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Percolation in sign-symmetric random fields: Topological aspects and numerical modeling
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The topology of percolation in random scalar fieldsc(x) with sign symmetry@i.e., that the statistical
properties of the functionsc(x) and2c(x) are identical# is analyzed. Based on methods of general topology,
we show that the zero setc(x)50 of then-dimensional (n>2) sign-symmetric random fieldc(x) contains a
~connected! percolating subset under the conditionu¹c(x)uÞ0 everywhere except in domains of negligible
measure. The fractal geometry of percolation is analyzed in more detail in the particular case of the two-
dimensional (n52) fieldsc(x). The improved Alexander-Orbach conjecture@Phys. Rev. E56, 2437~1997!#
is applied analytically to obtain estimates of the main fractal characteristics of the percolating fractal sets
generated by the horizontal ‘‘cuts,’’c(x)5h, of the fieldc(x). These characteristics are the Hausdorff fractal
dimension of the set,D, and the index of connectivity,u. We advocate an unconventional approach to studying
the geometric properties of fractals, which involves methods ofhomotopic topology. It is shown that the index
of connectivity,u, of a fractal set is the topological invariant of this set, i.e., it remains unchanged under the
homeomorphic deformations of the fractal. This issue is explicitly used in our study to find the Hausdorff
fractal dimension of the single isolevels of the fieldc(x), as well as the related geometric quantities. The
results obtained are analyzed numerically in the particular case when the random fieldc(x) is given by a
fractional Brownian surfacewhose topological properties recover well the main assumptions of our
consideration.

PACS number~s!: 05.40.-a, 02.40.2k, 05.45.2a, 52.35.Py
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I. INTRODUCTION

Applications of percolation theory~see, e.g., Refs.@1,2#!
have led to remarkable advances in the understandin
many phenomena related to the formation of irregular str
tures. Topological properties of irregular, random configu
tions have recently received a good deal of attention in
sociation with the possible universal nature of the geome
of percolation in the vicinity of the critical percolatio
threshold@3,4#.

Indeed, consider an infinite, statistically homogeneo
isotropic random scalar fieldc(x), where xPEn is an
n-dimensional Euclidean vector (n>2). ~The symbolEn de-
notesn-dimensional Euclidean space; the dimensionalityn is
assumed to be an integer in what follows.! The introduction
of an arbitrary thresholdh @to be defined as the level of th
‘‘cut’’ of the field c(x)# makes it possible to divide the spac
into two topologically different parts: one composed of
regions wherec(x),h, marked as being ‘‘empty’’’; and the
other composed of the regions wherec(x).h, marked as
being ‘‘filled.’’ One of these parts will include aconnected
infinite set, which is said to ‘‘percolate.’’ Changing th
thresholdh, one can find thecritical threshold,hc , when the
topological phase transition occurs~i.e., the nonpercolating
part starts to percolate, or vice versa!.

It has been recognized@1,2,4,5# that the geometry of the
percolating setat criticality ~i.e., at the levelsh→hc! is a
typical fractal for length scalesx, varying between some
microscopic~‘‘lattice’’ ! distancea and the percolation cor
relation lengthj@a. Near the point of the percolation tran
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sition, the percolation correlation lengthj is known to di-
verge,j/a→` @1#; it has been clearly established@6# that the
divergence of the percolation correlation lengthj results in
an anomalous behavior of the macroscopic physical qua
ties near the critical percolation threshold,hc .

A. Hausdorff fractal dimension and the index of connectivity

The term ‘‘fractal’’ @7# was originally introduced to quan
tify the geometric features of a variety of natural objec
whose fine-scale structure isstatistically self-similar. ‘‘Sta-
tistically self-similar’’ means that any small part of such a
object could be considered~in the statistical sense! as a re-
duced scale image of the whole. The statistically self-sim
geometry appears in thepower-lawbehavior of the average
‘‘mass’’ density of the fractal sets. More precisely, th
power-law behavior is contained in the factorxD2n, wherex
is the length scale; for the percolating fractal sets,x ranges
between two characteristic lengths; the microscopic dista
a and the correlation lengthj@a. The parameterD in the
power exponent,D2n, is the so-calledfractal dimension@7#
of the set, commonly referred to as the Hausdorff dimens
of the fractal, andn is the dimensionality of the embeddin
Euclidean space,En, which is always not less thanD, i.e.,
D<n. Thus the average density of the fractal objects
length scale dependentfor DÞn. ~In standard Euclidean ge
ometry, the Hausdorff dimensionD coincides with the em-
bedding dimensionalityn, so that the corresponding averag
density is constant.!
250 ©2000 The American Physical Society
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The fractal dimensionD is not, however, the only geo
metric parameter required for the complete description of
self-similar fractals. The other is the index of connectivityu
@4,6,8,9#; contrary to the fractal dimensionD which de-
scribes the scaling behavior of the averaged ‘‘mass’’ den
of a fractal set, the indexu quantifies how the ‘‘elementary’
structural units inside the set~e.g., the filled and empty site
for the problem of the site percolation on lattices! are
‘‘glued’’ ~connected! together to form the entire fractal ob
ject. In Euclidean geometry, whenD coincides with the Eu-
clidean dimensionalityn, u[0; however, in fractal geom
etries, when D differs from the dimensionality of the
embedding spacen, the indexu may attain nonzero values

Roughly speaking, the parameteru describes the ‘‘shape’
of a fractal object, and may be different for fractals even w
equal values of the fractal dimensionD. A more precise defi-
nition of the indexu could be given by using the concept
the geodesic line, i.e., the ‘‘shortest’’ line connecting tw
‘‘elementary’’ structural units of the fractal. Indeed, the t
pological arguments of Ref.@10# show that the geodesic lin
on a self-similar fractal object could be treated as a s
affine fractal curve whose own Hausdorff fractal dimens
is equal to (21u)/2. This issue was discussed in more det
in Ref. @11#. A rigorous definition of the self-affine fracta
curve can be found, e.g., in Ref.@2#. The geometric signifi-
cance of the indexu for the fractal objects was also dis
cussed on a descriptive level in Ref.@12#. ~In the notations of
Ref. @12#, u[s.! A detailed consideration of the issue
connectivity for the percolating fractal sets~percolating frac-
tal networks! was given in Ref.@4# where the direct relation
between the parameteru and the topological structure of th
fractal network was pointed out.

It is worth mentioning that the index of connectivityu
plays an essential role in many dynamical phenomena
fractals, e.g., transport processes in disordered m
@6,8,9,12–15#, ‘‘bimolecular’’ chemical reactions@16,17#,
localization of waves@4,11,18,19#, etc. The original impor-
tant promotion of the parameteru was made in a pioneerin
paper@6# where the concept of range-dependent diffusion
percolating networks was proposed. By applying scal
theory, it was shown@6# that the diffusion constant on
percolating network, for length scalesx ranging betweena
andj, behaves as a power law}x2u.

