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Percolation in sign-symmetric random fields: Topological aspects and numerical modeling
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The topology of percolation in random scalar fielgéx) with sign symmetry[i.e., that the statistical
properties of the functiong(x) and — ¢(x) are identical is analyzed. Based on methods of general topology,
we show that the zero seét(x) =0 of then-dimensional (=2) sign-symmetric random fiel@(x) contains a
(connectel percolating subset under the conditidhy(x)|#0 everywhere except in domains of negligible
measure. The fractal geometry of percolation is analyzed in more detail in the particular case of the two-
dimensional (=2) fields #(x). The improved Alexander-Orbach conjectiiRhys. Rev. E56, 2437(1997]
is applied analytically to obtain estimates of the main fractal characteristics of the percolating fractal sets
generated by the horizontal “cuts/(x) =h, of the fieldy(x). These characteristics are the Hausdorff fractal
dimension of the seD, and the index of connectivity). We advocate an unconventional approach to studying
the geometric properties of fractals, which involves methodsoofiotopic topologyit is shown that the index
of connectivity, 8, of a fractal set is the topological invariant of this set, i.e., it remains unchanged under the
homeomorphic deformations of the fractal. This issue is explicitly used in our study to find the Hausdorff
fractal dimension of the single isolevels of the fieldx), as well as the related geometric quantities. The
results obtained are analyzed numerically in the particular case when the randori(figlés given by a
fractional Brownian surfacewhose topological properties recover well the main assumptions of our
consideration.

PACS numbegps): 05.40.-a, 02.40-k, 05.45~a, 52.35.Py

[. INTRODUCTION sition, the percolation correlation lengthis known to di-
verge,£/a— o [1]; it has been clearly establishgg] that the
Applications of percolation theorsee, e.g., Refd1,2]) divergence of the percolation correlation lengdthmesults in
have led to remarkable advances in the understanding @n anomalous behavior of the macroscopic physical quanti-
many phenomena related to the formation of irregular structies near the critical percolation thresholg,.
tures. Topological properties of irregular, random configura-
tions have recently received a good deal of attention in as-
sociation with the possible universal nature of the geometryA. Hausdorff fractal dimension and the index of connectivity

of percolation in the vicinity of the critical percolation The term “fractal” [7] was originally introduced to quan-
threshold[3,4]. . ; ' .
tify the geometric features of a variety of natural objects

Indeed, consider an infinite, statistically homogeneous, ; N L
isotropic random scalar fields(x), where xeE" is an whose fine-scale structure atistically self-similar “Sta-

n-dimensional Euclidean vecton&2). (The symbolE" de- tist.ically self-similar” means that any small part of such an
notesn-dimensional Euclidean space; the dimensionality ~ ©Piect could be considereith the statistical sensas a re--
assumed to be an integer in what followEhe introduction duced scale image of the whole. The statistically self-similar
of an arbitrary thresholth [to be defined as the level of the 9eometry appears in thgower-lawbehavior of the average
“cut” of the field (x)] makes it possible to divide the space “Mass” density of the fractal sets. More precisely, this
into two topologically different parts: one composed of all power-law behavior is contained in the facidt ™", wherey
regions where)(x) <h, marked as being “empty’’; and the is the length scale; for the percolating fractal sgtsanges
other composed of the regions whep€x)>h, marked as between two characteristic lengths; the microscopic distance
being “filled.” One of these parts will include aonnected a and the correlation lengtlj>a. The parameteD in the
infinite set, which is said to “percolate.” Changing the power exponent) —n, is the so-calledractal dimensiorj7]
thresholdh, one can find theritical thresholdh., when the  of the set, commonly referred to as the Hausdorff dimension
topological phase transition occufise., the nonpercolating of the fractal, andch is the dimensionality of the embedding
part starts to percolate, or vice versa Euclidean spacek", which is always not less thab, i.e.,

It has been recognizdd,2,4,3 that the geometry of the D=<n. Thus the average density of the fractal objects is
percolating sett criticality (i.e., at the levelh—h.) is a length scale dependefudr D # n. (In standard Euclidean ge-
typical fractal for length scalesy, varying between some ometry, the Hausdorff dimensiob coincides with the em-
microscopic(“lattice” ) distancea and the percolation cor- bedding dimensionality, so that the corresponding average
relation lengthé>a. Near the point of the percolation tran- density is constant.
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The fractal dimensiorD is not, however, the only geo- rameterdD and # were by no means constant as functions of
metric parameter required for the complete description of the (belown=6). This numerical evidence led them to specu-

self-similar fractals. The other is the index of connectivity |ate that the spectral dimensidrmight be exactly 4/3 for the

[4,6,8,9; contrary to the fractal dimensioD which de-  ocolating sets at criticality in all embedding dimensions

scribes the scaling behavior of the averaged “mass” densit)g2 This has come to be known as the Alexander-Orbach
of a fractal set, the inde# quantifies how the “elementary” '

S . : (AO) conjecturd 3].
structural units inside the s@.g., the f'”.Gd and empty sites The AO conjecture is important because, if true, it might
for the problem of the site percolation on lattigesre

“glued” (connectedltogether to form the entire fractal ob- allow one to describe the fractal geometry of percolatign by
ject. In Euclidean geometry, whdd coincides with the Eu-  using the unique basic concept of the spectral dimendion
clidean dimensionalityn, #=0; however, in fractal geom- =4/3 for such fundamental problems as correlated and un-
etries, whenD differs from the dimensionality of the correlated percolation on lattices, as well as for the more
embedding space, the indexf may attain nonzero values. general continuum percolation probl€i,4]. The great in-
Roughly speaking, the parametedescribes the “shape” terest in this conjecture results not only from the universal
of a fractal object, and may be different for fractals even withyalue 4/3 assigned td in all n=2, but also from the fact
equal values of the fractal dimensién A more precise defi- that it establishes a relationship between the index of con-
nition of the index# could be given by using the concept of pectivity, 6, which appears in the description of the dynami-
the geodesic line, i.e., the “"shortest” line connecting tWo c4| nrocesses on fractals, and the Hausdorff fractal dimen-

“elementary” structural units of the fractal. Indeed, the to- i, D, yielding the scaling behavior of the density of the
pological arguments of Ref10] show that the geodesic line fractal substrate

on a self-similar fractal object could be treated as a self-
affine fractal curve whose own Hausdorff fractal dimension
is equal to (2 #)/2. This issue was discussed in more detail
in Ref. [11]. A rigorous definition of the self-affine fractal
curve can be found, e.g., in R¢2]. The geometric signifi-

