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Phenomenological glass model for vibratory granular compaction
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A model for weakly excited granular media is derived by combining the free volume argument of Nowak
et al. [Phys. Rev. B57, 1971(1998] and the phenomenological model for supercooled liquids of Adam and
Gibbs[J. Chem. Phys43, 139(1965]. This is made possible by relating the granular excitation pararheter
defined as the peak acceleration of the driving pulse scaled by gravity, to a temperaturelike pardieter
The resulting master equation is formally identical to that of Bouchaud'’s trap model for glds&ds/s. 12,
1705(1992]. Analytic and simulation results are shown to compare favorably with a range of known experi-
mental behavior. This includes the logarithmic densification and power spectrum of fluctuations under constant
7, the annealing curve when is varied cyclically in time, and memory effects observed for a discontinuous
shift in %. Finally, we discuss the physical interpretation of the model parameters and suggest further experi-
ments for this class of systems.

PACS numbds): 45.70.Cc, 05.40-a, 64.70.Pf

[. INTRODUCTION enological models of glass-forming liquids, namely those of
Adam and Gibb$27] and Cohen and TurnbulR8], respec-

It is well known that, with the appropriate driving and tively. This further suggests that the analogy with glasses is a
boundary conditions, granular matter can approximate eaclalid one. However, both of the granular free volume de-
of the three major states of matter: gas, liquid, and solicscriptions currently lack any mention of the experimental
[1,2]. Conspicuous by its absence is a glass state; that is, @ntrol parametel’ and hence must be regarded as incom-
state where the relaxation times far exceed the observationglete.
time frame[3—7]. However, it is becoming increasingly clear  In this paper we demonstrate how one of the free volume
that the granular analog of glass has been found in a receatguments, namely that of the Chicago group, can be ex-
series of experiments performed at the University of Chicagganded into a full model that incorporatEs This is made
[8-11. They measured the density of a system that wagpossible by postulating a loose analogy betwéein the
weakly perturbed or ‘tapped’ by the application of a driving granular system and temperature in supercooled liquids, and
pulse to the container. A first indication of glasslike relax-then using this analogy to incorporate elements of the Adam
ation processes came from analysis of the dengitt),  and Gibbs theory. The result of this process is a master equa-
wheret is the number of times the system had been tappedion for weakly excited granular media that is capable of
which was found to increase only logarithmically slo8]  reproducing a wide range of known experimental behavior.

The motivations behind this work are twofold. First, by fo-
(1) = pr— Ap (1) cusing on only a small number of physical mechanisms, the
P P 148 In(1+t/7)° success of the model in emulating the experiments indicates
that the dominant mechanisms may have been correctly iden-
The fitting parameterp;, Ap, B and 7 are functions of the tified. It is further hoped that this work may help to
control parametel’, defined as the peak acceleration of thestrengthen the relationship between granular matter and
driving pulse scaled by gravityl; =an,/g. Subsequent ex- glasses. This second goal is easily achieved once we show
periments in whicH™ was varied during a run also behaved that the derived master equation is identical to that of a
in a manner similar to glasses under a variable temperatursimple glass model due to Bouchai&9—32.
[5-7,9-11, suggesting a relationship betweEnand some This paper is arranged as follows. In Sec. Il the Chicago
elusive temperaturelike quantity. group’s free volume argument is summarized and then ex-
Theoretical attempts to understand the experiments haveanded to a full model by importing elements of the Adam
ranged from the construction of toy microscopic models toand Gibbs theory. The resulting master equation that de-
higher level, coarse grained descriptidd®2—25. The gen- scribes the evolution of the system in time is specified. Nu-
eral consensus has been that the slow relaxation is due toerical integration of this master equation, plus analytical
frustrated dynamics resulting from excluded volume effectsresults wherever possible, are compared to the experimental
More insightful are the free volume arguments postulated bylata in Sec. Ill. Of particular importance here is an explana-
the Chicago grougNowak et al) [9] and Boutreux and de tion for the apparent contradiction between the experiments
Genneq 26|, which derive the logarithmic compaction with and any model based on the free volume approach, concern-
only a small number of assumptions. Provocatively, theséng the supposell dependence of the projected final density,
assumptions are also key components in established phenomy- in Eq. (1). Further discussion on the physical interpreta-
tion of the model parameters is given in Sec. IV, as well as

suggested ways in which the various assumptions behind the
*Electronic address: david@ph.ed.ac.uk model may be more rigorously checked. Finally, we summa-
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rize our findings in Sec. V and make some tentative predicrameterl’. In an attempt to resolve this deficiency, we ob-
tions for future experiments that may help to further eluci-serve that a similar description for cooperative relaxation is
date the relevant physical mechanisms in granulaalso central to the theory proposed by Adam and Gibbs for
compaction. structural relaxation in supercooled liquid7]. An interme-
diate stage of their calculations is of interest here, namely
Il. DESCRIPTION OF THE MODEL that the relaxation rat#v/ can be expressed as a function of

. . i temperaturel as
The relationship between the Chicago group’s free vol-

ume description and the Adam and Gibbs theory is that they Z*AE
both regard the dominant relaxation process to be the coop- W(T)“eXF<  kgT )
erative rearrangement of particles. The correspondence be-

tween the two theories can be taken further by postulatingvhereAE is the free energy barrier per particlg is Bolt-

the existence of a temperaturelikeiseparameterp(I’) for ~ zmann’s constant, ang* is again the smallest number of
weakly excited granular matter. This procedure forms theparticles that can rearrange independently of their environ-
basis of our work, and is described in full below. For currentment (which was ultimately related to the configurational
purposes it is sufficient to provide a somewhat heuristic deentropy.

