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Computation of dendritic microstructures using a level set method
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We compute time-dependent solutions of the sharp-interface model of dendritic solidification in two dimen-
sions by using a level set method. The steady-state results are in agreement with solvability theory. Solutions
obtained from the level set algorithm are compared with dendritic growth simulations performed using a
phase-field model and the two methods are found to give equivalent results. Furthermore, we perform simu-
lations with unequal diffusivities in the solid and liquid phases and find reasonable agreement with the
available theory.

PACS numbegps): 81.10.Aj, 68.70+w, 81.30.Fb, 64.70.Dv

Various numerical approachgb—4] have been developed haveW on the order of the capillary leng{i4]. However,
to solve the difficult moving boundary problem that governsphase-field asymptotics for unequal diffusivities lead to com-
the growth of dendrite§5—7]. Unfortunately, the direct so- putationally inconvenient forms because correction terms
lution of the time-dependent Stefan problem is troublesoméhat are inconsistent with the sharp-interface equations are
and usually requires front tracking and lattice deformation ingenerated by the unequal diffusivities and nonmonotonic be-
order to compute the moving solid-liquid interface, which is havior of the phase-field is required in the interfacial region,
often very complicated topologically. In general, the meth-which requires extra grid resolution and hence slower com-
ods developed to tackle the free-boundary problem have difputational performancgd15]. The generalization of the
ficulty in handling topology changes, such as the merginghase-field approach to handle discontinuous material prop-
and breaking of surfaces, and are usually not easily extencerties requires a better understanding of the mapping be-
able to higher dimensions. tween the phase-field model and the sharp-interface formu-

In order to avoid the difficulties associated with tracking alation in order to avoid problems with properly resolving the
sharp interface, the phase-field model of solidification hasnterface.
been developed and is currently the most popular technique The level set method is a computational approach that has
for simulating dendritic growth. The phase-field model the capability of avoiding the above mentioned limitations of
avoids the computational difficulties associated with frontfront tracking methods and phase-field models. This method,
tracking by introducing an auxiliary order parameter, orfirst introduced by Osher and Sethift6], is conceptually
phase-fieldy(r,t) that couples to the evolution of the ther- similar to a phase-field model in that the solid—liquid inter-
mal field. The dynamics ofs(r,t) are designed to follow the face is represented as the zero contour of a level set function,
evolving solidification fron{8—11], which is defined by the ¢(r,t), which has its own equation of motion. The move-
zero level sety(r,t)=0. Because the interface is never ex- ment of the interface is taken care of implicitly through an
plicitly tracked, complicated topology changes are handlecddvection equation fog(r,t). Thus, topology changes and
easily. Furthermore, the extension of the phase-field moddahe extension of the method to higher dimensions can be
to higher dimensions is straightforward. handled in a straightforward manner. Unlike the phase-field

Although phase-field models have been very useful inmodel, there is no arbitrary interface width introduced in the
studying solidification patterns, there are still some limita-level set method; the sharp-interface equations can be solved
tions in this approach. The proper use of these models radirectly and, as a result, no asymptotics are required. Discon-
quires that an asymptotic analysis be performed in order ttinuous material properties can also be dealt with in a simple
obtain a mapping between the parameters of the phase-fiefdanner.
equations and the sharp-interface equat{dis-14. The as- The level set method has been applied to several problems
ymptotics involve expanding the phase-field equations irinvolving moving boundarie§17-19, including solidifica-
some small parameter proportional to the interface width, tion. Prior work on dendritic growth includes an application
and as a result, the phase-field model only reproduces thaf the method to a boundary integral formulati@®] as well
dynamics of the sharp-interface equations in the limit whereas the direct solution of the sharp-interface equati@is.
the expansion parameter is sufficiently small. ComputationWhile these simulations have reproduced the qualitative fea-
ally, the grid spacing must be small enough to resolve théures of dendrites, as well as some quantitatively accurate
interfacial region, which is on the order @. This restriction  solutions to exactly soluble problems, some of the simula-
is generally not a problem for the symmetric model of so-tions of anisotropic dendritic growth were not necessarily
lidification (where the diffusivities in the solid and liquid converged?21]. Furthermore, the results were not compared
phases are assumed to be the abeeause it is possible to with theoretical predictions of dendritic growth.
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In this article, we demonstrate that the level set methodntegrating Eq.(4) for one time step results in moving the
can be used to solve the free-boundary problem for solidificontours of¢ along the directions normal to the interface
cation to calculate quantitatively accurate solutions for denaccording to the velocity fielé, which varies in spacér is
dritic growth. We present results from simulations in two constructed to be an extension of the interface velodity,
dimensions and show that the solutions converge to theuch that- =V, for points on the interface and the lines of
steady-state predicted by microscopic solvability theoryconstantF are normal to the interface. Thus, advecting
Time-dependent results are also compared with calculationgccording to Eq(4) moves the front with the correct veloc-
using a phase-field model and good agreement is found faty.
all times. Furthermore, we perform simulations with unequal Rather than using a partial differential equation to gener-
diffusivities (a case which is not yet possible with phase-fieldate F (as in Refs[21,23), we construcfF in the following
models and find that the prediction of Barbieri and Langer manner:¢ represents the normal distance from the solidifi-
[22] provides a fair quantitative fit to our results. cation front, so the value ap at each gridpoint on the com-