Much theoretical and numerical effort has been made in
the attempt to prove or disprove the AO conjectii@ a
comprehensive review, see, e.g., Ré#13]). At present,
the situation is as follows. For sufficiently high embedding
cance of the indexd for the fractal objects was also dis- Euclidean dimensiona=6, a rigorous analytical proof for
cussed on a descriptive level in REE2]. (In the notations of N AO conjecture has been obtained within the mean-field
Ref. [12], #=0.) A detailed consideration of the issue of theory. '_I'he mean-field percolation is well modelled by the
connectivity for the percolating fractal sefercolating frac- ~ Percolation on the so-called Cayley tre@ethe lattices A
tal networks was given in Ref[4] where the direct relation Cayley tree is defined as a graph without loops in which each
between the parametﬁrand the topo|ogica| structure of the node has the same number of branCheS; the Self'Sim”arity of
fractal network was pointed out. such graphs is not necessarily manifest in their geometric

It is worth mentioning that the index of connectivity ~ representation, but is seen in their connectiigp]. The
plays an essential role in many dynamical phenomena oRercolation problem on Cayley trees was solved exactly by
fractals, e.g., transport processes in disordered medigoniglio [21].
[6,8,9,12—1% “bimolecular” chemical reactiong 16,17, For lower embedding dimensionssh<5, the mean-
localization of waveg4,11,18,19, etc. The original impor- field theory cannot be directly applied, and an analytical con-
tant promotion of the parametérwas made in a pioneering Sideration of the topology of percolation in these dimensions
paper]6] where the concept of range-dependent diffusion orineets considerable difficulti¢s3]. Meanwhile, a large body
percolating networks was proposed. By applying scalinng studies, both theoretical and numerical, indicates that the
theory, it was showr[6] that the diffusion constant on a true value of the spectral dimensiah must be slightly
percolating network, for length scalgsranging betweera  smallerthan 4/3 for 2<n<5 (for a review, see, e.g., Ref.
and ¢, behaves as a power lawy ~°. [4]). Thus, an improvement of the original AO value 4/3 for

2<n<5 was placed at the center of attentiah.
B. Alexander-Orbach conjecture

The latter insight, along with the realization that solving C. Percolation constant

the problem of the range-dependent diffusion was equivalent Recently, Milovanov[10] proposed an unconventional
to solving the(scalaj elastic vibration problen{for more  analytical approach to study the fractal geometry of percola-
details, see, e.g., Rd#4]), led Alexander and Orbadl8] to  tion at a critical threshold, which involves methods of differ-
evaluate the density of states for vibrations of a percolatingntial topologies. The idea of his approach was to supply a
network at criticality(these vibrations were termed fractgns fractal object with an additional topological structure of the
with the introduction of the so-called fracton, or spectral,fractal manifoldthrough the introduction of local coordinates
dimensiona' This new quantity was defined as a Speciﬁcat each pOint of the fractal. Milovanov found that the number
combination of the fractal dimensioB and the index of ©f independent coordinates must be formdtigctional and

connectivity , and has the forrd=2D/(2+ 6)<D. In ad- equal to the spectral fractal dimensiah, This approach led
dition, Alexander and Orback8] noted that the spectral di- him to prove that the value af at the threshold of percola-
mensiond for the percolating networks at criticality was tion satisfies some transcendental algebraic equation; the so-
numerically remarkably close to the mean-field value 4/3ution of this equation is some universal topological constant
(exact in Euclidean dimensiam=6) for all embedding Eu- C, i.e.,d=C for all 2<n=<5. This constant is approximately
clidean dimensions greater than one, even though the pa-equal toC=1.327+0.001[10], and is indeed slightly smaller
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than the original AO result, 4/3. These findings lead to they(x)=h, h—0, h+#0, of the random fields(x); and(ii) the

improvement of the AO value for2n=<5: fractal characteristics of the percolating subsets of the zero
- set, (x) =0, of the functiony(x). The relevant values of
d=2D/(2+60)=C~1.32<4/3. (1) the Hausdorff fractal dimension and the index of connectiv-

ity are obtained in Sec. Ill in terms of the percolation con-
For the sake of convenience, we refer below to the quantitgtantC. In Sec. 1V, the results of the numerical modeling of
C~1.327 as the “percolation constant.” the random field/(x) on a plane are presented, and a com-

To illustrate result(1), consider, for instance, the so- parison with the basic topological conclusions is given. In
called uncorrelated percolation on latti¢d@$. From a wealth  Sec. V We summarize the results obtained.
of numerical studies it has become clearly understood that
the Hausdorff fractal dimensioD and the index of connec- || PERCOLATION PROPERTIES OF THE ZERO SET
tivity 6 for the uncorrelated percolating networks on lattices
do not depend on the particular kind of the lattice assumed Let E" be n-dimensional Euclidean space#2). Con-
(e.g., triangular, square, etcas well as on the specific type Sider a random functios(x) in E", which is statistically
of the percolation problerte.g., “site” or “bond” [2]). The identical to the function-#(x). (Here “random” does not
only parameter that actually affects the numerical values opecessarily exclude the possible existence of the long-range
D and 6, is the dimensionality of the embedding Euclideancorrelations[2], and could be applied to problems of the
space,n (n<6). For example, the uncorrelated percolationcorrelated and continuum percolatipn.
on the plane latticesn(=2) is described by the value3 Assume the conditiorVy(x)|#0 everywhere except,
=91/48~1.896 and6~0.86 (Refs.[2] and [4,6] respec- perhaps, in domains of negligible measure. This condition
tively. This yields the estimate of the spectral fractal dimen-mplies that the fieldj(x) is nondegenerated almost for &ll
sion, d~1.326, which coincides, within the numerical errors, NOte that the infinite values oF ¢/(x), i.e., when|Vy(x)|
with the percolation constaitt=1.327+0.001. =+, are allowed. . .

Strictly speaking, resultl) is exact forcontractiblefrac- Then leta<¢ be the microscopic length scale where the
tal sets[22] which do not contain isolated “voids.(Such fun(_:tlon ¥(X) beh_ave§ as a continuous nonsingular fl:I‘nCtIOI’l.
sets can be continuously deformed into a poiftt.can be [Th'S”' of course, implies thaf(x) could be treated as “ran-
shown[10], however, that the spectral fractal dimensibn dom” only at length scaleg>a. We also assume below that

for the noncontractiblepercolating fractal sets is at least not a cannot be infinitely small just as one could expect for the
or 0 9 majority of physical application$.The important inference