scription of the model; a fuller discussion of the various The principle assumption behind our current work is that

®)

parameters can be found in Sec. IV. an expression analogous to E®) also holds for weakly
excited granular media. More precisely, we propose that a
A. First principles derivation region with local density reconfigures at a rate
The Chicago group’d9], and also Boutreux and de z*(p)AE
Gennes]26] arguments employ the concept of the mean free W(p,F)OCeXP( - W , (6)
volume per particle, here denoted. For a system olN
particles occupying a total volumé v is defined as wherez* is related tq via Eq.(4). AE can be interpreted as
a gravitational potential energy barrier per particle, aifl)
— V—Vpip 1 1 gives some measure of the degree of excitation of the sys-
TN Y pad @ tem. Note that althoughy(I") plays the role okgT, we stop

short of referring to it as a “granular temperature” and in-

where v is the volume of a single particle and is the  stead regard it as a noise parameter whictienedby Eq.
volume fractionNv 4 /V. Units are chosen so that the density (6), with the only restriction thaty(I") should be a mono-
of a single grain is unity, hence is also the density of the tonic increasing function of. In what follows »(I") is es-
system. Following26], ppma=Nvg/Vmin is identified with the  sentially treated as a fitting parameter. The physical meaning
most compact state possible in a disordered system, i.e., tld »(I") andAE is discussed further in Sec. IV.
random close-packing limit. In what follows we shall fix  To fully specify the model, some rule is required that
pmax=0.64, believed to be the random close packed densitgives the density of a region after it has reconfigured. In
for a system of monodisperse sphef@s]. general this will depend on its density before reconfiguration

The Chicago group postulated that the compaction proas well as#(I'), but for simplicity we shall ignore such
cess is dominated by the cooperative rearrangement of locabnsiderations here and simply assume that the density after
domains of particles. Iz is the number of particles in a reconfiguration is given by the fixed probability density
region that can rearrange independently of its environmenfunction n’(p). Specifically,..’ (p)dp is the probability that

they argued there is a lower cutoff a region “falls” into a configuration with a density in the
rangel p,p+dp). The prior distributionu’ (p) (re-expressed
. Ug in terms of the total energy barrie—see belowwill play a
=z :av=f ©) central role in our model, although it shall be demonstrated

that, over time scales relevant to the experiments, the model
below which there is not enough free volume available tdS €ssentially robust to the particular choicedi(p). This is
allow reconfiguration. Roughly speaking is the number fortuitous, as the precise form @i’ (p) is unknown and we

of particles that, by adding up their individual free volumes,Nave instead considered a range of plausible functional
can make a single “hole” big enough to allow exactly one fOrms-

particle to fit through. The explicit dependenceztfon p is

found by combining Eqs(2) and(3) B. Summary of the model
1 Since the reconfiguration rai/(p,I") given in Eq.(6)
7 =a E_ 1 K) _ (4) depends onp only via the total energy barrierE
P Pma =Z7*(p)AE, it is convenient to now make the change of

variablesp— E, where
By assuming that the density increases at a rate proportional
toe 7', it is now possible to derive the logarithmic compac- 1 1\ (7a
tion law p(t) ~— 1/In(t) [9]. P Pma '
As mentioned in Sec. |, the theory just outlined is incom-
plete as it does not incorporate the experimental control pa- A=aAE, (7b)

E=z"AE=A
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which is one-to-one and hence invertible for gl ployed the natural choice ¢#(E,0)= u(E), which formally
e[0,0ma @NdE €[ 0,). Thus, in what follows, the state of corresponds to an instantaneous “quench” frons . No

the system at any given tintewill in the first place be de- significant deviations are expected for other initial conditions
fined by the distribution of energy barrieP{E,t), and only  after an initial transient. Onde(E,0) was fixed, the constant
then shall the mean densip(t) be found by inverting the A in Eq. (7) was chosen by trial-and-error to give an initial

mapping, Eq(7), and averaging oveP(E,t), i.e., density close to the experimental valp@@)~0.58. The den-
sity p(t) was extracted at regular intervals by numerical
(t)= f“ P(E,1) dE ® evaluation of Eq(8).
p oA 1 ' Each simulation was repeated for two different choices of

E o w(E), namely an exponentigh(E)=(1/Ey)e” F'Fo and a

Gaussianu(E) = \2/mo2e E27° | where without loss of
Note that, in principle, small values & should be disal- generality we now choose units such tlgt=oc=1. Other
lowed to reflect the fact that low density configurations arey(E) were also considered for the compaction under con-
not mechanically stable and will not arise. For the sake oktant » described in Sec. Ill A and were found to give the
simplicity we choose to ignore this subtlety here. same behavior fot<10* taps, indicating that the model is
The master equation foP(E,t) can be derived as fol- robust to the particular choice pf(E) over the experimental
lows. The rate at which a region with a local barrfp)  time frame. However, this robustness does extend to the
reconfigures is given bysge /7, where the constanbg t—oo limit, where it is already known that differeni(E)
fixes the time scale. After reconfiguring, the region falls intocan give qualitatively different behavior. This is discussed
a state with a new barrie ., with a probability u(Epey),  thoroughly in Ref.[32], but in brief, an exponential tail
where u(E) is just u'(p) after the change of variables, ,(E)~e E gives rise to aglass transitionat =1, in the
w(E)dE=pu'(p)dp. Assuming that the number of tapsan  sense that an equilibrium solution only exists fpr 1. This
be well approximated as a continuous variabR(E,t)  can be seen by simply settifg/Jt=0 in the master equa-
evolves in time according to tion (9)

