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Critical light scattering in liquids
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We compare theoretical results for the characteristic frequency of the Rayleigh peak calculated in one-loop
order within the field theoretical method of the renormalization group theory with experiments and other
theoretical results. Our expressions describe the nonasymptotic crossover in temperature, density, and wave
vector. In addition we discuss the frequency dependent shear viscosity evaluated within the same model and
compare our theoretical results with recent experiments in microgravity.
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[. INTRODUCTION titatively. In addition the density dependence of the line
width is considered. The nonuniversal background param-
Dynamical critical phenomena manifest themselves in aters entering the expression for the characteristic frequency
singular temperature dependence of hydrodynamic transpoatre taken from other dynamical experiments, e.g., measure-
coefficientd 1]. In pure fluids these transport coefficients arements of the shear viscosity. Recently very precise data be-
the thermal conductivity and the shear viscosity, both divergcame available for xenon from experiments performed in mi-
ing on approach of the critical point. In Ref2] the field  crogravity[3]. This allows also to reconsider the frequency
theoretic renormalization groufRG) theory has been used dependence of the shear viscosity within RG theory already
for a quantitative description of this nonanalytic behaviordiscussed in Ref4].
and attention was given to the crossover to the analytic be- The results for pure fluids are also compared with light
havior in the background further away frofp. The thermal scattering experiments in polymer solutions and polymer
conductivity can be measured in two wayig,by measuring blends. The nonasymptotic behavior in a mixture is not com-
the temperature difference when a heat current flows throughletely described by the critical model for pure flui@g but
the liquid (this is an experiment at zero wave veckgr and the asymptotics is the same. Therefore agreement should be
(ii) by light scattering experiments in the hydrodynamic re-found as long as the nonuniversal dynamic parameters are
gion, where the wave vector and the temperature dependenear to their fixed point values.
correlation lengtt¥ fulfill the relationké<1. In the last case
the thermal diffusivityD ; is measured which is related to the 1. DYNAMIC MODEL
thermal conductivitykr by Dt=k1/(pCp) so that for a
comparison of the two experimental data the specific heat The dynamic order parameter correlation function for the
has to be known. For the thermal diffusivity and the sheagas—liquid transition can be described within the model
viscosity however theoretical calculations show that no othef1], which is a special case of the model described in
static quantity apart from the correlation length has to bedetail in Ref.[2], containing dynamic equations for the order
known. This makes these two transport coefficients mosparameterg, (the entropy densifyand the transverse mo-
suitable to check the dynamical renormalization calculationmentum density; ,
In light scattering experiments in liquids the characteristic
frequencyw,., defined as the half width at half height of the ddg o ,0H o6H
central Rayleigh peak, provides useful additional information WZFV 5¢ 9(V¢0) +0y, 2.1
about the dynamical properties of the system. Far away from
the critical point in the hydrodynamic region the character- .

istic frequency is given bw.=D+(T,p)k?. Approaching the @_i V2§—H+°T \v/ 5_H_2 i Vﬁ—V 5_H
Vo197 (Vo) V= ks

critical point a crossover from the hydrodynamic to the so-dt Ol oo X Ojk Ojk

called critical region k&é>1) takes place and finally at

(T.,pe) the characteristic frequency is a function of the +0,, (2.2

wave vector alone. Asymptotically near the critical pdifiotr

A _ _ _
very Sm:" \'/?Iur(]es gk) th? [)low_gr l?w behaV|o§>cF k hIS with fast fluctuating force®; and the projector? to the

expected with the dynamical critical exponent3. Further e ction of the transverse momentum density. The Hamil-
away, that means for larger wave vector modulus, a crossL

onian appearing in the dynamic equations is the normal

over to the background behavior with a nonsingular therma amiltonian of ag*-theory together with the conserved den-
conductivity takes place. This is described by the van Hov ity j, entering quadratically:
theory where the characteristic frequency behaveswas ! '
~k4, o

It is the aim of this article to calculate the characteristic alle o 1 2, U1

. e ; = —Th5+ = +— o+ = a;