larger than the percolation constafiti.e., d<C~1.327 in {4 pe deduced is that the zero set of the funciign) [i.e.,
general. This can be supported, e.g., by the numerical resulifie set of pointsce E" where (x) =0] percolates[More
of Normandet al [23], which are among the most accurate. precisely, the zero set of the functigr{x) must contain the
These results were obtained for the plane percolation (percolating subsetthe entire zero set of(x) may bedis-
=2), yielding d~1.321, which is indeed slightly smaller connectedn general
thanC~1.327. This assertion, being quite natural, was formulated in Ref.
In this paper, we concentrate our attention on the geomf2], although we are not aware of any rigorous mathematical
etry of percolation in random scalar fielggx) having the  proof. Considering such a proof, however, might help one
specific property ofsign symmetry(We imply thatxe E" achieve a deeper insight of the topology of percolation in
andn=2.) “Sign symmetry” means that the statistical char- random scalar fieldss(x) from a more abstract point of
acteristics of the random functiaf((x) are identical to those view.
of —(x). Without loss of generality, we require that the  Let us now prove the above assertion for arbitrary Euclid-
function ¢(x) has zero mean, i.&/(x))=0, where the av- ean dimensionalith=2. Assume the contrary: the zero set
erage(- - -) is taken over an area @&" with the character- of the field ¢(x) does not percolate. This leads to the con-
istic linear size of the order of the percolation correlationclusion that all zero isolevels af(x) are bounded closed
length¢ or more. Our particular interest in the random fieldssets[We use the term “zero isolevel” to denote the bound-
¥(x) with the sign symmetry is motivated by their impor- ary of the zero set of the functios(x).] In fact, the zero
tance for a number of particular physical applicatidgese, isolevel being an unbounded set would imply that this
e.g., Refs[2,12,24,2%, and references therginwhere the isolevel stretches to infinity and, therefore, percolates. Also,
reflection properties of the fielg(x) play a role. one can immediately become convinced that the set of all
Below, we advocate a nontraditional approach to studyingoints wherey(x) #0 is open, and hence, the zero set of
the fractal geometry of percolation at the threshold whichy(x) is closed. Since the interior of the closed set must be
includes the methods of the homotopic topology. In Sec. ll,open[26], its boundary, i.e., the zero isolevel, in our case, is
we discuss some general topological features of the sigralso a closed setWe implicitly take into account that, by
symmetric random scalar field&x) in Euclidean spaces of assumption, the length scagecannot be arbitrarily small,
arbitrary dimensionality=2. It is proven in Sec. Il that the enabling one to rely on the concept of the topological space
zero set of the sign-symmetric random functigfx), n=2, [26].)
always contains a percolating subset if the condition The next step is to observe that any bounded closed set in
|V (x)| # 0 holds almost everywhere. In Sec. Ill, we analyzeEuclidean spac&" is compact27]. Thus all zero isolevels
in more detail the fractal topology of percolation in two di- of ¢(x) must be compact ifE". Any of these compact sets
mensions (=2). Our particular attention in Sec. Il is con- divides E" into two topologically different parts: one is
centrated ori) the fractal properties of the single isolevels, boundedfinite in size, and coincides with the interior of the
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set; the other is infinite, being its exterior. LBt (1<i
<) denote, for a given, the zero isolevel of the function
#(x) along with its interior.(Since the microscopic distance
a is assumed to be finite, the set of &ll is denumerable.
Note, also, that alF; are, by definition, compact setsVith-
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h. is uniquein two dimensions. From the statistical equiva-
lence of the functiong/(x) and — ¢(x), one then immedi-
ately concludes that this unigueritical) threshold is zero,
i.e., h,=0 for n=2. [Conversely, in higher dimensions
=3, there could exist more than one critical percolation

out loss of generality, below we may consider only those setgyresholdh,.. This, in turn, leads to the possibility of the

Fi which do not intersect with each other, i.&;NF;=J.

simultaneous percolation through both “empty” and

All theseF; are, therefore, disconnected. Since the Euclideantjjjeq” regions, since the topology of the spadg” may

spaceE" is connected27], we finally conclude that the set

admit, for n=3, the nonintersecting, statistically isotropic

E™ U;F; is also connected. Moreover, this set is infinite in paths to infinity[2]. For instance, for the three-dimensional
size, because alf; are compact. In other words, we must empedding Euclidean spadg®, one could introduce two

infer thatE™\ U;F; percolates.
We again now make use of the fact that the functigm)

critical percolation threshold$y,; andh,,, say, so that the
simultaneous percolation through the three-dimensional

varies continuously at length scales shorter than the charaeempty” and “filled” regions takes place for all values df

teristic microscopic distanca This leads to the conclusion

lying betweenh.; andh,,. For the sign-symmetric distribu-

that the functionys(x) preserves its sign over the entire settjon of y(x) in three dimensions, one then hag = —h.,

E™ U;F;. Assume thaty(x) is positive there, i.e.i(x)
>0 for xe E"™\U;F;. But the topology of the seE™\ U;F;,
where (x)>0, principally differs from the topology of the
sets where/(x) <0. In fact, whereaE™ U;F; is infinite and
connected, the sets wheyggx) is negative are localized in-

#0 [28].]

In two dimensions, simultaneous percolation ceases to ex-
ist as soon as theritical percolation thresholth,=0 is the
only one. Consequently, all the isolevels of the sign-
symmetric functiony(x) corresponding to somaonzero

side F; and, therefore, are finite in size and disconnectedihresholdh#h.=0 are bounded closed plane curvgse
This topological difference, however, is in contradiction with so-called plane “loopsY. [The introduction of the term

the assumed statistical equivalence of the functiphg and
—(x). Consequently, the zero set af(x) percolates,
Q.E.D.

“loop” assumes thatV ¢(x)|#0 almost for allx.] Each of
these loops is defined by the equatig(x) =h where the
parameteh+h,.

We stress, however, that the percolation nature of the zero

set, (x) =0, of the random field)(x) does not necessarily
imply that this set is dractal. Indeed, our previous consid-

A. Fractal geometry of single loops ath—h,

eration was based on the most general topological concepts It is clear that the equatiof(x) =h,h#h.=0, could de-
such as continuity and connectedness, and did not take inféne, in general, a number of theutually nonintersecting
account some more specific, structural characteristics of th€@ops(to be referred to asingleloops hereafter each being

function ¢(x). Let us now assume that the random figi)
exhibits additional properties a$otropy and statistical ho-
mogeneity Then, for such a fields(x), therealwaysexists a
critical percolation thresholdh,, in whose small vicinityh
—h; the geometry of the “cut”#(x)=h is a self-similar
fractal for length scalegy ranging between the microscopic
distancea and the percolation correlation lengés~a (see
Refs.[1,2,4,9). The casen.=0 is realized, e.g., for &vo-
dimensionalsign-symmetric random fielg/(x) [2], so that
the zero sety(x)=0, of the random, sign-symmetric, iso-
tropic, statistically homogeneous functiaf{x) on a plane

aconnectedsubset of the set of poinig(x)=h, xe E2. De-
note thesingleloop (i.e., thesingleisoleve) of the field /(x)

at the thresholdh+# h; by ®,,. Then the set of all the single
loops @y, represents, for givemn#h., the entire(discon-
nected set of roots of the equatiogt(x) =h.

