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Three-state neural network: From mutual information to the Hamiltonian
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The mutual information), of the three-state neural network can be obtained exactly for the mean-field
architecture, as a function of three macroscopic parameters: the overlap, the neural activity activitye
overlap i.e., the overlap restricted to the active neurons. We perform an expandi@mahe overlap and the
activity-overlap, around their values for neurons almost independent of the patterns. From this expansion we
obtain an expression for a Hamiltonian which optimizes the retrieval properties of this system. This Hamil-
tonian has the form of a disordered Blume-Emery-Griffiths model. The dynamics corresponding to this Hamil-
tonian is found. As a special characteristic of such a network, we see that information can survive even if no
overlap is present. Hence the basin of attraction of the patterns and the retrieval capacity is much larger than
for the Hopfield network. The extreme diluted version is analyzed, the curves of information are plotted and the
phase diagrams are built.

PACS numbgs): 87.10:+e, 64.60.Cn, 07.05.Mh

I. INTRODUCTION Hamiltonian which maximizes$ within a large range of val-
ues for the activity of the network.

The collective properties of neural networks, such as the A three-state neural network is defined by the use of a set
storage capacity and the overlap with the memorized patef u=1,...p ternary patterns, {¢“e{0,=1}, i
terns, have been a subject of intensive research in the lastl, ... N}, which are independent random variables given
decadd 1,2]. However, more precise measures of their per-by the probability distribution
formance as an associative memory, as the information ca-
pacity and the basins of attraction of their retrieval states, p(&)=ad(|&?—1)+(1—a)d(&), 1)
have received comparatively less attentj@r-6]. For some
models as the sparse-code netwdrks9], or the three-state Wherea is theactivity of the patterns §=0 are the inactive
networks[10—12, where the patterns are not uniformly dis- state$. A low-activity three-state neural network corre-
tributed, an information-theoretical approddi8—15 seems sponds to the case where the distribution is not uniform, i.e.,

crucial. a<<2/3. In the limita=1 the binary Hopfield model is repro-
Calculations of the Shannon mutual informatitin for ~ duced.
the sparse-code network were mgdé—1§. For low stor- The information enclosed in a simple uiit is given by

age of patterns, a few time steps are needed to retrieve thethne entropy of its probability, H,;=—a In(a/2)—(1
[3,17]. However, for large storage, onimperfect retrieval is  —a) In(1—a). One can define as sparse a code whose frac-
possible. The closer to saturation, the larger the time stepson of active neurons is very small and tends to zero in the
required to dynamical retrieval. So, first-time retrieval is notthermodynamic limif 3].
enough and it is interesting to study the information capacity Besides the fact that ternary patterns are a step toward an
of recurrent networks. To improvefor this recurrent net- analog neural model, they have the advantage that they can
work, a scheme, based on a self-control threshold mechde generated with a bias but keep their symmetric distribu-
nism, was proposefl9]. This Self-Control Neural Network tion (both =1 states are considered aclivén important
(SCNN) is an adaptive scheme induced by the dynamics itquestion related to the three-state model is the measurement
self instead of imposing any external constraint on the activef the retrieval quality in the cases where this is imperfect.
ity of the neurons. Such procedure successfully increaseaslthough for strictly homogeneous ternary patterns, the
both | and the basins of attraction of the patterns. SimilarHamming distance can be used, for the cases wher2/3
mechanisms can improvefor three-state low-activity net- the errors in retrieving the active states have different rel-
works [20], with diluted and fully connected architectures. evancethey contain more information than the inacdivéo
Here we propose a new method, based on direct use of ttenlve this problem, the conditional probability of neuron
| calculated in the mean-field approximation, to obtain astates given the pattern stafgd], was used to obtain the
mutual informationl of the attractor neural networlANN).
This | is a function of three parameters: the overtapthe
*Electronic address: dcarreta@escet.urjc.es neural-activityg, and the activity-overlapm.
"Permanent address: G. Nadjakov Inst. Solid State Physics, Bul- We then expand thearound the values of the parameters
garian Academy of Sciences, 1784 Sofia, Bulgaria. Electronic adwhen the neurons are independent on the patterns. This ex-
dress: elka@fisfun.uned.es pansion gives us an expression that can be interpreted as a
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Hamiltonian, a function only of the neuron states and the 1 é
synaptic couplings. This Hamiltonian is similar to the mﬁEa—Nz fi’LUi—>m:<<U>a,§5> ; 3
Blume-Emery-Griffiths[21-28 spin-1 model (BEG), but ! 3
with random interactions. The BEG model, originally pro-
posed to study He-He, mixtures, was later used to describe
several systems, like memory alloys, fluid mixtures, micro-
emulsions, etc., and displays a variety of new thermody- ANt
namic phases.

