PHYSICAL REVIEW E VOLUME 62, NUMBER 2 AUGUST 2000

Disjoining potential and spreading of thin liquid layers in the diffuse-interface model
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The hydrodynamic phase field model is applied to the problem of film spreading on a solid surface. The
disjoining potential, responsible for modification of the fluid properties near a three-phase contact line, is
computed from the solvability conditions of the density field equation with appropriate boundary conditions
imposed on the solid support. The equations describing the motion of a spreading film are derived in the
lubrication approximatioriin the limit of small contact anglesin the case of quasiequilibrium spreading, it is
shown that the correct sharp-interface limit is obtained, and sample solutions are obtained by numerical
integration. It is further shown that evaporation or condensation may strongly affect the dynamics near the
contact line, and that it is necessary to account for kinetic retardation of the interphase transport to build up a
consistent theory.

PACS numbsefs): 68.10.Cr, 68.45.Gd

I. INTRODUCTION variable density and diffuse interfaces. Even in the sharp-
interface limit, a nonlocal dependence on the shape of the
One of long-standing hydrodynamic riddles is the naturefree interface leads to integrodifferential equations which no-
of viscous flow in the vicinity of a three-phaggas-liquid-  body as yet has attempted to solve. A rational formulation is
solid) contact line, and the related problem of “true” and Possible in lubrication approximatid2], when the action of
“apparent” dynamic contact angld4,2]. The answer to the intermolecular forces reduces to a simple expression for dis-
riddle must be, in fact, physicochemical rather than purely0ining pressure between parallel vapor-liquid and liquid-
hydrodynamic, since it depends on processes in the immed#Qlid interphase boundarigs]. This, however, does not
ate vicinity of the three-phase boundary. The early detecte§liminate the stress singularity, unless in the case of com-
paradox of a logarithmically divergent force required to dis—plete wetting, _vvhen a sharp contact line is r.epl_ace_d by a
place the contact linf] directly follows from the multival- gradual transition from a precursor film to a liquid film of

uedness of the velocity field at the contact line—if standard"acroscopic thicknesi2]. At the same time, the usual ex-

. : . e - . pression for London—van der Waals forces leads to a disjoin-
viscous hydrodynamics with a no-slip condition on the SOIIOIin pressure divergent at small distances, thus necessitating a

-1 VS L M count of surface inclinatiof8], but the correction becomes
drawback of hydrodynamic slip theories lies in their inherentefractive at nonphysical submolecular distances.

inability to predict the dynamic contact angle. As a remedy, A radical solution is to abandon the continuum approach
empirical relationships between the velocity and contachjtogether in the immediate vicinity of the contact line. Slip
angle have to be introduced in model computations. is feasible on a microscopic scale, where it may follow from
Clearly, intermolecular forces, that determine the staticactivated diffusion of a first molecular layg®]. Direct nu-
contact angle to begin with, should have a say in a dynamignerical simulations of molecular dynamics clearly demon-
situation. Their direct action is, however, restricted to anstrate the effects of a diffuse boundary and effective slip at
immediate vicinity of the contact line, which is unobservablemolecular distance§10,11. Such simulations, however,
under available experimental resolution, so that an apparerfnnot involve macroscopic volumes, and no ways to incor-
contact angle seen at mesoscopic distances has to be stronglyrate them in a macroscopic description are known. An
influenced by outer hydrodynamic conditions. Near the conalternative approach is to retain a continuum description but
tact line itself, the properties of the fluid are different from to treat either a vapor-liquid interface or, fluid-solid inter-
those in the bulk, and even a common continuum descriptioface, or both, as a separate phase with properties different
becomes questionable. from the bulk fluid. This approach was adopted by Shikh-
Different approaches to a description of fluid motion in murzaev{12], who also relied on deviations from thermody-
the vicinity of the three-phase boundary have been tried dumamic equilibrium near the contact line as well as on the
ing the last two decades. The most straightforward way is t@resence of a residual film to avoid the divergences, and
introduce intermolecular forces into the hydrodynamic equaexplained the difference between the static and dynamic con-
tions of motion. This would lead, strictly speaking, to very tact angles.
difficult nonlocal equations, also incorporating the effects of Treating the vapor-liquid interface as a separate phase
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may indeed, be justified when surfactants are present, bilhe phase field variablg) derived from an appropriate en-
otherwise a more natural way to account for its special propergy functionaly(2) a constituent relation defining the depen-
erties of is to consider it as a region interpolating betweerdence of pressure or chemical potential on the phase vari-
the two phases. The origin of this approach is in the diffuseablgs); (3) the continuity equation; an@}) the equation for
interface model going back to van der Waals him$&B].  a flow field u(x,t).

Much later, it became prominent in phase field modi&#, In a one-component system, the appropriate phase field
used mostly in the phenomenological theory of solidificationvariable is the density. General hydrodynamic equations
where a fictitious phase field, rather than density, was used dsr non-equilibrium systems with diffuse interphase bound-
a continuous variable changing across the interphase bouneries are found in the recent review by Andersdral. [17].

ary. The theory of van der Waals was widely used for de- The equation for the static density distribution is derived
scribing equilibrium fluid properties, including surface ten- from the energy functional

sion and line tension in three-phase fluid systefhSs].
Application of this theory to dynamical processes in fluids is
much more difficult, as it requires coupling to hydrodynam-
ics. Applicable equations were formulated rather recently
[16'17_| Seppeche[lS] and Jacqm"‘[lg] solved the equa- Where,u is the Lagrange mu|tip|ie(’chemica| pOtentlaﬂhat
tions of the continuous density field coupled to the Stokeserves to insure the mass conservation condition. The corre-
equation numerically in a small inner region near the contacéPonding Euler-Lagrange equation is

line, matching it to the outer region where the standard

sharp-boundary hydrodynamic limit applies. The prominent KVZp—a,[pf(p)]+ =0, @
feature of flow in the inner region was a substantial advectiqu
mass transport through the interphase boundary, whicg
served as an effective slip mechanism relieving the viscoua
stress singularity.

The aim of this paper is a rational analysis of the hydro-
dynamic phase fielddiffuse interfacg model based on the
Igbricgtion approximat_ion. Adter formg_lat_ing the be’lSiC equa- e density field is coupled to hydrodynamics through the
tions in Sec. Il, we reiterate the equilibrium relations defin- __ .

. . . : capillary tensor

ing the surface tension on all three kinds of interphase
boundaries(Sec. Ill A), and discuss appropriate boundary T=L1-VpRdLldVp, 3
conditions on the solid surfadSec. Il B). This is followed

by approximate computation of the density profile, equilib-wherel is the unity tensor. Eliminating the Lagrange multi-
rium chemical potential and energy of the fluid lay&ecs. plier with the help of Eq(2) yields

[l C and Il D). The results of i computations further serve

as a basic “vertical” structure of the lubrication theory of T=(3K|Vp[?+KpVZp—p)I-KVpaVp, (4)
Sec. IV, where a slow dependence on the “horizontal” co-

ordinate is added. We show that the equations give a corregthere the thermodynamic pressure is defined m@s
sharp-interface limit in both static and dynamic situations.= p?f’(p).

