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Phenomenological glass model for vibratory granular compaction

D. A. Head*
Department of Physics and Astronomy, JCMB King’s Buildings, University of Edinburgh, Edinburgh EH9 3JZ, United Kingdo

~Received 28 March 2000; revised manuscript received 11 May 2000!

A model for weakly excited granular media is derived by combining the free volume argument of Nowak
et al. @Phys. Rev. E57, 1971~1998!# and the phenomenological model for supercooled liquids of Adam and
Gibbs@J. Chem. Phys.43, 139 ~1965!#. This is made possible by relating the granular excitation parameterG,
defined as the peak acceleration of the driving pulse scaled by gravity, to a temperaturelike parameterh(G).
The resulting master equation is formally identical to that of Bouchaud’s trap model for glasses@J. Phys. I2,
1705~1992!#. Analytic and simulation results are shown to compare favorably with a range of known experi-
mental behavior. This includes the logarithmic densification and power spectrum of fluctuations under constant
h, the annealing curve whenh is varied cyclically in time, and memory effects observed for a discontinuous
shift in h. Finally, we discuss the physical interpretation of the model parameters and suggest further experi-
ments for this class of systems.

PACS number~s!: 45.70.Cc, 05.40.2a, 64.70.Pf
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I. INTRODUCTION

It is well known that, with the appropriate driving an
boundary conditions, granular matter can approximate e
of the three major states of matter: gas, liquid, and so
@1,2#. Conspicuous by its absence is a glass state; that
state where the relaxation times far exceed the observati
time frame@3–7#. However, it is becoming increasingly clea
that the granular analog of glass has been found in a re
series of experiments performed at the University of Chica
@8–11#. They measured the density of a system that w
weakly perturbed or ‘tapped’ by the application of a drivin
pulse to the container. A first indication of glasslike rela
ation processes came from analysis of the densityr(t),
wheret is the number of times the system had been tapp
which was found to increase only logarithmically slowly@8#

r~ t !5r f2
Dr

11B ln~11t/t!
. ~1!

The fitting parametersr f , Dr, B andt are functions of the
control parameterG, defined as the peak acceleration of t
driving pulse scaled by gravity,G5amax/g. Subsequent ex
periments in whichG was varied during a run also behave
in a manner similar to glasses under a variable tempera
@5–7,9–11#, suggesting a relationship betweenG and some
elusive temperaturelike quantity.

Theoretical attempts to understand the experiments h
ranged from the construction of toy microscopic models
higher level, coarse grained descriptions@12–25#. The gen-
eral consensus has been that the slow relaxation is du
frustrated dynamics resulting from excluded volume effec
More insightful are the free volume arguments postulated
the Chicago group~Nowak et al.! @9# and Boutreux and de
Gennes@26#, which derive the logarithmic compaction wit
only a small number of assumptions. Provocatively, th
assumptions are also key components in established phe
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enological models of glass-forming liquids, namely those
Adam and Gibbs@27# and Cohen and Turnbull@28#, respec-
tively. This further suggests that the analogy with glasses
valid one. However, both of the granular free volume d
scriptions currently lack any mention of the experimen
control parameterG and hence must be regarded as inco
plete.

In this paper we demonstrate how one of the free volu
arguments, namely that of the Chicago group, can be
panded into a full model that incorporatesG. This is made
possible by postulating a loose analogy betweenG in the
granular system and temperature in supercooled liquids,
then using this analogy to incorporate elements of the Ad
and Gibbs theory. The result of this process is a master e
tion for weakly excited granular media that is capable
reproducing a wide range of known experimental behav
The motivations behind this work are twofold. First, by f
cusing on only a small number of physical mechanisms,
success of the model in emulating the experiments indic
that the dominant mechanisms may have been correctly id
tified. It is further hoped that this work may help t
strengthen the relationship between granular matter
glasses. This second goal is easily achieved once we s
that the derived master equation is identical to that o
simple glass model due to Bouchaud@29–32#.

This paper is arranged as follows. In Sec. II the Chica
group’s free volume argument is summarized and then
panded to a full model by importing elements of the Ada
and Gibbs theory. The resulting master equation that
scribes the evolution of the system in time is specified. N
merical integration of this master equation, plus analyti
results wherever possible, are compared to the experime
data in Sec. III. Of particular importance here is an expla
tion for the apparent contradiction between the experime
and any model based on the free volume approach, conc
ing the supposedG dependence of the projected final densi
r f in Eq. ~1!. Further discussion on the physical interpre
tion of the model parameters is given in Sec. IV, as well
suggested ways in which the various assumptions behind
model may be more rigorously checked. Finally, we summ
2439 ©2000 The American Physical Society
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2440 PRE 62D. A. HEAD
rize our findings in Sec. V and make some tentative pred
tions for future experiments that may help to further elu
date the relevant physical mechanisms in granu
compaction.

II. DESCRIPTION OF THE MODEL

The relationship between the Chicago group’s free v
ume description and the Adam and Gibbs theory is that t
both regard the dominant relaxation process to be the co
erative rearrangement of particles. The correspondence
tween the two theories can be taken further by postula
the existence of a temperaturelikenoiseparameterh(G) for
weakly excited granular matter. This procedure forms
basis of our work, and is described in full below. For curre
purposes it is sufficient to provide a somewhat heuristic
scription of the model; a fuller discussion of the vario
parameters can be found in Sec. IV.