Some disordered BEG models have been recently studied .
[29-31, where either the exchange-interactions or the2nd the so calledctivity-overlap[20],
crystal-field are random variables. However, from our L N 5
knowledge, no random biquadratic-interactions model has nﬁtza_N 2 O'it|2|§iu|24’n:<<o-2>o|§§> _ (5)

the neural activity,

Z| -

Z loi|>=a= (0% )¢ (4)

been treated up to this date.
We describe our model and theneasure used to evaluate
the performance of the ANN in Sec. Il. In Sec. lll we derive In the expressions for the thermodynamic limits, INa-
the BEG Hamiltonian froml. After solving the thermody- in the equations form,q,n, the indexu for the considered
namics for this model in Sec. IV, we present some results fopattern were dropped out. The averages are over the condi-
the dynamics and the phase diagrams in Sec. V, comparingonal distribution,p(o|¢), and over the pattern distribution,
the results with previous works. We conclude in the lastp(¢), in Eq. (1).
section with some comments about possible improvements For the dynamics used in most work found in the litera-
of the network. ture[10,12,32, where the synapses used are of the Hopfield
form J;; =% ,&/*&)", the parameteny does not seem to play
any role in the evolution of the network, independent of the
II. MODEL architecture considerediluted, layered or fully connected,
As well as the pattern states, the neuron states are threfr instancé. In fact it doesn't appear in the expression for
state variables, defined as the Hamming distance. Howevaery is necessary to define
the mutual information of the network, as well as being nec-
essary in computing the network’s performan8s,34.
o;e{0,x1},i=1,... N. 2 Knowing the conditional probability for each site and pat-
tern, one can define tHdutual Information 1[13,14], a the-
.. oretical information quantity used to measure the average
They are coupled to the other neurons through synaptic ingmqynt of information that can be received by the user by
teraction, th(_a specific form of which will be obtalnc_ad later, observing the symbdbr the signal at the output of a chan-
by construction. We will see they are of the Hebbian type,e| we can regard the pattern as the input and the neuron

that is, the Iegrning i; locdthe synapses dep_end only on the states as the output of the channel, soltiewritten as
two neurons interactingMoreover, the updating rule will be

also obtained by construction, no supposition being done I[o;€]=Fo]— (S a|€])e,
here except that the patterns have the same three-state sym-
metry as the neuron states.
The three-state pattergé e {0,+1},u=1, ... p, are in- Sol=-2 p(a)n[p(o)], (6)
dependent identically distributed random variakléBRV) 7
chosen according to the probability distribution in Ed).
There is no bias{¢/y=0) nor correlatlioln between patterns s[g|§]z_2 p(o|&)In[p(o]&)].
((¢re=0), anda=(]&*|?) is the activity of the patterns. o
An extensive load of patterns is achieved whenaN.
The mean-field netF\)Norks have the properﬁf being siteS1 7] and [ o|£] are the entropy of the output and the con-
independent; that means, the correlations between differeffiional entropy of the output, respectively. The quantity
sites are negligable in the thermodynamic linNt»o. This S a|£])¢ is also called thequivocation ternof thel[ o £].
implies that every macroscopic quantity satisfies the condi- USing the conditional probability obtained in Rg20],
tions of the law of large numberd LN), so they can be
defined as an averagg on the probability distr>i/bution of a P(]€)=(se+ méo) (o~ 1) +(1=s,) (o),
state in a single site. Alternatively, we may say that the prob- @)
ability distribution factoriesp({a},{&}) =II;p(o;,&). c—ont Egz J—ha
The task of retrieval is successful if the state of the neuron i 1-a>’ l1-a’
{0y} matchedat least approximatelythe pattern{&/“}. The
measure of the quality of the retrieval we will use here is thethe expressions for the entropies defined above are
mutual information, which is a function of the conditional q
distribution of the neurons given the patterpég|£). It has _ 4 . _
been noted[19,20 that thg order p%ramgt‘;arL )which are Sol==aln 2 (1=q)in(-a),
needed to calculatp(o|¢) are the thermodynamic limits of
the standard overlap of theth pattern with the neuron state, (Jolél);=aS,+(1-a)S;—a,
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g__ntm ntm _n-m n-m_ . _ H=—In=H1+Hy, 11
a 2 n 2 2 n 2 _( _n)n( _n)v
tS)