The evolution equation derived in the lubrication approxima- Neglecting the inertial effects, the flow is described by the
tion can be integrated numerically, yielding the dependencegeneralized Stokes equation

of the spreading velocity on a driving force. We shall see in

Sec. IV D that no singularities develop in the case when the V-(T+S+F=0, )
boundary condition fixes a unique fluid density at the solid
surface.

This “quasiequilibrium” theory is modified in Sec. V,
where a change of chemical potential across the fluid layer is
taken into account. We start by discussing the “vertical”

structure of chemical potential associated with viscous anq\/heren and¢ are dynamic viscositie@enerally, dependent
kinetic retardation of steady motion of a vapor-liquid inter- 5, p), andv; are components of the velocity field The

face, and identify the dilutévapo) phase as the locus of gystem of equations is closed by the continuity equation
substantial variation of chemical potential. The potential

drop is then computed numerically in Sec. V B, yielding a pi+V-(pv)=0. (7)
relation between the disjoining potential and the flux across

isodensity lines. This flux, which may be interpreted as in- The Stokes equatiod) is rewritten, using Eq(3), as
cipient evaporation or condensation, may help to alleviate 5

viscous stress singularity when the boundary conditions —V(p+V)+KpVV?p+V.-S=0. ®
make a sharp three-phase contact line necessary.

f=fﬁd3x, L=pt(p)+IKIVplP—pp, ()

e shall suppose that the functié(p) is such that Eq(2)
dmits two stable solutiong,=p, andp=p,, separated by
nstable solutiong=p, andp,<p,<p,. The solutions are

at Maxwell constructioffi.e., have an equal energy (p)] at
=0, so that the chemical potential can serve as a bias pa-
rameter.

where F=—-VYV is an external force an& is the viscous
stress tensor with the components

Sik= 7(djvx+ dvj) + (L= 57) KV -V, (6)

A more transparent equivalent form, which can be obtained
IIl. BASIC EQUATIONS directly from Eq. (3), includes, instead of pressure, the
chemical potential defined by E(R):
A general phase field model coupled to hydrodynamics
includes the following element$1) a dynamic equation of —VV—pVu+V-(pVV)+V[({+37)V-v]=0. (9
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Further on, we shall compute the density and velocitya cubicg(p)=p—p.— (p—pc)>. Since our aim is a qualita-
field, assuming that the characteristic macroscopic lehgth tive description of a system far from criticality involving the
of the flow field, as well as the scale of density variation invapor phase with negligible density, we shall choose a
the tangential direction, far exceed the characteristic thickshifted cubic
ness K/f*)'2 of the diffuse interface, wher& is a char-
acteristic value of (p). This “thin interface” approximation d(p)=p(1—2p)(1—p), (15
is apt to break down in the vicinity of the contact line, unless
it is complemented by the “lubrication” approximation, which is at Maxwell construction aj=0. Then f(p)
which assumes a small angle between (Hifuse) inter-  =1,(1—p)? and the equilibrium surface tensions are com-
phase boundary and the solid surface. The applicability oputed as
this approximation also depends on the boundary conditions
at the solid surface. 1
o= fo p(1—p)dp=3,
Ill. EQUILIBRIUM RELATIONS

A. Surface tension and Young-Laplace relation 1 . )
m:f p(1=p)dp=75(1—ps)“(1+2pg),

Before approaching our main task of the analysis of mo-
tion in the vicinity of a three-phase boundary, it is necessary
to clarify relevant properties of the dynamic phase field s
model for the basic case of a diffuse interface between semi- o,= f p(1—p)dp=§pZ,(3—2ps,). (16)
infinite phases. For a static interface, the phase field deter- 0
mines the equilibrium surface tension in a usual \WE3,15. i ] ) )

The standard surface tension is defined as the energy per udif€ first formula can also be obtained directly using the
area of a flat interface separating two semi-infinite phasestandard kink solution that approaches=0 atz—< and
Static solutions dependent only on the coordimatermal to ~ P1=1 atz— —:

the interface can be easily found by solving E2). Rescal-

ing the coordinate by the characteristic width of the diffuse po(z)=(1+e") . (17
interface, and denoting

Ps|

This solution may be, however, distorted in the vicinity of a
g(p)=3d,pf(p)], (100 solid wall.
The expressions far, o,, ando, combine to the Young-

we have Laplace formula
"(z)— +u=0. 11
p"(2)—9(p)+np 11 .~ 01= 0 COS0, 18
The two static solutions are approachedzat +«, and the
boundary is static at.=0. where 6 is the “standard” contact angle that should be ob-

The interfacial energy is computed most easily by usingserved at distances much larger than the thickness of the
as a dependent variable the distortion enefgy:p2. Then  transition layer, i.e., unity in the dimensionless units of Eq.

Eq. (11) is rewritten as (11).
The Young-Laplace formula is a consequence of the No-
T'(p)—9(p)+u=0. (12)  ether theorem applied to solutions of H®). Suppose that

the solid surface is coincident with theaxis (z=0) and
%(x,2) tends top, at z—o. Very far on the left g— —)
the vapor is close to the solid, so thafx,z) tends to a
(13) solution p(z) of Eq. (11) with =0, such thatp(0)=pg,
andp— p, asz—o. On the other end, fox— + o, the lig-
Using this “virial theorem,” we compute uid is close to the solid, that ig(x,z) tends, forx large
positive andz<x, toward a solutiorp(z) of Eq. (11) with
“ Pl pn=0 andp(0)=pg, andp—p, asz becomes very large.
7= fﬁxpdeZ L V2Lpf(p) = mpldp. (149 For a giverx, there is, however, a value af close to tar,
’ such that there is a liquid-vapor interface and, for
Solid-fluid interactions are characterized by an appropri=xtané, p becomes very close tp,, as requested. If
ate boundary condition at the solid surface, as elaboratep(x,z) satisfies these conditions, the liquid-vapor interface is
below. Generally, the density at the solid surface will beinclined at the anglé to the solid on scales much larger than
different in the vapor or liquid phase; we denote the respecthe microscopic interface thickne&though this angle may
tive values apg, andpg . Accordingly, the “liquid-solid”  change at a closer approach

Integrating this proves that the distortion energy equals th
potential energy at any point:

3p2=pf(p)—up.

or “vapor-solid” surface tensionr| or o, is computed, re- The Young-Laplace formula follows from the invariance
spectively, by replacing one of the integration limits in Eq. of the problem with respect to translations in thdirection.
(14) by pg or pg, - Multiply Eq. (2) (with K rescaled to unityby dp/dx, and