1 9P(EY)

Peqrl E)=1IMP(E,t)= w(~)e¥7u(E), (10)
wg dt t

— 0

—e ¥PEN+o(u(E), (93
. which is not normalizable forp<1 if w(E)~e E, and
w(t):f e ®7p(E t)dE. (9p)  hence equilibrium cannot be reached. By contrasy (E)
0 decays more rapidly than exponentially, e.g., if it has a
) ) . Gaussian tail, then an equilibrium solution exists for all
The first and second terms on the right hand side of(88. -~ ajthough the equilibration time may be excessively
correspond to regions with barrieEsbefore and after a re- |5rge for smally. Note that this model quite generally pre-
configuration event, respectively. Conservation of probabilyicts that the limiting density..=lim, .. p(t) is a mono-

ity .is ensured by@(t), which is the total rate of reconfigu- {qnic decreasing function of. A proof of this is given in
ration events at timé Appendix B.

Remarkably, the coupled equatio®s) and(9b) areiden-
tical to the trap model of Bouchaud, which is known to
qualitatively reproduce many features of spin glasses and
supercooled liquid§29-32. Thus the model we have de-  Simulation results for the mean densiift) over a range
rived can also be viewed as Bouchaud's trap model, with &f » is given in Fig. 1. Also given are fits to the empirical
mapping from the energy barrieE to density p that is law Eq.(1), demonstrating that it is well obeyed with either
reached via the two-stage process of first assumingg&hst an exponential and Gaussiar(E). We have also checked
proportional to the smallest region that can rearrange indeand found similar logarithmic behavior for a selection of
pendently of its environmen&d la Adam and Gibbs, and other w(E), such as uniform ofiEg,E;], both with E;=0
then using the Chicago group’s free volume argument t@ndEy>0, Gaussian with a nonzero mean, Cauchy, and ex-
relate the size of this region to its density. The relationshigponential limited to the ranggEy,E;]. However, logarith-
with Bouchaud's trap model is useful as it allows known mic relaxation isnot expected for pathological(E) such as
analytical results to be transferred to this application, as des(E—E,) or exp(—€F).

A. Constant excitation intensity

scribed in Sec. III. The logarithmic behavior can be understood by consider-
ing the scaling solution to the master equati@ already
IIl. COMPARISON TO THE EXPERIMENTS found by Monthus and Bouchay®2]. They demonstrated

) ) o that, after a short transier®(E,t) can be expressed in terms
In this section we compare the predictions of the model toyf 3 single scaling variabla as

the experimental results given in Ref8—11]. The general
procedure employed throughout was to numerically integrate
P(E,t) in time according to the master equati@) from an
initial stateP(E,0) using the method described in Appendix
A. Ideally P(E,0) would be chosen to mimic the distribution Strictly speaking this is only true for an exponentig(E)

of density in the apparatus after the preparation phase, blelow the glass point, but it was also demonstrated that a
since such information is not available we have instead emGaussianu(E) admits a similar scaling solution until a time

E/n

1
P(E,t):;U(f)(U), Uzw—ot. (11)
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FIG. 1. Plot of p(t) vst on log-linear axes for a Gaussian
w(E) = V2Ime E2 with pm=0.64, wo=0.1, andA=0.053. From
bottom to top, the lines correspond 4e=0.005, 0.03, 0.1, 0.2, and
0.3, respectively. The circles are fits to the empirical law @&g.
(Insey The corresponding results for an exponenjidE)=e F
andA=0.05, with »=0.002, 0.02, 0.1, 0.2, and 0.5.

t*~w51 exp(1m?), which may lie well beyond the experi-
mental time frame wheny is small. The physical picture

FIG. 2. Comparison between different choices of fitting param-
eters over different ranges bfThe thick line is the density(t) for
a Gaussian(E) at »=0.1 with p,o,=0.64. The circles correspond
to the fit p(t)=0.63-0.053/1+2.3In(1+1/16)] and the crosses
correspond top(t) = pyax—0.06/(1+0.24 Int). (Inse) The same
plots over the experimental time framest<10".

specific to this model but will arise whenever the definition
of free volume, Eq(2), is used.
We believe the solution to this problem lies in the range

underlying this scaling behavior is that the sizes of the co- \ n
operatively rearranging regions, which are proportional toof t over which the data fitting has been performed. As men-
E= nIn(wctu), are increasing logarithmically in time. A tioned previously, the scaling solution E@.1), and hence
logarithmic increase in domain size has also been found ifh€ logarithmic relaxation, only applies after a short tran-
the Tetris mode[15]. sient, typicallyt=10°-1C° taps. However, we have found
Over time scales for which the scaling solution, Ej), ~ that it is still possible to attain a very reasonable fit to the
holds, the density can be expressed in termspefi) by ~ empirical law over the whole range<t< 10%, but only at

changing variables fror to u in Eq. (8) the expense of predicting the wropg. This is clearly dem-
onstrated in Fig. 2, which shows that a fit that works well for

0=<t=<10" fails when extrapolated to largerwhereas fixing

p(t) =1— Jm $(u) du. (12) Pi= pmax 9ives an initially poorer fit but recovers the correct
Pmax 1/w0t1 7 | asymptotic behavior. Transferring this insight to the experi-
+ Apmax N(wotu) ments suggests that discarding the first 1%—-10% of the ex-

perimental data points and then repeating the fitting proce-
dure would result in a similar logarithmic compaction law as
before, but withp; independent of". The various time re-
gimes in this model are summarized schematically in Fig. 3.