frequency in the whole§ k) -plane within the nonasymptotic f d X[ 27-(1)0 2 (Vo) 41 o 2 a4 It
RG theory in order to describe all types of crossover quan- (2.3
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As described in Ref.2] the dynamic equations may be trans- £2 | [ *2 1-x,
formed into a dynamic functional leading to dynamic vertex r(|)=ro( % l—o[ 1+ l—(t—z — 1) ] ) . (33
functions which can be calculated in perturbation theory. In t o\ fg
general the dynamic scattering function is different from a
Lorentzian due to fluctuation effects. This prediction of scal-with the one-loop fixed point value of the mode coupling
ing theory has been observed in ferromagréisand even  f{%=23 and the one-loop value of the exponent= 15. The
compared with RG calculatiori¥]. The same scaling argu- connection between the flow parameiteand the correlation
ments as for the ferromagnet also apply for pure fluids aldength or the wave vector, respectively, is found from the
though the deviation from a Lorentzian is expected to bematching condition
smaller[8]. Moreover it turns out that in one-loop order there
are no frequency dependent contributions in the one-loop (&M2=¢2+K2 (3.4
perturbation terms of the order parameter vertex functions
[9]. Therefore the shape of the dynamic correlation functiorfor the Lorentzian approximation where the correlation
is approximated by a Lorentzian and may be written as  length may be expressed in terms of the reduced temperature
t via £=¢&pt” with »=0.63 along the critical isochore. As
Xstk, &) 2 described in Refl4] we may use the cubic model to include
we(k, &) 1+—y2 noncritical values of the reduced density. In E@&2)—(3.4)
(2.4) I'g andf are the initial values of the Onsager coefficient and
the mode coupling at an arbitrary reduced temperatyre
in one-loop order withy=w/w. and the characteristic fre- along the critical isochoré,, is the solution of the matching
guencyw., defined as the half width at half height of the condition att, and k=0, and &, is the amplitude of the
Rayleigh peak. The width is given by the vertex functioncorrelation length. EquatiotB.4) is the frequency indepen-
I'y3(k,§,0=0) so that the unrenormalized characteristicdent matching condition which has been used since the ver-
frequency reads tex functionI” ,3,, expressing the characteristic frequency in
the Lorentzian approximation, is evaluated at zero frequency.

Xay(K.& ) =2xsRA T (k£ 0)]=

R o oo tz We may rewrite Eq(3.1) extracting the asymptotic ex-
wc(k,§)=Tk(§“+k)| 1+ g pressions for the Onsager coefficient and the mode coupling,
) l X2 1—X)\/2
x | d¢ L simo (2.5 wc(k,X)zraK( 2 ) [Cna(k,x) P2 (k,x),
ERIPESEN ' X

(3.9
with x=k¢, 1=/l andft=g/\/F_)\t after setting the pa-  ith x=k¢ andz=4—x, where the critical exponent, is
rameterw ,=I"/a;\, which is irrelevant under renormaliza- given byx, =1-x, and has the one-loop valug = 2 The
tion, to zero. In full analogy to the renormalization of the function f(k,x) is defined as

transport coefficient§2], the pole in the unrenormalized

characteristic frequency may be absorbed itfactors us- f{‘z s 5
ing field theoretic renormalization group theory. As we get f(kXx)=1— 16(:—“()()[_5+6X In(1+x9]. (3.6
the samez-factors(and thus the same flow equations for the na
Onsager coefficient and the mode coupliag for the trans-

<0 ) . The nonasymptotic contributions are collected in
port coefficients we shall skip the details here.

" k [1+x?
Ko x?

After renormalization the characteristic frequenoy is SO that the asymptotic region is characterizeddgy(k,x)
finally found to be =1. Finally the asymptotic Onsager coefficidni; and the

P crossover wave lengtk, are given by
wc(K,&)=T(Hk (£ “+k%)

fZI X\ f*2
ras=ro( 00) , k01=<t——1)|§—§. (3.9

f2&, f§

Ill. CHARACTERISTIC FREQUENCY Cra K, X)= , (3.7

A. General expression

’

16

(1
x[l— ! )[—5+6x*2|n(1+x2)]

(3.3) The advantage of Eq3.5) over Eq.(3.1) is the clear sepa-

in an e-expansion withe=4—d. The temperature depen- ration of the asymptotic and the nonasymptotic behavior
dence enters via the flow equations for the mode coupling’hich will make the discussion of the various limits of the

and the Onsager coefficient, Characteristic frequency easier. Before we come to that point
in the next section we should remark here that it is also
fx2 -1 possible to evaluate the crossover function in three dimen-
f2(1)=fr% 1+ l—(t—z—l)l , (3.2)  sions[10] instead of performing am-expansion. The char-
o\ fg acteristic frequency then reads
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wc(k, &) =T (HK*(£72+k?) f21
lim w.(k)=Tok* 1— —| (3.15
2 [1+x2 3 Klkg—» f
X1+ f4(1) 3 ;arctanx— 2.
X where again we reach the van Hove theory for large values