In the vicinity of a critical point, the appropriate function, integrate over from z=0 too. This yields, after integrating
restricted to small deviations from the critical density, is by parts,
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d P 0<a<1, we haveg=2.3a. The contact angle is zero
i J'O [2(px—pz)—pf(p)ldz; =0. (19 (complete wetting at p=1. This “standard” angle has
nothing to do with a “true” contact angle at the solid sur-

The braced expression is constant alongxtbeis. This con- face. The latter is not defined at all in the diffuse interface

stant can be computed for very large negative and very t_heory,_since different isodensity levels _behave in qualita-
large positive in the configuration just described. EquatingVely different ways as the solid surface is approached. The
the results, one obtains only level that hits the solid surface at the right angleis

=ps; the levels withp<pg are asymptotically parallel, and
d¢ those withp> pg antiparallel to the surface.
- A more consistent way to derive the boundary condition
is to start with a general expression for the energy of mo-

where { is the coordinate normal to the vapor-liquid inter- lecular interactions

face, andpy(¢) is the standard kink solution. The algebraic
term reduces t(é[p(’,(g)]2 by Eg.(13), and the final result is ]::f f p(X)p(X"IV(|x—x'|)d®xd3x’". (22)
the Young-Laplace formulél8). The result is not influenced

by possible deviations from the standard contact angle at a ) ) )
close approach to the solid surface, but, of course, hinges oh"® mean-field energy function&l) can be obtained from

the applicability of Eq(2). Since the actual inclination angle Ed:(22) assuming that the density changes on a characteris-
is apt to change at large distances due to external forces, sulip scale far excegdlng the range of the potentlx

as gravity or dynamic pressure, the “standard” angle may in—X'|), and expanding(x’) = p(x) + (x=x")- Vp(x) + - - -.

fact be unobservable at either small or large distances fromin€ algebraic term in Lagrangiafl) is obtained in zero
the solid. order, and the distortion energy in the second order of the
expansion. These expressions are modified when a solid
boundary lies within the range of the interaction potential.
The influence of the wall may be particularly strong in the

If the action of the solid on the density field is short standard case of Lennard-Jones interaction potential or a
ranged(compared to the thickness of the diffuse interfade  simplified expressioW < (x—x") ~8, with a short-range hard-
can be accounted for by appropriate boundary conditions ajore cutoff, which gives the interaction energy diverging as
the solid surface. The boundary conditions are usually asz~2 with the distance from the solid surface. The diverging
signed with the help of the Cahn construct{d®,2] balanc-  part of the energy may be taken as the surface energy poten-
ing the distortion energy, distributed over a layer of sametial that has to be minimized to obtain the density at the solid
order of magnitude as the thickness of the diffuse interfacesurfaceps. Under conditions when the bulk potential has
and the energy of fluid-solid interaction concentrated at thewo minima corresponding to lowwapon and high(liquid)
boundary. A more consistent way to arrive at the samejensities, the surface potential may also have two minima,
boundary condition is to allow a nonvanishing variation of but the respective values, say, andp,, would generally,
the density at the solid bounda#dps when the energy func- pe different from the bulk valugs; andp, . This brings us to
tional (1) is varied. In one dimension, this leaves, after inte-a Dirichlet boundary condition similar to that postulated
grating by parts, the boundary tef(0)Sps . If the depen-  above, but with the essential difference that two distinct val-
dence of the fluid-solid interaction energy on the fluidues are allowed, and are likely to be chosen at the solid
density near the wall is expressed by a quadratic polynomiadurface contacting the liquid and vapor phases, respectively.

. o Unlike the case when the surface density is unique, all
Y(Ps)= Yo~ v1Pst 2 V2Ps (20 isodensity levels in the range, < p<pg hit the solid sur-
face.

The boundary conditiori21) also allows distinct density
levels pg, # pg) In the areas of the solid surface bordering
either a vapor or a liquid. Assuming, for examplesx ¢,

L . ) . =a<l, y,=0, we havepg,~a, pg~1+a. It appears,
which is the boundary condlt_|on equivalent to that tha'”eqﬁowever, quite unnatural that the main term in the density
through the Cahn constructiofalthough the latter is ex- gypansion fixes the density gradient rather than the density
pressed in an awkward integral form, including a radicalijiself 5o that nonmonotonic density profiles are forbidden in

with an indefinite sigh o o the above example and, conversely, enforced wiheris
If one assumes that the solid-fluid interaction is Shortnegative.

ranged compared to the thickness of the diffuse vapor-liquid
interface, it is likely prevail locally in the vicinity of a solid

UU=0|+fl{%[pé(é)]z(coszﬁ—sinze)—pf(p)}

cosf’

B. Boundary conditions

the coefficient atsps vanishes, provided

71_y2ps+p,(z)|p:ps:01 (21)

wall. This corresponds to the limiting case of very large C. Density profile in a thin layer

and y,, when a simpler Dirichlet boundary conditigr= pg The interaction between the solid surface and the inter-
is enforced on the solid surface. The range<ps<p, then  phase boundary can be computed most easily in the case
corresponds to partial wetting. when both surfaces are parallel and normal tozhgis. The

With the latter boundary condition and the cubi), the  static solutionp(z) can be found by solving Eq11) subject
contact angle is caé=—1+6p2—4p3, and is close to 0 ofr  to the appropriate boundary conditions at the solid wall.
when pg is close, respectively, to 1 or 0. f;=1—a with  Solving the one-dimensional phase field equation in the form
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h<In(1/a), which is, in fact, below the minimal possible
thickness of the dense layer in this model.

If the boundary condition allows two alternative fluid den-
sities, a solution withp(0)=a,<1 may be also possible.
This solution, corresponding to vapor phase adjacent to the
solid surface, is simplyp~a,e™% this solution can be
viewed as a tall of the basic kink centeredzatln a,<0 (i.e.,
in the nonphysical regign

Nonmonotonic density profiles are unstable. Since, how-
ever, the influence of the wall decays exponentially with the
distance, the dynamics is practically frozen whenever the
2 4 6 8 10 12 ° interphase boundary is separated from the wall by a layer

) ] ) o thick compared to the characteristic width of the diffuse in-
FIG. 1. Stationary density profiles. Numbers indicate the Valueﬁerface.

of the nominal thicknesh.

of Eq. (12) is elementary; for cubig(p), the exact solution D. Equilibrium chemical potential and energy
is expressed in elliptic functions. Finding an approximate A static solution with a fixech exists only at a certain
solution satisfying the boundary conditigr{0)=ps=1—a fixed value ofu, which can be determined using a solvability
with [a]<1 is, however, more elucidating. condition of the first-order equation. In a wider context, an

We construct the solution by perturbing a standard kinkappropriate solvability condition serves to obtain an evolu-
solution po(z—h) centered az=h, e.g., Eq.(17) for the  tion equation for the nominal positioh of the interphase
cubicg(p). The actual solution is approximated to the zeroboundary. The technique to derive solvability conditions for
order by the standard kink only wher(—h) is sufficiently  a problem involving a semi-infinite region and exponentially
close to unity; thu must satisfy the conditioh>In(1/a). = decaying interactions is nonstandard, and therefore deserves
The density profile is expanded in the small paramater special attention.