The similarity of this expression to the empirical law, Eq.
(1), is striking. The primary difference is that here we must
integrate over a distribution af, which will in general in-
troduce corrections to the simple logarithmic law. The simu-
lation results in Fig. 1 demonstrate that any such corrections
are at most small.

B. Annealing curve

] o ] Further insight into the nature of the system’s relaxation
_The form of the theoretical prediction, E(L2) makes it properties can be gained by allowing the tap intensity to vary
difficult to calculate the fitting parametetsp, B, and 7 in i time, which roughly corresponds to varying the tempera-
the empirical law, Eq(1). However, one parameter that can yyre in other slowly relaxing systenis,6]. Two time depen-
trivially be fixed is the projected final densify, which is  gencies will be considered in this paper. The first is the “an-
always equal i, here, regardless of(I'). In contrast, nealing curve,” which was experimentally attained by
the experiments seem to indicate thpatis a nonmonotonic cyclically rampingl” in a stepwise fashion between some
function of I' [8]. There is no easy way to resolve this dis- high valueT'=T; and ['=0 [9,10]. Slowly decreasing’
crepancy. For instance, one cannot simply assumepthat  removes low density local configurations without creating
is itself a function ofl", i.e., prmax=pmaxdI’). Quite apart from  many new ones, hence the term “annealing.” The second
the Conceptual difficulties this would invoke for the phySical protocol for Varyingr will be investigated in the next Sub_
meaning ofpnax, it would allow situations in whiclmegative  section.
free volume could arise, for instance by first allowing a sys- The annealing curve for this model is obtained by allow-
tem to relax arbitrarily close tpya(I') and then suddenly ing 5 to smoothly vary from 0 to some valug, to O to 7,
changing to &' for which p (") <pmadI). By definition,  again, where the duration of each leg is denotedt gy
vt would then be negative. Note that this contradiction is notSimulation results fot,eq= 10° are given in Fig. 4. The ex-
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Below glass point
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(Poo Raax / Kt
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glass point
£ o062
0.61
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Experimental / L . . ) s
window 0.0 0.1 0.2 0.3 0.4 0.5 0.6
Scaling n (arb. units)

’ regime FIG. 5. Variation of the annealing curves with cooling rate for a

FIG. 3. Schematic of densification under constagntThe line ~ Gaussianu(E). Results are given for a total time per leg &j,
becomes straight, indicating that the density is logarithmically in-=10" (thin solid ling, 10> taps(dashed lingand 16 taps (dot-
creasing towarth,,, once the system enters into the scaling re-dashed ling The second and third legs are reversibletfgy=10°.
gime, which overlaps with the experimental window. The scalingThe thick line is the equilibrium density.
regime continues indefinitely if.(E)~e~¥7 and < 7g. Forn
>nygy, or for au(E) with a tail that decays faster than exponen-
tially, the scaling behavior ceases at some late time and the densi{}(]
reaches its equilibrium densip,. < pmax-

To interpret these results in a glassy context, recall that
e initial conditions were chosen to conform to the equilib-
rium state aty=o0, i.e., P(E,0)=Pequ(E)| ;== u(E). This
would be valid if the initial low density configuration in the
perimental annealing curve has a similar shape, except thakperiments corresponded to an equilibrium state for very
the initial density increase for smdll is noticeably slower |arge tapping intensity’, which seems plausible. Thus the
than that for smalky [9]. This may simply be due to a non- start of the first leg corresponds to a rapigenchfrom high
trivial mapping fromI" to », as discussed in Sec. IV. Note 7 to »~0, leaving the system far from equilibrium. The rate
that the second and third legs in Fig. 4 form a reversibleof compaction is initially rapid but slows as the density, and
curve which is nonetheless out of equilibrium for small  hence the relaxation times, increase. For sufficiently hjgh
Observe also the presence of a narrow hysteresis loop, whighe density reaches and starts to follow the equilibrium
is also present in microscopic moddl$4,17,23 but has  curve, rapidly erasing the memory of its history. Asis
never been systematically searched for in experiments. Thewered a second time, this time corresponding to a slow
area of this hysteresis loop decreases for slower coolinguench, the system remains near equilibrium until some

rates, as demonstrated in Fig. 5. value 7, (which depends on the cooling ratehen the re-
laxation time rapidly increases and the system essentially
0.64 : : : freezes. Thus the difference between the first and third legs
in Fig. 4 can be understood as the recovery from a rapid and
063 ¥ | slow quench, respectively.

C. Shift in the excitation intensity

Recent experiments have investigated the effect of allow-

T 061 064 5 | ing I' to “shift” from a constant valuel'y to another con-
Eo. . .
062 stant valuel'; at a given timety [11]. It was found that the
5 system evolved in a way that depended on its history as well
060 - = 060 7 as its current density and excitation intendityrepresenting
a form of memory akin to that in glassy systefbs6]. Plot-
0.59 0.58 . ted in Fig. 6 are the corresponding results for this model,
00 05 10 15 20 where 7= 7,=0.5 until t=t,="50 taps, when it changes to
058 ‘ . . " . 11= 10+ A 7. The sign of the initial density change is oppo-

0.0 0.1 0.2 0.3 0.4 0.5 06 site to the sign ofA , as in the experiments, although this is
n (arb. units) not entirely general and the behavior is reverse i too