From the topological point of view, each single lodp is
homeomorphito the standard topological circ® [22]. We
formalize this result by writingb,~St. “Homeomorphic”
means that the loog,, can becontinuously deformethto
the circleSt, i.e., there exists ane-to-one mutually continu-
ousmapping of the points ab;, on the points oB'. (Such a

(xe E) has the geometry of the percolating fractal object inmapping is usually termed “homeomorphisni22]. A ho-

the range of scalea< y<¢.

lIl. TOPOLOGY OF PERCOLATION IN TWO
DIMENSIONS

meomorphism between two given topological objects might
be treated geometrically as a deformation of one of these
objects into another, which is performed both without
“gaps” and “gluings.”) We also note that the above homeo-
morphism, ®,~S!, might be violated on a set of points

We now discuss in some more detail the topology of perwhere|V ¢(x)|=0; we assume, however, that the measure of

colation in random scalar fieldg(x) in two dimensions, i.e.,
in a more particular case where E2. We assume thdt) the
random functiony(x) has the property of the sign symmetry,
so that the fieldg/(x) and — ¢(x) are statistically identical;
(if) the random field)(x) is isotropic and statistically homo-
geneoudthis implies the existence of eritical percolation
thresholdh, for which the “cut” ¢(x) =h, h—h. exhibits a
self-similar fractal geometryfor a<y<¢]; and (iii)

these points is negligible. For more details, Réf2,29
might be quoted.

The next step is to make use of the propertiessofropy
and statistical homogeneityf the field ¢(x). As already
mentioned above, these properties appear in the statistically
self-similar, fractal geometry of the “cut’i(x)=h for the
values of h sufficiently close to the critical percolation
thresholdh., i.e., h—h.. (Here the fractal geometry ap-

|V (x)|#0 everywhere except, perhaps, domains of negliproximation implies the range of scalass y<¢. Note, also

gible measure.

that the conditiorh—h, is equivalent toh—0 for the per-

First of all, we note that the critical percolation threshold colation in two dimensions. Assuming the conditionh
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—h¢, one could now apply the concept of tfractal geom- One finally notes that the standard cir&fkis homeomor-

etry to the description of the isolevelgy(x) =h, of the ran-  phic to the closed unit interval =[0,1], with the identified
dom, isotropic, statistically homogeneous fieldx) in the  end points, 0 and [122]. Let us now remove one point from
range of scales betweenand¢. In fact, one could consider the circleS!. This is equivalent to splitting the two identified
singleisolevels(i.e., thesingleloops @, for the percolation  end points, so that one directly transforms the ci@ldnto
on the Euclidean plang?) of the field #(x) as self-similar the intervall . Removing only one point from the circig*
fractal objects having some Hausdorff fractal dimensign oot however, violate the index of connectivity which
and some index of connectivity,. (Note that the formal  yeqcribes, by definition, the self-simildractal geometry of
mtrodgctlon of the para}metedﬁ and 6,, does not require the_ the setd,~St. (The index of connectivity,, might be sen-
conditionn=2, and might be also done for percolation in gjpje 1o 4 “self-similar’ removing of an infinite number of

higher embedding dimensioms=3.) points from the circleS'.) Hence, we conclude that the pa-
On the other hand, the conditidn—h; would mean that rameteré, is equal to that of the interval
h o

the topology of the isolevelsji(x)=h, of the field y/(x) In a similar way, the index of connectivity,, remains

approaches theritical topology ath=h,; for this critical . ;
topology, the Hausdorff fractal dimensiafy and the index unchanged if the two end points 0 and 1 are removed from

of connectivity ,, can be related to each other through thethe closed interval =[0,1]. Hence, both the closed interval

percolation constard [see Eq(1)]. We have, consequently, |=[0,1] and the open interval=(0,1) have exactly the
same indexed),,. Note, further, that the open interval
2dp/(2+ 6,)—C~1.327, h—h,. (20 =(0,1) is homeomorphic to the one-dimensional Euclidean

spaceE?, i.e.,| ~EL. The homeomorphisri~E?! shows that
the indexes of connectivity of the setsand E* coincide.
Because the index of connectivity of any Euclidean space

We now argue that the inde, is equal to zero in the case
of the two-dimensional random fielgl(x), i.e.,

_ h— E",n=1, is defined to be zer(®], one immediately obtains
6h=0, h—hc=0. @ 6,=0, which proves Eq(3).
To prove relation(3), we need the following auxiliary From Egs.(2) and(3), one finds

assertionthe index of connectivity of a fractal set is a topo-
logical invariant of this set A topological invariant is a
guantity which remains unchanged under the homeomorphi
deformationd22,29. Thus our assertion is equivalent to the
following one: the indexes of connectivity of the homeomor-
phic fractal sets must coincide.

Indeed, the index of connectivity of a fractal set quanti- . . -
fies, by definition, how different points of the set are the C_”t'cal percolation thresholdhc—o_. . .
“glued” (connecteito each other in space. Because two . Itis r_elevant to remark that each single |so'le¢e,||n.two
homeomorphic sets can be deformed one into another Withq_lmensmns gurrounds some plane aWg, be"_‘g the‘?‘te'
out any “gaps” and “gluings” [22,29,, the homeomorphic rior of the (single loop ®,,. From the topological point of
deformation cannot violate the “rule” of the “gluing” of

view, the loopd,, might be treated as thmuter boundaryof
the points of the set into the whole topological object. Hence,

the set(),,. Since the loopb,, is homeomorphic to the stan-
. . 1 . 1 .
a homeomorphic deformation preserves the index of conned@rd topological circles', i.e., @, ~S", the set of points)y,
tivity, Q.E.D. is homeomorphlc to the interior qf the F)II‘C@l, which is
Contrary to the index of connectivity of the fractal set, the defined[22] as the standard two-dimensional open sk

. 2 . - - .
Hausdorff dimension of the fractal cannot be treated as &€ {n~D*[22]. (For the sake of simplicity, here we ignore
topological invariant. An example might be the constructionth® Possible appearance of the isolated “voids™ insidg,

— 7 2
of the Koch curve from the unit intervdl [5,13]. Such a Wh—?ﬁi g:ei?gﬁt;n;yggsaé]e stSe ZZT;(;TKST?%P 3ints
construction provides a homeomorphism between the Koc?l g 99 P