An inhomogeneous first-order equation has a general

p=po(z—h)+api(z;h)+---. 23 form
For the time being, we assume=0. Then the first-order Lpi+H(2)=0, (29)
equation is
" , containing an inhomogeneity(z) and the linear operator
Pi(2)+0' (po)p1=0, (24 9 geneiti(z) P
subject to the boundary condition d? )
J y £=5+0 (b, (30)

pr(0)=—1+a 1l-po(—h)]=-1+y, (25

whereg=a le "<1, When Eq.(29) is defined on an infinite axis, the solvability
Due to the exponential decay of interactions, the correcéondition of Eq.(29) appears due to the presence of an
tion to the zero-order solution is actually of a higher order oféigenfunction ofZ, with a zero eigenvalue related to the
magnitude everywhere except @(Ina ?) vicinity of the translational symmetry of the kink. The eigenfunction, ob-
wall, wherep, is close to unity. On this interval, E@4) can  tained by applying the symmetry operattdz, is simply

be replaced by the equation with constant coefficients:  Po(2)- The solvability condition is fixed by the orthogonality
of the inhomogeneity to this eigenfunction:

p1(2)=p1(2)=0. (26)
The solution decaying a— « is f_wp(’)(z)H(z)dz= 0. (31
pi(2)=—e H(1—¢). (27)

In the presence of a solid boundary, a difficulty arises, how-
At a>0, h>In(2/a), the combined function ever, since the translational invariance is broken and no eas-
ily computable eigenfunction is available. In addition, the
pa=potap;=(1+e M 1-eZa—e ") (28  orders of magnitudes in the perturbative scheme should be
estimated in a nonstandard way in view of the exponential
reaches a maximum a-=%In(a€'—1)>0 (Fig. 1). Such a decay of interactionf20].
solution describes a liquid layer sandwiched between the va- The difficulties are overcome with the help of asymptotic
por and the solid. At smaller values bf the maximum dis- matching technique similar to that employed in the theory of
appears, and the solution can be interpreted as a pure vapaortex dynamic$21]. The solvability condition is computed,
phase thickening near the solid wall. The same solution apsimilarly to Eq.(31), using the translational eigenfunction on
plies ata<<O when the density increases at the solid surfacethe infinite axis, but the integration is not carried out over the
whether it is approached from the liquid phase or directlyentire axis(which now extends into the unphysical regipn
from the vapor phase. The approximation breaks down at0), but starts at some locatia= z,>0, wherep differs
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generates boundary terms in the solvability condition, which dz=o+a’E(h), (35

from the asymptotic valup=1 by anO(a) increment. This o
E(h)= f
takes now the form

1 2
pf(p)+ Epz

0

also turns out to be ab(a?). The “virial theorem” used in

=dpo(z—h) _ | dpo(z—h) dp1(2) Eq. (14) does not hold to this order when density is defined
JZO dz H(z)dz= dz dz by the first-order functiomp,. The best way to compute the
energy is to use the variational formulation directly to relate
d?po(z—h) it with the computed chemical potential. Requiring the one-
——Zzpl(z) dimensional energy functiondll) to be extremal with re-
d z=2, spect toh, and usingp(z)=pg(z—h) in the last term, we
32 compute
. , dE =
The boundary values of the first-order solutie{(z) are P M f po(z—h)dz=M+0O(a). (36)
0

obtained by solving the first-order equati@) directly on
the interval G<z=<z,, where Eq{(29) can be replaced by the
equation with constant coefficientd6) with the added inho- IV. MOTION IN A THIN LAYER
mogeneityH(z). The solution of this equation is _
A. Double-scale expansion
" z Two-dimensional motion can be rationally treated in the
pi(2)=p1”(2)+ fo G(z—H({)d¢, (33 familiar “lubrication approximation,” assuming a character-
istic scale in the “vertical” direction(normal to the solid
) i _ ., surface to be much smaller than that in the “horizontal”
wherep;” is given by Eq(27), andG(z—{) is the Green's  (yaraiie) direction. When the interface is weakly inclined
function of Eq.(26). The last term can be neglected for cer- 54 curved, the density is weakly dependent on the coordi-
tain inhomogeneities, provided the lower limit of the integral nytex directed along the solid surface. Respectively, the ver-
in the left-hand side of Eq32) can be shifted to- with-  ica) velocity v is assumed to be much smaller than the hori-
out introducing a significant error. The matching is successygna| velocityu. The scale ratio is determined by the contact
ful when Eq.(32) reduces to a form independent zf in angle, and should be set@(a)=0(1/3) to match the scal-

leading order. ing of the phase field. The velocitiesandu corresponding

. The simplest'application of the above ma“’hif‘g techniqg o weak disequilibrium of the phase field considered above
is the computation of a constant value of chemical potenti

M= e, required to keep the kink at 'equilibriu(polssibly, :Ig(bj(—s)(founjg?g%,S;:(ﬁd:g(%g; ﬁsi:l;lrﬂterir?]élcgsggry
unsteble ata given I_ocatlorz:h. In this case, the |_nhomo- for a consistent scaling of the hydrodynamic equations that
genelty in Eq(26) |§justaconstarﬁ{=ﬂc, and the integral the “constant” part of the chemical potential, associated
in the Ieft-han.d 5|de_ of EQ(BZ). IS “C[pp(m)_pO(ZO)]:. with interfacial curvature, disjoining potential, and external
_“9+O(a)' Since this Expression remains unchanged in th?orces, and weakly dependent anbe of O(5), while the
leading order where, IS S.h'.ﬁEd t(_) —o 18 pO,(ZO): 1 “dynamic” part varying in the vertical direction and respon-
—O(e) replaced by unity, it is sufflelent to use in EG2) sible for motion across isodensity levels, be@fs?). Fur-
the first term_of Eq.(33) only. Retaining the leading term ther in this section, we shall assume therefore fhatV is
only, we obtain independent ofz; this assumption will be re-examined in
o ) h “h Sec. V.
me=a‘M(h)=2a%y(1-y)=2e "(a—e ). (34 In two dimensions, the term,, is added to the inhomo-
geneity in the first-order equatio29). In this order, the
The first expression demonstrates that the computed chemyertical density profile can be represented by the standard
cal potentials in fact at most @(a?), although the equation kink solution po[z— h(x,t)], and thex dependence is due to
is nominally of the first order. The gained order of magnitudeslow variation ofh in the “horizontal” direction. Thus
is due to the fast decay of interactions. Since the computed
value is of a higher order, there is no need to correct the pxx=—pé(z—h)hxx+pg(z—h)h§. (37
equilibrium profile computed in the preceding subsection to
O(a). For a>0, the functionu(h) passes a maximum at The respective contribution to the solvability condition is, in
the same valué=In(2/a)=0(1) that marks the transition the leading order,
from monotonic to nonmonotonic density profiles. Sustain-
ing a static profile requires a bias in favor of the liquid state, —h fw [p4(2)]2dz=—oh (38)
and the value ofu, at the maximum represents the critical ]t o
value of chemical potential required to nucleate a thick liquid
layer on the solid surface. Far<0, u. in Eq.(34) is nega-  while the contribution of the term containiig vanishes in
tive, and increases monotonically within this case, on the the leading order by symmetry.
contrary, a bias in favor of the vapor phase is necessary to Another possible contribution to the solvability condition
keep the interface stationary. may come from external forces. In the presence of gravity
The correction to energy, defined as directed against the axis, the equilibrium is achieved, ac-
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cording to Eq.(9), at u=puo—a?Gz rather thanu=pu, Integrating up to very large positive, whereh~x8, one
=const. The rescaled acceleration of gravity is denoted atherefore obtaing(«)= o+ oy. Using this in Eq.(42), and
a’G, which presumes that it matches the other terms by theubtractingo from both sides, yields
order of magnitude. The integral in E(32) involving the