The solidification of a pure substance is described by gutational lattice can be used to locate a particular point on

free-boundary problem for the temperature in the solid anghe jnterface. Ifx, is the location of the gridpoint, the asso-

liquid phases, and the position of the interface between therQ::iateol point on the interface is a&=>?g—gbﬁ, where the

normal vectorn=V ¢/|V ¢|. The temperature at; is then
calculated by using Ed3); 6 is easily found fromm, and the
curvature,x=V-n, is interpolated ak; from values ofx at

neighboring gridpointsn and x are calculated using stan-
dard, centered finite difference approximations to the partial
Ui=—d(0)x—B(O)V,. (3 derivatives of¢. Next, values ofu are interpolated in both
the liquid and solid phases, a distans& (the size of the

The temperatur@ has been rescaled as a dimensionless thergrid spacing away fromii along the normal direction. These
mal fieldu=(T—T)/(L/C,), whereT,, L, andC, repre-  two interpolated temperatures are used along wjtto ap-
sent the melting temperature, the latent heat of fusion, anﬂroximate the difference in the normal derivative wat )zi
the specific heat at constant pressure, respectively. The theéhd thus findv, [Eq. (3)]. Becausek andx, lie in the same
mal diffusivity, D, can be different in the solid and liquid nLmn A : 9

phases. Equatiofi2) describes energy conservation at thelin® normal to the interface, the value Bfat x4 is simply
solid-liquid interface, wher&/,, is the local outward normal Vn- The fieldF can be determined at all gridpoints in this
interface velocity and,, refers to the outward normal deriva- Way- . . .
tive at the interface. Finally, Eq3) is known as the Gibbs— After F is known, the interface can be advanced one time
Thomson condition and describes the deviation of the interSteP. For stability, we discretize E¢d) using a fifth-order
face temperaturey;, from equilibrium due to the local WENO (weighted essentially nonoscillatoryscheme in
curvature , and interface kineticed(6) = y(6)T,C,/L%is ~ SPace€ and a third-order Runge-Kutta scheme in g,

the anisotropic capillary length, proportional to the surfacgioWwever, the overall accuracy of our algorithm is second-
tensiony(6), andB(6) is the anisotropic kinetic coefficient. °rder in space and first-order in time. _

Here we assume tha(6)=0 and that the capillary length (i) Reinitialization Aﬁer so]vmg Eq.(4) for one time
has the formd(6)=d,(1— 15¢ cos 46), wheree is the an- step, the level set function will no longer be equal to the

isotropy strength and is the angle between the local normal distance away from the interface. It is necessargetaitial-
; - . ize ¢ to be a signed distance function. This step is accom-
vector at the interface), and thex-axis.

We solve the above free-boundary problem by using £I|shed by solving
level set algorithm, which involves the following stefs: i
advancing the interfaceii) reinitializing the level set func- —+S(¢p)[|Ve|—1]=0, (5
tion to be a signed distance function, aiid) solving for the Jt
new thermal field. The general level set method is described . -
below. We wish to note that in our simulations we imple- to steady stateS(¢) takes on the value-1 in the liquid

ment alocalizedlevel set method, described in detail in Ref. phqse,—; in the solid phase, and Is zero at the interche. We
[23], in which calculations ofé are performed only in a typically iterate Eq.(5) three times in order to obtain an

narrow region around the interface. We have not yet made aﬁcctyra(tje di_stancef_?:r:]ctign. I;/i\II(ENE((gﬂ)’ tEis eqqation IS dis- d
attempt to make our algorithm more computationally effi—fr:?ézedusgg a IK _t(t)r erh . ?C eme In space and a
cient by using adaptive mesh refinement. Ird-order Runge-Kutta scneme in irfi24) -

(i) Advancing the interfaceThe level set function is de- (iii) Solving fqr the new thermal f|el'a‘.he thermal f'eld IS
fined as the signed normal distance from the solid—liquioupdated by solving .qu.) using a modified Crank-Nicolson
interface such tha is positive in the liquid phase, negative scheme. Different diffusivities in the two phases can be taken

in the solid phase, and zero at the interfagesatisfies the Lnto accijount_ by tsrllmply noting tthedilfgn_of . ':?f?"?' Sft. quhc—
pure advection equation ion and using the appropriate diffusion coefficient in the

finite difference stencil. Special care has to be taken for grid-
points near the interface. || <Ax, the level set function is

¢ +F|Vg|=0 4) used to determine whether the front intersects the stencil and,
at ' if so, interpolate where the interface crosses the stencil. The

d,u=DV?2u, )