B. Alexander-Orbach conjecture

The latter insight, along with the realization that solvin
the problem of the range-dependent diffusion was equiva
to solving the~scalar! elastic vibration problem~for more
details, see, e.g., Ref.@4#!, led Alexander and Orbach@3# to
evaluate the density of states for vibrations of a percola
network at criticality~these vibrations were termed fractons!,
with the introduction of the so-called fracton, or spectr
dimensiond̃. This new quantity was defined as a speci
combination of the fractal dimensionD and the index of
connectivityu, and has the formd̃[2D/(21u)<D. In ad-
dition, Alexander and Orbach@3# noted that the spectral di
mension d̃ for the percolating networks at criticality wa
numerically remarkably close to the mean-field value
~exact in Euclidean dimensionn56) for all embedding Eu-
clidean dimensionsn greater than one, even though the p
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rametersD andu were by no means constant as functions
n ~belown56). This numerical evidence led them to spec

late that the spectral dimensiond̃ might be exactly 4/3 for the
percolating sets at criticality in all embedding dimensionsn
>2. This has come to be known as the Alexander-Orb
~AO! conjecture@3#.

The AO conjecture is important because, if true, it mig
allow one to describe the fractal geometry of percolation

using the unique basic concept of the spectral dimensiod̃
54/3 for such fundamental problems as correlated and
correlated percolation on lattices, as well as for the m
general continuum percolation problem@2,4#. The great in-
terest in this conjecture results not only from the univer

value 4/3 assigned tod̃ in all n>2, but also from the fact
that it establishes a relationship between the index of c
nectivity, u, which appears in the description of the dynam
cal processes on fractals, and the Hausdorff fractal dim
sion D, yielding the scaling behavior of the density of th
fractal substrate.

Much theoretical and numerical effort has been made
the attempt to prove or disprove the AO conjecture~for a
comprehensive review, see, e.g., Refs.@4,13#!. At present,
the situation is as follows. For sufficiently high embeddi
Euclidean dimensionsn>6, a rigorous analytical proof for
the AO conjecture has been obtained within the mean-fi
theory. The mean-field percolation is well modeled by t
percolation on the so-called Cayley trees~Bethe lattices!. A
Cayley tree is defined as a graph without loops in which e
node has the same number of branches; the self-similarit
such graphs is not necessarily manifest in their geome
representation, but is seen in their connectivity@20#. The
percolation problem on Cayley trees was solved exactly
Coniglio @21#.

For lower embedding dimensions 2<n<5, the mean-
field theory cannot be directly applied, and an analytical c
sideration of the topology of percolation in these dimensio
meets considerable difficulties@13#. Meanwhile, a large body
of studies, both theoretical and numerical, indicates that
true value of the spectral dimensiond̃ must be slightly
smaller than 4/3 for 2<n<5 ~for a review, see, e.g., Ref
@4#!. Thus, an improvement of the original AO value 4/3 f
2<n<5 was placed at the center of attention@4#.

C. Percolation constant

Recently, Milovanov@10# proposed an unconventiona
analytical approach to study the fractal geometry of perco
tion at a critical threshold, which involves methods of diffe
ential topologies. The idea of his approach was to supp
fractal object with an additional topological structure of t
fractal manifoldthrough the introduction of local coordinate
at each point of the fractal. Milovanov found that the numb
of independent coordinates must be formallyfractional and
equal to the spectral fractal dimension,d̃. This approach led
him to prove that the value ofd̃ at the threshold of percola
tion satisfies some transcendental algebraic equation; the
lution of this equation is some universal topological const
C, i.e., d̃5C for all 2<n<5. This constant is approximatel
equal toC51.32760.001@10#, and is indeed slightly smalle
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than the original AO result, 4/3. These findings lead to
improvement of the AO value for 2<n<5:

d̃[2D/~21u!5C'1.327,4/3. ~1!

For the sake of convenience, we refer below to the quan
C'1.327 as the ‘‘percolation constant.’’

To illustrate result~1!, consider, for instance, the so
called uncorrelated percolation on lattices@2#. From a wealth
of numerical studies it has become clearly understood
the Hausdorff fractal dimensionD and the index of connec
tivity u for the uncorrelated percolating networks on lattic
do not depend on the particular kind of the lattice assum
~e.g., triangular, square, etc.!, as well as on the specific typ
of the percolation problem~e.g., ‘‘site’’ or ‘‘bond’’ @2#!. The
only parameter that actually affects the numerical values
D andu, is the dimensionality of the embedding Euclide
space,n (n,6). For example, the uncorrelated percolati
on the plane lattices (n52) is described by the valuesD
591/48'1.896 andu'0.86 ~Refs. @2# and @4,6# respec-
tively. This yields the estimate of the spectral fractal dime
sion,d̃'1.326, which coincides, within the numerical erro
with the percolation constantC51.32760.001.

Strictly speaking, result~1! is exact forcontractiblefrac-
tal sets@22# which do not contain isolated ‘‘voids.’’~Such
sets can be continuously deformed into a point.! It can be
shown @10#, however, that the spectral fractal dimensiond̃
for the noncontractiblepercolating fractal sets is at least n
larger than the percolation constantC, i.e., d̃<C'1.327 in
general. This can be supported, e.g., by the numerical re
of Normandet al. @23#, which are among the most accura
These results were obtained for the plane percolationn

52), yielding d̃'1.321, which is indeed slightly smalle
thanC'1.327.

In this paper, we concentrate our attention on the geo
etry of percolation in random scalar fieldsc(x) having the
specific property ofsign symmetry. ~We imply that xPEn

andn>2.! ‘‘Sign symmetry’’ means that the statistical cha
acteristics of the random functionc(x) are identical to those
of 2c(x). Without loss of generality, we require that th
functionc(x) has zero mean, i.e.,^c(x)&50, where the av-
erage^•••& is taken over an area ofEn with the character-
istic linear size of the order of the percolation correlati
lengthj or more. Our particular interest in the random fiel
c(x) with the sign symmetry is motivated by their impo
tance for a number of particular physical applications~see,
e.g., Refs.@2,12,24,25#, and references therein!, where the
reflection properties of the fieldc(x) play a role.

Below, we advocate a nontraditional approach to study
the fractal geometry of percolation at the threshold wh
includes the methods of the homotopic topology. In Sec.
we discuss some general topological features of the s
symmetric random scalar fieldsc(x) in Euclidean spaces o
arbitrary dimensionalityn>2. It is proven in Sec. II that the
zero set of the sign-symmetric random functionc(x), n>2,
always contains a percolating subset if the condit
u¹c(x)uÞ0 holds almost everywhere. In Sec. III, we analy
in more detail the fractal topology of percolation in two d
mensions (n52). Our particular attention in Sec. III is con
centrated on~i! the fractal properties of the single isoleve
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c(x)5h, h→0, hÞ0, of the random fieldc(x); and~ii ! the
fractal characteristics of the percolating subsets of the z
set, c(x)50, of the functionc(x). The relevant values o
the Hausdorff fractal dimension and the index of connec
ity are obtained in Sec. III in terms of the percolation co
stantC. In Sec. IV, the results of the numerical modeling
the random fieldc(x) on a plane are presented, and a co
parison with the basic topological conclusions is given.
Sec. V We summarize the results obtained.

II. PERCOLATION PROPERTIES OF THE ZERO SET

Let En be n-dimensional Euclidean space (n>2). Con-
sider a random functionc(x) in En, which is statistically
identical to the function2c(x). ~Here ‘‘random’’ does not
necessarily exclude the possible existence of the long-ra
correlations@2#, and could be applied to problems of th
correlated and continuum percolation.!