FIG. 4. The annealing curve for a Gaussia(E). The symbols ~ SMall. Also shown in the inset is the case wheis changed
refer to the initial increase im up to =0.6 (open squareésthe  rom different 7, to the same valuey; =0.3 when the den-
decrease toy=0 (filled circles, and the second increagerosses  Sity reaches a predetermined value. Again there is qualitative
For each legy was varied smoothly ove,=10° taps. The thick ~agreement with the experiments.
line is the equilibrium density(Insed The same for an exponential The analogy with glass systems suggests that the time
w(E) over a range ofy that includes the glass point. scale of the response to a shift4natty should scale with
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0.615 i ) |
- 0.0009 0620
— k=4 to t1
a s
S 0.0006 | I
0.610
0.0003 | .
0.605 0.0000 . ‘ . .
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30 40 50 60 70 80 90 100 t-t, (taps)

t (taps
(ees) FIG. 8. Plot of the recovery from a short time at a highefor
FIG. 6. Response to a shift from=0.5 to »=0.5+A»n at a  a Gaussianu(E). Here the system has been relaxed for a tige
time t=>50 for a Gaussiap.(E). From top to bottom, the lines refer =10* taps at»=0.1, then held aty=0.3 untilt;=t,+ 6t when it
to Ap=-0.3, —0.2, and—0.1 (dashed lines 0 (thick line), and  reverts back tay=0.1 again. From bottom to top, the lines refer to
0.1, 0.2, and 0.5thin solid lines. (Insey Here »=0.1 (solid line), 8t=1, 2, 4, 8, and 16, respectivelyinse) The raw data forst
0.3 (dashed ling or 0.5 (dot-dashed lineuntil the first timet, =16 (dashed lingcompared to the unperturbed systésulid line).
whenp(ty)=0.61, afterwhichy is fixed at 0.3 in each case.
which distorts the underlying scaling behavior B There
in some mannef34]. With this insight, we now make the are also additional small corrections when using a Gaussian
following prediction, in the hope it may be tested experimen-ﬂ(E)- ) ) . ]
tally. Let Ap(t—t,) be the difference in density at timte Flnall_y, the experiments bl’l_eﬂ)_/ |_n_vest|gated what happens
between the perturbed system and an unperturbed one, i.&/henl’ is allowed to return to its initial value afteit taps at
one with A=0. Plotted in Fig. 7 isAp(t—t,) for a shift @ higher valgd“l [11]. For.com.pan'son, the equivalent re-
from a low to a highy at timest,=10%, 10%, 1¢°, 1¢f, and sults from this model are given in Fig. 8. The observed trend
10°. In each case there is a well-defined time for the pealis in accord with the experimental observations. A full study
response™s? which increases withy,. Known results for the ~ Of this variation in(t) for all 7o, 7,, to, andét is beyond
trap model with an exponentigk(E) suggest thatt™sP the scope of this paper and will not be discussed further here.

~tg°/”1, where the exponent is independenttgf35]. We _

find this to be a good first approximation to our data, as D. Fluctuations and power spectra

demonstrated by the inset to Fig. 7, although there are cor- In a finite system the density in equilibrium is not con-

rections arising from the nonlinear mapping frdmnto p, stant but fluctuates about its mean value. To investigate den-

sity fluctuations in this model, a different version of the code

0.008 , , , was employed which explicitly simulates a system consisting

of N separate subsystertdetails given in Appendix A Fig-

ure 9 shows the probability distributio(Ap) of fluctua-

tions A p=p(t) — pmoga for N=500 and different;. To first

approximationQ(Ap) is Gaussian, but it is slightly skewed

towards lower densities, becoming more sorais lowered.

The skewness arises from the nonlinear mapping fEoto

p, which exaggerates fluctuations to lower densities while

suppressing those to high densities. There is also a cutoff for

very large |Ap|, when P(E,t) has deviated significantly

from Pgqo{E). The experiments exhibited Gaussian fluctua-

tions with some anomalous deviations fop>0 [9]; this is

discussed below.

, , The power spectr§(f) of density fluctuations in equilib-
10° 10 rium for variousn and a Gaussiap(E) is given in Fig. 10.
t-1, (taps) S(f)~1/f? for f greater than a high frequency shouldgr,

FIG. 7. Response to a shift from=0.1 to »=0.5 at a timetg wheref,, is only Wgakly dependent op, although ,it should .
for a Gaussianu(E), where Ap(t—t,) is the density difference D€ Stressed that this model focuses on cooperative relaxation
between perturbed and unperturbed systems. From top the bottofi0des and is not intended to describe the high frequency,
on the right hand side, the lines referte= 10%, 10%, 1, 1¢f, and  Single particle dynamics. For low frequenci&tf) appears
10, respectively. An exponentiaL(E) behaves similarly(Insed to obey nontrivial power law behavi@(f) ~ 1/f°, where the
The same data plotted against-(to)/tS, wherea=0.1/0.5 is the ~ exponentd can bevery approximatelyfitted to s~1— 7
ratio of 7 before and after the shift. over the range 1°<f<10 3. However, the analysis given

0.004

Ap(t-tg) ¥1000

o 1

2 3 4
log10( (t-tg)/ts02 )

0.000

Ap(t-t,)

-0.004

-0.008 :
10° !
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L 7n<2, even though the system is in equilibrium. This appar-
1 ent anomaly is explained in Appendix C.

