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Stochastic spreading of intracellular C&* release
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We study the spreading of calcium-induced calcium release with the stochastic DeYoung-Keizer-model of
the inositol 1,4,5-trisphosphate receptor channel. The model shows a transition from isolated release events to
steadily propagating waves with increasing dncentration. A state—stochastic backfiring—was found in
the regime of steady propagation. The model can be reduced by an adiabatic elimination of the partial differ-
ential equation for the G4 concentration to a lattice of stochastic channel clusters.

PACS numbegps): 87.16.Xa, 05.40-a, 82.20.M;j

[. INTRODUCTION There is a vast literature devoted to intracellular’ Ca
waves approximating the €& channels as a deterministic
Calcium often acts as a second messenger in living celland spatially continuous source tefdi7—21,23—2% These
so as to regulate multiple cellular functions. These functionseaction-diffusion models explain the observed wave pat-
include processes as diverse as muscle contraction and syierns as nonlinear waves (depending on model parameters
aptic transmissiofi1,2]. The C&" signal initially employed an excitable, oscillatory, or bistable medium. Extensions to
in these processes consists of a transient increase in the ithese models which include the fact that the channels act as
tracellular concentration. This increase can arise from influxdiscrete C&" sources elucidate the transition from localized
through the cell membrane or via €arelease from internal to traveling structuref26—28. However, the observation of
stores. The release from internal stores like the endoplasmiocalized stochastic G4 puffs and the rather small number
reticulum is a nonlinear process, since calcium induces it®f channels creating the localized event suggest that stochas-
own further release. That allows for the formation of com-tic effects are relevant for & wave propagation and need
plex spatiotemporal signals in form of localized stochasticto be taken into account when waves are modeled math-
release eventuffs, sparksor waves of high C& concen-  ematically. Indeed, abortive waves cannot be understood in

tration traveling across the cell. terms of deterministic models, since in these models an ex-
Intracellular calcium waves were first observed in medakaitation travels steadily if it travels at all.
eggs[3] and later on in, e.g., Xenopus oocy{es5], hepa- More recently, Keizeet al.[29,3(Q introduced a stochas-

tocytes[6], articular chondrocytels7], and cardiac myocytes tic, spatially discrete model for waves in cardiac myocytes.
[8,9]. Puffs have been observed in Xenopus oocytes, skeletélsing direct stochastic simulations, this group demonstrated
muscle cells, and heart muscle cdl®-16. Most relevant the existence of a spark to wave transition. In this work, the
for our work, Sunet al. [14] showed for a single cell type dynamics of the ryanodine receptor channel is treated as a
(the Xenopus oocyjethat there exists a continuum of wave stochastic process, coupled to the evolution of the spatial
phenomena. At low excitability, isolated puffs are observedprofile of the C4" concentration which is modeled by a
Abortive waves occur at higher excitability and a furtherreaction diffusion equation. In Sec. Il, we will present an
increase of excitability leads to steadily propagating wavesanalogous model for the {R system. It is based on the
Ca" is released from the endoplasmic reticulum throughDeYoung-Keizer modef31,32 for the channel kinetics of
channels. As we have already mentioned, this process is nothe IR; receptor channel. Some simulations of this model,
linear since, as a general pattern, increaset @ancentra-  demonstrating the transitions from spark to abortive wave to
tion in the cytosol favors channel opening. This autocatalyticsteady wave, are shown in Sec. lll. Also, we find a “back-
amplification is called calcium-induced calcium releasefiring” state which is due to the stochasticity in the channel
(CICR). There are a variety of channels showing CICR.dynamics. This state appears to be consistent with experi-
Here, we will focus on the inositol 1,4,5-trisphosphate recepmental findings where persistent wave activity was observed
tor channel IRR. This channel consists of four identical sub- in a regime where spiral waves do not eXidL,22.
units. Each subunit has an activating binding site fay, Bh Next, we present a more general approach to the math-
activating site for C&", and an inhibiting C&' binding site.  ematical modeling of discrete, active elements coupled by
Experimental findings suggest that the channel is open ifast diffusion. In the paradigm used to date, the channels can
both C&" and IR are bound to the activating sites and at thebe perceived as an array of stochastic elements coupled by
same time C&" is not bound to the inhibiting site, at at least the C&" concentration fielct(r,t) (r andt denote the spa-
three out of the four subunits. Binding of €ato the inhib-  tial and time coordinates, respectivel¥he state of the com-
iting site of one of these subunits closes the channel. It caplete system is determined by the states of all channel sub-
reopen after dissociation of €a from the inhibiting sites. units at the current time arz{r,t). The C&" concentration
The bindings of C&" to the activating and inhibiting sites affects the transition probabilities between different states for
are stochastic events rendering the opening and closing défie individual subunits and thereby couples channels by dif-
the channel a stochastic process. fusion. We will argue that it is reasonable to assume that the
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concentration profile evolves on a time scale much faster X0 . b, X1
than that of the channel dynamics and in fact merely exhibits v sl S
relaxation dynamics to an asymptotic state, as long as the Xooo 2 S Xﬂo‘ﬂ&?*\
channel configuration remains unchanged. Then, one can ig- 2:; L | - «5
nore this transient period and use instead the time- - ik 5| B
independent transition rates derivable from the asymptotic S|e lel b F |
state of the concentration profile for the actual configuration < . A nCa Nz Xin
of channel states. This then reduces the complete model to a | ;@\ . Il &
Markov process in the channel configuration space alone. Xoor == as[C;q —»X"’"’