) — _ _ n, Which is surrounded by the singleactal loop ®,, on a
curve and the interval=[0,1]; however, the Koch curve is h1ane could be considered agractal object having its own

the fractal object of the Hausdorff dimension log 4/log 3 yaysdorif fractal dimension<D,<2. It is intuitively clear
~1.26 -->1 [5,13], whereasl is a segment of a smooth that the larger the fractal dimensidy of the outer boundary
curve whose Hausdorff dimension is equal to one. In thesf the set(),,, the smaller the fractal dimensidpy, of the
meanwhile, one concludes that the index of connectivity olsurrounded ared),,, would be. This might be more rigor-
the Koch curve is equal to that &f(see below ously quantified by saying that the suby,+d,, of the fractal
We now make use of the homeomorphisbp~S! be-  dimensionsD,, and d,, is a topological invariant i.e., the
tween the single isolevels.e., single loopsb,,) of the ran-  quantity D,+d;, remains unchanged under the homeomor-
dom sign-symmetric fields(x) and the standard topological phic deformations of the entire s@t,U®,,. Because, on the
circle St. In view of the above, the homeomorphis#n,  other hand, the sé,, is homeomorphic to the standard two-
~S! means that the index of connectivity df,, (i.e., the dimensional diskD?, i.e., ),~D?, and the outer boundary,
parameterd,) is equal to the index of connectivity @&*. ®,,, of the set(),, is homeomorphic to the standard one-
(Meanwhile, the Hausdorff fractal dimensiaf of the set dimensional circles!, i.e., ®,~S!, one immediately obtains
®,, differs, in general, from the Hausdorff dimension of the the homeomorphisnf),,U®,~D?US!. Consequently, the
circle St, which is defined to be unitf5]). sumD,+dy, of the Hausdorff fractal dimensions of the sets

dp—C~1.327, h—h.=0. (4)

Expression(4) shows that the fractal dimensiad), of the
single isolevelsd,, of the two-dimensional sign-symmetric
random field ¢/(x) is equal to the percolation constagt
~1.327 for the values of the threshdidsufficiently close to
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Q,, and ®;, must be equal to the sum of tH&uclidean
dimensionalities of the se®? and S!, which is easily seen
to be 2+1=3. HenceDy+d,=3. This expression for the
parametersD,, and d;,, was earlier proposed in Ref30],

where the relationship between the fractal properties of the

setsQ), and®,, was discussed on a descriptive level.

Consequently, the fractal dimensidd,, could be ex-
pressed a®D,,=3—d,. Making use of Eq.(4), one then
obtains

Dp—3—-C~1.673, h—h.=0. (5

The value ofD,—3—C yields the Hausdorff fractal dimen-
sion of theinterior of a plane(single fractal loop®,, for the
values of the thresholdh sufficiently close to the critical
percolation thresholt., i.e.,h—h,=0. An estimate oD,
which is numerically close to the value of-3, was also
obtained in Refs[12,24], where some fractal properties of
the percolating networks were discussed.

Meanwhile, the index of connectivity of the s&, is

easily seen to be zero. This follows immediately from the
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of the branching points for the connectivity properties of the
percolating networks at criticality was analyzed in more de-
tail in Ref. [4].

B. Fractal geometry of percolating subsets ah=h,

We now determine the fractal characteristics of pes-
colating subsetsf the critical “cut,” (x)=h., of the two-
dimensional ke E?) sign-symmetric random fielgi(x). For
two-dimensional fields, there exists only one critical cut at
h.=0; hence the critical cuiy(x)=h. coincides with the
zero sety(x)=0 of the field (x) when xe E%. We are
reminded that the entire zero sgfx) =0 of the random field
¥(X) is disconnectedthe existence of &connected perco-
lating subsebf the zero sety(x) =0 was formally proven in
Sec. Il.

Under the condition|V(x)|#0, the entire zero set
¥(x) =0 of the fieldy(x) can be treated as a weblike struc-
ture “composed” of all the single isolevel®,, which corre-
spond to a given threshold— 0. According to the results of
Sec. Il, this structure contains(eonnecteglpercolating frac-
tal subset.

Denoted, andé, as the Hausdorff fractal dimension and

topological invariance of the index of connectivity and thethe index of connectivity of the percolating fractal subset of

homeomorphism),,~D?. Indeed, taking into accouti22]
that the open diskD? is homeomorphic to the Euclidean
spaceE?, i.e., D?>~E? [22], one obtaind),~E?. Hence the
index of connectivity of the se, is the Euclidean one. We
mention, however, that the homeomorphi€ip~ E? is vio-
lated if the isolated fractal “voids” appear inside, ; in this
case, the index of connectivity of the @t would be posi-
tive.

It is theoretically important to note that the fractal dimen-

the zero sety(x)=0. The quantitiesd, and 6, should be
distinguished from the parametedly and 6y, describing the
fractal geometry of the single isolevels, of the field ¢(x)
ath—0. A calculation of the parameteds andé, is given
in what follows.

The index of connectivityy, could be obtained in terms
of the Hausdorff fractal dimensiod;,,h— 0. The relation-
ship between the parameteéts anddy, is a manifestation of
the fact that the “shape” of the connected subsets of the zero

siondy, might be subject to change between the above valuget, (x) =0, of the random fields(x) in two dimensions is

of d,—C~1.327 and the alternative value df=7/4, de-

determined by the fractal properties of the single isolevels of

pending on a moderate change in the definition of the notiomhe field, ¢4(x) = h, for h—O0.

of the single isoleve]2,31]. Roughly speaking, the alterna-

An expression for quantity, could be easily obtained

tive value ofd,=7/4 describes the single isolevels of the from a comparison of the two identical representations of the

random field on a planep,, whose “gulfs” might have
arbitrarily small widths(see, e.g., Ref[2]); this formally

critical diffusion coefficient in a two-dimensional random
field #(x), one in terms of the fractal dimensidp [see Egs.

corresponds to the case when the characteristic “micro¢2.13 and(4.144 in Ref.[2]], and the other in terms of the

scopic” length scalea—0. Conversely, the consideration
presented above clearly assumes that the paramegmnot
be arbitrary small, so that the homeomorphiggr~ St could

index of connectivityd, [see Eq.(2) in Ref.[15]], yielding

6, =2(d,—1)/d,, h=h.=0. 6)

be established. This actually leads to some “smoothing” of

the isolevels when one implicity dams all the “gulfs”
whose widths might be less thana. In Ref.[31], the fractal
dimension of such isolevels was found todye=4/3, which
is practically very close t€¢~1.327.

We also remark that the alternative valuedpf=7/4 has

been recognized in modeling the uncorrelated percolation o
the plandlattices when the geometry of the percolating sets

is discreteand the issue otonnectednesis more delicate
(see, e.g., Refd2,4]). In view of relation(2), the value of

d,=7/4 might be associated with the nonzero value of th

index of connectivity,f,~ (7 —4C)/2C~0.64>0. The fact
that 6,,>0 would then mean that the corresponding singl

isolevels of the fields(x) are not homeomorphic to the stan-

dard topological circles; rather, these isolevels would con-

For a regulainonrandom sign-symmetric function(x),
all the isolevels/(x) =h would be smooth rectifiable curves
(dp=1), so that Eq(6) yields, evidently,d, =0. Another
important particular case is the uncorrelated percolation on
lattices for which the resutt,= 7/4 could be obtainef®,31].
Then the corresponding value of the index of connectivity
0, would be §, =6/7~0.86, in good agreement with Refs.
[4,6].