A. First principles derivation

The Chicago group’s@9#, and also Boutreux and d
Gennes’@26# arguments employ the concept of the mean f
volume per particle, here denotedv̄ f . For a system ofN
particles occupying a total volumeV, v̄ f is defined as

v̄ f5
V2Vmin

N
5vgS 1

r
2

1

rmax
D , ~2!

where vg is the volume of a single particle andr is the
volume fractionNvg /V. Units are chosen so that the dens
of a single grain is unity, hencer is also the density of the
system. Following@26#, rmax[Nvg /Vmin is identified with the
most compact state possible in a disordered system, i.e.
random close-packing limit. In what follows we shall fi
rmax50.64, believed to be the random close packed den
for a system of monodisperse spheres@33#.

The Chicago group postulated that the compaction p
cess is dominated by the cooperative rearrangement of l
domains of particles. Ifz is the number of particles in a
region that can rearrange independently of its environm
they argued there is a lower cutoff

z>z* 5a
vg

v̄ f

~3!

below which there is not enough free volume available
allow reconfiguration. Roughly speaking,z* is the number
of particles that, by adding up their individual free volume
can make a single ‘‘hole’’ big enough to allow exactly on
particle to fit through. The explicit dependence ofz* on r is
found by combining Eqs.~2! and ~3!

z* 5aS 1

r
2

1

rmax
D 21

. ~4!

By assuming that the density increases at a rate proporti
to e2z* , it is now possible to derive the logarithmic compa
tion law r(t);21/ln(t) @9#.

As mentioned in Sec. I, the theory just outlined is inco
plete as it does not incorporate the experimental control
-
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rameterG. In an attempt to resolve this deficiency, we o
serve that a similar description for cooperative relaxation
also central to the theory proposed by Adam and Gibbs
structural relaxation in supercooled liquids@27#. An interme-
diate stage of their calculations is of interest here, nam
that the relaxation rateW can be expressed as a function
temperatureT as

W~T!}expS 2
z* DE

kBT D , ~5!

whereDE is the free energy barrier per particle,kB is Bolt-
zmann’s constant, andz* is again the smallest number o
particles that can rearrange independently of their envir
ment ~which was ultimately related to the configuration
entropy!.

The principle assumption behind our current work is th
an expression analogous to Eq.~5! also holds for weakly
excited granular media. More precisely, we propose tha
region with local densityr reconfigures at a rate

W~r,G!}expS 2
z* ~r!DE

h~G! D , ~6!

wherez* is related tor via Eq.~4!. DE can be interpreted a
a gravitational potential energy barrier per particle, andh(G)
gives some measure of the degree of excitation of the
tem. Note that althoughh(G) plays the role ofkBT, we stop
short of referring to it as a ‘‘granular temperature’’ and i
stead regard it as a noise parameter which isdefinedby Eq.
~6!, with the only restriction thath(G) should be a mono-
tonic increasing function ofG. In what followsh(G) is es-
sentially treated as a fitting parameter. The physical mean
of h(G) andDE is discussed further in Sec. IV.

To fully specify the model, some rule is required th
gives the density of a region after it has reconfigured.
general this will depend on its density before reconfigurat
as well ash(G), but for simplicity we shall ignore such
considerations here and simply assume that the density
reconfiguration is given by the fixed probability densi
functionm8(r). Specifically,m8(r)dr is the probability that
a region ‘‘falls’’ into a configuration with a density in the
range@r,r1dr). The prior distributionm8(r) ~re-expressed
in terms of the total energy barrierE—see below! will play a
central role in our model, although it shall be demonstra
that, over time scales relevant to the experiments, the m
is essentially robust to the particular choice ofm8(r). This is
fortuitous, as the precise form ofm8(r) is unknown and we
have instead considered a range of plausible functio
forms.

B. Summary of the model

Since the reconfiguration rateW(r,G) given in Eq. ~6!
depends on r only via the total energy barrierE
5z* (r)DE, it is convenient to now make the change
variablesr→E, where

E5z* DE5AS 1

r
2

1

rmax
D 21

, ~7a!

A5aDE, ~7b!
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which is one-to-one and hence invertible for allr
P@0,rmax) andEP@0,̀ ). Thus, in what follows, the state o
the system at any given timet will in the first place be de-
fined by the distribution of energy barriersP(E,t), and only
then shall the mean densityr(t) be found by inverting the
mapping, Eq.~7!, and averaging overP(E,t), i.e.,

r~ t !5E
0

` P~E,t !

A

E
1

1

rmax

dE. ~8!

Note that, in principle, small values ofE should be disal-
lowed to reflect the fact that low density configurations a
not mechanically stable and will not arise. For the sake
simplicity we choose to ignore this subtlety here.

The master equation forP(E,t) can be derived as fol
lows. The rate at which a region with a local barrierE(r)
reconfigures is given byv0e2E/h, where the constantv0
fixes the time scale. After reconfiguring, the region falls in
a state with a new barrierEnew with a probabilitym(Enew),
where m(E) is just m8(r) after the change of variables
m(E)dE5m8(r)dr. Assuming that the number of tapst can
be well approximated as a continuous variable,P(E,t)
evolves in time according to

1

v0

]P~E,t !

]t
52e2E/hP~E,t !1v~ t !m~E!, ~9a!

v~ t !5E
0

`

e2E/hP~E,t !dE. ~9b!

The first and second terms on the right hand side of Eq.~9a!
correspond to regions with barriersE before and after a re
configuration event, respectively. Conservation of proba
ity is ensured byv(t), which is the total rate of reconfigu
ration events at timet.