We will present this approach in Sec. IV and derive a re- ou

duced IBR model. FIG. 1. States of a subunit of the IPreceptor channel. An

In Sec. V, we compare the results of simulating the origi-index is 1 if an ion is bound and 0 if not. The indestands for the
nal model and the reduced one. Our results indicate that one; site,j for the activating C&" site, andk for the inhibiting C&"
can in fact recover the correct dynamics in a reasonablgite. The transition rates are given at the edges of the cube.
guantitative manner. In particular, the aforementioned back-
firing state is obtained in the reduced model. Finally, we

i Its in a brief concludi t Cin 57 |14yl 3+ iOJ Co
summarize our results in a brief concluding section. = — —— —Cin |,
g ot or2 ( a)| Ju Ny KIN1T¥a in
Il. MODEL IO
Ir=Ri|<R, ()
In this section, we introduce a model describing the intra-
cellular calcium dynamics arising via diffusion and via the 2
JCout 9 Cout

IP; receptor. It has been observed experimentglll] that
the channels are spatially organized in clusters. We therefore 9t
consider a regular array of channel clusters with spading

and with N channels per cluster. In most calculations the Ir-R|=R, (2
cluster radiusk was fixed to be 0.22%m. That size can

accommodate up to 40 channels. We do not spatially resolve Next, we discuss the role of calcium in regulating the

the location of individual channels inside a cluster. Theseransition rates between the different possible states of the
clusters interact with the G4 in two ways. First, the open channel. We adopt the DeYoung-Keizer-mode] for th@ 1P
channels act as calcium sources. Second, the transition ratesceptor channel31,32. The three binding sites on each
between different channel states are calcium dependent. Wegipunit allow for eight different stateg;, for each subunit.
describe each of these effects in turn. The indexi stands for the IPsite, j for the activating C&"

The dynamics of C&*]—denotedc—is modeled by a site, andk for the inhibiting C&* site (see Fig. 1 An index
diffusion equation with spatially discrete source terms correis 1 if an ion is bound and O if not. The transition rates
sponding to the clusters. Let us define the maximum fluxyetween the state%,), and X, (IP3 binding and dissocia-
coefficientJy to be the coefficient relating calcium flux to tjon) are two orders of magnitude faster than the other tran-
concentration differencéacross the ER membrani chan-  sition rategsee Table)l Therefore we assume these pairs of
nels are open. Then, the actual calcium release flux for thetates to equilibrate immediately and lump them into single
ith cluster is given byr[J, +(No/N)Ji](Cer—C) With Cer  statesXj =Xy + Xyj¢ - The kinetic scheme then reduces to
denoting the C&" concentration in the endoplasmic reticu- the one shown in Fig. 2. The state with no?Caon bound is
lum, a the ratio of ER volume to cell volume, ard,, the X, the activated state iX;,, and the inhibited states are
number of open channels. The constdptdetermines the X;; and X;.
leak flux. Following Keizeret al. [29,32, we approximate We have already mentioned that a channel consists of
Cer by the local conditiorecgr+c=Cy with C, constant; four subunits, of which three have to be activated for the
this guarantees the conservation of the total'Ceontent of ~ channel to open. However, DeYoung and Keizer in their
the (closed cell. original paper derived expressions for the opening probabil-