_ S 1
Si_a=-sIn 5—(1—s)ln(1—s). le_zg 3010, (12)

where

Several threshold mechanisms have been proposed asyAq
dynamical evolution of three-states, neural netw@k Most
of them are fixed-threshold, using a Hopfield Hamiltonian,
together with a Hebbian-like synaptic interaction. Recently a Hp=—
Hopfield three-state network with a self-contf8IC) mecha-

nism was introduced, the threshold of which adapts itseltye the quadratic and the biquadratic terms, respectively. The
according to the following dynamid0]: 6;=c(a)A,. Here  apove expression for the Hamiltonian, obtained from the mu-
c(a)=y—2In(a) is a function only of the pattern activity, tyal information close to the nonretrieval regime, has the
while the variance of the cross-talk noiggue to thep—1  same form as of the BEG mode1]. We call our model the
nonretrieved patternshas the simple form\,= Jaqy; for BEG Neural NetworKBEGNN).

the diluted architectur¢35]. That yields the best perfor-  The interactions are randomly distributed, given by
mance for low-activity patterns. In this paper we take the

N| =

alternative approach of starting from the mutual information 1 P
for the model, and in the results, both models are compared. Jij =N 21 && (14
=
Ill. DERIVATION OF THE HAMILTONIAN and
We search for a Hamiltonian which is symmetric in any 1P
permutations of the pattern®’, since they are not known Ki=— > ntyh. (15)
during the retrieval process. This imposes that the retrieval PNE T

of any patterré” is weak, i.e.o is almost independent of it. ] S ]
Then obviously the overlam“~0. An expansion of with The first term of the Hamiltonian is the usual Hopfield
a=1=q aroundm*“~0 yields the Hopfield Hamiltonian. If model vv_|th the Hebbian rule given by E(1L4)._The second
afterwards some particular overlap eventually becomes largé®rm, arising from the term depending ot in Eq. (10),
this should be a consequence of the network evolution. related to the activity-overlap, is also Hebbian-like, but is
However, for generah,q, this is not the only quantity associated, as will be seen later, with the quadrupolar order

which vanishes in this limit. The variable? is also almost  ©f the system.

independent of )2, so thatn“~q. Hence, the parameter Note that the Hamiltonian formulation of the problem is
only possible in the case of the fully connected neural net-

n*—q 5 (éM)2%—a work, where the interaction matrix is symmetric. In the next

=3 =(o 77#>’77M5a(1——a)’ (9 section we will present the dynamical formulation of the

problem, which can be applied to the cases of asymmetric

also vanishes when the states of the neurons and the patte¢@Uplings[35], although no Hamiltonian exists.
are independent. As is well known, the phase diagram of the usual BEG
We use this fact to look at the information close to themodel is very rich, showing different phases, depending on

nonretrieval regime. An expansion of the expression foil the the sign and the strength of the biquadratic coupling con-
aroundm*=0#=0 gives stant. Without any disorder and for very negative biquadratic