Remarkably, the coupled equations~9a! and~9b! areiden-
tical to the trap model of Bouchaud, which is known
qualitatively reproduce many features of spin glasses
supercooled liquids@29–32#. Thus the model we have de
rived can also be viewed as Bouchaud’s trap model, wit
mapping from the energy barrierE to density r that is
reached via the two-stage process of first assuming thatE is
proportional to the smallest region that can rearrange in
pendently of its environment,a’ la Adam and Gibbs, and
then using the Chicago group’s free volume argument
relate the size of this region to its density. The relations
with Bouchaud’s trap model is useful as it allows know
analytical results to be transferred to this application, as
scribed in Sec. III.

III. COMPARISON TO THE EXPERIMENTS

In this section we compare the predictions of the mode
the experimental results given in Refs.@8–11#. The general
procedure employed throughout was to numerically integ
P(E,t) in time according to the master equation~9! from an
initial stateP(E,0) using the method described in Append
A. Ideally P(E,0) would be chosen to mimic the distributio
of density in the apparatus after the preparation phase,
since such information is not available we have instead
e
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ployed the natural choice ofP(E,0)5m(E), which formally
corresponds to an instantaneous ‘‘quench’’ fromh5`. No
significant deviations are expected for other initial conditio
after an initial transient. OnceP(E,0) was fixed, the constan
A in Eq. ~7! was chosen by trial-and-error to give an initi
density close to the experimental valuer(0)'0.58. The den-
sity r(t) was extracted at regular intervals by numeric
evaluation of Eq.~8!.

Each simulation was repeated for two different choices
m(E), namely an exponentialm(E)5(1/E0)e2E/E0 and a
Gaussianm(E)5A2/ps2e2E2/2s2

, where without loss of
generality we now choose units such thatE05s51. Other
m(E) were also considered for the compaction under c
stanth described in Sec. III A and were found to give th
same behavior fort&104 taps, indicating that the model i
robust to the particular choice ofm(E) over the experimenta
time frame. However, this robustness doesnot extend to the
t→` limit, where it is already known that differentm(E)
can give qualitatively different behavior. This is discuss
thoroughly in Ref. @32#, but in brief, an exponential tai
m(E);e2E gives rise to aglass transitionat h51, in the
sense that an equilibrium solution only exists forh.1. This
can be seen by simply setting]P/]t50 in the master equa
tion ~9!

Peqm~E![ lim
t→`

P~E,t !5v~`!eE/hm~E!, ~10!

which is not normalizable forh<1 if m(E);e2E, and
hence equilibrium cannot be reached. By contrast, ifm(E)
decays more rapidly than exponentially, e.g., if it has
Gaussian tail, then an equilibrium solution exists for allh
.0, although the equilibration time may be excessive
large for smallh. Note that this model quite generally pre
dicts that the limiting densityr`5 limt→` r(t) is a mono-
tonic decreasing function ofh. A proof of this is given in
Appendix B.

A. Constant excitation intensity

Simulation results for the mean densityr(t) over a range
of h is given in Fig. 1. Also given are fits to the empiric
law Eq. ~1!, demonstrating that it is well obeyed with eithe
an exponential and Gaussianm(E). We have also checked
and found similar logarithmic behavior for a selection
other m(E), such as uniform on@E0 ,E1#, both with E050
andE0.0, Gaussian with a nonzero mean, Cauchy, and
ponential limited to the range@E0 ,E1#. However, logarith-
mic relaxation isnot expected for pathologicalm(E) such as
d(E2E0) or exp(2eE).

The logarithmic behavior can be understood by consid
ing the scaling solution to the master equation~9! already
found by Monthus and Bouchaud@32#. They demonstrated
that, after a short transient,P(E,t) can be expressed in term
of a single scaling variableu as

P~E,t !5
1

h
uf~u!, u5

eE/h

v0t
. ~11!

Strictly speaking this is only true for an exponentialm(E)
below the glass point, but it was also demonstrated tha
Gaussianm(E) admits a similar scaling solution until a tim
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t* ;v0
21 exp(1/h2), which may lie well beyond the experi

mental time frame whenh is small. The physical picture
underlying this scaling behavior is that the sizes of the
operatively rearranging regions, which are proportional
E5h ln(v0tu), are increasing logarithmically in time. A
logarithmic increase in domain size has also been foun
the Tetris model@15#.

Over time scales for which the scaling solution, Eq.~11!,
holds, the density can be expressed in terms off(u) by
changing variables fromE to u in Eq. ~8!

r~ t !

rmax
512E

1/v0t

` f~u!

11
h

Armax
ln~v0tu!

du. ~12!

The similarity of this expression to the empirical law, E
~1!, is striking. The primary difference is that here we mu
integrate over a distribution ofu, which will in general in-
troduce corrections to the simple logarithmic law. The sim
lation results in Fig. 1 demonstrate that any such correcti
are at most small.