In addition, C&" is removed from the cytosol back into ity of a channel based on thgnaccuratg assumption that
the endoplasmic reticulum by SERCATPases pumpinghree out of three subunits are in the stdtg,[31]. For our
against the concentration gradient. We model this flux by anitial investigation, we decided to stick to this approach,
term Jpc. It would be more realistically modeled by a thereby allowing us to use their parametégsven in the
second-order Hill dynamics but was approximated by a lintablg; calculations which assume that a channel opens when
ear dependence om for the sake of obtaining an analytic three out of four subunits are iny will be reported in the
solution of the diffusion equatiofsee below. We assume future.
that there is no room for SERCA's inside channel clusters
and that they are distributed uniformly outside clusters. I, SIMULATIONS
Hence CA" is pumped back into the ER only in regions
outside of clusters, with a spatially continuous flux density. We perform simulations of the complete model by inte-
Denoting the C&" diffusion coefficientD and the cluster grating Eqs(1) and(2) with the actual configuration of open
locationsR;, we obtain a pair of coupled equations for the channeldNy(t), the value of which is obtained from stochas-
Ca™" profile inside a clustec;, and outsidec,;: tic simulations of the channel dynamics witl{r,t). The

C
D a2 +(1+ a’)JL(ﬁ_Cout) —JpCout;
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TABLE I. Parameters of the model. The parameters of receptor X X
binding and dissociation are taken frg@i]. 00 — b 10
as[Ca¥] —
Parameter Description Value
J Leak current 0.05% = ="
Jk Current per cluster Varies © N
Jp Pump capacitiy Varies l l
a volume endopl.ret./volume cell 0.185 <« b,
C, total [C& "] Var?es XOl a,[Ca”] —» Xll
| [IPs] Varies
Iy [ Varies FIG. 2. Lumped stateX;, of a subunit of the IPreceptor chan-
I+d, nel. Anindex is 1 if an ion is bound and O if not. The indestands
. for the activating C&" site andk for the inhibiting C&* site. The
Nk Number of channels per cluster Varies o .
i transition rates are given at the edges of the rectangle.
No Number of open channels

of the ith cluster

Varies

hence an increased fraction of the stXtg, of the lumped

b e - 5 4
D C&* diffusion coefficient 30um”s stateX,q. Additionally, inhibition decreases with increasing
. [IPs].
Receptor binding - Simulations of this system also lead to a type of spa-
a 'P;H o ) 400'“'\"715 N tiotemporal pattern that is characterized by backfiring. Here,
a2 Ca™, inhibiting site 0'2'“'\"71 > | propagating pulses can lead to the creatiartheir wake of
ag Ps 400uM s oppositely propagating pulsém one dimensionor of new
ay Ca2+, inhibiting site 0-2:“'\"71571 signaling centergin higher dimension A typical picture in
as Ce'™", activating site 2QuM~"s two dimensions is shown in Fig. 40ne interesting new
g al  day 0.2uM~tst possibility concerns the formation of a spatiotemporally dis-
|+dl+|+dl ordered calcium concentration pattern, as shown, for ex-
ample, in Fig. 5. This simulation shows that there is no need
Receptor dissociation for pacemgkers to generate continuing wave patterns which
di=b;/a ,i=1-5 are not spirals. In fact, once a single channel opens sponta-
: neously, the wave activity can sustain itself via backfiring.
o We will return to a further discussion of backfiring after we
d, c&*, inhibiting site 1.049uM X : ) . .
d P, 0.9434M discuss the idea of reduced modeling based on adiabatic
d, Cz* . inhibiting site 0.1445:M elimination of the calcium concentration field.
ds c&*, activating site 0.08234M
bg b, . dsb, varies IV. REDUCTION OF THE MODEL
I+d;  I+d; Our complete model, as derived in the previous section,