For the percolation problem in a two-dimensional sign-

esymmetric random field)(x), the fractal dimensiom,, has

been expressed in terms of the percolation constane.,

edh~(3~l.327[see Eq(4)]. Hence the index of connectivity

0, becomes

tain an infinite number of branching points whose presence

violates the above homeomorphisby~ St. The importance

0,~2(C—1)/C~0.49, h=h,=0, 7
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where Eq.(6) has been used. This estimate coincides with The basic periodicity of the Fourier expansion in E®).
the result obtained in Ref32] from a topological model is that of the square simulation box of side so thatk
dealing with the issue of the “dual” fractal topologigésee, =(kq,k;)=2m(n4,n,)/L, with integer valuedh; andn,. (In
also, Refs[12,24). the numerical model, the size of the simulation hoplays

The value of the Hausdorff fractal dimensidg , corre-  the role of the percolation correlation lengih The Fourier
sponding to the index of connectivif§Eq. (7)], can be now amplitudes for an isotropic power-law spectrum are assumed
estimated from the basic equatidf). This equation de- in the form
scribes the fractal geometry of the percolating sets at criti-
cality; in particular, it holds for the percolating fractal sub- 27C/L
sets of the zero saf(x)=0 of the two-dimensional sign- w(k):W’
symmetric random fields(x).

ReplacingD for d,. , and¢ for 6, in Eq.(1), and making \hereC is the normalization constant, aker |k|~y~* and

(10

use of Eq.(7), one finds lies between &/L and 2m/a (a long wavelength cutoff at
L/4 is introducegl The spectrum in Eq(10) is truncated at
d,~2C—-1~1.654, h=h=0. (8 Kmax=27N/L, whereN=L/a, with a>0 the smallest wave-

length present(The introduction of the finitek,,,,=27/a

Equation(8) yields the Hausdorff fractal dimension of a per- <oo explicitly takes into account that the value of the length
colating fractal subset of the zero sét(x)=h.=0, of the scalea has been assumed to be substantially nong&rdhe
field #(x). It is interesting to note that this dimension is numerical model, we used values of the rdti@a up to 80.
numerically close, although not exactly equal, to the HausWith such a choice, the number of independent Fourier
dorff fractal dimensiorD,,~3—C~1.673 of the interior of a modes in Eq(9) is 10 024.
plane single fractal loopgb,,,h—h.=0 [see Eq.(5)]. The The parameter in Eq. (10) is the spectral index of the
numerical difference between the fractal dimensidpsand  power-law energy density spectrur,(k)~k™“. Indeed,
D, is actually due to the fact that the percolation constanfrom the definition of the wave vectdk it is clear that
C~1.327 slightly deviates from the AO value, 4/3, in two k’L?=(8)?>1, hence the Fourier amplitud&0) behaves
dimensiongsee the discussion in Seg. | with k as the power lavk (“**Y2 and the square of the

The basic resultl,—C~1.327[see Eq(4)] might give us  amplitude,/?(k), behaves ak~(**1). Consequently, the en-
the key to find numerically an estimate for the percolationergy density spectrum scales &k)~2mwky?(k)~k <.
constantC. Indeed, the value of could be principally ob- Note, also, that the inequalityL>1 is actually equivalent
tained as the Hausdorff fractal dimensidp of the single (through the definition of the numerical parametgrto y
isolevelsd,, of the two-dimensional sign-symmetric random <¢, the necessary condition for the fractal approach to be
field (x) for the values oh sufficiently close to the critical valid.
percolation threshold),=0. The spectral indexx could be related to the Hausdorff

In Sec. IV, we evaluate the percolation constérfrom  fractal dimensions of the horizontal cross sectighorizon-
the particular numerical realization of the random figik) tal “cut” ) of the fractional Brownian surfac®). This rela-
on a plane, commonly referred to &wmctional Brownian tion is given by the well-known Berry formulgg6]:
surface Characteristic properties of these surfaces are dis-

cussed in Ref[2]. a=5-26, 1sé<2. (11
The fractal dimensions appears in the varianc§ (x)
IV. RANDOM FIELDS IN TWO DIMENSIONS: — lﬂ(x-}- XO)]2>~ |XO|2(2_ 5)’ Wherexo iS a constant p|ane vec-
NUMERICAL MODELING tor obeyinga<|x,|<¢ (see, e.g., Ref.2]). This dimension

ust be distinguished from the parametégsandD,, which
escribe the fractal properties of the single isolevdig,
h—h., of the sign-symmetric random fieldl(x), as well as
from the quantityd, yielding the Hausdorff fractal dimen-
sion of a(connected percolating subset of the critical cut,
X)= Kyexpli(k-x+ , 9 Y(X)=h.=0, of the field(x). Conversely, the fractal di-
) ; wk)exal( b} © mensiond is the global characteristic of the fielldx): This
quantity defines the Hausdorff fractal dimension of the en-
where (k) is the Fourier amplitude of the mode with wave tire, disconnectedet of pointsy(x) =h, rather than the di-
vectork, and ¢, are random phases chosen to simulate thenensionalities of the connected subsets of theyge) =h
random spatial structure in the fieje(x). Note that because (also see Sec.)ll In other words, the parametéryields the
the phasesp, are random, the functiong(x) and —(x)  Hausdorff fractal dimension of th@isconnectedset com-
are automatically statistically equivalerfThe term “auto-  posed of all the isolevels of the fieli(x) at a given thresh-
matically,” however, might be oversimplified, as soon as itold h. This issue is discussed in more detail in R¢&,38].
naively ignores the important issue of the long-range corre- The zero horizontal cug(x) =0 of the fractional Brown-
lations customarily present in the systems with the self-affinéan surface[Egs. (9) and (10)] for «=3/2 is illustrated in
fractal geometry. In the framework of the present study, nevFig. 1. It is clear that the Hausdorff fractal dimensiérof
ertheless we leave this issue mostly beyond the scope of otie entire set)(x) =h.=0 cannot be smaller than the Haus-
consideration; for a detailed discussion, see R&5].) dorff dimensiond, of its percolating subset, i.e§=d, .

We consider the standard numerical representation of th
fractional Brownian surface/(x) given by (see, e.g., Refs.
[2133134)
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(10) satisfy the topological condition§)—(iii) specified in
Sec. lll for the random functioms(x),x e E2. In particular,
this enables one to approximate the single isolevels of the
field equationg9) and (10) by plane fractal loopspy,.

To estimate the fractal dimensialy of the loops®}, nu-
merically, we exploit the following topological property
[29], namely, that each loofp,, divides the Euclidean plane
E2 into two distinct parts; one is thiaterior of the loop and
is finite in size, the other is itexterior and is infinite.(We
have already used this property in Sec. Il where the fractal
dimensionD,=3—d,, of the internal part(),, of the frac-
tal loop @, was obtainedsee Eq(5)]).