coupling constant, a quadrupolar phase, related to the qua-
a , la(l-a) 5 drupolar moment a?) also appears, apart from the usual
| #~ 2 a(m ) +§ q(1—q) (1#)*. (10 disordered and ferromagnetic phag22-28. However, our
variables¢* are quenched, so we have a disordered system.
Since this expression gives the information for a singleBEG models with disordered quadratic coupling have been
site i of a single patternu, |(m*,1#)=1#, it should be recently studied29-31], showing some new phaséspin-
summed|,,=NZ,I* to give the total information of the glass, quadrupolar spin-glass phases,)etwt, from our
network. It is natural to associate this quantity with the op-knowledge, no disordered biquadratic BEG model has been
posite of the Hamiltonian, because the maximum of the instudied up to this date.
formation gives the minimal energy.
We suppose, as a further simplification of the model, that IV. ASYMPTOTIC MACRODYNAMICS
the neural activity is of the same order of the pattern activity,
g~a. This is made by convenience, otherwise the statistical
mechanics of the model will be difficult to compute. With  For the derivation of the asymptotic macrodynamics we
this assumption, from Eq.(10) depends in the same way on will use a naive mean-fieldMF) approach using the Hamil-
m* andl*. Substituting the expressions for these parametergpnian Eqs(12)—(13). Since the Hamiltonian is quadratic in
given by the definitiong3),(4) and (5) (before the thermo- the overlaps, we can linearize it, using Gaussian transforma-
dynamic limif), we obtain the following expression for the  tion, to obtain the partition function

A. Thermodynamics for a—0
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z:Tr{U}e—ﬁH extensive. Whenever the ratio of patteras p/N is finite,
the noncondensed overlaps yield another global order param-
_ H eter.
_j l,:[ [Dq)(\/ﬁ_NW)D@(\/'B_NW)]H ,,;;‘1,06 ' This result, obtained from the naive MF theory, can be
easily understood if we write the Hamiltonian in Egs.
19 (12),(13) in the form

whereD®(2)=dze @227, and 8= 1/T. The effective

1l @ — 1
Hamiltonian is H= > E. Hi=— > 2. (hio+ 6,02),
Hi=hioi+ 6,07, (17
where the local fields are hiEEj: Jioj 249
1P
hi:a ; §ium”, 6?'5; K”O'J2
(18) . e .
P From the first term of the Hamiltonian, its minimum arises
6i=2 i1~ once the neuron states are given by
“

After taking the trace over the spin variables, we apply a oi=sgrhi)G(h, ), 29

saddle-point integration and use the thermodynamic limit, Qyhere G(h, ) {0,1}. This form of o; doesn't affect the
get the free energy in terms of the parameters andg, second term of the Hamiltonian. On the other hand, replacing
T 1 Eqg. (25 in Eq. (24) we arrive at

f=—g/n Z=5(m*+1%)—T(InZ), (19) L
H=—5 2 (Ihi|+6)G(h;,6). (26)
where the effective partition function is !

Now it is clear that if a minimum of this Hamiltonian holds,
the expression foiG(h,#) should be exactly the same as
The fieldsh, @ are defined in Eq(18), but the indices can ~ G=(h.6), given in Eq.(23).

be dropped out. The saddle-point equatiofi&sm“=0 and

Z=1+2e"%cosh gh). (20)

df/91*=0 lead to the following expressions for the station- B. Diluted dynamics
ary states: Alternatively to the thermodynamic approach, in the noise

1 case, we can also start from the stochastic parallel dynamics

m”=<—§“;> , [12,33,
a
§ ~
_ (21) p(oi v 1{od)=exd BH;1/Z, (27
1=(n o?)e,

Whereﬁ;I is given by Eq.(17) (in the time stept), andZ by
where the angular brackets mean the average over the p%’q.(ZO). Differently from the dynamics for the (©3)-Ising

terns, and the thermal averages of the states are model [12,33, here the fieldg= 0({012}) in the effective
1 Hamiltonian is a function of the states in the previous time
;EFB(h, ) ==2e? sinh( gh), steps. The resulting noise-averaged states coincide with Egs.
z (22) in the stationary regime. Again, here the figldis site-