consists of a partial differential equation, Eq$) and (2),
and forc and a stochastic scheme for the set of subunits. In

initial state for the C&" concentration was always(r,0)  this section, we discuss an approximation in which the cal-
=C, [see Eq.(A7)]. For all parameter values used in this CIUM dyr_1am|cs is adiabatically eliminated so as tq obta!n a
paper,Cs is very small, leading to the initial stat®,0) for stochasth Ma_trk_ov process for. thg_ channel conﬂggraﬂons
the channel subunits. For the stochastic part of the simula@lone. This elimination can be justified by a comparison of
tion, each subunit was independently updated. For thighe time scales of the_éé dynamics and the channel dy-
model, there are two possible transitions out of each subunftamics. The diffusion time for a distance of the cluster spac-
state, with transition probabilitiegates multiplied by the ing d and the rise time for Cd after channel opening are
time step of typically 5 10745s) p; andp; . A random num- both of order 0.1 s or f_aster. On the other hand, time scales
ber p between 0 and 1 was drawn from a uniform distribu-for the channel dynamics are perkap s orlonger. In Ref.
tion for each update step. The subunit was set to stifte [33]: We used this notion to motivate the study ofmstu-
p=p;, to statej if pj<p=p;+p;, and remained in its cur- lated stochastic channel model; _here, we show how this type
rent state otherwise. SubunitsXi, are in the activated sub- ©f model can be derived in detail. y
state Xy with the conditional probabilityl, (see Table) 1o proceed, we introduce the activation probability for a
that IP; is bound, given the statéy. given subuimtj asp (j ,{No}).; this .probablhty depends on
Experiments show that the spatiotemproal patterns of cafthe set ofN,, the entire configuration vector of the number
cium in Xenopus oocytes change from isolated puffs at low
[IPs], to abortive waves at intermediaféP];, and finally
steady waves. Our model reproduces this basic finding, as'The values ofJx used in the simulation may seem large com-
shown in Fig. 3. The transition can be explained by the in-pared to continuous models. However, values on this order of mag-
crease in IR binding probability with increasinglP;] and  nitude arise naturally by concentrating the flux in a voluRfel.
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space space space space t=8s

t=76s

time

FIG. 4. Backfiring in two spatial dimensions. Bright gray levels
indicate high C&" concentration. An expanding ring emerges from

FIG. 3. Spontaneous wave patterns in one Spatia| dimension fcﬁ.n |n|t|al puff It |eaVeS behlnd Sma” eXCited patCheS. Some Of them
different[IP5] from left to right: 0.254M, 0.3 xM, 0.4 uM, and (white arrow$ set off another wave. Shown is an area of
0.5 xM. Bright gray levels indicate high G4 concentration. Spon- 96 umx96 um. Parameters other than those given in Table | are
taneous, isolated sparks occur fer0.25 M. At 1 =0.3uM, abor- | =0.17uM, Jp=57.14uMs™*, Jx=4500 s * J =0.05 s *, and
tive waves appear. The waves lat0.4 uM and |=0.5 uM no ~ d=1.5 um on a hexagonal gridC,=0.7 uM, N¢=56, d,
longer die out but instead disappear at the boundary or by collision= 1.193 uM, d3=0.9437 uM, d;=0.164 uM, and R=0.2 um.
Parameters not given in Table | alp=20 uMs 1, Jy=135s 1, Numerical parameters: Crank-Nicholson alternating direction
J.=02st d=2.4um, C,=1.5 uM, and N, =20. The time in- scheme, spatial discretization Quin, time discretization 0.001 s.
terval shown is 625 s and the spatial extension is 660

terms that depend separately on the number of open channels

at each site, i.e., terms of the forfA15) and (A16) in one

spatial dimension an¢A17) and (A18) in two dimensions,

we denote ap~ . These probabilities depend on the calciumbOth taken at=cc. We have'checked that this linear approxi-
mation is quantitatively valid as long as the channel spacing

concentration at positiolR;. In our adiabatic elimination . : .
. ) . is large enough. We do not as yet linearize the dependence
scheme, we calculate this concentration by solving the

. . e . on the number of open channels at each site; we will see later
steady-state calcium reaction-diffusion equation that resultﬁ,]at this t00 is ible if v wish btai n
from having these open channels. In Appendix A, the con-_." ~ .~ © possible if one merely wishes to obtain quali
aving these oper _APP k tative insight.
centration profile is derived for two simple cases: that of a .