; ; i i i oc—s0@P~agcosh=o,— o (43
variable part ofu is mostly accumulated in the diffuse inter- 2 v 01,

face region, so that we have in the leading order which is the sought after Young-Laplace condition, derived

o from the equations of the lubrication approximation for the
—Gfo zp4(z—h)dz=Gh (39  position of the liquid-vapor interface.
Collecting Egs.(38) and (39), we obtain the expression for C. Equations of motion in lubrication approximation
the hydrostatic chemical potential The horizontal velocity is determined from the horizon-
_ tal component of the Stokes equation. Adding gravity as an
p=3[M(h)=ohu+G(h=2)], (40 external force, we write the leading order equation as
whereM (h) is defined by Eq(34). — po(z—h)P,+ (7u,),=0, (44)
B. Statics in lubrication approximation where the effective pressukreis defined as
Equation(40) will be used later on to investigate dynami- P=Gax+M(h)—ohy,+G(h—2). (45)

cal processes where the motion of the contact line is in-

volved. In this subsection we investigate the statics of thisThis expression follows from Ed40), with the addition of
lubrication approximation, and show how it relates to thethe gravity term acting when the supporting plane is weakly
general Young-Laplace result on the static contact angle. fxclined. The inclination anglex must be of O(/5), to
seems to be important for the general consistency of theénatch by order of magnitude the other terms in the equation.
theory to have dynamical equations for the contact angle thathe density profile is given in the leading order by the stan-
reduce to the usual equilibrium theory in the absence of modard kink solution(17) centered at the nominal interface po-
tion. In most realistic cases, the effect of gravity is negligiblesition h(x), slowly varying in the horizontal direction.

near the contact line, since gravitational forces are much The solution of Eq.(44) satisfying the no-slip boundary
weaker than molecular forces. Therefore, the statics of theondition on the solid boundary and the no stress condition
contact angle, at scales in between molecular length scaleg infinity has a general form

and the capillary lengththat is the length scale beyond

which gravity plays a rolg depends on solutions of EL0) u(z)=7n P ¥(z;h). (46)
without the gravity ternG(h—z). Moreover, as we want to ) )

study equilibrium situations where a liquid-vapor interface The function¥(z;h) depends on an assigned dependence of
merges with the solid surface, the chemical potenti@ set ~ Viscosity on density, but the fluxp, in the dense layefat z

to its equilibrium value 0, so that the equation under considnot much larger tharh) is nearly the same for eithep
eration is =const orpxp, and is close to the standard lubrication so-

lution ¥=—2z(h—3z) valid for incompressible Poiseuille
M(h)—oh,,=0. (41 flow in a layer of thicknes& with a free boundary.
The evolution equation dfi is obtained by inserting Egs.
In order to derive from this equation the Young-Laplace(17) and(46) in the continuity equatioli7), and integrating it
condition, one can use relatidB6) between the energy and from 0 to«. Using the relations
chemical potential computed in the end of Sec. Ill D. We
integrate Eq(421) with the boundary conditions for the func- * *
tion h(x) such that forx— —<, the vapor is close to the f Ptdz:_htf
solid, while forx— oo, the liquid is close to the solid, until a
height h(x)~6x, <1 where a liquid-vapor interface is fw

po(2)dz=h,+0(a),
0

situated. The relevant first integral of Ed.1) reads . (pv),dz=0,
zohi=E(h)~E(hy), 42 e obtain
wherehy is the root ofM(h) that gives the thickness of the he=7"19,[Q(h)P,], (47)

precursor film lying between the solid and the vapor phase,
ho=In(1/a), in the model with a cubid(p) and Dirichlet \where
boundary condition. The structure of E@2) is obviously

similar to the Young-Laplace formula. The capillary energy

at very large negative, E(h), is nothing but the solid-
vapor surface tensioo, . The capillary energy at very large
positive x where the vapor-liquid interface is far removed The function Q(h), computed numerically and plotted in
from the solid is the sum of the independent contributions ofFig. 2, differs only slightly from the respective function for
the solid-liquid interface and a free liquid-vapor interface.the sharp interfac®,(h) =3h® whenh exceeds its minimal

[

Q(h)=— f po(z— W)W (2, dz. 49

0
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FIG. 2. The functiorQ(h), compared with the respective func- FIG. 3. Dependence of the interface inclination anglen the
tion for the sharp interfac®,(h)=3h? (dashed ling nominal thicknessh of a spreading dense layer folJ3-=0.5 and

3U=0.2 (as indicated by numbers at the respective cyrvéke

o o values ofG found by shooting are 0.035123 081 and 0.007 9817
admissible valudy=In(1/a). Taking into account small de- regpectively.

viations from the standard kink solution near the wall adds

only a higher-order correction. convenient form of Eq(49) is obtained using=hZ=2T as

the dependent variable and as the nominal thickmetse

D. Quasiequilibrium spreading independent variable:
Apart from a slightly modified volumetric rate, the spe-
cific contribution of the diffuse interface to E¢47) is car- Ey”(h)—(M’(h)+G)+ i U(h—ho) —aG) -0
ried by the functiorM (h), which is dependent on the bound- 2 Yyl Q(h) '
ary conditions on the solid surface and expresses disjoining (50

potential. It should be emphasized that this function is not
given a priori but computed in the framework of the phase Equation(50) is free from singularities which are usually
field theory(Sec. Ill D). The structure of Eq47) is identical  caused by divergences of either viscous stress or disjoining
to that of standard equations of motion of thin liquid films, potential, or both, in a layer of vanishing thickness. It can be
which are recovered at largewhen the disjoining potential integrated numerically starting from the asymptoticscat
becomes negligible. At smdil the disjoining potential isnot —o. The asymptotics of Eq(50) obtained by expanding
singular as in the sharp-interface theories with van der Waalgearh=h, is y~ c?(h—hg)?2, implying an exponential decay
interactions[2]. At the same time, the viscous stress singu-to the “optimal” thicknessh— hyce**, where the constant
larity at the contact line is relaxed as the latter's locationjs a positive root of the characteristic equation
becomes indefinite.