(3.9  of the ratiok/ko. This means that our results for the charac-
teristic frequency describe the crossover in the correlation
As expressiong3.1) and (3.9 are almost identical after length (from ¢ "% to ¢72) in the hydrodynamic region
choosing the right initial values for the Onsager coefficientcharacterized by the limi—0 as well as the crossover in
[see Fig. 3 for a comparison of the asymptotic form of ex-the wave vectoffrom k? to k*) in the critical region charac-
pressions(3.1) and (3.9)] and the mode coupling we shall terized by the limitx—o.

only discuss the-expansion resulfalso used for the evalu- We have seen that with our nonasymptotic theory we a[-
ation of the transport coefficients in Refg,4]) in the fol-  ways reach the van Hove behavior in the nonasymptotic limit
lowing. for large values of the wave vector or small values or the

correlation length, respectively. This is different from the
nonasymptotic mode coupling expression of Olchdd§],

B. Various limits of the characteristic frequency T e
where the characteristic frequency is given by

First we should note that E3.5) yields a finite value for

the characteristic frequency in theydrodynamiclimit x keT .3
—0, we(k,&) = ——=—K>=(1+x2) Y] —yp+ys(1+xH)Y2],
6mné 4
22+ 1 X*[ e 1 ‘W (3.16
limw(k,&)=T TEN L+ —| (1 —= |1+ — ,
lim ok, ) =T o’ o 151 i .

(3.10

with xo=koé&. Here the coefficient df? is the nonasymptotic

expression for the temperature dependent thermal diffusion v =(1+x3) Y9 —yp+arctarixp(1+x3) " ?)],
coefficientD1(£) discussed in Ref.2,4] so that we can re- (3.17
write Eq. (3.10 in the well-known formw.=D+(&)k? for

the hydrodynamic region. Also in the oppostetical limit depending both on the nonuniversal parametgeqpé
Xx—o we obtain a finite value for the characteristic fre- which is similar to the parametéy appearing in our nonas-

yp=arctarxp,

quency, ymptotic theory. Equatiof3.16) does not yield the van Hove
theory in the nonasymptotic region but instead becomes
lim w.(k, &)= w(k) negative fox>2xp . This region of unphysical negative val-
X—o ues of the characteristic frequency is always reached at con-
X, 5*2 K11 stant correlation length when the wave vector becomes larger
=T, K4 1+—| {1+ 1+ — ] than the nonuniversal parametgs. On the other hand the
Ko 16 Ko parametegp cannot be set to infinity as this limit yields an
(3.11 Fn%hysical divergence in the hydrodynamic limit &+ 0
11].
which is the wave vector dependent nonasymptotic expres-
sion of the characteristic frequency. Both nonasymptotic ex- C. Discussion of the crossover behavior

pressions allow to discuss the crossover fromasgmptotic
limit ékg— o0 or k/ky— 0 to thebackgroundimit &ky—0 or
k/ky— oo, respectively.

In the hydrodynamic case we obtain the limits

In the background we always reach the van Hove behav-
ior for the characteristic frequency. This is a general feature
of our nonasymptotic theory. The parameter which describes
the crossover from the van Hove expression of the charac-

%2 teristic frequency to its asymptotic expression is in fact the
1— ft_) ’ (3.12 value of the mode couplinfy, which can take on values from
16 zero to the fixed point valu&’ . Note that this corresponds
to a crossover ok, from its asymptotic limitkg— oo to its

2\ X van Hove limitk,— 0. The van Hove behavior fdipy=0,

( 1- f—"z) . (313
t

lim wc(k,§)= Fa4(2§_2+x}‘

Ekg— e

lim k,&)=Tk?¢ 2
gkoﬂo%( §=Tok¢ o (k,x)=Tok*(1+x7?), (3.18
where we used the expression "Q.J' given in Eq(38) for is different from the baCkgrOUnd behavior at ﬁnﬁiﬁso that
the last limit. In the background limit our expression reachegve can define a background van Hove characteristic fre-

the van Hove behavior. In the critical region we obtain que“CwaVH as

X\

(1+x7?%), (3.19

M w(K)=T 12
k/kg—0

5f?2 BvH 4 f(%
1+ 6, (3.14) WP =Tok'| 1= =5
t
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FIG. 1. Ratio of the characteristic frequeney divided by the I 1
van Hove background expressiomc’” for f,=0.1 or ko= s 1
7.98x10° % A1, respectively(gray surface where the ratio be-
comes 1 in the background limé—0 andk—o and for fy~f} [ 1
(wire frame where the van Hove expression is never reached by the
asymptotic characteristic frequency. [ B
~me” i _,__—,‘-.——1.—._—-’—'—'"'
which we now always reach with our nonasymptotic theory il
in the background ||m|Ek0—>0 or k/k0—>90, respectlvely 1 s 1l MR ETTY B RTTI!| B E AR TTT B AR TT T
; 10* 10" 10° 10’ 10° 10°
Now we can extract the background van Hove behavior
from the full characteristic frequency given in E.5), X

FIG. 3. Comparison of our asymptotic result fa(x)/x evalu-
ated in ane-expansion as well as in three dimensions with the
theoretical results of KawasakiRef.[12]), Paladin and Pelit{Ref.
[13]), and Burstynet al. (Ref. [14]).