) g Thus, our basic model takes the form
single open cluster of channels and that of a periodic array of
open clusters. For the former, the full solution exhibiting the 4
rate of approach to the steady state is also obtained. The p*(j,{No})=asdt E cS(Rj+id;Ni0+j). 3
single-cluster situation is what might be typical of a system i=—4
exhibiting isolated puffs. i , , }

Note that the remaining processes—that of deinhibitior1€"€: Cs is the stationary concentration profile fbk, open
and deactivation—are calcium independent. If the rates arghannels; the calculation of this object is discussed in Ap-
denoted, respectively, ds andbg, the probabilities are ob-
tained merely by multiplying these by the time sp We t=25s t=45s t=101s
append to all these transition probabilities the method intro- TE g .
duced in the previous section to determine the number o
open channels given the number of activated subunits. W
have thereby defined a stochastic process for channel subu
dynamics.

Rather than study this complex Markov process, we will
actually make an additional approximation. It is clearly the
case th,at the most .important contributors to the calcium cpn- FIG. 5. Turbulent backfiring in two spatial dimensions. Bright
centration at clusterare the nearby open channels. We will gray levels indicate high Ga concentration. The initial wave

therefore make a local approximation in which the depenieayes behind a turbulent state with wave fragments traveling in an
dence ofc(R;,{No}) on the overall set of open channels is jrregular manner. Shown is an area of @51X96 um. Parameters
replaced by a dependence on the number of open channelsdfferent from those in Table | are=0.25 uM, Jp=50 uMs %,

a small number of nearby sitegandj=i, i<4. Further- J,=3610s", J,=0.05s*, andd=1.9 um on a hexagonal grid,
more, we will approximate the full dependence of the cal-C,=0.8 uM, Ny=42, R=0.2 um. The numerical parameters are
cium concentration on the channel variables as a sum dahe same as in the preceding figure.

of open channels in each of ti\, clusters,i=1,... N.
There is a similar probability for subunit inhibition, which
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FIG. 6. The transition rates for on-sing and neighboring site 10 1=
p; open channel®,. Parameters not given in Table | ade=2 ¢ 2o
um, Jp=52.5 ums ! N¢=20, J,=1100 s, J =0.05 s?, 0.8 £ ©
C,=0.8 uM, R=0.2 um. °
o M M 0.6 o o
pendix A. We have an analogous expressiongo(j,{N,}) % 0.4 : °
which now involvesag. In Fig. 6, we show the dependence s a8 L ? .
of the activation probability on the number of open channels 02 a4,
for the on-site term in Eq(3) and for the next-nearest- 0.0
neighbor term as well. Finally, a channel was considered to 1 2 3
be open with the probabilit? that IP; is bound to all three d (um)
subunits(see Table)lif all three subunits were in the state

FIG. 7. The probabilitypy that an active cluster activates a

(10). . . ) . . neighboring cluster in dependence on the cluster spatifoy the
The calcium response curve in the figure just discussed Gitferent models. The flux densiti(single-channel fluXd] was

clearly nonlinear. Note especially that there is a saturatiofgn constant by multiplyingy for d=1 um by d. The values for

effect in how the on-site probability responds to increasingy, given below are those used fde=1 xm. Parameters not given
numbers of open channels. Nevertheless, we might considg{ Taple | are[IP5]=0.34 uM, J,=0.05 s'%, andC,=0.85 uM,

taking the reduction a step further and treat the dependencgyp: J,=50 uMs %, J,=350 s, Ny=20. Bottom:Jp=28.23
of p* andp™ on N, as a linear relation. Specifically, we uMs™1, Jc=210 s'%, andNc=12. The line styles are complete
define the slopeb™=g[p~(Nx) —p~(0)]/Ng, with g a fit-  model (O), reduced model+ ), and reduced model with linearized
ting parameter that this b®(1). Note that all the various transition rates ). The slope parameteg is 1.3 (top) and 1.0
probabilities(on site versus displaced, activation versus in-(bottom.

