus displaced, activation versus
hibition! are chosen to have the same coefficientg, so as to
ensure that the ratios of our probabilities remainNo indepen-
dent. Furthermore, we simplified the calculation of the nu
ber of open channels from the number of activated subun
Instead of keeping track of each channel separately, we
the approximation that the number of open channels can
determined from the numberm10 of subunits in the state~10!
via the relationNo5m10

3 /(9NK
2 ); this is easily shown to be

the expected number of open channels for large enoughNk .
Aside from the~weak! dependence on sites more distant th
the nearest-neighbor clusters, this final reduced model is
sentially the same as the phenomenological model which
have recently introduced in Ref.@33#.

V. REDUCED MODEL SIMULATION RESULTS

In the last section, we have defined two stages of redu
models, the difference being essentially whether or not
linearize the calcium response curve. Simulations were d
in a similar manner to those already discussed for the
model. We did test the sensitivity of our results to the tim
step~using time intervals of 531023 or 1022 s!; we did not
observe any noticeable differences.

The first issue we wish to address concerns the trans
from localized to propagating disturbances. Propagation
be characterized by the probabilitypN that an active cluste
activates a neighboring cluster. It can be obtained from
probabilityS( i ) that an initial excitation travels at least up

FIG. 6. The transition rates for on-sitep0
1 and neighboring site

p1
1 open channelsNo . Parameters not given in Table I ared52

mm, JP552.5 mm s21, NK520, JK51100 s21, JL50.05 s21,
Co50.8 mM, R50.2 mm.
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the i th cluster:S( i );pN
i . pN increases smoothly from 0 to

as we increase the coupling between clusters, increase
lifetime of the activated state of a cluster, or increase
number of channels per cluster. Figure 7 shows simula
results for the complete model and both reductions. The
sults agree very well and clearly indicate that the Ca21 dy-
namics can be adiabatically eliminated. For the redu
model with linearized transition rates that agreement w
used after fittingg; note though that the same value ofg was
used for all channel spacings.

There is quantitative agreement of the results obtai
with the reduced model with the results of the comple
model. ThepN calculated with the reduced model with lin
earized transition rates fall faster with increasingd than the
probabilities obtained with the other two models. Howev
this difference does not arise from the adiabatic eliminat
of the Ca21 dynamics but rather from the linearization or th
approximation used to calculate the number of open chan
from the number of active subunits.

Recall that in the full simulation, a new state was o
served within the regime of steady propagation. This n
state is formed when traveling pulses emit new pulses wh
travel backward—opposite to its direction of propagatio
The emitted pulses are initiated by active channels in
refractory tail of the original pulse. There are in princip
two ways in which channels can be activated there; it
possible that they were originally activated by the first pu

FIG. 7. The probabilitypN that an active cluster activates
neighboring cluster in dependence on the cluster spacingd for the
different models. The flux density@~single-channel flux!/d] was
kept constant by multiplyingJK for d51 mm by d. The values for
JK given below are those used ford51 mm. Parameters not given
in Table I are@ IP3#50.34 mM, JL50.05 s21, andCo50.85 mM,
Top: JP550 mM s21, JK5350 s21, NK520. Bottom:JP528.23
mM s21, JK5210 s21, and NK512. The line styles are complet
model (s), reduced model (1), and reduced model with linearize
transition rates (n). The slope parameterg is 1.3 ~top! and 1.0
~bottom!.



he
ion
W

p
u
s
h
t
n
h

fo
im

w

io
m
ble
te

c-
o
ly

in
s

.
en

tic

. I
t a
e

at
he
a

ti
.
el

th
om
io
ct

f
im
le
th
us

d
b

be-
ters

er-
ster
.

ons
n-

s is
for
te-

-

the
e
-

us-
ns

ther

e
ave
e.

PRE 62 2641STOCHASTIC SPREADING OF INTRACELLULAR Ca21 . . .
and have not as yet become inhibited or alternatively t
may have already undergone the complete activat
inhibition-deinhibition cycle and hence can be reopened.
always found the latter scenario to be the case for the sam
clusters which we looked at in more detail during our sim
lations. Note that the Ca21 level in the refractory area is les
than in the excited region but higher than the base level. T
provides an increased opening probability as compared to
medium in front of the pulse. If a group of reopened cha
nels stays open long enough for sufficient decay of the in
bition around it, it can set off another wave.

We found backfiring at intermediate channel numbers
parameters where the system would be in the bistable reg
in the deterministic limit (NK→`; see Appendix B!. Hence,
the wave solutions in the deterministic limit are fronts. Ho
ever, as we showed before@33–35# to be in the bistable
regime in the deterministic limit is not a necessary condit
for backfiring to occur. Rather, backfiring occurs for para
eters in the vicinity of a bifurcation separating the excita
from the bistable regime. In the excitable regime, the de
ministic wave form are pulses.