The form of the theoretical prediction, Eq.~12! makes it
difficult to calculate the fitting parametersDr, B, andt in
the empirical law, Eq.~1!. However, one parameter that ca
trivially be fixed is the projected final densityr f , which is
always equal tormax here, regardless ofh(G). In contrast,
the experiments seem to indicate thatr f is a nonmonotonic
function of G @8#. There is no easy way to resolve this di
crepancy. For instance, one cannot simply assume thatrmax
is itself a function ofG, i.e.,rmax5rmax(G). Quite apart from
the conceptual difficulties this would invoke for the physic
meaning ofrmax, it would allow situations in whichnegative
free volume could arise, for instance by first allowing a s
tem to relax arbitrarily close tormax(G) and then suddenly
changing to aG8 for which rmax(G8),rmax(G). By definition,

v̄ f would then be negative. Note that this contradiction is

FIG. 1. Plot of r(t) vs t on log-linear axes for a Gaussia

m(E)5A2/pe2E2/2 with rmax50.64, v050.1, andA50.053. From
bottom to top, the lines correspond toh50.005, 0.03, 0.1, 0.2, and
0.3, respectively. The circles are fits to the empirical law Eq.~1!.
~Inset! The corresponding results for an exponentialm(E)5e2E

andA50.05, withh50.002, 0.02, 0.1, 0.2, and 0.5.
-
o

in

t

-
s

l

-

t

specific to this model but will arise whenever the definiti
of free volume, Eq.~2!, is used.

We believe the solution to this problem lies in the ran
of t over which the data fitting has been performed. As m
tioned previously, the scaling solution Eq.~11!, and hence
the logarithmic relaxation, only applies after a short tra
sient, typically t*102–103 taps. However, we have foun
that it is still possible to attain a very reasonable fit to t
empirical law over the whole range 0<t<104, but only at
the expense of predicting the wrongr f . This is clearly dem-
onstrated in Fig. 2, which shows that a fit that works well f
0<t<104 fails when extrapolated to largert, whereas fixing
r f5rmax gives an initially poorer fit but recovers the corre
asymptotic behavior. Transferring this insight to the expe
ments suggests that discarding the first 1% –10% of the
perimental data points and then repeating the fitting pro
dure would result in a similar logarithmic compaction law
before, but withr f independent ofG. The various time re-
gimes in this model are summarized schematically in Fig

B. Annealing curve

Further insight into the nature of the system’s relaxat
properties can be gained by allowing the tap intensity to v
in time, which roughly corresponds to varying the tempe
ture in other slowly relaxing systems@5,6#. Two time depen-
dencies will be considered in this paper. The first is the ‘‘a
nealing curve,’’ which was experimentally attained b
cyclically rampingG in a stepwise fashion between som
high value G5G1 and G50 @9,10#. Slowly decreasingG
removes low density local configurations without creati
many new ones, hence the term ‘‘annealing.’’ The seco
protocol for varyingG will be investigated in the next sub
section.

The annealing curve for this model is obtained by allo
ing h to smoothly vary from 0 to some valueh1 to 0 to h1
again, where the duration of each leg is denoted byt leg.
Simulation results fort leg5106 are given in Fig. 4. The ex-

FIG. 2. Comparison between different choices of fitting para
eters over different ranges oft. The thick line is the densityr(t) for
a Gaussianm(E) at h50.1 withrmax50.64. The circles correspon
to the fit r(t)50.63–0.053/@112.3 ln(11t/16)# and the crosses
correspond tor(t)5rmax20.06/(110.24 lnt). ~Inset! The same
plots over the experimental time frame 1<t<104.
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perimental annealing curve has a similar shape, except
the initial density increase for smallG is noticeably slower
than that for smallh @9#. This may simply be due to a non
trivial mapping fromG to h, as discussed in Sec. IV. Not
that the second and third legs in Fig. 4 form a reversi
curve which is nonetheless out of equilibrium for smallh.
Observe also the presence of a narrow hysteresis loop, w
is also present in microscopic models@14,17,22# but has
never been systematically searched for in experiments.
area of this hysteresis loop decreases for slower coo
rates, as demonstrated in Fig. 5.

FIG. 3. Schematic of densification under constanth. The line
becomes straight, indicating that the density is logarithmically
creasing towardrmax, once the system enters into the scaling
gime, which overlaps with the experimental window. The scal
regime continues indefinitely ifm(E);e2E/hg and h<hg . For h
.hg , or for a m(E) with a tail that decays faster than expone
tially, the scaling behavior ceases at some late time and the de
reaches its equilibrium densityr`,rmax.

FIG. 4. The annealing curve for a Gaussianm(E). The symbols
refer to the initial increase inh up to h50.6 ~open squares!, the
decrease toh50 ~filled circles!, and the second increase~crosses!.
For each leg,h was varied smoothly overt leg5106 taps. The thick
line is the equilibrium density.~Inset! The same for an exponentia
m(E) over a range ofh that includes the glass point.
at

e

ich

he
g

To interpret these results in a glassy context, recall t
the initial conditions were chosen to conform to the equil
rium state ath5`, i.e.,P(E,0)5Peqm(E)uh5`5m(E). This
would be valid if the initial low density configuration in th
experiments corresponded to an equilibrium state for v
large tapping intensityG, which seems plausible. Thus th
start of the first leg corresponds to a rapidquenchfrom high
h to h'0, leaving the system far from equilibrium. The ra
of compaction is initially rapid but slows as the density, a
hence the relaxation times, increase. For sufficiently highh,
the density reaches and starts to follow the equilibriu
curve, rapidly erasing the memory of its history. Ash is
lowered a second time, this time corresponding to a s
quench, the system remains near equilibrium until so
value h0 ~which depends on the cooling rate! when the re-
laxation time rapidly increases and the system essent
freezes. Thus the difference between the first and third l
in Fig. 4 can be understood as the recovery from a rapid
slow quench, respectively.

