PHYSICAL REVIEW E VOLUME 62, NUMBER 2 AUGUST 2000

Shapes, contact angles, and line tensions of droplets on cylinders
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Using an interface displacement model we calculate the shapes of nanometer-size liquid droplets on homo-
geneous cylindrical surfaces. We determine effective contact angles and line tensions, the latter defined as
excess free energies per unit length associated with the two contact lines at the ends of the droplet. The
dependences of these quantities on the cylinder radius and on the volume of the droplets are analyzed.

PACS numbes): 68.45.Gd, 68.10-m, 82.65.Dp

. INTRODUCTION (SiO,,Al,05,V,05,M00;, TiO,) [20]. This variety demon-
strates that the substrate potential of these tubes can be re-
garded as a tunable paramet@v) By using nanotubes as

. S . o nanotweezerf21] it might be possible to grab and manipu-
portant role in the textile industry and in the fabrication of late small liquid drops. For this application the substrate

high-performance, fiber-reinforced composite ma\terlalsmust be nonwettable.

Since contact angles of liquid droplets on solid substrates These small scales are comparable with the range of the

provide a valuable characterization of such wetting properg peirate potential of the cylinders and of the molecular

ties there are numerous expe_rimental and theoreticgl studig§yces petween the fluid particles adsorbing on them. Thus
of the shape and the spreading of droplets deposited on e droplets form under the action of the so-called effective
cylindrical substratésee, e.g., Ref§1-15]). The morphol- interface potential, which accounts for the net effect of the
ogy of liquid drops on a fiber is particularly interesting inso- competition between the forces among the fluid particles and
far as on a planar substrate there is only one, spherical caghe substrate potenti@R2]. Accordingly the calculation of
like droplet shape, whereas on a cylindrical substratehe corresponding deformed droplet shapes requires a more
droplets may exhibit two, topologically different shapes, adetailed theoretical description which takes the effective in-
“clamshell” and a “barrel” shape, depending on the droplet terface potential into account. To our knowledge there is
volume, the contact angle, and the cylinder radilis3]. In  only one, recent publication in which this effect @fon the
the former case the droplet adheres to one side of the cylirdroplet shape on fibers has been analyf23]. It is the pur-
der and exhibits a shape comparable with the shell of a mugpose of our study here to refine and to extend this analysis in
sel or clam or the armor of a tortoise, whereas in the lattewarious directions. If the radiuR of the fiber reduces to a
case it surrounds the cylinder axisymmetrically, shaped likdew nm, as it is the case for nanotubes, the effective interface
a barrel or a bale of thread wound up on a spindle. Theotential itself will depend oR and thus deviate from that of
aforementioned studies deal with thick fibers and largehe corresponding semi-infinite planar substrate used in Ref.
drops, i.e., the length scales aten and larger. In this range [23]. Accordingly we present a systematic analysis of the
the fluid structures are determined by macroscopic propertiedependence of the shape of the droplets and their suitably
alone, i.e., volume of the liquid, surface tensionof the  defined contact angles on bokand the droplet volume.
liguid vapor interface, Young's contact angle, and radius  This enables us to describe systematically the crossover in
R of the cylinder. shape and contact angle between those of droplets on a cyl-
However, with the discovery of nanotubes the interest ininder and on the limiting casR—oc of a planar substrate.
such fluid structures has shifted to much smaller scalesNe remark on how the structure of the effective interface
There are several applications for which these small solid-potential, depending on whether it leads to first-order or con-
fluid structures are very importan() For fabricating valu- tinuous wetting transitions, influences the morphology of the
able composite materials involving nanotubes their wettingdroplets. We confine our analysis to barrel-type droplets and
by the liquid host matrix is necessary to couple the inherenestimate their metastability against roll-up to the clamshell
strength of the nanotubes to the matrix, reinforcing materialsonfiguration. Finally we study two types of line tensions.
or fillers for plastics and cerami¢$6]. (i) Nanotubes can be The first one concerns the line tension of three-phase contact
used as supports for heterogeneous catalysis or as templatestween liquid, vapor, and substrate emerging at the ends of
for creating small wires or tubular structures by coating thenmacroscopically large drops on fibers which reduces to the
with metals or metal oxides in the liquid staftg7] or by  familiar line tension of the straight three-phase contact line
attaching inorganic and organic moieties to the nanotube supn a planar substrate. The second excess free energy con-
faces[18]. (iii) In order to use nanotubes as ‘“nanostraws” cerns the effective line tension associated with the circular
potential candidates for exploiting such capillarity must beshape of the three-phase contact line on a planar substrate as
screened by first seeing if the liquid wets thésideof nano-  a function of the droplet volume. These results are relevant
tubes[19]. The performance of the nanotubes as catalystfor understanding how to extract line tensions from contact
adsorbants, and deodorants can vary depending on whetha&ngle measurements.
they are composed of carbon, boron nitride, or oxides We are encouraged to present our refined analyses by re-