For NK smaller than the values for which backfiring o
curs, abortive waves or steadily propagating pulses with
backfiring were found. Reopening, obviously, is too unlike
to occur for smallNK .

VI. DISCUSSION

We have simulated spontaneous pattern formation of
tracellular Ca21 waves with a stochastic, discrete model u
ing the DeYoung-Keizer model of the IP3 receptor channel
Our model reproduces the continuum of wave phenom
observed by Sunet al. @14#; i.e., it shows a transition from
isolated sparks to steady waves with increasing@ IP3#. This
transition was found for parameters of the channel kine
suggested in the original paper by Keizeret al. introducing
the IP3R model.

We found a state which is characterized by backfiring
provides for the repetitive generation of waves withou
pacemaker and explains the origin of waves observed in
periments even in regimes where spontaneous gener
from the rest state is very unlikely to occur. Note that t
backfiring reported here is different from the backfiring in
deterministic model reported by Zimmermannet al. @36#.
There, backfiring occurs because the steadily propaga
pulse solution undergoes a global heteroclinic bifurcation

We found effects of stochasticity for numbers of chann
per cluster as large as 250~see Fig. 8!. That number allows
for about a maximum of 50 open channels, which is at
upper limit of the number of open channels estimated fr
experiments. That shows that the pattern formation in b
logical cells is always in a regime where stochastic effe
are relevant~like, e.g., backfiring!.

Our stochastic model shows pulses as wave solutions
parameters where the system would be in the bistable reg
in the deterministic limit; i.e., cells might be in the bistab
regime, even when pulses are observed. That supports
retical and experimental findings for bistability in Xenop
oocytes with energized mitochondria@21#.

We have shown that the Ca21 dynamics can be eliminate
adiabatically. That means that the original system can
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reduced to an array of stochastic, coupled elements the
havior of which is determined by 6 independent parame
only ~e.g., p0,1

1 ,p0
2 ,pd

6 ,NK). We expect this reduction to
hold for models including concentration-dependent buff
ing, as long as the time scales of the buffer dynamics is fa
than or similar to that of Ca21 release, uptake, and diffusion

APPENDIX A: ANALYTIC SOLUTION OF THE PARTIAL
DIFFERENTIAL EQUATION FOR Ca 2¿

CONCENTRATION

Here, we briefly outline how the Ca21 profiles for a single
cluster with open channels in one and two spatial dimensi
and the stationary solution for an array of clusters with ide
tical numbers open channels in one spatial dimension
obtained. In principle, analytic solutions could be derived
any configuration of open channels but would be quite
dious to calculate in general.

To solve Eqs.~1! and~2! we apply a Laplace transforma
tion to the time dependence ofc, solve the resulting ordinary
differential equations inside and outside the cluster with
initial condition c(0,r )5Cs and obtain the equation for th
mode time constants from the boundary and matching con
ditions. In one spatial dimension we reach, for a single cl
ter with No open channels and zero flux boundary conditio
at r 56L:

cin~s,r !5
Ct

s
2

Ct cosh~n inr !

n in sinh~n inR!sF~s!
, ~A1!

FIG. 8. Traveling pulse emitting pulses backwards~backfiring!
with the complete model~top, JP552.5 mM s21), the reduced
model ~middle, JP546.25 mM s21), and the reduced model with
linearized transition rates~bottom, JP546.25 mM s21, g51.8).
Bright gray levels indicate large numbers of open channels. Fur
parameters not given in Table I areJK5528 s21, I 50.34 mM, JL

50.05 s21, d51.5 mm, Co50.8 mM, and NK5250. The time in-
terval shown is 234 s and the spatial extension is 600mm. For the
complete model, we show the Ca21 concentration~increasing with
the brightness!. The fraction of open channels is shown for th
reduced models. As can be seen in the middle panel, one w
might survive the collision of two waves in the backfiring regim
That is true for the complete linearized model too.
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cout~s,r !5
Ct cosh@nout~r 2L !#

noutsinh@nout~L2R!#sF~s!
, ~A2!

F~s!5
coth~n inR!

n in
1

coth@nout~L2R!#

nout
, ~A3!

n in5
As1

NoJT

2RNK

D
, ~A4!

nout5As1JP1~11a!JL

D
, ~A5!

Ct5
Co

11a
2Cs , ~A6!

Cs5
JLCo

~11a!JL1JP
, ~A7!