(22 dependent.
_ 1 At T=0, in comparison with theQ—Ising model
0?=Gpy(h,0)=z2eP? coshgh). [12,36, and with Eq.(25), the following deterministic par-
z allel dynamics, which leads to the minimization of the effec-

We remark that these Eg2) are formally the same as for tive Hamiltonian, is suggested,

the Q=3-Ising model[12,33; however, the expression for o t t o ot
is both site-dependent and a function of the order parameters. i1 = SN O (|hif + 6), (28)

For zero-temperature, the behavior of the averages is  hare the local field!, 6 (associated with the variables

F..(h,0)=sgr(h)®(|h|+6), O'J-'t,ojz'_t, respectively are given in the time step Such _
(23) dyngmlcs has the same form as the zero-temperature function
G..(h,0)=0(|h|+ ), F.. in Eq. (23.

Because we are mainly interested in the retrieval proper-
where®( ...) is thestep function. This naive thermody- ties of our network, we take an initial configuration whose
namic approach is only valid if the number of patterns is notretrieval overlaps are only macroscopic of or@xl) for a
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=1 in the local fields of Eq(18) in order to study the :

given pattern, let's say the first one. We singled out the term £
Ni+1=\ 501
retrieval of the first pattern. £

a

Supposing an initial configuratiofu; ;_o} as a collection m, I, A,
of IIDRV with zero-mean and varianag _, the fieldsh,_, =f DCD(y)f D(IJ(Z)GB(;erAt ;5+21—a .
and 6,_, in the zeroth time step are given by
(33
1 Pl
ht=0:afmt=0+ Wi=g; Wi=0= VZ:Z gfvmt];o,

(29) The equation fof, is obtained using the definition in Eq.
p 9), li=(n;—qy)/(1—a). It is worth noting that the defini-
Or—0=nli—ot Qi—g; Q== 22 710, tions of the parametemns,qg,n in Egs. (3) are the same as

those in Eqs(31)—(33), since the average over the condi-

- _ tional probability p(o|€) is equivalent to the average over
where the indicesu=1 were dropped, and the rest of the Qe noise due to the—1 remaining pattern§& £ Equa-

patterns one regarded as some additive noise. According {IOI’IS (31)—(33) describe the macro-dynamics of the diluted

the Central Limit TheoremCLT), they are independent . X )
Gaussian distributefl 2,32, with zero mean and variance BEG.NN by ad_aptmg selfconsstently the threshold_ during

the time-evolution of the system. With these equations we
can calculate the mutual information from E@8)—(8).

1 2
Varl w=o] :;CVQt:oEA )

, (30) V. PHASE DIAGRAM

ValQ-¢]= > In this section we present some explicit results for the
(1-a) BEGNN model. We first calculated the stable fixed points of

. . Egs. (31)—(33) for the asymptotioN— network, and ob-
Although the dynamics for the parametesg, n andg, in tained the curves for the order parameterg),n and the

the first time step is a function of the initial step, the eXPresy cormation i= |« as a function of the load parameterfor

sion for the noises in the next steps evolves with time in 4wo values of the activitya (Fig. 1). For small load &
more complicated way than in EGE0). In the extremely <0.2), the overlap remains close to~1 and the neural

diluted synaptic casg35], however, the first time step de- activity is g~a. When more patterns are stored in the net-

T e e S U0, or. | ncreases amost Incary,up to an opimalvabe,

y ynamics. o : lop @opy) » @fter whichi decreases to zero iy, The com-
luted network has no possible Hamiltonian formulation, nev- arison is done with the self-control neural netwoBQNN
ertheless, even if no feedback is present there, it can be su

e 10del[19,20. It is seen that for small activitiesaE 0.3)
posed as an approximation of the fully connected networ ' ; i !
showing qualitatively similar behavior. From now on we will l%he BEGNN model gives worse results than with the SCNN

adopt this limiting case. The effective Hamiltonian now is to model,'wnh a .sm'alle'r value fdr wh|Ie_for a=0.6(close to
be considered as an energy poterftad, 3. the uniform distribution of patternsg=2/3), the BEGNN