C. Shift in the excitation intensity

Recent experiments have investigated the effect of allo
ing G to ‘‘shift’’ from a constant valueG0 to another con-
stant valueG1 at a given timet0 @11#. It was found that the
system evolved in a way that depended on its history as w
as its current density and excitation intensityG, representing
a form of memory akin to that in glassy systems@5,6#. Plot-
ted in Fig. 6 are the corresponding results for this mod
whereh5h050.5 until t5t0550 taps, when it changes t
h15h01Dh. The sign of the initial density change is opp
site to the sign ofDh, as in the experiments, although this
not entirely general and the behavior is reversed ift0 is too
small. Also shown in the inset is the case whenh is changed
from differenth0 to the same valueh150.3 when the den-
sity reaches a predetermined value. Again there is qualita
agreement with the experiments.

The analogy with glass systems suggests that the t
scale of the response to a shift inh at t0 should scale witht0

-
-

ity

FIG. 5. Variation of the annealing curves with cooling rate fo
Gaussianm(E). Results are given for a total time per leg oft leg

5107 ~thin solid line!, 105 taps ~dashed line! and 103 taps ~dot-
dashed line!, The second and third legs are reversible fort leg*105.
The thick line is the equilibrium density.
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in some manner@34#. With this insight, we now make the
following prediction, in the hope it may be tested experime
tally. Let Dr(t2t0) be the difference in density at timet
between the perturbed system and an unperturbed one
one with Dh50. Plotted in Fig. 7 isDr(t2t0) for a shift
from a low to a highh at timest05103, 104, 105, 106, and
107. In each case there is a well-defined time for the pe
responset resp, which increases witht0. Known results for the
trap model with an exponentialm(E) suggest thatt resp

;t0
h0 /h1, where the exponent is independent oft0 @35#. We

find this to be a good first approximation to our data,
demonstrated by the inset to Fig. 7, although there are
rections arising from the nonlinear mapping fromE to r,

FIG. 6. Response to a shift fromh50.5 to h50.51Dh at a
time t550 for a Gaussianm(E). From top to bottom, the lines refe
to Dh520.3, 20.2, and20.1 ~dashed lines!, 0 ~thick line!, and
0.1, 0.2, and 0.5~thin solid lines!. ~Inset! Hereh50.1 ~solid line!,
0.3 ~dashed line!, or 0.5 ~dot-dashed line! until the first time t0

whenr(t0)>0.61, afterwhichh is fixed at 0.3 in each case.

FIG. 7. Response to a shift fromh50.1 toh50.5 at a timet0

for a Gaussianm(E), where Dr(t2t0) is the density difference
between perturbed and unperturbed systems. From top the bo
on the right hand side, the lines refer tot05103, 104, 105, 106, and
107, respectively. An exponentialm(E) behaves similarly.~Inset!
The same data plotted against (t2t0)/t0

a , wherea50.1/0.5 is the
ratio of h before and after the shift.
-

.e.,

k

s
r-

which distorts the underlying scaling behavior inE. There
are also additional small corrections when using a Gaus
m(E).

Finally, the experiments briefly investigated what happe
whenG is allowed to return to its initial value afterdt taps at
a higher valueG1 @11#. For comparison, the equivalent re
sults from this model are given in Fig. 8. The observed tre
is in accord with the experimental observations. A full stu
of this variation inh(t) for all h0 , h1 , t0, anddt is beyond
the scope of this paper and will not be discussed further h

D. Fluctuations and power spectra

In a finite system the density in equilibrium is not co
stant but fluctuates about its mean value. To investigate d
sity fluctuations in this model, a different version of the co
was employed which explicitly simulates a system consist
of N separate subsystems~details given in Appendix A!. Fig-
ure 9 shows the probability distributionQ(Dr) of fluctua-
tions Dr[r(t)2rmodal for N5500 and differenth. To first
approximationQ(Dr) is Gaussian, but it is slightly skewe
towards lower densities, becoming more so ash is lowered.
The skewness arises from the nonlinear mapping fromE to
r, which exaggerates fluctuations to lower densities wh
suppressing those to high densities. There is also a cutof
very large uDru, when P(E,t) has deviated significantly
from Peqm(E). The experiments exhibited Gaussian fluctu
tions with some anomalous deviations forDr.0 @9#; this is
discussed below.

The power spectraS( f ) of density fluctuations in equilib-
rium for varioush and a Gaussianm(E) is given in Fig. 10.
S( f );1/f 2 for f greater than a high frequency shoulderf H ,
wheref H is only weakly dependent onh, although it should
be stressed that this model focuses on cooperative relaxa
modes and is not intended to describe the high frequen
single particle dynamics. For low frequencies,S( f ) appears
to obey nontrivial power law behaviorS( f );1/f d, where the
exponentd can bevery approximatelyfitted to d'12h
over the range 1025, f ,1023. However, the analysis given

om

FIG. 8. Plot of the recovery from a short time at a higherh for
a Gaussianm(E). Here the system has been relaxed for a timet0

5104 taps ath50.1, then held ath50.3 until t15t01dt when it
reverts back toh50.1 again. From bottom to top, the lines refer
dt51, 2, 4, 8, and 16, respectively.~Inset! The raw data fordt
516 ~dashed line! compared to the unperturbed system~solid line!.
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in Appendix C shows that this is not the true asympto
behavior andS( f )→1/f 0 as f→0. The crossover to 1/f 0

behavior occurs around a low frequency shoulderf L , where
f L→0 rapidly ash→0. For an exponentialm(E) there is
only one shoulder frequency separating the high frequen
1/f 2 regime from a low frequency regime in whichS( f )
;1/f d, whered522h for 1,h,2 andd50 for h>2, as
shown in Fig. 11. Note that there is no 1/f 0 region for

FIG. 9. Fluctuations around the modal densityrmodal in equilib-
rium for anN5500 element system with a Gaussianm(E). Q(Dr),
the probability of a fluctuationDr5r(t)2rmodal, is plotted against
X5(Dr)2 sgn(Dr) on a log-linear plot, which would give a sym
metrical triangle ifQ(Dr) was Gaussian. The different lines ref
to h51 ~solid!, h50.8 ~dashed!, andh50.6 ~dot-dashed!. ~Inset!
The same for an exponentialm(E) with h52 ~solid line! and h
51.6 ~dashed line!.