V= (D dqu) selig— (D dnU) Liquid » i)
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FIG. 1. Time evolution of the dimensionless tip velocity for 800
simulations atA =0.65 and 0.55. -800 —400 0 400 800

stencil is then modified to take into account the location of
the interface and the Gibbs-Thomson condition. FIG. 2. Comparison of dendritic shapes computed from the level
We compute four-fold symmetric dendrites in &nx L set method and phase-field model fd&r=0.55, shown att
square box using the procedure described above. Solidificaz 37 600.
tion is initiated by a small quarter disk of radik, in the
lower left-hand corner of the box. The initial level set func- The tip velocity data from the phase-field model and level set
tion is ¢(x,y) = Vx>+y?’—R,, wherex andy are the usual method atA=0.55 are in excellent agreement with each
Cartesian coordinates. The initial temperatura+s0 in the  other(within 3%), as shown in Fig. 1. Similar agreement is
solid and decays exponentially away from the interface tdound in the dendritic shapes for these simulations, presented
u=—A as x—», where the far-fieldundercoolingis A att1=37600 in Fig. 2. These comparative results, combined
=(Tm—T.)/(L/Cp) andT., is the temperature far ahead of with the recent demonstration of the equivalence of various
the solidification front in the liquid. phase-field modelg26], provide an excellent foundation for
Equations(1)—(3) have been studied extensively to deter-the validity of the phase-field approach in simulating solidi-
mine the steady-state features of dendritic grof@f7]. Ac-  fication microstructures.
cording to microscopic solvability theory, these equations The results presented here so far have uBeeD,,
admit a family of discrete solutions. Only the fastest growingwhereDg andD_ are the diffusivities in the solid and liquid
of this set of solutions is stable. This solution is the dynami-phases, respectively. With our level set algorithm, we can
cally selected “operating state” for the dendrite and corre-also investigate the more general case where the diffusivities
sponds to a unique tip shape and velocity. Recent calculsare unequal. We performed additional simulations Aat
tions of dendritic growth using phase-field models have beer 0.65 withD s=0.75,0.5,0.25, and 0 while keepiiy =1.
found to be in good agreement with the predictions of mi-The only available benchmark for the case of nonsymmetric
croscopic solvability theory{14,25. We observe similar
agreement with the use of the level set algorithm and obtair o9 . , . , : ; :
results that are within a few percent of theoretical predic- i
tions. Figure 1 shows the dimensionless tip velocity of the —— Fauation6
dendrite,Vy,=Vy,do/D, vs dimensionless timé,=tD/d3, O8O Level SetMethod 4065
for computations at undercoolings 4f=0.65 and 0.55. For
all of these simulation®=1, d,=0.5, 8=0, Ry=15, and 07
€=0.05. For theA =0.65 simulation.=200,Ax=0.2, and &
the time step is chosen to ket=0.002. For theA=0.55 '~
simulation,L =800,Ax=0.4, andAt=0.008. To ensure grid 08
convergenceAx and At were refined until the steady-state
tip velocity did not vary by more than 2%. 05
We also compare our level set results with simulations of
dendritic growth performed using a phase-field model. Al-
though calculations using phase-field models have been conmr ¢4 03 03 Y 05 ]
pared with a steady-state theory, there have been no compar DD
sons made between time-dependent phase-field calculations
and time-dependent solutions of the sharp-interface equa- FiG. 3.5V for different values 0Ds/D, . The circles are data
tions for multidimensional dendritic growth. The phase-fieldfrom level set simulations at=0.65. The solid line is the theoret-
model calculations presented here were performed using igal prediction of Barbieri and Langer fitted to the data point at
special adaptive mesh algorithm, as described in (2. Dg/D.=1.
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diffusion is the linearized solvability theory of Barbieri and handle discontinuous material properties easily, which is cur-
Langer[22], which predicts rently very difficult with the phase-field approach. However,
we should note that our implementation is not at all efficient.
~pe, 1+Ds/Dp <o The practical application of this method to more realistic
pV~ 2 (p V)DS/DL:]" ©) systems will require some sort of adaptive technique. In the
future, we would like to use more computationally efficient
wherep=p/d, andV=Vd,/D are the steady-state dimen- implementations of this algorithm and apply these methods
sionless tip radius and velocity, respectively. The values ofo problems in directional solidification, where the ability to

~ o . . . imulate unequal diffusivities is of great interest.
p°V obtained from the level set simulations are compare
with Eg. (6) in Fig. 3. The fit is surprisingly goothn error of We thank Susan Chen and Stanley Osher for useful dis-
about 13% aDg/D =0), considering Eq(6) was obtained cussions, Nikolas Provatas for helpful remarks and for pro-
from a linearized theory in the limit of small undercoolings. viding the adaptive phase-field code used in this work, and
In conclusion, the level set method should be considere@Vouter-Jan Rappel for providing the solvability code used to
as a viable alternative to the use of phase-field models. Weest our simulations. This work has been supported by the
have used a level set algorithm that can produce accuratldASA Microgravity Research Program, under Grant No.
calculations of dendritic growth which can be compared faNAG8-1249. We also acknowledge the support of the Na-
vorably with solvability theory as well as time-dependenttional Center for Supercomputing ApplicatiofSCSA) for
phase-field model simulations. The level set method can alsthe use of its computer resources.
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