hibition) are chosen to have the same coefficignso as to

ensure that the ratios of our probabilities remidinindepen-  theith cIuster:S(i)~p‘N. py increases smoothly from 0 to 1
dent. Furthermore, we simplified the calculatipn of the NUM-3s we increase the coupling between clusters, increase the
ber of open channels from the number of activated subunitgifetime of the activated state of a cluster, or increase the
Instead of keeping track of each channel separately, we Usgimber of channels per cluster. Figure 7 shows simulation
the approximation that the number of open channels can bgsyts for the complete model and both reductions. The re-
determined from the numben,, of subunits in the statd0)  gyits agree very well and clearly indicate that thé Cay-

via the relationN,=m3y/(9NF); this is easily shown to be namics can be adiabatically eliminated. For the reduced
the expected number of open channels for large endygh  model with linearized transition rates that agreement was
Aside from the(weak dependence on sites more distant thanysed after fittingg; note though that the same valuegpivas

the nearest-neighbor clusters, this final reduced model is egrsed for all channel spacings.

sentially the same as the phenomenological model which we There is quantitative agreement of the results obtained

have recently introduced in Ref33]. with the reduced model with the results of the complete
model. Thepy calculated with the reduced model with lin-
V. REDUCED MODEL SIMULATION RESULTS earized transition rates fall faster with increasohthan the

probabilities obtained with the other two models. However,
In the last section, we have defined two stages of reducethis difference does not arise from the adiabatic elimination
models, the difference being essentially whether or not wef the C&" dynamics but rather from the linearization or the
linearize the calcium response curve. Simulations were donapproximation used to calculate the number of open channels
in a similar manner to those already discussed for the fulfrom the number of active subunits.
model. We did test the sensitivity of our results to the time Recall that in the full simulation, a new state was ob-
step(using time intervals of %10 % or 10 2 ); we did not  served within the regime of steady propagation. This new
observe any noticeable differences. state is formed when traveling pulses emit new pulses which
The first issue we wish to address concerns the transitiotravel backward—opposite to its direction of propagation.
from localized to propagating disturbances. Propagation caihe emitted pulses are initiated by active channels in the
be characterized by the probabilipg that an active cluster refractory tail of the original pulse. There are in principle
activates a neighboring cluster. It can be obtained from théwo ways in which channels can be activated there; it is
probability S(i) that an initial excitation travels at least up to possible that they were originally activated by the first pulse
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and have not as yet become inhibited or alternatively they A
may have already undergone the complete activation-
inhibition-deinhibition cycle and hence can be reopened. Weg
always found the latter scenario to be the case for the sampl&
clusters which we looked at in more detail during our simu-
lations. Note that the Ca level in the refractory area is less
than in the excited region but higher than the base level. This A
provides an increased opening probability as compared to th
medium in front of the pulse. If a group of reopened chan-
nels stays open long enough for sufficient decay of the inhi-
bition around it, it can set off another wave.

We found backfiring at intermediate channel numbers for
parameters where the system would be in the bistable regim A
in the deterministic limit Nx—o0; see Appendix B Hence,
the wave solutions in the deterministic limit are fronts. How-
ever, as we showed befof83—-35 to be in the bistable
regime in the deterministic limit is not a necessary condition
for backfiring to occur. Rather, backfiring occurs for param-
eters in the vicinity of a bifurcation separating the excitable GifiE
from the bistable regime. In the excitable regime, the deter-
ministic wave form are pulses. FIG. 8. Traveling pulse emitting pulses backwartackfiring

For Ny smaller than the values for which backfiring oc- With the complete modeltop, Jp=52.5 uMs™?), the reduced
curs, abortive waves or steadily propagating pulses withoufde! (middle, Jp=46.25 uMs™?), and the reduced model with