Thus, in the asymptotic limiN—oo, the expression for performs better, an optimal value of the informatidn

the overlapm. = lim mb becomes. after averading over ~0.15, although it is attained for a smaller value of load,
Py N—o Nt ’ ging a~0.2. The reason for this behavior is that the third order

the patterns, parameter(related to the activity-overlapis 1~1 for the
¢ 0 | BEGNN (SCNN) andl<1 for the SCNN(BEGNN) with a
_[| £ _ o Lt =0.6(a=0.3). Also the neural activity approachgs-2/3
M+ <6\7t>§ f be(y)f D(D(Z)FB( a +yAt’a (so it goes away frong=a) sooner(with less patternsfor
the BEGNN than for the SCNN. In our opinion this is due to
the approximation used in the Hamiltonian derivatigr; a.
The behavior of the order parameters andithgth load,
for the zero-temperature case, is presented for three different
where the averages over, () on the brackets should be done values of the activitiegFig. 2). The initial conditions are

Ay
+Zl—a)’ (31

with the Gaussian distributions, E(O0). used whereny,=10"°,1,=1,g,=a, such that there is almost
The neural activity is the thermodynamic limit of E&),  no initial overlap. In this case there is always a sharp fall on
which reads the information fora: not so much larger than,,. We see
_ different behaviors depending on the activities.
qrz<0't2>§:ant+(1_a)st: The corresponding dynamical phase diagram is drawn in
(32 Fig. 3. Four possible phases are present: the retrieyal
I A #0l#0,9~a) and M(m#0,<0.5m,q~a) phases, the
St+1§f D(I)(y)f DR(2)Gp| YAt~ 75 t275)- quadrupolar phas®(m=0,#0,g~a) and the zero phase

Z(m=0Jl=0,g~a). The factor in the definition of thé/
Here s is the variable defined in Eq7) and the activity- phase is somewhat arbitrary, indicating the appearance of
overlap is given by two different behaviors. The last pha&eso called because
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0.12 - B 012 /, \\ B * * *
o010 | 1 oml // AN i FIG. 2. The informationi and the order parameters (solid
— 008 - 4 o008l fy \ g line), | (thin line) and q (dashed ling againsta with activities a
0.06 - 1 008 I, \\ 1 =0.1 (left), a=0.5 (centej anda=0.9 (right). The temperaturd
004 | 1 o4 \ 1 =0 and the initial conditions arey,=10"%,1,=10,=a.
0.02 l\ E 0.02 \ E
0.00 1 1 . 0.00 1 1 Sl
0 02 04 06 O 0 02 04 06 08
o o
FIG. 1. The informatiori =1« and the order parametens,|,q 1 . . I
againsta with activitiesa=0.3 (left) anda=0.6 (right). The tem- ]
peratureT=0 and the initial conditions areng=1,=1,0¢=a. =
The continuous line is for the BEGNN while the dashed line is for a !
the SCNN. ,l
08 -
there is no information transmitted, is an analog to the self- /
sustained (S) activity phase of the @=3)-Ising ANN /
[12,33, since the parameter related to the spin-glass order is 1
g# 0. We have not found any paramagne&® phase, with “ z
all (m=0J=0,g=0) for the BEGNN. Note that the quadru- 06 | ]
polar phase is a quite new phase, compared to the other NI R
models and is a special one for the BEGNN model. This g
phase is also present in the original BEG mda@4l], as well
as in all its generalizations including disord2e—31. In the
language of the neural network, the quadrupolar phase mear 04T i
that the active neurons(1) coincide with the active pat-
terns, but the sign doesn'’t. It is seen in Fig. 2, &+0.9,
where the overlap goes to=0 at «~0.13 (much beford,
which goes to zero atr~0.3); this phase corresponds to i i
nonzero information, although there is no retrieval overlap. M
The phasé& appears foa= 0.5, where botim andl are large
and so isi. On the other hand, the phabkis observed for
a=0.1, where the parametélis much smaller tham. The
phase transitions frorR or M to Z are usually sharp, i.e., 0 ‘ : ‘ : ‘ w ‘
first-order, forT=0. 0 0.1 0.2 03 0.4
The behavior of the order parameters and the information ¢
with the temperaturd for fixed activitya= 0.5 is shown on FIG. 3. The dynamical phase diagramx a, for T=0 with ini-