Steady flow of a liquid film under the action of disjoining k3—M’(hg)k+U/Q(hg)=0. (51)
potential and gravity can be described by E&i7), rewritten

in the frame moving with a speed. We shall assume that gjying say. the value 08, one can use the shooting method
the liquid layer thickens at—ce, and also assumb to be 4 4djust the value 06, satisfying the appropriate boundary
positive when the thick layer advances. Standard macrozg . qition at infinity, 'y = — . A very fine adjustment of the
scopic arrangements fixing the asymptotic conditi_on_s< at parameter is needéd to advance to moderate valubsAaf

— are possible, e.gh—c, and hy=—a for a liquid g, mple of a computed dependence of the interface inclina-
wedge with the angler or h,=0, or h=y3U/aG for an  {ijsn angle on the nominal thickness of a dense layer spread-

asymptotically flat film on an inclined plane. ing on a horizontal support is shown in Fig. 3.
Admissible asymptotics at— —o depends on the form

of the functionM (h). If it is given by Eq.(34) with a>0,

the layer atx— —o may asymptotically attain the state of V. NONEQUILIBRIUM MOTION

Iowest epergm=ho=ln(1/a) (formally, this is possjb]e at A. Viscously retarded motion

zero inclinationa, although gravity effects are negligible in I i ) i )

films of molecular thickness _ Equilibrium sqlquns withp varying along thez axis ex-
The starting point is Eq(47) with the effective pressure ist only at a particular constant value af equal to zero in

given by Eq.(45). Removing extra parameters, by rescalingthe adopted gauge. Any deviation of this value sets the in-
and integrating once, yields terface into motion; the interface shift corresponds to evapo-

ration or condensation retarded by viscous friction. The sim-
U(h—hp) plest case is steady propagation of the boundary between two
W:O’ (49 semi-infinite phases. The stationary one-dimensional equa-
tions in the frame moving with the speedof the steadily
propagating interface are
where the integration constant has been introduced allowing )
for a precursor film with the thickness, atx— —o. A more (pv),=0, —pu,+(nv,,=0, (52

h”(x)—(M'(h)+G)h'(X) —aG+
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wherev is the single velocity component in this frame; ex- B. Evaporation flux

ternal forces are omitted, an}i: [+ %7 is the renormalized We shall consider the caggx)—0, in view of a strong

viscosity, also accounting for the divergence term in .  viscous resistance that has led to the divergence of the effec-

These equations are readily integrated, yielding tive viscosity in Eq.(55). Any vertical flux in this case
causes a substantial change of the chemical potential in the

j=pv=const, u=puc+jR(2), (53) vertical direction, as well as a substantial distortion of the

vertical structure of the density field, as will be shown be-
low.

where

In a one-dimensional setting, when the fluis constant,
the vertical structure is computed by simultaneously solving
the vertical component of the Stokes equation together with

Eq. (11). We assumeyp=const (which is justified for the
dilute phase, where the friction is most imporfarsnd de-

The flux j is related to the propagation velocityas j= note e= 7j. Usingp as the independent variable and denot-
—c(p,—p,)- The sign ofc is chosen in such a way that it is ing go(p)=p§, this equation can be rewritten as
positive when the dendéiquid) state advances. The constant
e, which may be fixed by external conditions, represents w(p)=9(p)—z¢,. (57
the driving force of the process.

It is reasonable to assume that the disequilibrium is weak[ his relation can be used in the seconds of E§8), yield-
so that bothu. and the constant fluk are multiplied by a  ing a single equation defining the density profile in the pres-
book-keeping small parametémwhen Eq.(53) is used in Eq.  ence of evaporation or condensation. The right-hand side of
(11). The perturbed equation can be expanded in a usudhis equation can be transformed by replacing

1d/[.dp?
R(Z)Zf;d—z<n dz dz. (54)

way, and the relation between the flinand u is obtained =jdp~*/dz=jp~?\/¢; an apparent change of the sign of
from the solvability condition(31): the last term is due to the fact that is negative, and has to
be defined as- J/¢. The resulting equation can be integrated
o once, yielding, after some algebra,
pe=—c f _Po(DR(2)dz. (55 -
2 ¢ ’ ¢ _
p dp(Zp f'(p) +6p2 a. (58

The integral on the right-hand side can be interpreted as
the effective friction factor. It depends on the basic density . ) )
profile po(z) as well as on the assumed dependence of the TNe integration constarnt can be computedzby applying
viscosity on the density. Ipy=p,+p represents a weakly this relation deep in the dense layer where p; vanishes.

. ; _ . This gives a= —pzf'(p )=—p(p;). Thus « is identified
- _ 3 ) [ [ [
perturbed critical densityR(z) == 7cp. “p,, and the inte- ) yhe reverse pressure in the bulk of the liquid phase, but
gral in Eq.(55) is proportional to the surface tension. In the

f ishi density which int A ¢ is not defined numerically as yet, since one has still to com-
case ot vanishing vapor density which Interests us most, a?)'ute the shift of the liquid density, from its standard value

suming n=const, leads to a divergent integral. The diver-" _ : : : :
gencegi: not eliminated also Wher? the visgosity is propor—p'_1 due to a shift of the chemical potentjal Assuming

4 ) ) N . <1, one can see that bogh and « are of the same order
tional to density. Taking, for example;=wvp, Eq. (54) is  of magnitude in the bulk of the liquid. One can also observe
evaluated using the relatiop,=—p(1-p) as R(2)=  that, as expectedy>0 atp;<1 when the dense layer re-
—vIn[po(2/p.]. The weak divergence on the vapor side cancedes(evaporates Deep in the vapor phase, one should set
be eliminated by assuming a small but finite vapor density, — 0, so that the standard vapor density is not affected. Nev-

py - Then evaluating the solvability condition yields ertheless, if the vapor density tends to zero, the boundary
condition at the vapor end cannot be applied in a straightfor-
* P po(2) ward way, since the term containirgin Eqg. (58) is indefi-
Me= _Cf po(2)R(z)dz=—cv | In . dp nite. The solution strategy can be outlined then as follows.
o Po ¢ Picking a certain value of, we integrate Eq(58) numeri-
=—cv(l+Inpy), (56) cally and computew(p,) using Eq.(57); then a new value of

a is computed with the help of the algebraic equilibrium
where u. is the chemical potential at the location with a relations fc_)r_the liquid phase, and the_: computat_lon IS re-
chosen density leved peated until it converges to a self-consistent solution.

y ¢ This procedure can be improved, keeping in mind that

The de_nse Iayer_ advancesX0) at '“.>0' T.h's Causes hoth p and e are small, though the relation between them,
the chemical potential to drop at at locations with lower den-

. L -~ crucial for our theory, is still unknown. Equatiai®8) di-
sity ahead of the propagating interface, thereby effecuveI)(/i ded by p? can be formally integrated once more, and re-
slowing down the advance of the dense layer. A sharp droevritten inpthe form '
in the dilute layer, leading to a divergent friction fac{ér.