JT52R~11a!JK . ~A8!

The solution of the same problem reads, in two spa
dimensions,

cin~s,r !5
Ct

s
1

CtnoutRI0~n inr /R!

n inI 1~n in!sF~s!

@K1~noutL !I 1~noutR!2I 1~noutL !K1~noutR!#, ~A9!

cout~s,r !5
Ct@ I 1~noutL !K0~noutr !1K1~noutL !I 0~noutr !#

sF~s!
,

~A10!

FIG. 9. Temporal evolution of the spatial Ca21 profile for a
single open cluster in two spatial dimensions. Simulations, s
line; analytic solution, dashed line. With increasing peak amplitu
t57.5 ms~simulation!, t57.5 ms~analytic!, t530 ms, andt580
ms. For the two latter profiles the analytic solution and the simu
tion are undistinguishable. Simulation parameters: spatial disc
zation 0.0125mm, time discretization 0.000125s, fully implici
scheme. Parameters not given in Table I areJP546.87 mM s21,
JK5525 s21, JL50.05 s21, Co50.8 mM, No5NK525, andR
50.2125mm.
l

F~s!5I 1~noutL !K0~noutR!1K1~noutL !I 0~noutR!

1
noutRI0~n in!

n inI 1~n in!
@ I 1~noutL !K1~noutR!

2K1~noutL !I 1~noutR!#, ~A11!

n in5
AsR21

NoJT

NKp

D
, ~A12!

nout5As1JP1~11a!JL

D
, ~A13!

JT5pR2~11a!JK . ~A14!

Modes are determined by the rootssi of sF(s)50. In one
spatial dimension, that leads to

cin~ t,r !5Ct1Cs2(
i 50

`

esi t
Ct cosh~n inr !

n insinh~n inR!
dsF~s!

ds U
si

,

~A15!

cout~ t,r !5Cs1(
i 50

`

esi t
Ct cosh@nout~r 2L !#

noutsinh@nout~L2R!#
dsF~s!

ds U
si

,

~A16!

and in two dimensions,

cin~ t,r !5Ct1Cs1(
i 50

`

@K1~noutL !I 1~noutR!

2I 1~noutL !K1~noutR!#,

esi t
CtnoutRI0~n inr /R!

n inI 1~n in!
dsF~s!

ds U
si

, ~A17!

d
:

-
ti-

FIG. 10. Peak values of the Ca21 concentration of the station
ary, spatially periodic solutions of the complete model in the de
ministic limit in dependence onJK . Stable solutions, solid lines
unstable solution, dashed line. Parameters not given in Table
d51.5 mm, JP552.5 mM s21, JL50.05 s21, Co50.8 mM, R
50.2 mm.
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cout~ t,r !5Cs1(
i 50

`

esi t

3
Ct@ I 1~noutL !K0~noutr !1K1~noutL !I 0~noutr !#

dsF~s!

ds U
si

.

~A18!

In Fig. 9 we compare the analytic solutions~A17! and
~A18! with simulations. Note that the staionary profile
reached essentially after 30 ms.

The stationary solution of a one-dimensional periodic
ray of identical clusters with identicalNo

i is ~with id being
the position of the center of thei th cluster!

cin~r !5Ct1Cs1
Ctnout~enoutR2enout(d2R)!

B

3cosh@n in~r 2 id !#, ~A19!

cout~r !5Cs1
Ctn in sinh~noutR!

B

3~enout(r 2 id)1enout[d2(r 2 id)] !, ~A20!
-

B5n in sinh~n inR!~enoutR1enout(d2R)!2nout cosh~n inR!

3~enoutR2enout(d2R)!, id<r<~ i 11!d. ~A21!

APPENDIX B: STATIONARY, SPATIALLY PERIODIC
SOLUTIONS OF THE COMPLETE MODEL IN

THE DETERMINISTIC LIMIT

Equations~A19!–~A21! can be used to look for spatiall
periodic stationary solutions of the complete model in t
deterministic limit, ifNo

i /NK is determined as the fraction o
open channels of the stationary solution. At smallJK , only
one stationary solution exists. At the parameters used in
paper,No

i for this stationary Ca21 profile is so small, that
deviations from the solutionNo

i 50 are negligible. Hence
this stationary solution is essentiallyc(r ,t)5Cs . At higher
values, two additional stationary solutions appear in a sad
node bifurcation and the system becomes bistable. We il
trate that in Fig. 10 by the peak values of the Ca21 concen-
tration in the center of the cluster. The solution with t
higher peak value is stable; the one with intermediate p
values is unstable. A similar transition for the nonperiod
case of a single open cluster occurs at even higher value
JK .
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