Assume the conditionu¹c(x)uÞ0 everywhere except
perhaps, in domains of negligible measure. This condit
implies that the fieldc(x) is nondegenerated almost for allx.
Note that the infinite values of¹c(x), i.e., whenu¹c(x)u
51`, are allowed.

Then leta!j be the microscopic length scale where t
functionc(x) behaves as a continuous nonsingular functi
@This, of course, implies thatc(x) could be treated as ‘‘ran
dom’’ only at length scalesx@a. We also assume below tha
a cannot be infinitely small just as one could expect for t
majority of physical applications.# The important inference
to be deduced is that the zero set of the functionc(x) @i.e.,
the set of pointsxPEn where c(x)50# percolates.@More
precisely, the zero set of the functionc(x) must contain the
percolating subset; the entire zero set ofc(x) may bedis-
connectedin general.#

This assertion, being quite natural, was formulated in R
@2#, although we are not aware of any rigorous mathemat
proof. Considering such a proof, however, might help o
achieve a deeper insight of the topology of percolation
random scalar fieldsc(x) from a more abstract point o
view.

Let us now prove the above assertion for arbitrary Euc
ean dimensionalityn>2. Assume the contrary: the zero s
of the field c(x) does not percolate. This leads to the co
clusion that all zero isolevels ofc(x) are bounded closed
sets.@We use the term ‘‘zero isolevel’’ to denote the boun
ary of the zero set of the functionc(x).# In fact, the zero
isolevel being an unbounded set would imply that th
isolevel stretches to infinity and, therefore, percolates. A
one can immediately become convinced that the set of
points wherec(x)Þ0 is open, and hence, the zero set
c(x) is closed. Since the interior of the closed set must
open@26#, its boundary, i.e., the zero isolevel, in our case
also a closed set.~We implicitly take into account that, by
assumption, the length scalea cannot be arbitrarily small,
enabling one to rely on the concept of the topological sp
@26#.!

The next step is to observe that any bounded closed s
Euclidean spaceEn is compact@27#. Thus all zero isolevels
of c(x) must be compact inEn. Any of these compact set
divides En into two topologically different parts: one i
bounded~finite in size!, and coincides with the interior of the
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set; the other is infinite, being its exterior. LetFi (1< i
<`) denote, for a giveni, the zero isolevel of the function
c(x) along with its interior.~Since the microscopic distanc
a is assumed to be finite, the set of allFi is denumerable.
Note, also, that allFi are, by definition, compact sets.! With-
out loss of generality, below we may consider only those s
Fi which do not intersect with each other, i.e.,FiùF j5B.
All theseFi are, therefore, disconnected. Since the Euclid
spaceEn is connected@27#, we finally conclude that the se
En\ø iFi is also connected. Moreover, this set is infinite
size, because allFi are compact. In other words, we mu
infer thatEn\ø iFi percolates.

We again now make use of the fact that the functionc(x)
varies continuously at length scales shorter than the cha
teristic microscopic distancea. This leads to the conclusio
that the functionc(x) preserves its sign over the entire s
En\ø iFi . Assume thatc(x) is positive there, i.e.,c(x)
.0 for xPEn\ø iFi . But the topology of the setEn\ø iFi ,
wherec(x).0, principally differs from the topology of the
sets wherec(x),0. In fact, whereasEn\ø iFi is infinite and
connected, the sets wherec(x) is negative are localized in
side Fi and, therefore, are finite in size and disconnect
This topological difference, however, is in contradiction w
the assumed statistical equivalence of the functionsc(x) and
2c(x). Consequently, the zero set ofc(x) percolates,
Q.E.D.

We stress, however, that the percolation nature of the z
set,c(x)50, of the random fieldc(x) does not necessaril
imply that this set is afractal. Indeed, our previous consid
eration was based on the most general topological conc
such as continuity and connectedness, and did not take
account some more specific, structural characteristics of
functionc(x). Let us now assume that the random fieldc(x)
exhibits additional properties ofisotropy and statistical ho-
mogeneity. Then, for such a fieldc(x), therealwaysexists a
critical percolation thresholdhc , in whose small vicinityh
→hc the geometry of the ‘‘cut’’c(x)5h is a self-similar
fractal for length scalesx ranging between the microscop
distancea and the percolation correlation lengthj@a ~see
Refs. @1,2,4,5#!. The casehc50 is realized, e.g., for atwo-
dimensionalsign-symmetric random fieldc(x) @2#, so that
the zero set,c(x)50, of the random, sign-symmetric, iso
tropic, statistically homogeneous functionc(x) on a plane
(xPE2) has the geometry of the percolating fractal object
the range of scalesa<x<j.

III. TOPOLOGY OF PERCOLATION IN TWO
DIMENSIONS

We now discuss in some more detail the topology of p
colation in random scalar fieldsc(x) in two dimensions, i.e.,
in a more particular case whenxPE2. We assume that~i! the
random functionc(x) has the property of the sign symmetr
so that the fieldsc(x) and2c(x) are statistically identical;
~ii ! the random fieldc(x) is isotropic and statistically homo
geneous@this implies the existence of acritical percolation
thresholdhc for which the ‘‘cut’’ c(x)5h, h→hc exhibits a
self-similar fractal geometry for a<x<j#; and ~iii !
u¹c(x)uÞ0 everywhere except, perhaps, domains of ne
gible measure.

First of all, we note that the critical percolation thresho
ts

n

c-

t

.

ro

ts
to
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hc is uniquein two dimensions. From the statistical equiv
lence of the functionsc(x) and 2c(x), one then immedi-
ately concludes that this unique~critical! threshold is zero,
i.e., hc50 for n52. @Conversely, in higher dimensionsn
>3, there could exist more than one critical percolati
thresholdhc . This, in turn, leads to the possibility of th
simultaneous percolation through both ‘‘empty’’ and
‘‘filled’’ regions, since the topology of the spaceEn may
admit, for n>3, the nonintersecting, statistically isotrop
paths to infinity@2#. For instance, for the three-dimension
embedding Euclidean spaceE3, one could introduce two
critical percolation thresholds,hc1 and hc2, say, so that the
simultaneous percolation through the three-dimensio
‘‘empty’’ and ‘‘filled’’ regions takes place for all values ofh
lying betweenhc1 andhc2. For the sign-symmetric distribu
tion of c(x) in three dimensions, one then hashc152hc2
Þ0 @28#.#

In two dimensions, simultaneous percolation ceases to
ist as soon as thecritical percolation thresholdhc50 is the
only one. Consequently, all the isolevels of the sig
symmetric functionc(x) corresponding to somenonzero
thresholdhÞhc50 are bounded closed plane curves~the
so-called plane ‘‘loops’’!. @The introduction of the term
‘‘loop’’ assumes thatu¹c(x)uÞ0 almost for allx.# Each of
these loops is defined by the equationc(x)5h where the
parameterhÞhc .