FIG. 10. S( f ), the power spectrum of frequencyf, for an N
5500 system and a Gaussianm(E), at h50.6 ~solid line!, h
50.4 ~dashed line!, and h50.2 ~dot-dashed line, also vertically
shifted by a factor of 500 for clarity!. EachS( f ) was calculated
over '108 points. The slopes of the thick line segments are in
cated. To speed convergence, the initial configuration was ch
as the known equilibrium statePeqm(E) for N5` ~10!, although
the h50.2 system was still evolving towards its slightly differe
finite N equilibrium state during the run. This accounts for t
anomalous steep slope for smallf.
y,

h,2, even though the system is in equilibrium. This app
ent anomaly is explained in Appendix C.

In the experiments, the power spectra were found to o
nontrivial power law behaviorS( f );1/f d, with d50.9
60.2, between two corner frequenciesf L and f H that both
decreased asG was lowered@9#. More complex behavior was
observed for largerG towards the bottom of the apparatu
The results from this model are in partial agreement;
instance, it is still one of few that can exhibit a 1/f d regime
with d'1 ~see also Ref.@21#!. There are some discrepancie
but these may simply be due to processes not currently
corporated into the model, such as single particle dynam
or the existence of metastable, high-density crystalline
mains.

IV. DISCUSSION OF THE MODEL PARAMETERS

Given the success of this model in reproducing the exp
mental phenomenology, it is natural to ask if its princip
assumptions can be placed on a firmer foundation. In part
lar, a number of parameters introduced in Sec. II A have
far been treated somewhat heuristically. To redress the
ance, we now discuss the physical interpretation of some
these parameters. A more thorough analysis may be pos
by detailed comparison with a microscopic model, for i
stance.

A. The noise parameterh„G…

It was stressed during the derivation of this model that
noise parameterh need not bear any relation to the conce
of granular temperature@36,37#. By the same token, the us
of the term ‘‘equilibrium’’ to describe the statistical stead
state merely refers to adynamicequilibrium, without suppos-
ing any analogy with athermodynamicone. Instead,h was
defined in the broadest sense of simply giving some mea
of the degree of excitation of the system during a single t
This loose definition makes finding the precise relations
with G difficult. Nonetheless it is still possible to predict th
overall shape ofh(G), as we now argue.

For h to be nonzero, the particles must at the very le
separate from their nearest neighbors. Experiments on
brated granular systems often claim to find some criticalGc
such that the relative motion of the particles is either mi
mal or nonexistent forG,Gc ~usually 1&Gc&2, see e.g.,
Refs. @1,8,38#!. A facile explanation for this is to suppos
that a granular body is held together by frictional forces, a
that relative motion between adjacent particles is not p
sible until some static friction threshold has been overcom
Since all the normal contact forces are proportional tog, the
distribution of threshold forces will also scale withg and
thus the relevant parameter would indeed beG5amax/g.
However, friction is not the only relevant mechanism. F
instance, particle separation will still occur in vertical on
dimensional columns, where friction clearly plays no pa
Even in this case theory suggests that the relevant param
is againG, at least in the limit of hard spheres@39#.

Assuming that a well-definedGc exists, the overall shape
of h(G) will obey h(G)'0 for small G, only significantly
deviating from zero forG*Gc . Just this qualitative behavio
has been found in simulations of horizontally vibrated s
tems@40#. As a corollary, the annealing curves presented
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Figs. 4 and 5 will be flatter for smallG when plotted agains
G rather thanh, in better agreement with the experimen
graphs@9,10#.

B. The prior distribution µ„E…

The Gaussian and exponentialm(E) employed in the
simulations were chosen as plausible first guesses of the
m(E). To calculate the actualm(E) is a nontrivial problem,
but a first step might be to re-expressm(E) in terms of
c( v̄ f), the distribution of free volume after reconfiguratio
Using E5z* DE5Avg / v̄ f @Eq. ~3!#, this gives

m~E!5
Avg

E2
cS Avg

E D . ~13!

In principle, c( v̄ f) could be found from a microscopi
model, such as the parking lot model@9,17–19#, for which
the free volume is also the void volume.

Note that, from Eq.~13!, the tail of m(E), which is so
important to the long-time relaxational properties
Bouchaud’s trap model, can be related to thev̄ f→01 behav-
ior of c( v̄ f). For example, ifc( v̄ f) vanishes according to
c( v̄ f);exp(2a/v̄f), thenm(E) will have an exponential tai
and the trap model predicts a glass transition at a finite n
intensity h5Avg /a. Similarly, c( v̄ f);exp(2a/v̄f

2) corre-
sponds to am(E) with a Gaussian tail.