In the experiments, the power spectra were found to obey
nontrivial power law behaviorS(f)~1/f°, with §=0.9
+0.2, between two corner frequencigs and f that both
decreased ds was lowered9]. More complex behavior was
] observed for largef” towards the bottom of the apparatus.
The results from this model are in partial agreement; for
i instance, it is still one of few that can exhibit af 4fegime
with §~1 (see also Ref21]). There are some discrepancies,
but these may simply be due to processes not currently in-
corporated into the model, such as single particle dynamics
or the existence of metastable, high-density crystalline do-
mains.

log10( Q(ap))
B 4o =M

:'/

0

2 A
X (104a.u.)

Q{ap)

. /L
2x10™ -1x107? 0
X = (Ap)’ sgn(Ap) (arb. units)

IV. DISCUSSION OF THE MODEL PARAMETERS
FIG. 9. Fluctuations around the modal dengity,q, in equilib-
rium for anN=500 element system with a Gaussja(E). Q(Ap),
the probability of a fluctuatiol p= p(t) — pmodans IS plotted against

Given the success of this model in reproducing the experi-
mental phenomenology, it is natural to ask if its principle
X=(Ap)?sgn(Ap) on a log-linear plot, which would give a sym- assumptions can be placed ona firmer fo_undatlon. In particu-
metrical triangle ifQ(Ap) was Gaussian. The different lines refer 1ar, & number of parameters introduced in Sec. Il A have so
to =1 (solid), 7=0.8 (dashed, and »=0.6 (dot-dashey (Insey ~ far been treated somewhat heuristically. To redress the bal-
The same for an exponential(E) with =2 (solid line) and »  @nce, we now discuss the physical interpretation of some_of
=1.6 (dashed ling these parameters. A more thorough analysis may be possible
by detailed comparison with a microscopic model, for in-

. . o . stance.
in Appendix C shows that this is not the true asymptotic

behavior andS(f)— 1/f° as f—0. The crossover to 19
behavior occurs around a low frequency shoulderwhere
f,—0 rapidly as»—0. For an exponentigk(E) there is
only one shoulder frequency separating the high frequenc
1/f2 regime from a low frequency regime in whic®(f)
~1/f°, wheres=2— 7 for 1< 7<2 andé=0 for =2, as
shown in Fig. 11. Note that there is nof%/region for

A. The noise parameter»(I")

It was stressed during the derivation of this model that the
ynoise parameter; need not bear any relation to the concept
of granular temperaturg86,37). By the same token, the use
of the term “equilibrium” to describe the statistical steady
state merely refers todynamicequilibrium, without suppos-
ing any analogy with ahermodynami®ne. Insteady was
defined in the broadest sense of simply giving some measure

' ' ' of the degree of excitation of the system during a single tap.
107 This loose definition makes finding the precise relationship
with I difficult. Nonetheless it is still possible to predict the
107 overall shape ofp(I"), as we now argue.
For » to be nonzero, the particles must at the very least
105 separate from their nearest neighbors. Experiments on vi-
= brated granular systems often claim to find some criti¢al
? 10t such that the relative motion of the particles is either mini-
mal or nonexistent fol’<I'; (usually 1I=I'.<2, see e.g.,
107 Refs.[1,8,38). A facile explanation for this is to suppose
that a granular body is held together by frictional forces, and
10° i . that relative motion between adjacent particles is not pos-
AR sible until some static friction threshold has been overcome.
10° - - - L . o S.incle aI.I the normal contact forces are proportionfag,tme
10° 10° 10° 10° 107 distribution of threshold forces will also scale withand
f (taps™) thus the relevant parameter would indeed Ibe a,,/0.

However, friction is not the only relevant mechanism. For
instance, particle separation will still occur in vertical one

—0.4 (dashed ling and 7=0.2 (dot-dashed line, also vertically dlmen.S|on'aI columns, where friction clearly plays no part.
shifted by a factor of 500 for clarily EachS(f) was calculated _Even in this case theory s_ug_gests that the relevant parameter
over ~1C® points. The slopes of the thick line segments are indi-iS @gainl’, at least in the limit of hard spher¢89).

cated. To speed convergence, the initial configuration was chosen Assuming that a well-definefl; exists, the overall shape

as the known equilibrium statBeq.{E) for N== (10), although ~ Of %(I") will obey »(I")~0 for smallI’, only significantly

the 7=0.2 system was still evolving towards its slightly different deviating from zero fol’=I".. Just this qualitative behavior
finite N equilibrium state during the run. This accounts for the has been found in simulations of horizontally vibrated sys-
anomalous steep slope for sméll tems[40]. As a corollary, the annealing curves presented in

FIG. 10. S(f), the power spectrum of frequendy for an N
=500 system and a Gaussian(E), at »=0.6 (solid line), »
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Figs. 4 and 5 will be flatter for small when plotted against eterI'=a,,,,/g (possibly with a threshold arounid~T", as
I' rather thanz, in better agreement with the experimental discussed earligr Similarly, write AE~mgr, wherer is the
graphs(9,10]. typical particle radius. SincAE and 5 only appear in the
ratio AE/n, m and g will cancel and the dynamics of the
B. The prior distribution p(E) model will depend ortwo dimensionless quantities, namely
The Gaussian and exponentia(E) employed in the I'and a dimensionle.sﬂ;ispliacementA/r. The e_xist_ence of
simulations were chosen as plausible first guesses of the rediSecond relevant dimensionless parameter implies that the
1 (E). To calculate the actuat(E) is a nontrivial problem, behawor In response to h'gh amplitude, low freq.uency cjer-
but a first step might be to re-expres§E) in terms of ing may be qualitatively different from a low amplitude, high