100 rm—r—r e
Kawasaki ] f2 X\
- - - - van Hove . _  BVH x| 9
— — - asymptotic result | wo(k,X) = wc (K, X)(kéo) gx20
non-asymptotic result t
—x\/2
14+x2\ 7V ko) |
X —_— f(k,x),
2 2
X f5
1-=2
fi
(3.20
BvH

and plot the ratiav./w; "' in order to demonstrate the cross-
over behavior of the characteristic line width. This is done in
Fig. 1 from which we see that the ratio,/wZ"" increases
near the critical poinfcharacterized by—« andk—0) as

the characteristic frequency then approaches its asymptotic
power law behavior, of course with nonuniversal amplitudes
depending on value of the mode couplifig in the back-
ground. This effect increases with increasing values of the

Q(x) / x

t = 10° mode couplingfy. Especially we see that choosing the fixed
x, = 0.063 point valuef,= f{ the surface of the characteristic frequency
£=10"em never reaches a flat surfa@eorresponding to the van Hove
Ll i mrerereerer mrarers P PP RPN R behavioj.
102 10" 10° 10’ 10 10° The crossover from the asymptotic power-law behavior in
« the critical region, where the characteristic frequency is pro-

portional tok?, to the van Hove behavior witly > k* in the

FIG. 2. Comparison of our asymptotic and nonasympttioe ~ nonasymptotic background regio_n can also be Seen_in Fig. 2
various values off, at constant correlation lengt¥) results for ~ Where we compare our asymptotic and nonasymptotic results
Q(x)/x with the Ornstein—Zernike theory and the theoretical resultwith the van Hove theory and the result of Kawasgk2].
of Kawasaki Ref[12]. To do this we rewrite Eq(3.5) extractingk? instead ofk?,



2464 G. FLOSSMANN AND R. FOLK PRE 62

! LR |
O k=0.809x10° cm’
0 k=1596x10°cm"”
A k=1.917x10° cm™
v k=2107x10°cm’
|- — -asymptotic
100 non-asymptotic B
t, = 0.001
f,=1.050
; r,=771x10"
x \ x, = 0.065
= s
G
FIG. 4. The characteristic frequenay, /T k? as a function of -
the reduced temperatutend the reduced densityp in the hydro- i
dynamic limit fork=0. I
W2k, E) = k(14T k) PO (K X) ;
§1+X'i 1 s el M WV 1
r 10? 10" 10° 10’
—___a 2
= glan Q(x), (3.21) X

FIG. 6. Comparison of the asymptotidashed linesand non-
and compare the various results for the functid(x)/x at ~ asymptotic(solid lineg expressions fof)(x)/x with the Xe-data of

constant correlation length insteadwf itself. Therefore we Ref.[16]. The sequence of the nonasymptotic curves from top to
bottom corresponds to decreasing modulus of the wave vector.

10-4 WA | R | ML | LA |

have to note that the functid(x) defined in Eq(3.21) is in
general not only a function af=k¢ but also of the wave
vector k which enters via the nonasymptotic function
/] chak,x). But keeping the correlation length constant as in
1 Fig. 2 we can expredsin terms ofx so that(Q)(x) is really
only a function ofx.

As Kawasaki’s result is proportional tio® instead ofk?
the functionQ(x)/x plotted in Fig. 2 becomes constant for

O k=0.809x10° cm
O k=1.596x10"cm
A k=1917x10°cm
v

e
e
B
k =2.107x10° ecm”

- asymptotic result
non-asymptotic result

10° _ large values ofx whereas our asymptotic resyltharacter-
— ] ized byc,4k,x)=1) is proportional tax*» and the van Hove
N ] theory tox. Our nonasymptotic resultgt constant values of
g 1 the correlation lengtl§) behave for large values aflike the
- 1 van Hove theory and are therefore proportionat.téVe also
= 1 see in this figure that the set-in of the crossover to the van
g’ Hove theory is determined by initial value of the mode cou-

pling fy which is the only free parameter in our nonasymp-
totic theory. We also should note that in Kawasaki's theory
there is a different prefactor for the functiél(x) so that we
have normalized the functiof2(x)/x so that the curves co-
incide forx—0.