. . . . . i i iti = -1 =
backfiring were found. Reopening, obviously, is too unlikelyinéarized transition rategbottom, Jp=46.25 uMs™", g=1.8).
to occur for smallNy . Bright gray levels indicate large numbers of open channels. Further

parameters not given in Table | alg=528 s, =0.34 uM, J,
=0.05 s'1, d=1.5 um, C,=0.8 uM, and Nx=250. The time in-
VI. DISCUSSION terval shown is 234 s and the spatial extension is @@ For the
complete model, we show the €aconcentratior(increasing with
We have simulated spontaneous pattern formation of inthe brightness The fraction of open channels is shown for the
tracellular CA" waves with a stochastic, discrete model us-reduced models. As can be seen in the middle panel, one wave
ing the DeYoung-Keizer model of the JPeceptor channel. might survive the collision of two waves in the backfiring regime.
Our model reproduces the continuum of wave phenomend&hat is true for the complete linearized model too.
observed by Suet al.[14]; i.e., it shows a transition from
isolated sparks to steady waves with increagitigy]. This

8
<
=9
172}

space

>

reduced to an array of stochastic, coupled elements the be-

transition was found for parameters of the channel kinetic?avIor of which is determined by 6 independent parameters

+ - A* ; ;
suggested in the original paper by Keiztral. introducin only (e.g., Po.1:Po +Pg ’NK)' we expect this reduction to
t#g?%R médel. 'ginal paper by Kel ! ucing hold for models including concentration-dependent buffer-

We found a state which is characterized by backfiring. Iting, as long as the time scales of the buffer dynamics is faster

provides for the repetitive generation of waves without gthan or similar to that of Cd release, uptake, and diffusion.

pacemaker and explains the origin of waves observed in ex-, oo\ 5y A: ANALYTIC SOLUTION OF THE PARTIAL
periments even in regimes where spontaneous generation DIFFERENTIAL EQUATION FOR Ca 2+
from the rest state is very unlikely to occur. Note that the CONCENTRATION
backfiring reported here is different from the backfiring in a
deterministic model reported by Zimmerman al. [36]. Here, we briefly outline how the &2 profiles for a single
There, backfiring occurs because the steadily propagatingluster with open channels in one and two spatial dimensions
pulse solution undergoes a global heteroclinic bifurcation. and the stationary solution for an array of clusters with iden-
We found effects of stochasticity for numbers of channelsiical numbers open channels in one spatial dimensions is
per cluster as large as 2%8ee Fig. 8 That number allows obtained. In principle, analytic solutions could be derived for
for about a maximum of 50 open channels, which is at theany configuration of open channels but would be quite te-
upper limit of the number of open channels estimated fromdious to calculate in general.
experiments. That shows that the pattern formation in bio- To solve Egs(1) and(2) we apply a Laplace transforma-
logical cells is always in a regime where stochastic effectsion to the time dependence afsolve the resulting ordinary
are relevantlike, e.g., backfiring differential equations inside and outside the cluster with the
Our stochastic model shows pulses as wave solutions fdnitial condition c(0,r)=Cg and obtain the equation for the
parameters where the system would be in the bistable regim@ode time constarg from the boundary and matching con-
in the deterministic limit; i.e., cells might be in the bistable ditions. In one spatial dimension we reach, for a single clus-

regime, even when pulses are observed. That supports thegr with N, open channels and zero flux boundary conditions
retical and experimental findings for bistability in Xenopus atr=+1L:
oocytes with energized mitochondifial].

We have shown that the €adynamics can be eliminated C Cicoshwinr)

adiabatically. That means that the original system can be C“‘(S'r):?_ vin SiN(v;,R)SF(s)’

(A1)
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FIG. 10. Peak values of the &aconcentration of the station-

FIG. 9. Temporal evolution of the spatial €aprofile for a - . . )
. . . . . : . . ary, spatially periodic solutions of the complete model in the deter-
single open cluster in two spatial dimensions. Simulations, solid_ ;' >~ . = : . e
ministic limit in dependence ody . Stable solutions, solid lines;

line; analytic solution, dashed line. With increasing peak amplitude: . ) . .
t=7.5 ms(simulation, t=7.5 ms(analytid, t=30 ms, and =80 unstable solution, dashed line. Parameters not given in Table | are