Let P,, denote the perimeter of the loab,,, andA;, be
the area of the internal paf),,, surrounded byb,. A re-
markable feature of the fractal loogds, is that the quantities
P, and Ay, are related to each other by the scaling lay,
~Agh/2 [39]; this law is known as tharea-perimeter rela-

0 tion. (For the smooth plane loops, one lths=1, so that the
standard relationshig®,~ /A, is recovered. The area-
X perimeter relation shows that the fractal dimensigrcan be

FIG. 1. The zero horizontal “cut” of the fractional Brownian CPt@ined as th? slope of the plot IBf versus logd,, com-
surfacey(x) for «=3/2. Dark gray shading corresponds to positive pUtEd for a series of the loops, '_h__>h0’ of the random
values ofy/(x), and light gray to negative values. One also observedi€ld #(x). (We also note that a similar approach based on
isolated “spots” (e.g., dark spots in the light argavhere the sign  the application of the area-perimeter relation was recently
of (x) is reversed. These “spots” could be considered as topoProposed to studying the coarse-grained texture of the ion

logical “voids” whose presence slightly violates the contractibility distribution functions in Earth’s magnetot$#0].)
property. Dimensionless units. Given the levelh#0 of the field #(x), we find all the

corresponding loop®,, inside the simulation box. Let these
loops be enumerated by the indgxThen the integration
along each loopwhich could be performed easily by means
of the explicit representation of the fielé{x) according to
Egs. (9) and (10] vyields their perimeters Py
=Pn,j \/dx21+ dx22 wherex; andx, are the components of the
plane vectorx.

To increase the accuracy of the computation, we intro-
duce the quantity?,=X;Py, ;, which is thetotal perimeter
of all the loops found for the given value &f [40]. In a

—4¢, a topological “smoothing” of the cut(x) = h. might similar way, the aread\,; enclosed by the loops are ob-
polog g W(x)=h, mig tained from Green's formula to givé\, ;=0.5, ;(x,0dx;

be the case as only little energy goes to the small scales.
Since the entire cuiy(x)=h is disconnectedthe fractal _)éZi\Xl)' and thetotal area of all the loops becomed
=3 Ap;.

dimensioné is independenbf the parameterd,,, D;,, and ifhj )

d, describing the fractal properties of teennectedsubsets Following Ref.[40], we apply the a?OV?‘rea'Per'f{}"-;ger

of the sety(x)=h. From Eg.(11) one then concludes that 'elation to the quantitiesP, and Ay, yielding P,~.A,"".

these parameters are insensitive to the particular value of tH&lote that we take into account the propertiessotropyand

spectral indexx assumed in the Fourier amplitudg®). For  statistical homogeneitgf the functiony(x).] It is easy to see

instance, the resutt,~C [see Eq(4)] cannot depend on the that the relationshi|CPh~Aﬁh/2 implies the condition

particular numerical realization of the fractional Brownian

surface[Eqgs.(9) and(10)], i.e., the fields/(x) generated for PZIthE p2/dn (12)

different values of the spectral index must have the same h T hic

value of the fractal dimensiody,~C~ 1.327.(This might be

treated as one of the universal features of the fractal geonequation(12) indicates that the algebraic summation of the

etry of percolationat criticality [4].) Our goal now is to areas contained by tHeactal loops®, cannot be reduced to

analyze numerically the resutt,~C~1.327 for the frac- the (intuitively obvious summation oquaresof the perim-

tional Brownian surfacepEgs. (9) and (10)], assuming dif- eters of the loops; rather, thesgquaresmust be replaced for

ferent values of the spectral index (1sa<7-4C). For  2/dy,, where the power exponentdg/is reduced to 2 only in

each realization, we first of all check that the fractal dimen-the case of the smooth, non-fractal geometiy=1). Some

sion § of the horizontal “cut” of the fractional Brownian generalized relations of the form of Ed.2) are discussed in

surface[Egs.(9) and(10)] is in accord with the Berry rela- more detail in, e.g., Ref$15,41,42.

tion (11). We evaluatedP,, and Ay, for a statistically reliable num-
Then, we take into account that the field equati@sand  ber of “cuts” #(x)=h, whereh tends toward the critical

0.0 0.2 0.4 0.6 0.8

From Egs.(8) and (11), one concludes thatta<7-4C
~1.69. Hence general topological findings of Secs. Il and IlI
could be applied to the fractional Brownian surfa¢&sys.

(9) and (10)] only if their spectral indicesx do not exceed
the maximum value of 7 4C. Physically, this means that the
field #(x) contains enough energy at large(i.e., small
wavelengths~k 1) associated with the considerable fine-
scale structuring in the cross sectigifx)=h;,. For frac-
tional Brownian surface$Egs. (9) and (10)] having a=7
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spectral dimensiord=2D/(2+6).] In this context, it is

worth emphasizing that the topological resdi C~1.327
holds as the limiting case realized for the fractal objects that
areexactly contractiblethe noncontractibilityeffects would

always tend tadiminishthe actual value of the parametér

’/-‘ [10].

100 A comprehensive investigation of the noncontractible
70 o fractal sets that include the isolated voids might be a topo-
' logical problem of outstanding significance. For instance,
this might be associated with the problem of the topological
classification of the fractal objects from the viewpoint of

algebraic “codes” when each code identifies the topological
type of the fractal set through some classification algorithm.
For more details, see Rdfl0], and references therein.

Apart from the noncontractibility effects, the index of
Area connectivity 6 might be influenced by the intrinsic correla-
tions (or anticorrelations operating in the system due to
tional Brownian surface of Fig. 1. Two sets of points, correspond-some particular properties assumed. An important example

ing either to negative or positive isolevéisare shown. Dimension- _might be Self'aV_Oid,ing random WaM§AW,S)Z Chara(.:ter'
less units. ized by the intrinsic short-range repulsive interaction be-

tween different steps of the walk according to their relative
] ) orientation[43]. The critical phenomena associated with the
percolation thresholth.=0, and we plotted o} against sAw's reveal intriguing features: among them is the feasible
log Ay, to find the sloped,~1.32+0.01 (see Fig. 2 universality of the critical exponent advocated in Re#].
According to Eq.(4), the quantityd, near the critical ~An extensive Monte Carlo simulation recently performed by
threshold coincides with the percolation constahthence  Caraccioloet al.[43] on the two-dimensional Manhattan lat-
the sloped;,~1.32+0.01 could be considered as an estimatetice shows that the universal properties of the SAW’s could
of the parametef from the “cuts” of the fractional Brown- be described by the critical exponent 1.34250003, in
ian surfaceg9). agreement with thétheoretical result 43/32 for the regular
The resultd,~1.320.01 is numerically close to, al- lattices. These values are reminiscent of, although a bit
though somewhatmaller, on the average, than the topologi- larger than, the percolation constafit=1.327. The discrep-
cal valueC~1.327[see Eq.(1)], and isindependentwithin ancy between 1.34250.0003[43] and C~1.327 might be
the numerical erropsof the assumed values of the spectralthe consequence of the short-scale repulsion implied by the
indexa (1=a=<1.69). The estimatd,~1.32+0.01 is con- SAW’s. In fact, such a repulsion would tend to diminish the

