
PHYSICAL REVIEW E AUGUST 2000VOLUME 62, NUMBER 2
Computation of dendritic microstructures using a level set method
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We compute time-dependent solutions of the sharp-interface model of dendritic solidification in two dimen-
sions by using a level set method. The steady-state results are in agreement with solvability theory. Solutions
obtained from the level set algorithm are compared with dendritic growth simulations performed using a
phase-field model and the two methods are found to give equivalent results. Furthermore, we perform simu-
lations with unequal diffusivities in the solid and liquid phases and find reasonable agreement with the
available theory.

PACS number~s!: 81.10.Aj, 68.70.1w, 81.30.Fb, 64.70.Dv
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Various numerical approaches@1–4# have been develope
to solve the difficult moving boundary problem that gover
the growth of dendrites@5–7#. Unfortunately, the direct so
lution of the time-dependent Stefan problem is troubleso
and usually requires front tracking and lattice deformation
order to compute the moving solid-liquid interface, which
often very complicated topologically. In general, the me
ods developed to tackle the free-boundary problem have
ficulty in handling topology changes, such as the merg
and breaking of surfaces, and are usually not easily exte
able to higher dimensions.

In order to avoid the difficulties associated with tracking
sharp interface, the phase-field model of solidification h
been developed and is currently the most popular techn
for simulating dendritic growth. The phase-field mod
avoids the computational difficulties associated with fro
tracking by introducing an auxiliary order parameter,
phase-field,c(r ,t) that couples to the evolution of the the
mal field. The dynamics ofc(r ,t) are designed to follow the
evolving solidification front@8–11#, which is defined by the
zero level setc(r ,t)50. Because the interface is never e
plicitly tracked, complicated topology changes are hand
easily. Furthermore, the extension of the phase-field mo
to higher dimensions is straightforward.

Although phase-field models have been very useful
studying solidification patterns, there are still some limi
tions in this approach. The proper use of these models
quires that an asymptotic analysis be performed in orde
obtain a mapping between the parameters of the phase-
equations and the sharp-interface equations@12–14#. The as-
ymptotics involve expanding the phase-field equations
some small parameter proportional to the interface width,W,
and as a result, the phase-field model only reproduces
dynamics of the sharp-interface equations in the limit wh
the expansion parameter is sufficiently small. Computati
ally, the grid spacing must be small enough to resolve
interfacial region, which is on the order ofW. This restriction
is generally not a problem for the symmetric model of s
lidification ~where the diffusivities in the solid and liqui
phases are assumed to be the same! because it is possible t
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haveW on the order of the capillary length@14#. However,
phase-field asymptotics for unequal diffusivities lead to co
putationally inconvenient forms because correction ter
that are inconsistent with the sharp-interface equations
generated by the unequal diffusivities and nonmonotonic
havior of the phase-field is required in the interfacial regio
which requires extra grid resolution and hence slower co
putational performance@15#. The generalization of the
phase-field approach to handle discontinuous material p
erties requires a better understanding of the mapping
tween the phase-field model and the sharp-interface for
lation in order to avoid problems with properly resolving th
interface.

The level set method is a computational approach that
the capability of avoiding the above mentioned limitations
front tracking methods and phase-field models. This meth
first introduced by Osher and Sethian@16#, is conceptually
similar to a phase-field model in that the solid–liquid inte
face is represented as the zero contour of a level set func
f(r ,t), which has its own equation of motion. The mov
ment of the interface is taken care of implicitly through
advection equation forf(r ,t). Thus, topology changes an
the extension of the method to higher dimensions can
handled in a straightforward manner. Unlike the phase-fi
model, there is no arbitrary interface width introduced in t
level set method; the sharp-interface equations can be so
directly and, as a result, no asymptotics are required. Disc
tinuous material properties can also be dealt with in a sim
manner.

The level set method has been applied to several probl
involving moving boundaries@17–19#, including solidifica-
tion. Prior work on dendritic growth includes an applicatio
of the method to a boundary integral formulation@20# as well
as the direct solution of the sharp-interface equations@21#.
While these simulations have reproduced the qualitative
tures of dendrites, as well as some quantitatively accu
solutions to exactly soluble problems, some of the simu
tions of anisotropic dendritic growth were not necessa
converged@21#. Furthermore, the results were not compar
with theoretical predictions of dendritic growth.
2471 ©2000 The American Physical Society
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In this article, we demonstrate that the level set meth
can be used to solve the free-boundary problem for solid
cation to calculate quantitatively accurate solutions for d
dritic growth. We present results from simulations in tw
dimensions and show that the solutions converge to
steady-state predicted by microscopic solvability theo
Time-dependent results are also compared with calculat
using a phase-field model and good agreement is found
all times. Furthermore, we perform simulations with uneq
diffusivities ~a case which is not yet possible with phase-fie
models! and find that the prediction of Barbieri and Lang
@22# provides a fair quantitative fit to our results.