C. The constantAÄaDE

Even thoughA has been treated as an arbitrary const
and fixed by the initial conditions, its component factorsa
andDE have a physical interpretation, as we now discuss
Eq. ~3!, a is defined as the constant of proportionality b
tweenz* , the smallest number of particles that can coope
tively rearrange, and the ratiovg / v̄ f . In the Chicago group’s
original argument@9#, a was set to 1; however, we prefer n
to fix a at any particular value and suggest that it may
pend upon particle properties such as their shape. For
stance, highly irregular particles will obstruct motion mo
effectively than rounder particles of the same volume, and
should have a higher value ofa.

DE was originally defined as a gravitational potential e
ergy barrier. Indeed, assuming that the particles interact
hard core repulsion, this is theonly available potential en-
ergy scale in the system. This suggests thatDE is propor-
tional to the mean vertical displacement between adjac
particles. If so, then our implicit assumption thatDE is in-
dependent ofh and r is compatible with the hard spher
Monte Carlo simulations of Barker and Mehta@41#, who
demonstrated that the distribution of contact angles betw
particles is roughly constant over a wide range of shak
amplitudes.

More importantly, ifDE is gravitational potential energy
then inspection of the reconfiguration rate, Eq.~6!, indicates
that h must also have units of energy, with an energy sc
that is presumably coupled to the driving. For definitene
supposeh can be written ash5mgA0f (G), wherem is the
typical mass of the particles,A0 is the amplitude of the driv-
ing, andf (G) is some function of the dimensionless para
l
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eterG5amax/g ~possibly with a threshold aroundG'Gc as
discussed earlier!. Similarly, writeDE;mgr, wherer is the
typical particle radius. SinceDE and h only appear in the
ratio DE/h, m and g will cancel and the dynamics of th
model will depend ontwo dimensionless quantities, name
G and a dimensionlessdisplacement A0 /r . The existence of
a second relevant dimensionless parameter implies tha
behavior in response to high amplitude, low frequency dr
ing may be qualitatively different from a low amplitude, hig
frequency driving with the same value ofG. This possibility
has not yet been explored in the experiments, which seem
have focused on the low frequency regime.

Note that we could equally have expressedh in terms of
the kinetic energy supplied by the driving, i.e.,h
5mv0

2 f̃ (G), wherev0 is the typical driving velocity. How-
ever, this is not an independent energy scale asv0 can be
dimensionally related toamax and A0 by v0;AamaxA0. We
only mention this latter alternative because simulations of
show scaling plots in terms ofG andv0 ~see, e.g., Ref.@40#
and references therein!.

V. SUMMARY AND CONCLUSIONS

To summarize, we have constructed a simple model
weakly excited granular media that combines the Chica
group’s free volume argument with elements of the sup
cooled liquid theory of Adam and Gibbs. Integration of th
master equation has shown that the model behaves in a s
lar manner to the experiments for each of the situations c
sidered. Some slight discrepancies remain with the po
spectra, but these may be due to mechanisms currently l
ing from the model, such as ordering effects and crystal
ity, depth dependency, or wall effects. It would be interest
to see if any of these mechanisms could be incorporated
an extended version of the model. It may also be possibl
introduce orientational degrees of freedom and compare
results to recent experiments on nylon rods@42#.

The model has also been used to predict the manne
which the time of the peak response to a shift inG at t5t0
scales witht0, as discussed in Sec. III C. This predictio
could be tested experimentally and may help to differenti
between the large number of models that have so far b
proposed@12–25#, as it seems unlikely that they will all give
the same scaling behavior. Further insight into the phys
mechanisms underlying the compaction process could
gained by measuring the typical size of reconfiguring regio
as a function of time, or by seeing if the locations of su
regions are spatiotemporally correlated. Such measurem
could be performed in simulations, or by direct visualizati
of two dimensional experiments@43#, for instance.

Finally, we note that the relationship between granu
media and glasses can be given a more intuitive appea
the following simple argument. Consider sand poured from
great height into a container. When the particles first hit
surface of the forming sandpile, the direction in which th
bounce will essentially be random, giving rise to a lar
random velocity component. This corresponds to a hig
excited state with~in our notation! a high h. However, the
particles will rapidly lose their kinetic energy by inelast
collisions and will soon come to rest, jamming under grav
into a static, disordered configuration withh50. It is not
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difficult to see how this sequence of events can be relate
the rapid ‘‘quench’’ of a supercooled liquid or other glas
forming material.

Just after the initial submission of this work, we becam
aware of a master equation for the glass transition due
Dyre @44#, which is similar to Bouchaud’s equation studie
in this paper but with a built-in cutoff in the range of allowe
energies. Also, it has been brought to our attention that
two regimes of vibration mentioned in Sec. IV C have p
viously been discussed in the context of size segregation
Mehta and Barker@45#.
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APPENDIX A: SIMULATION DETAILS

The bulk of the simulation results were obtained by n
merical integration of the continuous master equation~9!.
P(E,t) was defined on a mesh of pointsPi j 5P( idE, j dt),
where 0< i< i max and j >0. Care was taken to ensure th
Emax[imaxdE was set sufficiently high that there was no s
nificant cutoff toP(E,t) for largeE. To iterate over a single
time stepdt, v(t) was found from numerical integration o
Eq. ~9b! and then assumed to remain constant over the
quired time interval. This allowed the time evolution equ
tion ~9a! to be solved andPi j 11 found from Pi j ; i . The
whole distribution was then renormalized by a fac
(( i Pi j )

21 to correct for the nonconservation of probabili
resulting from the assumption of a constantv(t). For relax-
ation under constanth, simulation times were improved b
employing a geometric mesh with a linearly increasing ti
stepdt}t. This allowed for times up tot51010 to be reached
with only modest CPU time.