40 *
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FIG. 2. Log-log plot of P2 vs A, (solid squaresfor the frac-

sistent with the result=1.321 reported by Normanet al,, “degree of connectedness” of the SAW structure as the
[23] who used a high-statistics determination of the spectratlose contacts between the different elements of the SAW
fractal dimensiord at the threshold of percolation. trajectories are generally “discouraged.” This has a direct

The fact that the numerical methods applied yield, in botheffect on the index of connectivity, which tends tode-
cases, slightly smaller estimates of the percolation conétant crease Hence the corresponding value of the spectral fractal
(compared with the topological result=1.327), leads one dimensiond=2D/(2+ 6) could be slightlylarger than C
to conclude that the percolating fractal sets near the threshold 1 327 je. d>1.327, for the SAW’s. The effect of the

are not exactlycontractible (as is assumed by the value repyision is, therefore, generally opposite to that of the non-
~1.327), and that the isolated fractal “voids™ might play a contractibility, and dominates in the case of the SAW's. A

role (see Ref[10] and the discussion in Seq. [This effect  topological analysis of the SAW structures associated with
might be recognized from Fig. 1 as evidence of isolatedhe intrinsic interactions present might open perspectives on
“spots” (i.e., topological sign “holes}), where the sign of tne critical phenomena research.

¥(X) is reversed.

Indeed, it is intuitively clear that the inclusion of the to-
pological “voids” would act toward a more efficient perco-
lation, since the convergence of the percolating setto |nf|n|ty In the framework of the present Study, we discussed some
would be “quicker” in this case. Hence the percolation topological properties of the sign-symmetric random fields
threshold could be achieved forsmallervalue of the spec-  y(x) xe E",n=2. [“Sign symmetric” means that the field
tral fractal dimensiond=2D/(2+ 6) compared with the (x) is statistically equivalent te- /(x).]

“basic” value of ~1.327 [see Eq.(1)]. (The *“voids” Applying the concepts of continuity and connectedness,
present actually contribute into the effective index of con-we proved rigorously that the zero sétx) =0, of the field
nectivity # of the percolating structure. The argument is that(x) always contains é&onnectegl percolating subset if the
the geodesic line$whose Hausdorff fractal dimension is condition|V#(x)|#0 holds almost everywhere, i.e., except
equal to (2+ 6)/2] become “longer” as the “voids” must domains of negligible measure. We have shown that this
be bypassed on all scales. This results in a sligtteaseof  percolating subset could be considered dsaatal object if

the index of connectivityy and the ensuinglecreaseof the  the field #(x) observes the additional propertiesisbtropy

V. SUMMARY
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and statistical homogeneityThis fractal geometry approxi- dimensional sign-symmetric random figJdx) tends toward
mation holds in the range of spatial scales between somge percolation constat as the thresholth approaches the
small microscopic distanca>0 and the percolation corre- critical percolation thresholti,=0—might be the principal
lation lengthg— . way to estimate the value @f numerically. We performed
Our particular attention concentrates on the universal feasuch an evaluation in the particular case when the figh)
tures of the fractal geometry of percolation in the vicinity of is given by the so-calledractional Brownian surfaceOur
the critical percolation threshold. Following Réfl0], we  pasic idea was to apply the widely knovemea-perimeter
quantify this universality in terms of Ed1); this equation  relation to the fractal loopsb,,. The fractal dimensiom,,
establishes the relation between the two geometric charactegpyld be then obtained as the slope of the plotRfgersus
istics of a percolating fractal set at criticality: the Hausdorff|og A whereP,, is the perimeter of the loog;,,h—0,h
fractal dimensiorD and the index of connectivityy. Equa- #0, andA, is the area of the surrounded domath, . This
tion (1) is an improvement of the widely known Alexander- |54 to the numerical estimade~1.32+0.01 which is rea-
Orbach relatiori3] for the embedding Euclidean dimensions gonaply close to, although somewhat smaller, on the average
Z_s n<>5; the cpnstan€~1.327, on t_he right hand S|de_: of than the analytical value of the percolation constént
this equation is termed theercolation constantand is <1 327, exact for theontractible percolating sets at criti-
slightly smaller than the original AO value, 4f3]. cality [10]. We speculate that the possible deviation of the
We applied relatiori1) to an analysis of the fractal geom- nmerical finding 1.320.01 from ~1.327 is due to the
etry of percolation in two-dimensional sign-symmetric ran-gjight violation of the contractibility property near the perco-
dom fieldsy(x), i.e., wherx e E2. Our main theoretical find- lation threshold.
ings are the following. _ _ We found that the parameted,—C, 6,=0, D,—3
(1) The single isolevelsb,, of the field (x), i.e., the —-¢C, d,~2C—1, and 6, ~2(C—1)/C, which describe the
connected subsets of the sg(x)=h,h—0,h+0, can be  factal geometry of theconnectedsubsets of the “cut”
treated as fractal loops whose Hausdorff fractal dimendjon #(x)=h,h—h.=0, do not depend on the spectral index
and index of connectivity6, are, respectively,d,—C  of the fractional Brownian surfacé(x) [this index defines
~1.327 andg,=0. Meanwhile, the are, surrounded by  he spectral energy density of the fiel{x)], nor on the
the fractal loop®y,, is a plane fractal set having the Haus- \45,sdorff fractal dimensios of the entire disconnectedet
dorff fractal dimensionD,=3—dy—3—C~1.673. The in- ot hoints y(x)=h. (Meanwhile, the quantities and & are
dex of connectivity of the sef), is equal to zero, provided (g|ated to each other through the Berry formala5—26
that no isolated “voids” are present inside; . [36].) This might be considered as a possible manifestation
(2) The percolating subsets of the zero 3g(x) =0, aré  of the universal behavior of fractal geometry of percolation
(connectegiplane fractal objects characterized by the Haus-; criticality.
dorff fractal dimensiord, ~2C—1~1.654 and the index of  Applications of our topological results to the fractional
connectivity 6, ~2(C—1)/C~0.49. Brownian surfacefEqs.(9) and(10)] imply that the spectral
The fractal dimension®,, andd, are numerically close jndex « does not exceed a critical value of 2C~1.69, i.e.,
(although not exactly equato each other. The small numeri- the condition i a=<7-4C holds. This condition says that
cal difference between these two fractal dimensions is due tge field y(x) contains enough energy at smaller scales so
the fact that the percolation constaht 1.327 slightly devi-  that the considerable fine-scale structuring could be recog-
ates from the original AO value 4/3. nized in the cross sectiofi(x) = h.
We found that thénomotopic topologynight be an effec-
tive instrument when analyzing the properties of fractal ob- ACKNOWLEDGMENTS
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