We can also use the functidi(x) defined in Eq.(3.22)

T | to compare our asymptotic result for the characteristic fre-
Il NI BT Y R quency with other theories: In Fig. 3 we have plotted the
10° 10* 10° 102 asymptotic result fof)(x)/x [which is only a function ofx

as we have,(k,x)=1] as well as the theoretical results of
t Kawasaki and Ld12], Paladin and Peliti13], and Burstyn
FIG. 5. Comparison of the asymptotidashed linesand non- €t al.[14]. As the other authors have a different prefactor for
asymptotic(solid lines expressions forw./k? with the Xe-data of ~ {2(X) we have normalized)(x) so that the curves coincide
Ref. [16]. The sequence of the curves from top to bottom corre-for x— 0. Again we see that the Kawasaki result §d¢x)/x
sponds to decreasing modulus of the wave vector. becomes constant whereas the other results show the correct
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10" T

O k=0414x10°cm” |

0 k=1.555x10°cm’
----- asymptotic
non-asymptotic

o k=0414x10°cm”

o k=1.555x10°cm’
| - asymptotic
non-asymptotic

P 100 |

&g < 1
s | - ~
5 10 . = ]
A a
o 10 | 4
8 [ ]
t, =1.000 | t,=1.000
fo = 0.251 ] f, = 0.251
T,=262x10" " T,=262x107
X, = 0.063 x, = 0.063
10-6 AT 11 sl s s el I 1 sl L 2l I sl
10° 10* 10° 10° 10° 10" 10°
At X
FIG. 7. Comparison of the asymptotidashed linesand non- FIG. 8. Comparison of the asymptotidashed lingsand non-

asymptotic(solid line9 expression fow, /k? with the CQ-data of ~ asymptotic(solid line) expressions fof) (x)/x with the CQ-data of
Ref. [16]. The sequence of the curves from top to bottom corre-Ref. [16]. The sequence of the nonasymptotic curves from top to
sponds to decreasing modulus of the wave vector. bottom corresponds to decreasing modulus of the wave vector.

x*7 behavior for large values of. An essential difference nonuniversal parameters are given in TableAls discussed
between our theory and the results of R¢i2—14 is how-  in Ref.[4] we can treat the exponerf=1-x, as an addi-
ever that our nonasymptotic theory allows a more apt treattional free parameter so that we canffitand x,, from the
ment of background than the purely asymptotic expressiongxperimental datéhe initial value of the Onsager coefficient
of Refs.[12—14. In addition to this comparison we should T is determined by the value of the shear viscosityoht
note that at the critical dimensioti=4 our result for the Byt this means that we need additional data for this fit. In Xe
characteristic frequency is identical with the result of Siggiawe have used the recent shear viscosity data of Bea.
etal.[15]. [3] discussed in the next section. Fitting the paraméter
And finally let us mention that we can extend our theoryfrom the characteristic frequency ddthe exact value ok,
to noncritical values of the density and calculate the crossggpes hardly affect the exponer{=1-x,) and the expo-
over in the characteristic frequency when we leave the criti-nemxf7 from the shear viscosity data we find good agree-
cal isochore: Using the parametric representation to conneghent for the characteristic frequentigs. 5 and Has well
the correlation length to the reduced temperattr&(T a5 for the frequency dependent shear viscogitys. 11 and
—T¢)/T. and the reduced densityp=(p—pc)/pc [4], We  12). For CO, we have takerty, fo, andI', (also given in
are able to evaluate the correlation length as a function of Taple |) from the comparison of the shear viscosity and the
Ap, andk. In Fig. 4 we have plotted the characteristic fre- thermal diffusivity with experiments in Ref4] so that the

quency in the hydrodynamic limit fdt=0 as a function of  curves shown in Figs. 7 and 8 are obtained without any free
andAp. We see that the characteristic frequency goes to zerparameter!

in the critical limit t—0 and Ap—0 corresponding tc¢ As we can see in these figures the experimental data are
— . not described correctly by our asymptotic expressions but
only by the nonasymptotic expressions which show the

IV. COMPARISON WITH EXPERIMENTS crossover to the van Hove theory for large values of the

reduced temperaturieor small values of the variable re-
spectively. Analogously any asymptotic thediy2—14 fails

In Figs. 5—-8 we compare our asymptotic and nonasympto describe the experimental data correctly. In R&6] this
totic results for the characteristic frequensy/k? as a func-  problem was eliminated adding a regular background contri-
tion of the reduced temperaturand the functiof)(x)/x as  bution of the formchz()\B/pcp)kZ(1+x2) to the critical
a function ofx with experiments in Xe and CO[16] (all  expression for the characteristic frequency withbeing the

A. Pure liquids
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TABLE I. Nonuniversal parameters of Xe, GOand polydisperse polystyrefeDPS.