A. Fractal geometry of single loops ath\hc

It is clear that the equationc(x)5h,hÞhc50, could de-
fine, in general, a number of themutually nonintersecting
loops~to be referred to assingleloops hereafter!, each being
a connectedsubset of the set of pointsc(x)5h, xPE2. De-
note thesingleloop ~i.e., thesingleisolevel! of the fieldc(x)
at the thresholdhÞhc by Fh . Then the set of all the single
loops Fh represents, for givenhÞhc , the entire~discon-
nected! set of roots of the equationc(x)5h.

From the topological point of view, each single loopFh is
homeomorphicto the standard topological circleS1 @22#. We
formalize this result by writingFh;S1. ‘‘Homeomorphic’’
means that the loopFh can becontinuously deformedinto
the circleS1, i.e., there exists aone-to-one mutually continu
ousmapping of the points ofFh on the points ofS1. ~Such a
mapping is usually termed ‘‘homeomorphism’’@22#. A ho-
meomorphism between two given topological objects mi
be treated geometrically as a deformation of one of th
objects into another, which is performed both witho
‘‘gaps’’ and ‘‘gluings.’’! We also note that the above home
morphism, Fh;S1, might be violated on a set of point
whereu¹c(x)u50; we assume, however, that the measure
these points is negligible. For more details, Refs.@22,29#
might be quoted.

The next step is to make use of the properties ofisotropy
and statistical homogeneityof the field c(x). As already
mentioned above, these properties appear in the statistic
self-similar, fractal geometry of the ‘‘cut’’c(x)5h for the
values of h sufficiently close to the critical percolatio
thresholdhc , i.e., h→hc . ~Here the fractal geometry ap
proximation implies the range of scalesa<x<j. Note, also
that the conditionh→hc is equivalent toh→0 for the per-
colation in two dimensions.! Assuming the conditionh
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→hc , one could now apply the concept of thefractal geom-
etry to the description of the isolevels,c(x)5h, of the ran-
dom, isotropic, statistically homogeneous fieldc(x) in the
range of scales betweena andj. In fact, one could conside
single isolevels~i.e., thesingle loopsFh for the percolation
on the Euclidean planeE2) of the fieldc(x) as self-similar
fractal objects having some Hausdorff fractal dimensiondh
and some index of connectivityuh . ~Note that the formal
introduction of the parametersdh anduh does not require the
condition n52, and might be also done for percolation
higher embedding dimensionsn>3.!

On the other hand, the conditionh→hc would mean that
the topology of the isolevels,c(x)5h, of the field c(x)
approaches thecritical topology ath5hc ; for this critical
topology, the Hausdorff fractal dimensiondh and the index
of connectivityuh can be related to each other through t
percolation constantC @see Eq.~1!#. We have, consequently

2dh /~21uh!→C'1.327, h→hc . ~2!

We now argue that the indexuh is equal to zero in the cas
of the two-dimensional random fieldc(x), i.e.,

uh50, h→hc50. ~3!

To prove relation~3!, we need the following auxiliary
assertion:the index of connectivity of a fractal set is a top
logical invariant of this set. A topological invariant is a
quantity which remains unchanged under the homeomor
deformations@22,29#. Thus our assertion is equivalent to th
following one: the indexes of connectivity of the homeomo
phic fractal sets must coincide.

Indeed, the index of connectivity of a fractal set quan
fies, by definition, how different points of the set a
‘‘glued’’ ~connected! to each other in space. Because tw
homeomorphic sets can be deformed one into another w
out any ‘‘gaps’’ and ‘‘gluings’’ @22,29#, the homeomorphic
deformation cannot violate the ‘‘rule’’ of the ‘‘gluing’’ of
the points of the set into the whole topological object. Hen
a homeomorphic deformation preserves the index of conn
tivity, Q.E.D.

Contrary to the index of connectivity of the fractal set, t
Hausdorff dimension of the fractal cannot be treated a
topological invariant. An example might be the constructi
of the Koch curve from the unit intervalĪ @5,13#. Such a
construction provides a homeomorphism between the K
curve and the intervalĪ [@0,1#; however, the Koch curve is
the fractal object of the Hausdorff dimension log 4/log
'1.26•••.1 @5,13#, whereasĪ is a segment of a smoot
curve whose Hausdorff dimension is equal to one. In
meanwhile, one concludes that the index of connectivity
the Koch curve is equal to that ofĪ ~see below!.

We now make use of the homeomorphismFh;S1 be-
tween the single isolevels~i.e., single loopsFh) of the ran-
dom sign-symmetric fieldc(x) and the standard topologica
circle S1. In view of the above, the homeomorphismFh
;S1 means that the index of connectivity ofFh ~i.e., the
parameteruh) is equal to the index of connectivity ofS1.
~Meanwhile, the Hausdorff fractal dimensiondh of the set
Fh differs, in general, from the Hausdorff dimension of t
circle S1, which is defined to be unity@5#!.
ic
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One finally notes that the standard circleS1 is homeomor-
phic to the closed unit interval,Ī [@0,1#, with the identified
end points, 0 and 1@22#. Let us now remove one point from
the circleS1. This is equivalent to splitting the two identifie
end points, so that one directly transforms the circleS1 into
the interval Ī . Removing only one point from the circleS1

cannot, however, violate the index of connectivityuh which
describes, by definition, the self-similar,fractal geometry of
the setFh;S1. ~The index of connectivityuh might be sen-
sible to a ‘‘self-similar’’ removing of an infinite number o
points from the circleS1.! Hence, we conclude that the pa
rameteruh is equal to that of the intervalĪ .

In a similar way, the index of connectivityuh remains
unchanged if the two end points 0 and 1 are removed fr
the closed intervalĪ [@0,1#. Hence, both the closed interva
Ī [@0,1# and the open intervalI[(0,1) have exactly the
same indexesuh . Note, further, that the open intervalI
[(0,1) is homeomorphic to the one-dimensional Euclide
spaceE1, i.e., I;E1. The homeomorphismI;E1 shows that
the indexes of connectivity of the setsI and E1 coincide.
Because the index of connectivity of any Euclidean sp
En,n>1, is defined to be zero@6#, one immediately obtains
uh50, which proves Eq.~3!.

From Eqs.~2! and ~3!, one finds

dh→C'1.327, h→hc50. ~4!

Expression~4! shows that the fractal dimensiondh of the
single isolevelsFh of the two-dimensional sign-symmetri
random fieldc(x) is equal to the percolation constantC
'1.327 for the values of the thresholdh sufficiently close to
the critical percolation threshold,hc50.

It is relevant to remark that each single isolevelFh in two
dimensions surrounds some plane area,Vh , being theinte-
rior of the ~single! loop Fh . From the topological point of
view, the loopFh might be treated as theouter boundaryof
the setVh . Since the loopFh is homeomorphic to the stan
dard topological circle,S1, i.e.,Fh;S1, the set of pointsVh
is homeomorphic to the interior of the circleS1, which is
defined@22# as the standard two-dimensional open diskD2,
i.e.,Vh;D2 @22#. ~For the sake of simplicity, here we ignor
the possible appearance of the isolated ‘‘voids’’ insideVh ,
whose presence may violate the homeomorphismVh;D2.!