(55)], causes substantial deviations from the zero-order den-
sity profile, which will be taken into account in the next Sec. %(p—pf(p) +ppr(P')dP’ =0, (59
V B. 0
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H layer where a large velocity gradient is necessary to compen-
e sate for the decreasing density. The asymptotipsdz=
0.35 —\Jo=—ap? corresponds to a rather slow density drop-off
0.3 p=z~1-a dramatic change, compared to the exponential de-
o 25 cay in Eq.(11).
' The relation between the chemical potentialp,) and
0.2 flux j=7%"'e, obtained above, can be reversed, identifying
0.15 m(p)) = ue With the constant chemical potential in the dense
0.1 layer driving the mass fluk~(0.687) ~*x2. In the case of
0.05 a steadily propagating interface, this can be rewritten as a
relation betweenu. and the propagation velocitg=—j;
5 TO 5 50 unlike Eq.(55), this relation is now nonlinear:
FIG. 4. The chemical potential as a function of the rescaled AL
densityr in the case of evgporatiztrr(w). The curve correspond- c=—(0.677p) 'ul®. (64)
ing to A=0.677, with the asymptotic value @f(r) vanishing atr
— is flanked by two curves with positive and negative values of C. Condensation flux
). The above computation is valid only in the case of evapo-
where ration (j>0 or c<0). A constant condensation flux<0)

is, clearly, incompatible with vanishing vapor density. A
K(p)=ep *o(p)—ap 2. (60)  positive value ofu is required to enable condensation, i.e.,
an advance of the dense phase. This, in turn, implies a finite
Differentiating Eq.(59) yields, in view of Eqs(10) and(57),  vapor density, so that(p,)~p, atp,<1.
The condensation flux strongly depends on this residual
w(p)=pK(p)+ pr(p')dp'. (61) densit.y. Equatiori58) is_ retaine(_j w!th Fhe sign of i_nvert.eq,
0 but, since the expression multiplyirgis no more indefinite
atz— oo, the integration constarnt can be directly related to

The integral accumulates in the “boundary layer” @t 0 Dy

where both terms in Eq60) diverge; thus computing(p)
in this region is crucial. The scaling in the boundary layer is 5
fixed by requiring all terms in Eq(58) to be of the same p dp
order of magnitude. The small parametecan, indeed, be
eliminated by setting

Vo
+p5f'<pu>—ey=o. (65

(P ’
Z—f (p)

The appropriate rescaled variables are again given by Eq.
p=re3  o=0e?3 a=AeB (62 (62), and the rescaled equation replacing E) reads, in
leading order
The rescaled form of Eq59), applicable in the boundary

layer, is, in leading order, d/d 2o p?
R
d CD) L2V 2A ©3 Tt
drir oz whereg=|e| Y3, . The asymptotics a—o= orr— g is

Applying the same scaling to E¢61), one can see, how- 1
ever, that the generic estimateis- O(€*3), which is incon- d=kAr—p)2 k=—=(1—-1+48%. (67
sistent with the equilibrium relationships in the bulk of the 233
liquid. This can be repaired by adjustiagin such a way that
the asymptotic value of. at r— vanishes in the leading This asymptotics corresponds to an exponential decay of
order. This is indeed possible, as proved by integrating Egdensity to its equilibrium value,— B~e** at z—oe.

(63) numerically. The integration starts at som&0 using Integrating Eq.(66) with the asymptotic conditionEq.

the asymptotic conditiod® (r)=A?r* atr —0. A few sample  (67)], one can also see that in this case the chemical potential
curvesu(r) at different values ofA are drawn in Fig. 4; all defined by Eq.(57) reaches a constant asymptotic value at
of them approach—o at a certain asymptotic value which r—. Checking the asymptotics of E(65), at p—p,, one

has to be identified with.(p,). The asymptotic value van- can see that the thermodynamic pressure on the liquid side,
ishes atA~0.677. The residuaD(e2?) value ofu(p,), sat-  pZf'(py), should be equal that on the vapor sigéf’'(p,),
isfying the equilibrium relations(p|) = @, can be obtained in and, hence, be dd(e2?). This is again inconsistent with the
the next order by allowing a®(e) deviation ofa from the  generic estimatg.=O(e?), implying, through the equilib-
chosen valuer.~0.677%°, rium relationships, the same order of magnitudef tfp,).

Now the solution is completely specified. The chemicalHence, as in Sec. V B, the value gfhas to be adjusted in
potential peaks sharply in the dilute pha$ég. 4). This is  such a way that the asymptotic valuefatr — vanishes
due to the constraint imposed by a constant flux in one diin the leading order. The value found by shooting As
mension, requiring a large driving force in the transitional~0.685(see Fig. 5.
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% be still felt at larger scales, complementing the kinetic retar-
€ dation near the diffuse boundary. AtsPt, the flow velocity
is nearly constant throughout the transitional boundary re-
gion, and the propagation velocity defined by Et) can be
0.4 viewed as the velocity of the slow drift of the interphase
boundary due to the evaporation or condensation in the
0.2 frame moving with the local velocity of the ambient fluid. At
a fixed propagation velocity, the increments due to the vis-
. . r cous and kinetic retardation are additive. In the dense layer,
v Toooes the former is negligible at Br1, although it becomes impor-
-0.2 tant in the dilute phase, as we have seen in the preceding
subsections.

When Eq.(68) is coupled to hydrodynamicg, should be
replaced by convective derivative, and the equation can be
rewritten using the continuity equatidid) as

FIG. 5. The chemical potential as a function of the rescaled
densityr in the case of condensatioa<0). The curve correspond-
ing to B=0.685, with the asymptotic value @f(r) vanishing atr
—oo, is flanked by two curves with positive and negative values of

w(). PV -V+p,,—9g(p) +p=0. (72)