Liquid &[A] to fo [o[cmf/s] X, v ko[cm™1]

Xe 1.84 0.001 1.050 7. %1018 0.065 0.63 48.810°
Co, 1.60 1.000 0.251 2.6210°18 0.063 0.63 32.81C°
PDPS 4.60 0.100 0.350 2520 %° 0.065 0.70 4.6810°

regular part of the thermal conductivity aeg the full spe-  that our asymptotic and nonasymptotic curves for Xe and
cific heat at constant pressure containing also critical contriCO, contain only the critical contributions discussed in this
butions. The use of the full specific heat together with thearticle. So the main difference between our nonasymptotic
term 1+ x? ensures the crossover to the van Hove theory fotheory and the results of Refisl2—14 is that the crossover
large values of the reduced temperature as well as for larg® the van Hove theory, which is clearly seen in experiments,
values of the wave vectdthe background characteristic fre- is already contained in our expressions for the characteristic
quency is proportional t&?&~2 for x—0 and tok* for x  frequency and not added by an appropriate form of the back-
—) so that the full characteristic frequenay=wS+ oS  ground contribution

obtained by this procedure yields basically the same curves In Fig. 6 and 8 we also see that the nonasymptotic results
as our nonasymptotic theofgee Fig. 6 of Ref{16]). In our  for Q(x)/x do of course not collapse on a single cufire
theory however we use a different form of the backgroundcontrary to our asymptotic result and the theories of Refs.
characteristic frequency: Following the discussion of the[12—-14) as the nonasymptotic contributian, does not only
regular background added to the transport coefficipfitsse ~ depend on the variabbe=ké but also on the wave vectér
would have to add a background of the form® and the correlation lengtlj separately. This behavior can

= D-Er‘(T,p)kz— D_Er‘(-rC ,pe)k? to our results with the back- also be seen in the Xe and ¢@ata in Fig. 6 and 8 although
ground thermal diffusivity given b3D$:)‘B/PCE and the the experimental data are not precise enough for a true con-
background specific heaf containing only the regular tem- firmation of the validity of our nonasymptotic theory.
perature dependence without the critical singularity. As this

background term turns out to be negligibly small in the tem- B. Polymer solutions and blends

perature range shown in Figs. 5-8 we have neglected it SO and finally we apply our theory for the characteristic fre-
quency to light scattering experiments in binary polymer so-

407 T u
® k=2.022x10°cm’ 10 —
A k=1.430x10"cm’ Kawasaki ]
® k=109%4x10°em™ | ¥ 1 X | e Burstyn et al. .
v k=0740xi10°em” | ® 1 1L\ | - asymptotic RNG | |
t =01 polydimethylsiloxane and |
fz -0.35 polyethylmethylsiloxane
—_ r,=2518x10% °r
A x, = 0.065
e 10° | | v=0.700 .
=R
A >
~ ~
g =
a
polydisperse
polystyrene in
10° Cy v v v cyclohexane |4
Caaaaal sl saal
10* 10° 10® 10"
t 1 |
FIG. 9. Comparison of the nonasymptotic characteristic fre- 0.1 1 10

quencyw./k? with the experimental data of Rdfl7] in a polymer
solution after subtracting the regular background. The sequence of
the curves from top to bottom corresponds to decreasing modulus of FIG. 10. Comparison of the asymptotic expression®{ix)/x
the wave vector. with the experimental data of RdfL8] in a polymer mixture.
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lutions: In Fig. 9 we compare our nonasymptotic theory for In Fig. 10 we compare our asymptotic result for the func-
the characteristic frequenay,./k® as a function or the re- tion Q(x)/x as well as the theoretical results of Kawasaki
duced temperature with experimental data in a solution of12] and Burstynet al. [14] with experimental data in the

polydisperse polystyrenéPDPS in cyclohexane[17]. For  Polymer blend of polydimethylsiloxane and polyethylmeth-
this figure the initial value of the Onsager coefficient wasY!Siloxane[18]. As all these data are only available in a

determined from the value of the background shear viscositjather small range ot we can apply the asymptotic theory
at the critical point also measured in REE7]. The ampli- and avoid the discussion of the last paragraph. The use of a

tude of the correlation lengté, as well as the exponenis non_asymptotic theory W(?u'd also not be possible for a com-
—07 andx.=0.065 were taken from the same article. Parison with these experimental data for a second reason: All