For the density fluctuations investigated in Sec. III D, t
continuous master equation was of no use and an altern
method was employed which explicitly included finite si
effects. This involved assigningN array elements a barrie
Ei , i 51, . . . ,N, according to the chosen initial condition
At every time stepdt51, each element was assigned a n
barrier with probabilityv0e2Ei /h, where the new barrier val
ues were drawn from the priorm(E). The densityr i of each
element was found by inverting the mapping Eq.~7!, and the
mean density calculated by straightforward summati
r(t)5(1/N)(r i .

APPENDIX B: MONOTONICITY OF r`„h… ON h

In this appendix it is shown that the asymptotic dens
r`5 limt→` r(t) is a monotonic decreasing function ofh for
essentially anym(E). If an equilibrium state exists, it take
the formPeqm(E)5v`(h)eE/hm(E) and hence from Eq.~8!
to
-

e
to

e
-
by

so

d-
is

-

e-
-

r

e

ive

,

r`~h!

rmax
512E

0

`v`~h!eE/hm~E!

11E/Armax
dE, ~B1!

v`~h![ lim
t→`

v~h,t !5 S E
0

`

eE8/hm~E8!dE8 D 21

. ~B2!

Differentiating Eq.~B1! with respect toh and rearranging
gives

h2

v`
2 ~h!rmax

]r`~h!

]h

5E
0

`E
0

`

~E2E8!
m~E!m~E8!e(E1E8)/h

11E/Armax
dE dE8.

~B3!

After the change of variablesu5E1E8 andv5E2E8 and
substitutingv→2v over the domainv,0, the right hand
side of Eq.~B3! transforms to

2E
u50

` E
v50

u

v2eu/hmS u1v
2 DmS u2v

2 D
3@~2Armax1u1v !~2Armax1u2v !#21du dv.

~B4!

Since all the factors inside the integral Eq.~B4! are posi-
tive, it can be trivially deduced that

]rmax

]h
<0 for allh. ~B5!

Equality is attained in only two cases. The first is if th
integrand is strictly zero over the entire rangev.0, which
can only happen in the trivial case of a single valued dis
bution m(E)5d(E2E0). The second and more importan
situation is over a range ofh for which no equilibrium state
exists. In this case, all the moments ofP(E,t) diverge ast

FIG. 11. S( f ) in equilibrium for an exponentialm(E) and N
5500, withh51.7 ~solid line, also shifted vertically by a factor o
10! andh51.3 ~dashed line!. The analytical predictions from Ap-
pendix C are indicated by the thick line segments.
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→` andr(t)→rmax from Eq. ~7!. A plot of r`(h) vs h for
an exponential and a Gaussianm(E) is given in Fig. 12.

APPENDIX C: ANALYSIS OF THE POWER SPECTRA

The smallf behavior of the power spectra of density flu
tuationsS( f ) is analytically derived in this appendix, whic
extends the range of the numerical observations discuss
Sec. III D. The time-dependent spectrum near the glass p
has already been derived in Ref.@30#; here we consider the
f→01 limit in equilibrium for generalm(E) over a wider
range ofh.

Since each local region is assumed to relax independe

FIG. 12. Plot ofr`[ limt→` r(t) againsth for an exponential

m(E)5e2E ~solid line! and the Gaussianm(E)5A2/pe2E2/2 ~dot-
ted line! for rmax50.64. Note that the plateau forh<1 in the ex-
ponential case corresponds to the out-of-equilibrium situa
where all the moments ofP(E,t) diverge ast→`.
hy

d

.R

.R

d

ge

i,
in
int

tly

of its environment, the total power spectrumS( f ) is just the
spectrum for a single region with a relaxation timet aver-
aged overF(t), the distribution of relaxation times in equ
librium,

S~ f !}E tF~t!

11~2p f t!2
dt. ~C1!

The smallf behavior of Eq.~C1! depends on the asymptoti
behavior ofF(t) for larget. If F(t) decays faster thant22,
then thef [0 limit exists andS( f ) exhibits the expected 1/f 0

noise for low frequencies. However, ifF(t);t2x with 1
,x,2, thenS( f );1/f 22x, as can be readily seen by subs
tuting for f t in Eq. ~C1! @note thatx.1 sinceF(t) is nor-
malizable#.

For the trap model,F(t) can be found for any given
m(E) by simply making the change of variablest
5(1/v0)eE/h into the expression forPeqm(E), Eq. ~10!.
Thus, an exponentialm(E);e2E/hg gives F(t);t2h/hg,
implying that S( f );1/f 22h/hg for hg,h,2hg . This con-
firms thatS( f )→” 1/f 0 for this range ofh, even though the
system is in equilibrium. The usual 1/f 0 behavior is recov-
ered whenh>2hg , which also applies for allh whenm(E)
decays faster than exponentially. In particular, a Gauss
m(E);e2E2/2s2

leads to an equilibrium distribution of relax
ation times of the form

F~t!;t2(h2/2s2)ln(v0t), ~C2!

which is suggestive of a power law with a slowly varyin
exponentx5(h2/2s2)ln(v0t). Thus one would expectS( f )
to exhibit approximate power law behavior over a wi
range off, reverting to 1/f 0 only for frequencies comparabl
to the ‘‘largest’’ relaxation timev0t* ;es2/h2

. Any attempt
to fit S( f ) to a power law will give an exponent that depen
on the range off considered as well as the ratioh/s.
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