The arguments of Ref.@30# suggest that the set of point
Vh , which is surrounded by the singlefractal loop Fh on a
plane, could be considered as afractal object having its own
Hausdorff fractal dimension 1<Dh<2. It is intuitively clear
that the larger the fractal dimensiondh of theouter boundary
of the setVh , the smaller the fractal dimensionDh of the
surrounded area,Vh , would be. This might be more rigor
ously quantified by saying that the sumDh1dh of the fractal
dimensionsDh and dh is a topological invariant, i.e., the
quantity Dh1dh remains unchanged under the homeom
phic deformations of the entire setVhøFh . Because, on the
other hand, the setVh is homeomorphic to the standard two
dimensional diskD2, i.e., Vh;D2, and the outer boundary
Fh , of the setVh is homeomorphic to the standard on
dimensional circleS1, i.e.,Fh;S1, one immediately obtains
the homeomorphismVhøFh;D2øS1. Consequently, the
sumDh1dh of the Hausdorff fractal dimensions of the se
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Vh and Fh must be equal to the sum of the~Euclidean!
dimensionalities of the setsD2 andS1, which is easily seen
to be 21153. HenceDh1dh53. This expression for the
parametersDh and dh was earlier proposed in Ref.@30#,
where the relationship between the fractal properties of
setsVh andFh was discussed on a descriptive level.

Consequently, the fractal dimensionDh could be ex-
pressed asDh532dh . Making use of Eq.~4!, one then
obtains

Dh→32C'1.673, h→hc50. ~5!

The value ofDh→32C yields the Hausdorff fractal dimen
sion of theinterior of a plane~single! fractal loopFh for the
values of the thresholdh sufficiently close to the critica
percolation thresholdhc , i.e.,h→hc50. An estimate ofDh,
which is numerically close to the value of 32C, was also
obtained in Refs.@12,24#, where some fractal properties o
the percolating networks were discussed.

Meanwhile, the index of connectivity of the setVh is
easily seen to be zero. This follows immediately from t
topological invariance of the index of connectivity and t
homeomorphismVh;D2. Indeed, taking into account@22#
that the open diskD2 is homeomorphic to the Euclidea
spaceE2, i.e., D2;E2 @22#, one obtainsVh;E2. Hence the
index of connectivity of the setVh is the Euclidean one. We
mention, however, that the homeomorphismVh;E2 is vio-
lated if the isolated fractal ‘‘voids’’ appear insideVh ; in this
case, the index of connectivity of the setVh would be posi-
tive.

It is theoretically important to note that the fractal dime
sion dh might be subject to change between the above va
of dh→C'1.327 and the alternative value ofdh57/4, de-
pending on a moderate change in the definition of the no
of the single isolevel@2,31#. Roughly speaking, the alterna
tive value of dh57/4 describes the single isolevels of th
random field on a plane,Fh , whose ‘‘gulfs’’ might have
arbitrarily small widths~see, e.g., Ref.@2#!; this formally
corresponds to the case when the characteristic ‘‘mic
scopic’’ length scalea→0. Conversely, the consideratio
presented above clearly assumes that the parametera cannot
be arbitrary small, so that the homeomorphismFh;S1 could
be established. This actually leads to some ‘‘smoothing’’
the isolevels when one implicitly dams all the ‘‘gulfs
whose widths might be less than;a. In Ref.@31#, the fractal
dimension of such isolevels was found to bedh'4/3, which
is practically very close toC'1.327.

We also remark that the alternative value ofdh57/4 has
been recognized in modeling the uncorrelated percolation
the planelattices, when the geometry of the percolating se
is discreteand the issue ofconnectednessis more delicate
~see, e.g., Refs.@2,4#!. In view of relation~2!, the value of
dh57/4 might be associated with the nonzero value of
index of connectivity,uh'(724C)/2C'0.64.0. The fact
that uh.0 would then mean that the corresponding sin
isolevels of the fieldc(x) are not homeomorphic to the sta
dard topological circleS1; rather, these isolevels would con
tain an infinite number of branching points whose prese
violates the above homeomorphismFh;S1. The importance
e
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of the branching points for the connectivity properties of t
percolating networks at criticality was analyzed in more d
tail in Ref. @4#.

B. Fractal geometry of percolating subsets athÄhc

We now determine the fractal characteristics of theper-
colating subsetsof the critical ‘‘cut,’’ c(x)5hc , of the two-
dimensional (xPE2) sign-symmetric random fieldc(x). For
two-dimensional fields, there exists only one critical cut
hc50; hence the critical cutc(x)5hc coincides with the
zero setc(x)50 of the field c(x) when xPE2. We are
reminded that the entire zero setc(x)50 of the random field
c(x) is disconnected; the existence of a~connected! perco-
lating subsetof the zero setc(x)50 was formally proven in
Sec. II.

Under the conditionu¹c(x)uÞ0, the entire zero se
c(x)50 of the fieldc(x) can be treated as a weblike stru
ture ‘‘composed’’ of all the single isolevelsFh which corre-
spond to a given thresholdh→0. According to the results o
Sec. II, this structure contains a~connected! percolating frac-
tal subset.

Denoted* andu* as the Hausdorff fractal dimension an
the index of connectivity of the percolating fractal subset
the zero setc(x)50. The quantitiesd* and u* should be
distinguished from the parametersdh anduh describing the
fractal geometry of the single isolevelsFh of the fieldc(x)
at h→0. A calculation of the parametersd* andu* is given
in what follows.

The index of connectivityu* could be obtained in terms
of the Hausdorff fractal dimensiondh ,h→0. The relation-
ship between the parametersu* anddh is a manifestation of
the fact that the ‘‘shape’’ of the connected subsets of the z
set,c(x)50, of the random fieldc(x) in two dimensions is
determined by the fractal properties of the single isolevels
the field,c(x)5h, for h→0.

An expression for quantityu* could be easily obtained
from a comparison of the two identical representations of
critical diffusion coefficient in a two-dimensional rando
field c(x), one in terms of the fractal dimensiondh @see Eqs.
~2.13! and~4.144! in Ref. @2##, and the other in terms of the
index of connectivityu* @see Eq.~2! in Ref. @15##, yielding

u* 52~dh21!/dh , h5hc50. ~6!

For a regular~nonrandom! sign-symmetric functionc(x),
all the isolevelsc(x)5h would be smooth rectifiable curve
(dh51), so that Eq.~6! yields, evidently,u* 50. Another
important particular case is the uncorrelated percolation
lattices for which the resultdh57/4 could be obtained@2,31#.
Then the corresponding value of the index of connectiv
u* would beu* 56/7'0.86, in good agreement with Refs
@4,6#.

For the percolation problem in a two-dimensional sig
symmetric random fieldc(x), the fractal dimensiondh has
been expressed in terms of the percolation constantC, i.e.,
dh'C'1.327@see Eq.~4!#. Hence the index of connectivity
u* becomes

u* '2~C21!/C'0.49, h5hc50, ~7!
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256 PRE 62ALEXANDER V. MILOVANOV AND GAETANO ZIMBARDO
where Eq.~6! has been used. This estimate coincides w
the result obtained in Ref.@32# from a topological model
dealing with the issue of the ‘‘dual’’ fractal topologies~see,
also, Refs.@12,24#!.