Therefore wg have to note that the exponembund by Ref. data shoc;/vn in Fig. 10 wt()are ﬁbtaindgf? for diffelrerl;t;ig]pera—
[17] for the polymer solution is higher than the value tures an wave vectors but t ese d er_ent value ¢
o L2 - were not indicated separately in the article but only the cor-
.=_0..63 found for pure liquids or liquid mlx_tures. Fitting the responding value af=k¢. This was also the reason why we
initial value of the mode coupling,, which is the only free .14 not fit the initial value of the Onsager coefficient so
parameter in our theory, from the experimental dataval-  {hat the only fit parameter, the prefactor@®{x), was set by
ues given in Table)lwe reach a satisfactory description of the choice that our result shall coincide with the result of
the experimental data although the curves for large wavgyrstynet al.in the limit of small values ok. In addition we
vectors lie above the experimental data for small values ofave to note that the experimental values for the function
the reduced temperature. Nevertheless we have to note thaf(x) were obtained from the data for the characteristic fre-
the quality of the description cannot be compared to the onguency dividing not by the full shear viscosity depending on
reached for Xe and CQas there are no detailed experimen-the correlation length but only by its constant background
tal data for the shear viscosity of this polymer solution in thevalue, so that we had to correct this, multiplying our theoret-
vicinity of the critical point available, so that an exact deter-ical expression for the functiofe(x) by x *». In any case

mination of 7, and thus of', was not possible and also the the experimental data shown in Fig. 10 are not precise
critical exponent had to be fixed and could not be fitted from&nough to favor any of the presented theoretical expressions.
the experiments.

However one crucial point remains: The fact that we have V. FREQUENCY DEPENDENT SHEAR VISCOSITY
used the nonasymptotic theory developed for pure liquids to
describe a polymer solution is of course a problem as quuid%I
and liquid mixtures do have the same asymptotic behavio([Jld
but show a slightly different crossover to the nonasymptoti
behavior. But as an asymptotic theory is not able to describ
the experimental datén the same way as we were not able le
to describe the characteristic frequency in pure liquids Witf}h
the asymptotic theodyand a nonasymptotic theory for criti-
cal light scattering in mixtures has not yet been set up, w
believe that the systematic errors made by applying a nona
ymptotic theory for pure liquids to mixturdsvhich basically

Since we have used information from the shear viscosity
the discussion of the light scattering line width we shall
d an analysis of the most recent shear viscosity data for Xe
3] to this article. These new data allow a much more de-
iled analysis of the frequency dependent shear viscosity
ading to slightly different parameters than the discussion of
e shear viscosity of Xe in Ref2] which was based on
older data. In Ref[4] we have discussed the theoretical ex-

ression for the frequency dependent shear viscosity, which
S given by

means setting the additional parametes found for the _ KT &

transport coefficients in liquid mixturg§] to zerg are rather n(t,Ap,w)= VP Rrry——

small and can be tolerated. In addition we have to note that a eI

background characteristic frequency given in Ré&f/] was Y[1+E. (f.(1 N wi(l 5.1
subtracted from the experimental data as well as from the [ tFDe®winl, G
nonasymptotic results fap./k?. with the one-loop perturbational contribution

f2
E(fu(),v(1),w(l))=— 9—‘6{ 1+6

v? v? v
i—Inv+ —Inv_——Inv,
W U+_U_ U+ U_
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vi—vo
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FIG. 11. Comparison of the theoretical expression for the real FIG. 12. Comparison of the theoretical expressions for the real
part of the shear viscosity in microgravity at various frequenciegart of the shear viscosity in micrograw(;at frequ§nCIes 0 and 2
with the experimental data of Ref]. See text for details. Hz) as well as in earthbound experimeisr two different vessel

heightg with the experimental data of Refl3,21].
The parameters introduced in E&.2) are defined as

cosity. With this multiplicative factor for the frequency they
E72(1) 1) were able to reproduce the experimental data for the shear
w(l,w)= —————, (5.3 viscosity very well.
2r(H(& ) In Figs. 11 and 12 we compare our theory with experi-
mental data in microgravity and in the earth’s gravitational

v [[v\? field [3,21] fitting the exponenk, with f, taken from the
Ut(lﬂ’)zii (E) tiw, (5.4 light scattering experiments of Reff16]. In doing so we
found x,=0.065 instead of the valug,=0.069 used by
Berget al. We should note here that we can use the exponent
x,=0.069 (with the initial values f,=0.959 andI'g=
8.82x10 18 cm/s) to get exactly the same theoretical
curves as shown in Figs. 11 and 12 but then we are not able
to describe the characteristic frequency data correctly with
this choice off ; andI'y. This fact that the parametefgs and

with the mode couplingf;(I) and the Onsager coefficient
I'(l) given by Egs.(3.2) and(3.3). The mode coupling pa-
rameterl is now a function of the correlation lengthand
the frequencyw and results from the solution of the match-
ing condition[19]