) the distributi £t | ft p . frequency driving with the same value Bf This possibility
%(vy), the distribution of free volume after reconfiguration. has not yet been explored in the experiments, which seem to

Using E=z"AE=Av/v; [Eq. (3)], this gives have focused on the low frequency regime.
Note that we could equally have expressgth terms of
w(E)= ﬂ (ﬂ) (13) the kinetic energy supplied by the driving, i.ey
E? E =mv§f(l“), wherev,, is the typical driving velocity. How-

o ever, this is not an independent energy scale @gan be
In principle, #(v¢) could be found from a microscopic dimensionally related t@,,,, and Ay by vo~ Vamado. We
model, such as the parking lot mod@,17—-19, for which  only mention this latter alternative because simulations often
the free volume is also the void volume. show scaling plots in terms df andv (see, e.g., Ref40]
Note that, from Eq.(13), the tail of u(E), which is so  and references therdin
important to the long-time relaxational properties of

Bouchaud'’s trap model, can be related toghe>0* behav- V. SUMMARY AND CONCLUSIONS

ior_of ‘ﬂ(v_f)' FoLexampIe, if‘p(v_f) vanishes according to To summarize, we have constructed a simple model for
(vr) ~exp(=alvy), thenu(E) will have an exponential tail \eakly excited granular media that combines the Chicago
and the trap model predicts a glas_s transition at a finite noisgroup’s free volume argument with elements of the super-
intensity 7=Avy/a. Similarly, ¢(vf)~exp(—a/;,?) corre-  cooled liquid theory of Adam and Gibbs. Integration of the

sponds to au(E) with a Gaussian tail. master equation has shown that the model behaves in a simi-
lar manner to the experiments for each of the situations con-
C. The constantA=aAE sidered. Some slight discrepancies remain with the power

. spectra, but these may be due to mechanisms currently lack-

Even thoughA has been treated as an arbitrary constaning from the model, such as ordering effects and crystallin-
and fixed by the initial conditions, its component factars iy depth dependency, or wall effects. It would be interesting
andAE have a physical interpretation, as we now discuss. I see if any of these mechanisms could be incorporated into
Eq. (3), a is defined as the constant of proportionality be-5, extended version of the model. It may also be possible to
tweenz*, the smallest number of particles that can cooperainiroduce orientational degrees of freedom and compare the
tively rearrange, and the ratig, /v . In the Chicago group’s results to recent experiments on nylon r¢dg].
original argument9], a was set to 1; however, we prefer not  The model has also been used to predict the manner in
to fix a at any particular value and suggest that it may deswhich the time of the peak response to a shiffirat t=t,
pend upon particle properties such as their shape. For inscales witht,, as discussed in Sec. Ill C. This prediction
stance, highly irregular particles will obstruct motion more could be tested experimentally and may help to differentiate
effectively than rounder particles of the same volume, and s@etween the large number of models that have so far been
should have a higher value af proposed12-25, as it seems unlikely that they will all give

AE was originally defined as a gravitational potential en-the same scaling behavior. Further insight into the physical
ergy barrier. Indeed, assuming that the particles interact vimechanisms underlying the compaction process could be
hard core repulsion, this is thenly available potential en- gained by measuring the typical size of reconfiguring regions
ergy scale in the system. This suggests th&t is propor-  as a function of time, or by seeing if the locations of such
tional to the mean vertical displacement between adjacentgions are spatiotemporally correlated. Such measurements
particles. If so, then our implicit assumption th&E is in-  could be performed in simulations, or by direct visualization
dependent ofp and p is compatible with the hard sphere of two dimensional experimenig3], for instance.
Monte Carlo simulations of Barker and Mehfdl], who Finally, we note that the relationship between granular
demonstrated that the distribution of contact angles betweemedia and glasses can be given a more intuitive appeal by
particles is roughly constant over a wide range of shakinghe following simple argument. Consider sand poured from a
amplitudes. great height into a container. When the particles first hit the

More importantly, ifAE is gravitational potential energy, surface of the forming sandpile, the direction in which they
then inspection of the reconfiguration rate, BE8), indicates  bounce will essentially be random, giving rise to a large
that » must also have units of energy, with an energy scal@andom velocity component. This corresponds to a highly
that is presumably coupled to the driving. For definitenessexcited state with(in our notation a high . However, the
supposern can be written agy=mgAyf(I'), wheremis the  particles will rapidly lose their kinetic energy by inelastic
typical mass of the particled\, is the amplitude of the driv- collisions and will soon come to rest, jamming under gravity
ing, andf(I") is some function of the dimensionless param-into a static, disordered configuration with=0. It is not
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difficult to see how this sequence of events can be related tc ' ' ' ' '
the rapid “quench” of a supercooled liquid or other glass-  1¢2 .
forming material.

Just after the initial submission of this work, we became s
aware of a master equation for the glass transition due tc 10
Dyre [44], which is similar to Bouchaud’s equation studied
in this paper but with a built-in cutoff in the range of allowed ~ . 4
energies. Also, it has been brought to our attention that thew
two regimes of vibration mentioned in Sec. IV C have pre-
viously been discussed in the context of size segregation by 10
Mehta and Barkef45].