The value of the Hausdorff fractal dimensiond* , corre-
sponding to the index of connectivity@Eq. ~7!#, can be now
estimated from the basic equation~1!. This equation de-
scribes the fractal geometry of the percolating sets at c
cality; in particular, it holds for the percolating fractal su
sets of the zero setc(x)50 of the two-dimensional sign
symmetric random fieldc(x).

ReplacingD for d* , andu for u* in Eq. ~1!, and making
use of Eq.~7!, one finds

d* '2C21'1.654, h5hc50. ~8!

Equation~8! yields the Hausdorff fractal dimension of a pe
colating fractal subset of the zero set,c(x)5hc50, of the
field c(x). It is interesting to note that this dimension
numerically close, although not exactly equal, to the Ha
dorff fractal dimensionDh'32C'1.673 of the interior of a
plane single fractal loopFh ,h→hc50 @see Eq.~5!#. The
numerical difference between the fractal dimensionsd* and
Dh is actually due to the fact that the percolation const
C'1.327 slightly deviates from the AO value, 4/3, in tw
dimensions~see the discussion in Sec. I!.

The basic resultdh→C'1.327@see Eq.~4!# might give us
the key to find numerically an estimate for the percolat
constantC. Indeed, the value ofC could be principally ob-
tained as the Hausdorff fractal dimensiondh of the single
isolevelsFh of the two-dimensional sign-symmetric rando
field c(x) for the values ofh sufficiently close to the critica
percolation threshold,hc50.

In Sec. IV, we evaluate the percolation constantC from
the particular numerical realization of the random fieldc(x)
on a plane, commonly referred to asfractional Brownian
surface. Characteristic properties of these surfaces are
cussed in Ref.@2#.

IV. RANDOM FIELDS IN TWO DIMENSIONS:
NUMERICAL MODELING

We consider the standard numerical representation of
fractional Brownian surfacec(x) given by ~see, e.g., Refs
@2,33,34#!

c~x!5(
k

c~k!exp$ i ~k•x1fk!%, ~9!

wherec(k) is the Fourier amplitude of the mode with wav
vectork, andfk are random phases chosen to simulate
random spatial structure in the fieldc(x). Note that because
the phasesfk are random, the functionsc(x) and 2c(x)
are automatically statistically equivalent.~The term ‘‘auto-
matically,’’ however, might be oversimplified, as soon as
naively ignores the important issue of the long-range co
lations customarily present in the systems with the self-af
fractal geometry. In the framework of the present study, n
ertheless we leave this issue mostly beyond the scope o
consideration; for a detailed discussion, see Ref.@35#.!
h

i-

-

t

s-

e

e

t
-
e
-
ur

The basic periodicity of the Fourier expansion in Eq.~9!
is that of the square simulation box of sideL, so thatk
[(k1 ,k2)52p(n1 ,n2)/L, with integer valuedn1 andn2. ~In
the numerical model, the size of the simulation boxL plays
the role of the percolation correlation lengthj.! The Fourier
amplitudes for an isotropic power-law spectrum are assum
in the form

c~k!5
2pC/L

~k2L211!(a11)/4
, ~10!

whereC is the normalization constant, andk5uku;x21 and
lies between 8p/L and 2p/a ~a long wavelength cutoff a
L/4 is introduced!. The spectrum in Eq.~10! is truncated at
kmax52pN/L, whereN5L/a, with a.0 the smallest wave-
length present.~The introduction of the finitekmax52p/a
,` explicitly takes into account that the value of the leng
scalea has been assumed to be substantially nonzero.! In the
numerical model, we used values of the ratioL/a up to 80.
With such a choice, the number of independent Fou
modes in Eq.~9! is 10 024.

The parametera in Eq. ~10! is the spectral index of the
power-law energy density spectrum,P(k);k2a. Indeed,
from the definition of the wave vectork it is clear that
k2L2>(8p)2@1, hence the Fourier amplitude~10! behaves
with k as the power lawk2(a11)/2, and the square of the
amplitude,c2(k), behaves ask2(a11). Consequently, the en
ergy density spectrum scales asP(k);2pkc2(k);k2a.
Note, also, that the inequalitykL@1 is actually equivalent
~through the definition of the numerical parameterL) to x
!j, the necessary condition for the fractal approach to
valid.

The spectral indexa could be related to the Hausdor
fractal dimensiond of the horizontal cross section~horizon-
tal ‘‘cut’’ ! of the fractional Brownian surface~9!. This rela-
tion is given by the well-known Berry formula@36#:

a5522d, 1<d<2. ~11!

The fractal dimensiond appears in the variancê@c(x)
2c(x1x0)#2&;ux0u2(22d), wherex0 is a constant plane vec
tor obeyinga!ux0u!j ~see, e.g., Ref.@2#!. This dimension
must be distinguished from the parametersdh andDh which
describe the fractal properties of the single isolevels,Fh ,
h→hc , of the sign-symmetric random fieldc(x), as well as
from the quantityd* yielding the Hausdorff fractal dimen
sion of a ~connected! percolating subset of the critical cu
c(x)5hc50, of the fieldc(x). Conversely, the fractal di-
mensiond is the global characteristic of the fieldc(x): This
quantity defines the Hausdorff fractal dimension of the e
tire, disconnectedset of pointsc(x)5h, rather than the di-
mensionalities of the connected subsets of the setc(x)5h
~also see Sec. II!. In other words, the parameterd yields the
Hausdorff fractal dimension of the~disconnected! set com-
posed of all the isolevels of the fieldc(x) at a given thresh-
old h. This issue is discussed in more detail in Refs.@37,38#.

The zero horizontal cutc(x)50 of the fractional Brown-
ian surface@Eqs. ~9! and ~10!# for a53/2 is illustrated in
Fig. 1. It is clear that the Hausdorff fractal dimensiond of
the entire setc(x)5hc50 cannot be smaller than the Hau
dorff dimensiond* of its percolating subset, i.e.,d>d* .
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From Eqs.~8! and ~11!, one concludes that 1<a<724C
'1.69. Hence general topological findings of Secs. II and
could be applied to the fractional Brownian surfaces@Eqs.
~9! and ~10!# only if their spectral indicesa do not exceed
the maximum value of 724C. Physically, this means that th
field c(x) contains enough energy at largek ~i.e., small
wavelengths;k21) associated with the considerable fin
scale structuring in the cross sectionc(x)5hc . For frac-
tional Brownian surfaces@Eqs. ~9! and ~10!# having a>7
24C, a topological ‘‘smoothing’’ of the cutc(x)5hc might
be the case as only little energy goes to the small scales

Since the entire cutc(x)5h is disconnected, the fractal
dimensiond is independentof the parametersdh , Dh , and
d* describing the fractal properties of theconnectedsubsets
of the setc(x)5h. From Eq.~11! one then concludes tha
these parameters are insensitive to the particular value o
spectral indexa assumed in the Fourier amplitudes~10!. For
instance, the resultdh'C @see Eq.~4!# cannot depend on th
particular numerical realization of the fractional Brownia
surface@Eqs.~9! and~10!#, i.e., the fieldsc(x) generated for
different values of the spectral indexa, must have the sam
value of the fractal dimensiondh'C'1.327.~This might be
treated as one of the universal features of the fractal ge
etry of percolationat criticality @4#.! Our goal now is to
analyze numerically the resultdh'C'1.327 for the frac-
tional Brownian surfaces@Eqs. ~9! and ~10!#, assuming dif-
ferent values of the spectral indexa (1<a<724C). For
each realization, we first of all check that the fractal dime
sion d of the horizontal ‘‘cut’’ of the fractional Brownian
surface@Eqs.~9! and ~10!# is in accord with the Berry rela
tion ~11!.