= - -1 _ 1 _
ms. For the two latter profiles the analytic solution and the simulad 1.5 pm, Jp=525 uMs 7, 3, =005 7, Co=0.8 uM, R

tion are undistinguishable. Simulation parameters: spatial discreti-zo'z’um'
zation 0.0125um, time discretization 0.000125s, fully implicit
scheme. Parameters not given in Table | dge=46.87 uMs™ 1, F(s)=11(voull ) Ko(vouR) + Ki(voul )l o(vouR)
Jk=525 st J,=005 s? C,=0.8 uM, N,=N¢=25, andR vouRlg(vi0)
=0.2125um. U N (po il ) K 1 (ouiR)
Vinl 1(¥in)
C.coshvg(r—L —-K L)l R)1, All
PR L 2 Y el IO 1(Vouth)1(ouR)] (AL1)
VouSINM vou (L —R) [sF(s)
coth(»;,R) cotH v, (L—R)
F(S): r( n + r[ out( ], (AB) (A12)
Vin Vout
+Jp+(1+
NoJ; o \/s Jp+(1+a)d, (AL3)
+ out D )
2RNg
= N —p5 (A4)
Jr=mR*(1+ a)Ji. (A14)
s+Jpt+(1+a)d, Modes are determined by the rostof sF(s)=0. In one
Vout= D , (A5)  spatial dimension, that leads to
- C, cosh v;,r)
Co Cin(t,1)=Cy+Cs— >, et :
Ci= —Cs, A6 i= _ dsK(s
Ul a s (A6) =0 vipSinh( vy R) dF( )
S N
. J.C, . (A15)
S:—’ .
(I+a)d+Je  Cooslivgu(r—L)]
Cout(t,r)=Cst 2, € dsF(s)|
i=0 .
J1=2R(1+ &) Jk. (A8) VouSINH v L—R)] s
Si
. . . (A16)
The solution of the same problem reads, in two spatial
dimensions, and in two dimensions,
_ Ci  CwouRlo(vinrl/R) ~
Cin(S.1) = ?+ vinl 1(vin) SF(S) Cin(tar):Ct+Cs+iZO [K1(voull)11(vouR)
— i (voul)K1(vouR) ],
[K1i(vout)11(vouR) = 11(voull ) K1 (vouR) ], (A9) 1 out 1 out
CivouRlg(¥inr/R)
Coul(S1) = Cill1(voul ) Ko(voud) +Ka(voutk) o vout)] e dsF(s)| ’ (A17)

sF(s) ' Vil 1(Vin) ——
(A10) ds I
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Cout(t,r)=Cgt X, €St
i=0

Cil11(voull)Ko(vouth) + Ki(voud) o vout)]
X .
dsK(s)
ds

Si

(A18)

In Fig. 9 we compare the analytic solutiofs17) and
(A18) with simulations. Note that the staionary profile is
reached essentially after 30 ms.

The stationary solution of a one-dimensional periodic ar
ray of identical clusters with identical;, is (with id being
the position of the center of the¢h clustey

Civout e¥ouR— grould™ R))

Cin(r)=C;+Cg+

B
X cosh v, (r—id)], (A19)
Civin Sinh(vg R
Cout(r):CS+ t¥in Br.( out )
><(evout(r—id)+evout[d—(r—id)])’ (AZO)
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B=v;, sinh( vj,R)(e"ouR+ g¥ould"R) — 3, cosh v;,R)

x(e”outR—eVout(d_R))' (AZ]_)

idsr<(i+1)d.

APPENDIX B: STATIONARY, SPATIALLY PERIODIC
SOLUTIONS OF THE COMPLETE MODEL IN
THE DETERMINISTIC LIMIT

Equations(A19)—(A21) can be used to look for spatially
periodic stationary solutions of the complete model in the
deterministic limit, ifN /Ny is determined as the fraction of
open channels of the stationary solution. At sndall, only
‘one stationary solution exists. At the parameters used in this
paper,Nj for this stationary C%l+ profile is so small, that
deviations from the solutioN,=0 are negligible. Hence,
this stationary solution is essentialtyr,t)=Cg. At higher
values, two additional stationary solutions appear in a saddle
node bifurcation and the system becomes bistable. We illus-
trate that in Fig. 10 by the peak values of theCaoncen-
tration in the center of the cluster. The solution with the
higher peak value is stable; the one with intermediate peak
values is unstable. A similar transition for the nonperiodic
case of a single open cluster occurs at even higher values of
\]K .
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