The solidification of a pure substance is described b
free-boundary problem for the temperature in the solid a
liquid phases, and the position of the interface between th

] tu5D¹2u, ~1!

Vn5~D]nu!Solid2~D]nu!Liquid , ~2!

ui52d~u!k2b~u!Vn . ~3!

The temperatureT has been rescaled as a dimensionless t
mal field u5(T2Tm)/(L/Cp), whereTm , L, andCp repre-
sent the melting temperature, the latent heat of fusion,
the specific heat at constant pressure, respectively. The
mal diffusivity, D, can be different in the solid and liqui
phases. Equation~2! describes energy conservation at t
solid-liquid interface, whereVn is the local outward norma
interface velocity and]n refers to the outward normal deriva
tive at the interface. Finally, Eq.~3! is known as the Gibbs–
Thomson condition and describes the deviation of the in
face temperature,ui , from equilibrium due to the loca
curvature,k, and interface kinetics.d(u)5g(u)TmCp /L2 is
the anisotropic capillary length, proportional to the surfa
tensiong(u), andb(u) is the anisotropic kinetic coefficient
Here we assume thatb(u)50 and that the capillary length
has the formd(u)5d0(1215e cos 4u), wheree is the an-
isotropy strength andu is the angle between the local norm
vector at the interface,nW , and thex-axis.

We solve the above free-boundary problem by usin
level set algorithm, which involves the following steps:~i!
advancing the interface,~ii ! reinitializing the level set func-
tion to be a signed distance function, and~iii ! solving for the
new thermal field. The general level set method is descri
below. We wish to note that in our simulations we impl
ment alocalizedlevel set method, described in detail in Re
@23#, in which calculations off are performed only in a
narrow region around the interface. We have not yet mad
attempt to make our algorithm more computationally e
cient by using adaptive mesh refinement.

~i! Advancing the interface. The level set function is de
fined as the signed normal distance from the solid–liq
interface such thatf is positive in the liquid phase, negativ
in the solid phase, and zero at the interface.f satisfies the
pure advection equation

]f

]t
1Fu¹fu50. ~4!
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Integrating Eq.~4! for one time step results in moving th
contours off along the directions normal to the interfac
according to the velocity fieldF, which varies in space.F is
constructed to be an extension of the interface velocity,Vn ,
such thatF5Vn for points on the interface and the lines
constantF are normal to the interface. Thus, advectingf
according to Eq.~4! moves the front with the correct veloc
ity.

Rather than using a partial differential equation to gen
ateF ~as in Refs.@21,23#!, we constructF in the following
manner:f represents the normal distance from the solid
cation front, so the value off at each gridpoint on the com
putational lattice can be used to locate a particular point
the interface. IfxWg is the location of the gridpoint, the asso
ciated point on the interface is atxW i5xWg2fnW , where the
normal vectornW 5¹f/u¹fu. The temperature atxW i is then
calculated by using Eq.~3!; u is easily found fromnW , and the
curvature,k5¹•nW , is interpolated atxW i from values ofk at
neighboring gridpoints.nW and k are calculated using stan
dard, centered finite difference approximations to the par
derivatives off. Next, values ofu are interpolated in both
the liquid and solid phases, a distanceDx ~the size of the
grid spacing! away fromxW i along the normal direction. Thes
two interpolated temperatures are used along withui to ap-
proximate the difference in the normal derivative ofu at xW i

and thus findVn @Eq. ~3!#. BecausexW i andxWg lie in the same
line normal to the interface, the value ofF at xWg is simply
Vn . The fieldF can be determined at all gridpoints in th
way.

After F is known, the interface can be advanced one ti
step. For stability, we discretize Eq.~4! using a fifth-order
WENO ~weighted essentially nonoscillatory! scheme in
space and a third-order Runge-Kutta scheme in time@24#.
However, the overall accuracy of our algorithm is secon
order in space and first-order in time.

~ii ! Reinitialization. After solving Eq. ~4! for one time
step, the level set function will no longer be equal to t
distance away from the interface. It is necessary toreinitial-
ize f to be a signed distance function. This step is acco
plished by solving

]f

]t
1S~f!@ u¹fu21#50, ~5!

to steady state.S(f) takes on the value11 in the liquid
phase,21 in the solid phase, and is zero at the interface.
typically iterate Eq.~5! three times in order to obtain a
accurate distance function. Like Eq.~4!, this equation is dis-
cretized using a fifth-order WENO scheme in space an
third-order Runge-Kutta scheme in time@24#.

~iii ! Solving for the new thermal field. The thermal field is
updated by solving Eq.~1! using a modified Crank-Nicolson
scheme. Different diffusivities in the two phases can be ta
into account by simply noting the sign of the level set fun
tion and using the appropriate diffusion coefficient in t
finite difference stencil. Special care has to be taken for g
points near the interface. Ifufu<Dx, the level set function is
used to determine whether the front intersects the stencil
if so, interpolate where the interface crosses the stencil.
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stencil is then modified to take into account the location
the interface and the Gibbs-Thomson condition.