5
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APPENDIX A: SIMULATION DETAILS 1

The bulk of the simulation results were obtained by nu- “’x(”)ztlmw(”'t):( JO " "u(ENdE'| . (B2
merical integration of the continuous master equat{®n ) o ) _
P(E,t) was defined on a mesh of poir; = P(i 5E,j ot), D_|fferent|at|ng Eq.(B1) with respect ton and rearranging
where O<i<i, andj=0. Care was taken to ensure that 9IV€S
EmacimaxdE Was set sufficiently high that there was no sig-
nificant cutoff toP(E,t) for largeE. To iterate over a single 7 dp=(1)
time stepét, w(t) was found from numerical integration of 02 (7)pmax 97
Eqg. (9b) and then assumed to remain constant over the re-
quired time interval. This allowed the time evolution equa- w o ,u(E),u(E’)e(HE')’”
tion (9a) to be solved andP;;,; found from P;; Vi. The If f (E-E') 17E/A
whole distribution was then renormalized by a factor 070 Pmax
(EiPij)‘l to correct for the nonconservation of probability (B3)
resulting from the assumption of a constas(t). For relax-
ation under constan, simulation times were improved by After the change of variables=E+E’ andv=E—E’ and
employing a geometric mesh with a linearly increasing timesubstitutingv — —v over the domairv <0, the right hand
stepstoct. This allowed for times up to=10'to be reached side of Eq.(B3) transforms to
with only modest CPU time.

dEdE'.

For the density fluctuations investigated in Sec. 1l D, the _ J'w J” »2eum (u+v (”__U)
continuous master equation was of no use and an alternative u=0Jv=0 M2 "M 2
method was employed which explicitly included finite size .
effects. This involved assigninly array elements a barrier X[(2Apmaxt U+v)(2Apmaxtu—v)] "du dv.
E;, i=1,... N, according to the chosen initial conditions. (B4)
At every time stepdt=1, each element was assigned a new
barrier with probabilityw,e ™ 5’7, where the new barrier val- Since all the factors inside the integral E§4) are posi-

ues were drawn from the priqr(E). The densityp; of each  tive, it can be trivially deduced that
element was found by inverting the mapping E4), and the
mean density calculated by straightforward summation, IPmax

p(t)=(IN)Zp;. an

<0 forally. (BS)

Equality is attained in only two cases. The first is if the
integrand is strictly zero over the entire range 0, which

In this appendix it is shown that the asymptotic densitycan only happen in the trivial case of a single valued distri-
p=lim;_ .. p(t) is a monotonic decreasing function pffor ~ bution u(E)=6(E—Ey). The second and more important
essentially anyu(E). If an equilibrium state exists, it takes situation is over a range af for which no equilibrium state
the form Peqn{E)=wx(7;)eE/’7M(E) and hence from Eq8)  exists. In this case, all the moments B(E,t) diverge ast

APPENDIX B: MONOTONICITY OF p.(7) ON
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' ' ' ' of its environment, the total power spectrsfrf) is just the
spectrum for a single region with a relaxation timever-
aged overd(7), the distribution of relaxation times in equi-
librium,

0.64 |-

TP(7)
fo | —————dr. 1
) fl+(2ﬂ'f7)2d7 (€

The smallf behavior of Eq(C1) depends on the asymptotic
behavior ofd (7) for larger. If ®(7) decays faster than 2,
then thef=0 limit exists andS(f) exhibits the expected fi%
noise for low frequencies. However, @#(7)~ 7 * with 1
<x<2, thenS(f)~ 1/, as can be readily seen by substi-
tuting for f 7 in Eq. (C1) [note thatx>1 since®(7) is nor-
088 ; y > 3 2 5  malizabld.
N (arb. units) For the trap model®(7) can be found for any given
) . . w(E) by simply making the change of variables
FIG. 12. Plot ofp,,=lim,_,., p(t) againstz for an expzonentlal =(1/w0)eE/” into the expression folP g {(E), EQ. (10).
/.L(E):e_E (solid line) and the Gaussiap(E) = 2/me B2 (dot- ThUS, an exponentia)_L(E)wef Elng gives (I)(T)N T 77/779,
ted ling for p,.,=0.64. Note that the plateau foy<1 in the ex- implying that S(f)Nl/fZ— 719 for 7g< n<2ng. This con-
ponential case corresponds to. the out-of-equilibrium situatiorﬁrms thatS(f)—/—>l/f° for this range ofy, even though the
where all the moments d?(E.1) diverge ast—e. system is in equilibrium. The usualf/behavior is recov-
ered whenp=27,, which also applies for alh when u(E)
—o andp(t) — pmax from Eq. (7). A plot of p..(n) vs p for  decays faster than exponentially. In particular, a Gaussian
an exponential and a GaussiafE) is given in Fig. 12. M(E)Ne—EZ/Z(rZ leads to an equilibrium distribution of relax-

ation times of the form

0.60

APPENDIX C: ANALYSIS OF THE POWER SPECTRA 2. 2
(I)( ’T)’V T*(r] 120 )|n(wor), (CZ)
The smallf behavior of the power spectra of density fluc-
tuationsS(f) is analytically derived in this appendix, which Which is suggestive of a power law with a slowly varying
extends the range of the numerical observations discussed §Ponentx= (7°/20?)In(wo7). Thus one would exped(f)
Sec. Il D. The time-dependent spectrum near the glass poiri €xhibit approximate power law behavior over a wide
has already been derived in REBO]; here we consider the range off, reverting to 1f° only for frequencies comparable
f—0" limit in equilibrium for generalu(E) over a wider to the “largest” relaxation timewor*~e"2”72. Any attempt
range of . to fit S(f) to a power law will give an exponent that depends
Since each local region is assumed to relax independentign the range of considered as well as the ratigo.
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