Then, we take into account that the field equations~9! and

FIG. 1. The zero horizontal ‘‘cut’’ of the fractional Brownia
surfacec(x) for a53/2. Dark gray shading corresponds to positi
values ofc(x), and light gray to negative values. One also obser
isolated ‘‘spots’’~e.g., dark spots in the light area!, where the sign
of c(x) is reversed. These ‘‘spots’’ could be considered as to
logical ‘‘voids’’ whose presence slightly violates the contractibili
property. Dimensionless units.
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~10! satisfy the topological conditions~i!–~iii ! specified in
Sec. III for the random functionc(x),xPE2. In particular,
this enables one to approximate the single isolevels of
field equations~9! and ~10! by plane fractal loops,Fh .

To estimate the fractal dimensiondh of the loopsFh nu-
merically, we exploit the following topological propert
@29#, namely, that each loopFh divides the Euclidean plane
E2 into two distinct parts; one is theinterior of the loop and
is finite in size, the other is itsexterior and is infinite.„We
have already used this property in Sec. III where the frac
dimension,Dh532dh , of the internal part,Vh , of the frac-
tal loop Fh was obtained@see Eq.~5!#….

Let Ph denote the perimeter of the loopFh , andAh be
the area of the internal part,Vh , surrounded byFh . A re-
markable feature of the fractal loopsFh is that the quantities
Ph and Ah are related to each other by the scaling law,Ph

;Ah
dh/2

@39#; this law is known as thearea-perimeter rela-
tion. ~For the smooth plane loops, one hasdh51, so that the
standard relationshipPh;AAh is recovered.! The area-
perimeter relation shows that the fractal dimensiondh can be
obtained as the slope of the plot logPh

2 versus logAh , com-
puted for a series of the loops,Fh ,h→hc , of the random
field c(x). ~We also note that a similar approach based
the application of the area-perimeter relation was rece
proposed to studying the coarse-grained texture of the
distribution functions in Earth’s magnetotail@40#.!

Given the levelhÞ0 of the field c(x), we find all the
corresponding loopsFh inside the simulation box. Let thes
loops be enumerated by the indexj. Then the integration
along each loop@which could be performed easily by mean
of the explicit representation of the fieldc(x) according to
Eqs. ~9! and ~10!# yields their perimeters Ph, j

5rh, jAdx1
21dx2

2 wherex1 andx2 are the components of th
plane vectorx.

To increase the accuracy of the computation, we int
duce the quantityPh5( j Ph, j , which is thetotal perimeter
of all the loops found for the given value ofh @40#. In a
similar way, the areasAh, j enclosed by the loops are ob
tained from Green’s formula to giveAh, j50.5rh, j (x1dx2
2x2dx1), and thetotal area of all the loops becomesAh
5( jAh, j .

Following Ref. @40#, we apply the abovearea-perimeter
relation to the quantitiesPh and Ah , yielding Ph;Ah

dh/2 .
@Note that we take into account the properties ofisotropyand
statistical homogeneityof the functionc(x).# It is easy to see
that the relationshipPh;Ah

dh/2 implies the condition

Ph
2/dh;(

j
Ph, j

2/dh . ~12!

Equation~12! indicates that the algebraic summation of t
areas contained by thefractal loopsFh cannot be reduced to
the ~intuitively obvious! summation ofsquaresof the perim-
eters of the loops; rather, thesesquaresmust be replaced for
2/dh , where the power exponent 2/dh is reduced to 2 only in
the case of the smooth, non-fractal geometry (dh51). Some
generalized relations of the form of Eq.~12! are discussed in
more detail in, e.g., Refs.@15,41,42#.

We evaluatedPh andAh for a statistically reliable num-
ber of ‘‘cuts’’ c(x)5h, whereh tends toward the critica
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258 PRE 62ALEXANDER V. MILOVANOV AND GAETANO ZIMBARDO
percolation thresholdhc50, and we plotted logPh
2 against

logAh to find the slopedh'1.3260.01 ~see Fig. 2!.
According to Eq.~4!, the quantitydh near the critical

threshold coincides with the percolation constant,C; hence
the slopedh'1.3260.01 could be considered as an estim
of the parameterC from the ‘‘cuts’’ of the fractional Brown-
ian surfaces~9!.

The result dh'1.3260.01 is numerically close to, al
though somewhatsmaller, on the average, than the topolog
cal valueC'1.327@see Eq.~1!#, and isindependent~within
the numerical errors! of the assumed values of the spect
indexa (1<a<1.69). The estimatedh'1.3260.01 is con-
sistent with the result'1.321 reported by Normandet al.,
@23# who used a high-statistics determination of the spec
fractal dimensiond̃ at the threshold of percolation.

The fact that the numerical methods applied yield, in b
cases, slightly smaller estimates of the percolation constaC
~compared with the topological resultC'1.327), leads one
to conclude that the percolating fractal sets near the thres
are not exactlycontractible ~as is assumed by the valu
'1.327), and that the isolated fractal ‘‘voids’’ might play
role ~see Ref.@10# and the discussion in Sec. I!. @This effect
might be recognized from Fig. 1 as evidence of isola
‘‘spots’’ ~i.e., topological sign ‘‘holes’’!, where the sign of
c(x) is reversed.#

Indeed, it is intuitively clear that the inclusion of the to
pological ‘‘voids’’ would act toward a more efficient perco
lation, since the convergence of the percolating set to infin
would be ‘‘quicker’’ in this case. Hence the percolatio
threshold could be achieved for asmallervalue of the spec-
tral fractal dimensiond̃52D/(21u) compared with the
‘‘basic’’ value of '1.327 @see Eq. ~1!#. „The ‘‘voids’’
present actually contribute into the effective index of co
nectivity u of the percolating structure. The argument is th
the geodesic lines@whose Hausdorff fractal dimension
equal to (21u)/2# become ‘‘longer’’ as the ‘‘voids’’ must
be bypassed on all scales. This results in a slightincreaseof
the index of connectivityu and the ensuingdecreaseof the

FIG. 2. Log-log plot ofPh
2 vs Ah ~solid squares! for the frac-

tional Brownian surface of Fig. 1. Two sets of points, correspo
ing either to negative or positive isolevelsh, are shown. Dimension
less units.
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spectral dimensiond̃[2D/(21u).‡ In this context, it is

worth emphasizing that the topological resultd̃5C'1.327
holds as the limiting case realized for the fractal objects t
areexactly contractible; the noncontractibilityeffects would
always tend todiminish the actual value of the parameterd̃
@10#.