Fig. 4. We observe an increase iofvith the temperature, tial conditionsmy=10"°,1,=1,g,=a. The different phases are ex-
showing an optimal value foF ~0.2. Such an improvement plained in the text.
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FIG. 4. The informationi and the order parameters (solid 0 0 0.1 02 03 0.4 05
line), | (thin line) andq (dashed ling againsta with temperatures o
T=0.0 (left), T=0.2 (centej and T=0.4 (right). The activity a ) ) ]
=0.5 and the initial conditions am@,=10"5,1,=1,q,=a. FIG. 5. The dynamical phase diagra@X T, for a=0.7 with

initial conditions my=10"%,1,=1,g,=a. The dashed line corre-

of a feeble signal with noise, similar to the stochastic reso?'ponds to the optimal information.

nance phenomena, appears also in other physical systemsans the memory pattern wgsartially) attained. This re-
[37]. A further increase in temperature leads to decreasingult, caused by the instability of th&phase in this region,
the information of the model. We note that this behaviormakes the BEGNN capacity much larger than that of the
doesn't hold fora=2/3, nevertheless there is still an increaseusual Hopfield model, in all its versions so far as we know.
of the storage capacity .. The last result is in agreement ~ The behavior of the continuous phase transitions can be
with other investigations of dynamical activity of real and analytically studied within the mean-field approximation by
model neurons, where the observed stochastic resonance dfpanding Eqs(31)—(33) for small values of the order pa-
appears by increasing the amplitude of the external stimuluggmeters. A standard calculation, for exam_ple, for the transi-
[38]. tion line QZ(m=0,<1) leads to the following expression:
A cut of the phase diagram in the plan& « for a fixed |Qz:'8-|—CQZ|
value of the activitya=0.7 is shown in Fig. 5. The dashed
line, which corresponds to the optimal casg( «), is within (1-2a)B? 1-2e#? coshBw
either the phas® or Q. It is also interesting to observe that +——y I 50 3/
there are two separa@-phase islands, for either small tem- (1+2e" coshBw)’/, ,
peratureT and large loady or large temperaturé and small (34)
load «. The phase transitions become smoother with the tem-
perature. where the transition temperature between the ph@sasdZ
Finally, in Fig. 6 we present the evolution of the informa- IS
tion and of the order parameters with the tibpéor a given <

o 17+ e coshBw
a%a

2e#? coshBw

temperaturd = 0.2 and activitya=0.7, for two values of the TQZ= 1 (35)
(1+2ef? coshBw)?/

load parameterw. As can be seen from this figure, far ¢
=0.4, which is close to the transitid®M, the change to the
behavior of the order parameters needs more time steps thayith
for «=0.2. This is not strange due to the critical slowing
QZ_ <

aa

2eP? coshBw
1+2ef? coshBw

down near the transition. However, an interesting new fact
appears here: the parametgrandg; have a fast melt down

to a much smaller value, after which the network stays a long
while with an almost zero overlap, and finally the BEGNN is  Expanding the above expressions for a small value of the
able to retrieve the pattern quite well. For instance, dor load rate and large temperaturgs/a<1, and calculating
=0.2,] falls tol ~0.6 andm stays neam~0 during the first the averages over the noise up to the leading terms, one
t~20 time steps, then they jump uplte 0.8m~0.9, which  obtains the following equation for the transition line:

> +0(1?). (36)
Qo
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0=0.4 0=0.2 sulting in a system evolving with a self-consistently adapting
1.0 — T ' 1.0 ' ' threshold. The stationary and dynamical equations for this
08 + 1 08| . model were obtained as functions of three order parameters,
[ J the overlapm, the neural activityg, and the activity-overlap
0.6 | {1 o8} . ) . - )
- n. Their solutions were explicitly calculated as functions of
0.4 1 04 ] the variables: the pattern activigy the loade and the tem-
0.2 1 o2l i peratureT. Only the extreme diluted version was studied
l | — here, and we hope this work motivates a detailed investiga-
0.0 ‘ ‘ ‘ 0.0 ’ tion of the properties of the fully connected BEGNN.
::: Z:: The comparison with the SCNN model9,2d, which is
0260; 1 0:60 ] 1 the best model know_n_of the Hopfield-like NN, pgrtlcularly
ol 1 o 1 for small pattern activity, aIIovv_s_ a f:haracterlzatlon of the
oss i 1 ossl i BEGN_N model. When the activity is near= 2/3, corre-
054 L——/_ osa | 1 spond_mg to the case of un.lform ternary papterns, the BE-
052 [ e 052 { : GNN improves the information, compared with the SCNN
| model, while for small activities, it performs the worst, giv-
0.8 - 1 08¢f ] ing a smaller value for the information. We argue that this is
06 1 osl ] due to the approximatiog~a, used in the derivation of the
E Hamiltonian. We expect this paper stimulates analytical or
04 1 1 %47 ] simulation works which do not use such an approximation.
02 - /_ 02 . Improvement of the information content by increasing the
0.0 ‘ ; ; 0.0 : : . noise, an effect similar to the stochastic resonance, is also
014 ] observed for activitie®<2/3, which is in agreement with
006 | 1 o2 . results for real neurons.
0.10 ] There are four possible phases for the BEGNN, which
= 004k 1 o ] were displayed in phase diagram% « and TX «. In par-
002 /— Egj ] ticular, a quadrupolar phas®, with m=0,~1, holds when-
002 L ] ever the activity is large enough. This phase, known in the
0.00 ‘ ‘ ‘ 0.00 . . . BEG literature, but new in an ANN context, carries out some
0 10 20 %0 400 ¢ ® % % nonzero information about the patterns even without any
overlapm.
FIG. 6. The informationi and the order parameters,|,q, The phase transitions between the different phases are

against the time for temperaturél =0.2 and activitya=0.7, with  also investigated, showing sharp or continuous behavior, de-
a=0.4 (left) and «=0.2 (right). The initial conditions aremy  pending on the parameters. As the main result we obtained

=10"%lo=1go=a. that, while the phas& is not stable in a large range of the
A variables, the basin of attraction of the retrieval phase is
2 1(1+a? increased with respect to the usual ternary neural network

c:%_ 2 aa @ (37 models. States with initial conditions, which have very small

overlap, flow to final states with large overlap.
The last expression foF, is in qualitative agreement with ~ We believe that the BEGNN has a quite large range of

the previous results shown in Fig. 5. appli_cations fqr regl syster_ns. We also think 'that this way to
Regarding the equation for the order paramétene can obtain a Har_nlltonlan starting fr_om a m(_aan-ﬁeld cal_culatlon
verify that in leading order, of I, which yields an almost optimal retrieval dynamics, can
be generalized to other spin systems, as@hlsing with Q
5, 1 (1-2a) >3 or the Potts models, for instance. Such a method, based
197=pT2 =5 W,Bz'hr O(1%al®). (38  on the maximization of the entropy, can be a universal ap-

proach to information systems.
Then, we expect that the same improvement should hap-

By use of Eq.(37), it is seen that the quadratic term of the pen for analog neurons and for networks of binaypapses

above expansion changes sign when the actaity0.5, thus f . . :
b g g It would be also interesting to investigate the case of local

defining a tricritical line between the transition of second,. ) : .
field for multi-neuron synapses, which comes up from higher

order a>0.5) and of first orderg<0.5). Note that similar order terms in the expansion of the mutual information, such
tricritical behavior has been described also in the other ver: P !

sions of the BEG moddl22—31. Similar analysis can also that a better use of a network with fixed size is expected.
be performed for the other continuous transition between the
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