D. Kinetically retarded motion This shows clearly that kinetic retardation is effective, as it
o . L ) should be, in the diffuse boundary region, where the fluid is
Taking into account “normal” viscous retardation only compressible. The scaling of the lubrication approximation
(with 7~ 5) may exaggerate the actual phase transition ratgSec. IV A) remains consistent only if the relaxation time
since transport through a sharp density gradient is in fact am Eq. (68) is of O(4). With this scaling, the speed of the
activated process, except, perhaps, in an immediate vicinityapor-liquid interface displacement is 6f(5%), i.e., of the
of a critical point. When the interface is treated as a shargame order of magnitude as the vertical velocity.
discontinuity, this may be accounted for by introducing a
finite evaporation ratdinvolving an appropriate activation
energy and a condensation ‘“sticking coefficient.” Both
quantities are difficult to estimate quantitatively but, in prin-  The results of the computations that have been carried out
ciple, they insure a finite evaporation or condensation rat&0 far in this section for an infinite fluid layer separated by a
even under conditions when viscous retardation is absent. diffuse vapor-liquid interface can be applied to the spreading
In the framework of the phase field theory, kinetic retar-problem after minimal modification. In a bounded layer, the
dation can be accounted for by replacing the stationary equa&hemical potential in the liquid phage; , driving the evapo-
tion (2) or (11) by the respective gradient flow equation con-ration or condensation flux, is determined by the combined
taining a large relaxation time. In one dimension, we have action of surface tension and disjoining pressure. The dis-
joining potential can be computed with the help of the solv-
TPt= P2z~ 9(p) + . (68)  ability condition, as in Sec. lll D; the respective formulas
o _ ) o remain in force, since the flux-related drop of the chemical
On the infinite axis, this equatiofwith u=const) has a potential occurs in the dilute phase only, and is negligible in
solution steadily propagating with a speed dependenton the diffuse interface region, where the translational eigen-
and satisfying the stationary equation in the comoving framefnction is localized.
The basic equation of the lubrication approximatj&m.
~7CpzF Pz 9(p) + 1 =0. (69) (47)], is modified in the case of nonequilibrium spreading by
an added evaporation or condensation term:

E. Spreading assisted by interphase transport

In the case of weak disequilibriumy=0(8)<1, the

propagation speed=0(6) is easily computed, as in Sec. oh
V B, using the solvability condition of Eq69) expanded in Ezj(P)-i- 7 9, Q(h)P,]. (72
51
wipi—p,) 6u The expressions for the evaporation or condensation flux
e (70 j(P), and even the orders of magnitude, vary depending on

the physical situation under consideration, according to the
calculations presented, in the three preceding subsections,
with the effective pressure defined by E45) replacingu.. .

This determines, in turn, the relative importance of the two

when, respectively, either viscous or kinetic retardation id€MS on the right-hand side of E(2). In the case of vis-
prevalent. A rough estimate for the lower bound of the re-COUSlY retarded motion with finite, , j happens to be pro-
laxation time ist=12/D, wherel is the thickness of the dif- portional to»P, although the term representing the horizon-
fuse interface an® is the diffusivity. The characteristic time tal transport through the liquid phase is of ordera?P/9x?

of viscous retardation on the same length scale,isl?/v,  and is negligible compared to the evaporation or condensa-
wherev= 75/p. For common liquids, the Prandtl number Pr tion term in the lubrication limit, when the horizontal deriva-
=v/D is large, andr, / 7cD/v<<1. Viscous retardation may tives are small. In this case, flow across the isodensity levels,

where o is defined by Eq(14), and the numerical value is
given for the cubiay(p).
Equations(55) and (70) represent two opposite limits
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associated with evaporation or condensation, driven by the VI. SUMMARY AND PERSPECTIVES
deviation of the chemical potential from equilibrium, would
be larger byO(6~ 1) than hydrodynamic “horizontal” mo- As is well known, the phase field model provides a sound

tion. Therefore, it is likely that this does not represent thetheoretical basis for studying equilibrium capillary phenom-
most usual situations, where evaporation is hindered by largena in fluids. It allows us to derive, in a straightforward
activation energies. In the present model a way to enter cormanner, classical formulas for the capillary pressure and for
sistently this activation effect is to make the evaporation fluxhe equilibrium contact angle, contrary to formulations based
and the horizontal transport of the same order of magnitudgnon the introduction of van der Waals forces diverging at
This can be done by imposing &(4™ °) relaxation timer.  ghort distances. We have shown that this model can be ex-
Although this connection between a molecular quaniity (gnded in a natural way to study a thoroughly dynamical
and a macroscopic length scafemay look a bit artificial, g eading process. The lubrication limit, where the contact
this represents a d|st|ngg|sheq I|_m|_t wherg a balance betwee&iﬁgle is small, allows us to derive consistently an equation of
fac_}_c;]r;, gsfgﬁjzgér??g;cxleoggg E igﬁg;gg} is the one of gnotion for the liquid-vapor interface interacting with the
- : solid surface. In the static limit, this equation yields back the
vapor phase of vanishingly small density, when the evapora-

tion flux is related to the jump of chemical potential ps eqlécbrluwti\(t:]ungr]-Lagldacr? tr;ieonry.r ; that are in
o« ud?. In this case, it is possible to have the evaporation flux , =" aPoralion of Condensalon are processes that are

and the horizontal transport of the same order of rnagnitud8Iuded in this model. The driving force for the evaporation or
with the choice of scaling=0(5~ ). A slow density de- condensation is the imbalance between the pressure drop

cay caused by evaporation, which might lead to a Weaklyacrogs the inte_rface and its equilibrium value. Similgrly, and
(logarithmically divergent horizontal flux, may be a disturb- consistently with Seppecher{d8] results, an advancing or
ing factor, but this is certainly an artifact caused by a con'eceding contact angle differing from its equilibrium value
stant flux in a one-dimensional setting, and not transferabl@'akes the contact line a source or sink for evaporation or
to two-dimensional spreading. It is of interest to note at thiscondensation. We suggest checking this interesting phenom-
point that, when is dominant, and in the absence of hori- €non experimentally by observing the accumulation of a
zontal flux(which would happen far from a solid boundary nonvolatile tracer diluted in the liquid phase that would be
one recovers the classical Thomson expression for the evaptsft by evaporation near a moving contact line.
ration driven by the curvature of the liquid-vapor interface.  Our analysis indicates that kinetic retardation of the inter-
Mass transport across isodensity lines should become paphase transport is essential for a well-balanced theory away
ticularly important when the lubrication approximation from the critical point. The available simulations of the mo-
breaks down. This should happen near the “contact line” intion of a diffuse interface near a three-phase contact line
the case when two alternative fluid densities near the solifl18 19, taking into account viscous retardation only and, in
wall are possiblésee Sec. Il B. If, say, the boundary den- effect, assuming evaporation or condensation to be as easy as
sities are pg,<1 and pg=1-a, a<1, the three-phase plain advection, may grossly overestimate the rate of inter-
“contact line” can be viewed as a sharp transition betweeryhase transport, but the latter remains essential even when its
O(1) positive ﬁ”d negative values of the nominal thicknesgyrger of magnitude is reduced due to kinetic retardation.
h, such thae~ "l <1 on either side. This can be treated as @ The present theory extends itself in a very natural way to
shock of Eq.(47) or (49). The Hugoniot condition, which ohems ike film breaking. The latter situation is interesting

should ensure zero net flux through the shock, is the equalit Iso because it should allow one to approach thermodynami-

of chemical potentials on both sides. Unfortunately, this CONL4| critical points experimentally, where phase field models

dition cannot be formulated precisely, since the sharp- . . )
interface limit of the surface tension term is inapplicable incertamly apply, although things should become complicated

the shock region. Moreover, our test computations of th f the solid-fluid interaction is added to the critical phenom-

profile of the dense layer using E@50), with different ena near a moving contact line.
boundary conditions imposed on the “shock” &t=hg,
showed that the spreading velocity is very sensitive to the
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