A comprehensive investigation of the noncontractib
fractal sets that include the isolated voids might be a to
logical problem of outstanding significance. For instan
this might be associated with the problem of the topologi
classification of the fractal objects from the viewpoint
algebraic ‘‘codes’’ when each code identifies the topologi
type of the fractal set through some classification algorith
For more details, see Ref.@10#, and references therein.

Apart from the noncontractibility effects, the index o
connectivityu might be influenced by the intrinsic correla
tions ~or anticorrelations! operating in the system due t
some particular properties assumed. An important exam
might be self-avoiding random walks~SAW’s!, character-
ized by the intrinsic short-range repulsive interaction b
tween different steps of the walk according to their relat
orientation@43#. The critical phenomena associated with t
SAW’s reveal intriguing features; among them is the feasi
universality of the critical exponent advocated in Ref.@44#.
An extensive Monte Carlo simulation recently performed
Caraccioloet al. @43# on the two-dimensional Manhattan la
tice shows that the universal properties of the SAW’s co
be described by the critical exponent 1.342560.0003, in
agreement with the~theoretical! result 43/32 for the regula
lattices. These values are reminiscent of, although a
larger than, the percolation constantC'1.327. The discrep-
ancy between 1.342560.0003 @43# and C'1.327 might be
the consequence of the short-scale repulsion implied by
SAW’s. In fact, such a repulsion would tend to diminish t
‘‘degree of connectedness’’ of the SAW structure as
close contacts between the different elements of the S
trajectories are generally ‘‘discouraged.’’ This has a dire
effect on the index of connectivityu, which tends tode-
crease. Hence the corresponding value of the spectral frac
dimension d̃[2D/(21u) could be slightly larger than C
'1.327, i.e.,d̃>1.327, for the SAW’s. The effect of the
repulsion is, therefore, generally opposite to that of the n
contractibility, and dominates in the case of the SAW’s.
topological analysis of the SAW structures associated w
the intrinsic interactions present might open perspectives
the critical phenomena research.

V. SUMMARY

In the framework of the present study, we discussed so
topological properties of the sign-symmetric random fie
c(x),xPEn,n>2. @‘‘Sign symmetric’’ means that the field
c(x) is statistically equivalent to2c(x).#

Applying the concepts of continuity and connectedne
we proved rigorously that the zero set,c(x)50, of the field
c(x) always contains a~connected! percolating subset if the
condition u¹c(x)uÞ0 holds almost everywhere, i.e., exce
domains of negligible measure. We have shown that
percolating subset could be considered as afractal object if
the fieldc(x) observes the additional properties ofisotropy
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and statistical homogeneity. This fractal geometry approxi
mation holds in the range of spatial scales between s
small microscopic distancea.0 and the percolation corre
lation lengthj→`.

Our particular attention concentrates on the universal
tures of the fractal geometry of percolation in the vicinity
the critical percolation threshold. Following Ref.@10#, we
quantify this universality in terms of Eq.~1!; this equation
establishes the relation between the two geometric chara
istics of a percolating fractal set at criticality: the Hausdo
fractal dimensionD and the index of connectivity,u. Equa-
tion ~1! is an improvement of the widely known Alexande
Orbach relation@3# for the embedding Euclidean dimensio
2<n<5; the constantC'1.327, on the right hand side o
this equation is termed thepercolation constant, and is
slightly smaller than the original AO value, 4/3@3#.

We applied relation~1! to an analysis of the fractal geom
etry of percolation in two-dimensional sign-symmetric ra
dom fieldsc(x), i.e., whenxPE2. Our main theoretical find-
ings are the following.

~1! The single isolevelsFh of the field c(x), i.e., the
connected subsets of the setc(x)5h,h→0,hÞ0, can be
treated as fractal loops whose Hausdorff fractal dimensiondh
and index of connectivityuh are, respectively,dh→C
'1.327 anduh50. Meanwhile, the areaVh surrounded by
the fractal loopFh , is a plane fractal set having the Hau
dorff fractal dimensionDh532dh→32C'1.673. The in-
dex of connectivity of the setVh is equal to zero, provided
that no isolated ‘‘voids’’ are present insideVh .

~2! The percolating subsets of the zero set,c(x)50, are
~connected! plane fractal objects characterized by the Ha
dorff fractal dimensiond* '2C21'1.654 and the index o
connectivityu* '2(C21)/C'0.49.

The fractal dimensionsDh andd* are numerically close
~although not exactly equal! to each other. The small numer
cal difference between these two fractal dimensions is du
the fact that the percolation constantC'1.327 slightly devi-
ates from the original AO value 4/3.

We found that thehomotopic topologymight be an effec-
tive instrument when analyzing the properties of fractal o
jects. This instrument has been applied in our study to ob
the basic results~1! and ~2!.

An interesting result formulated in Sec. III is that th
index of connectivity of a fractal set is thetopological in-
variant of this set. ‘‘Topological invariant’’ means that thi
quantity remains unchanged under the homeomorphic de
mations of the set, i.e., under such deformations that
performed without ‘‘gaps’’ and ‘‘gluings.’’ One thus con
cludes thatthe indexes of connectivity of the homeomorp
fractal sets are equal to each other.

The resultdh'C,h→hc50—i.e., that the Hausdorff frac
tal dimensiondh of the single isolevelsFh of the two-
e

a-

er-
f

-

-

to

-
in

r-
re

c

dimensional sign-symmetric random fieldc(x) tends toward
the percolation constantC as the thresholdh approaches the
critical percolation thresholdhc50—might be the principal
way to estimate the value ofC numerically. We performed
such an evaluation in the particular case when the fieldc(x)
is given by the so-calledfractional Brownian surface. Our
basic idea was to apply the widely knownarea-perimeter
relation to the fractal loopsFh . The fractal dimensiondh

could be then obtained as the slope of the plot logPh
2 versus

logAh , wherePh is the perimeter of the loopFh ,h→0,h
Þ0, andAh is the area of the surrounded domain,Vh . This
leads to the numerical estimatedh'1.3260.01 which is rea-
sonably close to, although somewhat smaller, on the aver
than the analytical value of the percolation constantC
'1.327, exact for thecontractiblepercolating sets at criti-
cality @10#. We speculate that the possible deviation of t
numerical finding 1.3260.01 from '1.327 is due to the
slight violation of the contractibility property near the perc
lation threshold.

We found that the parametersdh→C, uh50, Dh→3
2C, d* '2C21, and u* '2(C21)/C, which describe the
fractal geometry of theconnectedsubsets of the ‘‘cut’’
c(x)5h,h→hc50, do not depend on the spectral indexa
of the fractional Brownian surfacec(x) @this index defines
the spectral energy density of the fieldc(x)#, nor on the
Hausdorff fractal dimensiond of the entire,disconnectedset
of points c(x)5h. ~Meanwhile, the quantitiesa and d are
related to each other through the Berry formulaa5522d
@36#.! This might be considered as a possible manifesta
of the universal behavior of fractal geometry of percolati
at criticality.

Applications of our topological results to the fraction
Brownian surfaces@Eqs.~9! and~10!# imply that the spectral
indexa does not exceed a critical value of 724C'1.69, i.e.,
the condition 1<a<724C holds. This condition says tha
the field c(x) contains enough energy at smaller scales
that the considerable fine-scale structuring could be rec
nized in the cross sectionc(x)5h.
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