We compute four-fold symmetric dendrites in anL3L
square box using the procedure described above. Solidi
tion is initiated by a small quarter disk of radiusR0 in the
lower left-hand corner of the box. The initial level set fun
tion is f(x,y)5Ax21y22R0, wherex and y are the usual
Cartesian coordinates. The initial temperature isu50 in the
solid and decays exponentially away from the interface
u52D as xW→`, where the far-fieldundercooling is D
5(Tm2T`)/(L/Cp) andT` is the temperature far ahead
the solidification front in the liquid.

Equations~1!–~3! have been studied extensively to dete
mine the steady-state features of dendritic growth@6,7#. Ac-
cording to microscopic solvability theory, these equatio
admit a family of discrete solutions. Only the fastest growi
of this set of solutions is stable. This solution is the dynam
cally selected ‘‘operating state’’ for the dendrite and cor
sponds to a unique tip shape and velocity. Recent calc
tions of dendritic growth using phase-field models have b
found to be in good agreement with the predictions of m
croscopic solvability theory@14,25#. We observe similar
agreement with the use of the level set algorithm and ob
results that are within a few percent of theoretical pred
tions. Figure 1 shows the dimensionless tip velocity of
dendrite,Ṽtip5Vtipd0 /D, vs dimensionless time,t̃ 5tD/d0

2,
for computations at undercoolings ofD50.65 and 0.55. For
all of these simulationsD51, d050.5, b50, R0515, and
e50.05. For theD50.65 simulation,L5200,Dx50.2, and
the time step is chosen to beDt50.002. For theD50.55
simulation,L5800,Dx50.4, andDt50.008. To ensure grid
convergence,Dx and Dt were refined until the steady-sta
tip velocity did not vary by more than 2%.

We also compare our level set results with simulations
dendritic growth performed using a phase-field model.
though calculations using phase-field models have been c
pared with a steady-state theory, there have been no com
sons made between time-dependent phase-field calcula
and time-dependent solutions of the sharp-interface eq
tions for multidimensional dendritic growth. The phase-fie
model calculations presented here were performed usin
special adaptive mesh algorithm, as described in Ref.@25#.

FIG. 1. Time evolution of the dimensionless tip velocity f
simulations atD50.65 and 0.55.
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The tip velocity data from the phase-field model and level
method atD50.55 are in excellent agreement with ea
other ~within 3%!, as shown in Fig. 1. Similar agreement
found in the dendritic shapes for these simulations, prese
at t̃ 537 600 in Fig. 2. These comparative results, combin
with the recent demonstration of the equivalence of vario
phase-field models@26#, provide an excellent foundation fo
the validity of the phase-field approach in simulating soli
fication microstructures.

The results presented here so far have usedDS5DL ,
whereDS andDL are the diffusivities in the solid and liquid
phases, respectively. With our level set algorithm, we c
also investigate the more general case where the diffusiv
are unequal. We performed additional simulations atD
50.65 withDS50.75,0.5,0.25, and 0 while keepingDL51.
The only available benchmark for the case of nonsymme

FIG. 3. r̃2Ṽ for different values ofDS /DL . The circles are data
from level set simulations atD50.65. The solid line is the theoret
ical prediction of Barbieri and Langer fitted to the data point
DS /DL51.

FIG. 2. Comparison of dendritic shapes computed from the le

set method and phase-field model forD50.55, shown at t̃
537 600.



d

-
o

re

s.
re
W
ra
fa
n
al

ur-
r,

nt.
tic
the
nt
ods
to

dis-
ro-
nd
to
the
o.
a-

2474 PRE 62YUNG-TAE KIM, NIGEL GOLDENFELD, AND JONATHAN DANTZIG
diffusion is the linearized solvability theory of Barbieri an
Langer@22#, which predicts

r̃2Ṽ'
11DS /DL

2
~ r̃2Ṽ!DS /DL51 , ~6!

where r̃5r/d0 and Ṽ5Vd0 /D are the steady-state dimen
sionless tip radius and velocity, respectively. The values
r̃2Ṽ obtained from the level set simulations are compa
with Eq. ~6! in Fig. 3. The fit is surprisingly good~an error of
about 13% atDS /DL50), considering Eq.~6! was obtained
from a linearized theory in the limit of small undercooling

In conclusion, the level set method should be conside
as a viable alternative to the use of phase-field models.
have used a level set algorithm that can produce accu
calculations of dendritic growth which can be compared
vorably with solvability theory as well as time-depende
phase-field model simulations. The level set method can
V
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d
e
te
-
t
so

handle discontinuous material properties easily, which is c
rently very difficult with the phase-field approach. Howeve
we should note that our implementation is not at all efficie
The practical application of this method to more realis
systems will require some sort of adaptive technique. In
future, we would like to use more computationally efficie
implementations of this algorithm and apply these meth
to problems in directional solidification, where the ability
simulate unequal diffusivities is of great interest.
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