8 [ 0y \2 X, cannot be determined unambiguously from the shear vis-
(@) + _w) —|8 (5.5  cosity data alone was already discussed in detail in [R¢f.
13 INQ)) In Figs. 11 and 12 it turns out that we can describe the

experimental data in microgravity only if we multiply the
At the moment of publication no experimental data werefrequency by a factor of 5, which may be explained as cor-
available to compare them to our theoretical expressiongections to the one-loop expressions from higher order per-
The situation has changed meanwhile as Beirgl. [3] per-  turbation contributiong22] and thus justified for the same
formed shear viscosity experiments at small frequencies in eeason as the factor of 2 in the mode coupling th¢8tyBut
microgravity environment onboard a space shuttle. Comparthen we are able to describe not only the microgravity data
ing their experimental results with the mode coupling theorybut also the earth-bound experiments very well with a single
[20], they found that they could only describe their data cor-set of parameters shown in Table I. And once again let us
rectly multiplying the frequency by a factor of 2 in the the- mention that we have used the same set of parameters to
oretical expressions. They explained the introduction of thiglescribe the characteristic frequency in Xe correctly in Figs.
factor as a two-loop effect correcting the errors of the oneb and 6. As the experimental data shown in Fig. 12 cover a
loop expression used for the frequency dependent shear vikrge range of reduced temperatures we had to add the regu-
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lar background contribution found in Ref21], which is  pling theory and our theory is, that it is not possible to intro-

completely independent of the critical behavior describedduce the true critical exponent, in our expression for

within our model. Im(7)/Re(n) and therefore deviations from the one-loop or-
Berget al. did not only measure the real part of the shearger perturbation theory cannot be weakened by the use of the

viscosity but determined also the imaginary partzofrom  correct value foix,, .

the phase shift. In Ref3] they compared the mode coupling

result for the ratio Im@)/Re(;) with their experimental data VI. CONCLUSION
and found good agreement. Comparing our results with these ,
experimental data we get less satisfactory resi@@ be- We were able to show that our one-loop perturbation

theory result for the characteristic frequency evaluated
within the field theoretical method of the renormalization
group theory does not only reproduce the correct wave vec-
Im(;) 1 1 1 tor _and correlationllength dg_penden_ce in th(_e hydrodynamic
——=— —|1-=={3In(1/4—1/3}| ~0.0195, region as well as in the critical region, but is also able to
T—1.Re(7) 762 76 describe experimental data correctly for a large range of
(5.6)  wave vectors and reduced temperatures. In addition we

S , showed that also the result for the shear viscosity evaluated
at T which is different from the value 0.0353 obtained from ,,iihin the same model is in good agreement with experi-

the mode coupling theory with the exponenf=0.069[3]  ments if a two-loop value for the critical exponent is taken.
which turns out to be in good agreement with the experimen- There are however some points which indicate the need
tal data. As the limit of the ratio Imf)/Re(») does not for a two-loop analysis of the model: First we have seen that
contain any free parameter & it cannot be improved and in one-loop order the dynamic correlation function is always
the deviation of our theory from the experiments may beof Lorentzian form whereas scaling thedi§] predicts de-
explained by the fact that a one-loop order perturbatiorviations for large frequencies. Second we are not able to get
theory is not able to describe such small effg¢the imagi-  the experimental limiting value for the ratio of the imaginary
nary part of the shear viscosity is only about 3% of the totaland real part of the frequency dependent shear viscosity
complex shear viscosityand therefore a two-loop theory Im(7)/Re(y) at T, and we have to introduce a multiplica-
may be expected to yield much better agreement. In thigye factor for the frequency in order to describe the experi-
respect we should also note that the mode coupling expressental data correctly. This makes a profound two-loop

sion used by Bergt al.is not purely of one-loop order since anajysis inevitable which is currently in progress.
it makes use of the experimental value for the expomgnt

which differs significantly from its one-loop value. If we
insert the one-loop valug,=1/19 into the mode coupling
expressions we would get a limit Imj/Re(r)~0.0271 at This work was supported by the Fonds ztirderung der

T. which is also significantly lower than the measured lim-Wissenschaftlichen Forschung under Project No. P12422-
iting ratio. So the main difference between the mode couTPH.

cause in our theory the ratio Ir’;ﬁ/Re(n) approaches the
finite value,
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