The wetting properties of a fiber in liquid matricés.g.,
dye mixtures, polymer melts, or molten regimday an im-
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liquid—vapor interface and the symmetry axis of the cylinder
andl(z)=h(z) —R is the local separation between the cyl-
inder surface and the liquid—vapor interface, i.e., the liquid
layer thickness. The droplet is also symmetric with respect to
a reflection at the plane=0. For large values dfz|, i.e., at
large distances from the droplet centerzatO, the liquid
forms a thin wetting layer of thickne$g=h,— R around the
cylinder. For reasons of simplicitih(z) is henceforth as-
sumed to be a unique function afi.e., we do not consider
contact angle®>90°. The shape of the liquid—vapor inter-
face enclosing the droplet is determined by the interplay of
three physical quantitites: the Laplace pressi#t@ 20H
generated by the mean curvatiteof the interface with sur-
face tensiono, the capillary pressurg28] induced by the
finite droplet volume, and the disjoining pressure or, equiva-
lently, the effective interface potentiab, acting on the
liquid—vapor interfacd22]; w.(I;R) is the cost in free en-
FIG. 1. (@ Schematic longitudinal cross section through a liquid ergy per surface area to maintain a homogeneous wetting
droplet residing on a homogeneous cylindrical substrate with radiugayer of prescribed thicknesscovering the cylinder surface
R The system is rotationally symmetric around thexis and sym-  and can be expressed in terms of the underlying forces of the
metric with respect to a reflection at the plarve0. h(z) (full line) substrate and between the fluid partidi28]. In the absence
describes the liquid—vapor interface profile; the thickness of theyf the effective interface potential, i.e., for large droplets the
liquid layer is|(z)=h(z) —R. The droplet shape is determined by |iquid—vapor interface is a minimal surface under the con-
the balance of the Laplace, the capillar)_/, an_d the d_isj_oining Pressurg aint of a prescribed volume, i.e., it exhibits a constant
[Eq.(2.8)]. Far from the droplet center, i.e., in the lifif —, the o0 orvature. The influence of the effective interface po-
profile_h(z) red_uces to a homogeneous Iaye(|z|ﬂocf):h0. . tential is most pronounced near the cylinder surface within
a,ef(z) (dashed lingdescribes the reference surface which conS|sts[he range of the substrate potential and leads to a deviation of
of a surfacea,(|z|<z;)=a(z) with constant mean curvature and ; . .
of the homogeneous layer.{|z|=2,)=h,. a(2) is determined by the actual pI’OfI|d’1'(Z) from the shape which is determmgd
by the aforementioned constant mean curvature condition.

a(z=0)=h(z=0) [i.e., it touches the actual surface profiez) at . o .
the apex and by the condition that the two principal radii of cur- O the other hand, in the limit of large separation from the

vatureh(0) andR, [which is the radius of curvature of the planar CYlinder surface the mean curvature is asymptotically con-
curve[z,h(z)], see Eq(2.2)] of the actual and the reference surface Stant because there the influence of the effective interface
at the apex are identical. The break in the slopeagf(z) atz  Potential vanishes.

=+ 7, defines the apparent contact anglgb) Same as ir{a), but Independent of the size of the droplet, for later purposes
for a macroscopic drop, i.e., infinite excess voluxhg. Choosing ~ We define the “reference configuratiorisee Fig. 1a)]

the position of one of the contact lines as the origin0 leads to a

configuration for which the cylinder is in contact with bulk vapor Arei(2)=a(2)0(z,—[2]) +heO (|2 - 29), 21

for z— —o and with bulk liquid forz—e. an(z—=) andh(z
—) diverge exponentiallyd,, is defined by the break in the slope
of arerm(2) atz=0.

where a(z) is that constant-mean-curvature surface that
touches the surfack(z), h(z=0)=a(z=0), and exhibits
the same curvaturd at the apex, i.e., the two principal radii

cent experimental advances to determine droplet shapes sughcurvature
as microscopic interferometf24], ellipsometric microscopy , 32

[25], scanning polarization force microscopy26], and {1+[h"(0) 1} -
tapping-mode scanning force microsco®7]. These tech- 0 h”(0) h”(0)
nigues allow one to resolve drop profiles on the submicrome-

ter scald 25,26 down to the nanometer scdl27], both ver- andh(0)=R+1(0) of h(z) and, correspondingly, cd(2)
tically and laterally. In view of the numerous important [see Fig. 1@)] at the apex positioz=0 are identical.®
applications mentioned above it would be rather rewardinglenotes the Heaviside step functianz, are those values of

to extend the application of these techniques to nonplanat wherea(z) and the homogeneous wetting layeiz) = h,
substrate geometries in order to resolve experimentally th#tersect. In this sense the values + z; define the positions
shape of droplets on fibers and tubes as presented in titd the two three-phase contact lines forming the ends of the
following sections. droplet. The “apparent contact anglef is defined by the
intersection of the barrel-shaped pafiz) of the reference
profile and the homogeneous wetting laygiz)=h, [see

ith 2 an 2.2
wit =4z (2.2

Il. THEORY .
Fig. 1@]:
A. Free energy functional |
oo . . . 0= lim arctarg|a’(z)|). 2.3
In cylindrical coordinates the droplet surface is described 2,2, ta’(2)]) 23

by a functionh(z) or I(z) of the coordinatez along the
symmetry axis of the cylindefFig. 1(a)]. We defineh(z) This apparent contact anghecan be expressdd,2] in terms
and|l(z) such thath(z) is the local separation between the of the measurable quantities apex heigltt) of the droplet,
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radiusR of the cylinder, radiuRk+ 1, of the wetting film, and
radius of curvaturdR, [Eq. (2.2)] of the profileh(z) at the
apex

_R+1(0)  [R+I(0)]?—(R+1g)?
0S0= R, 2(R+1y)

1 1)
R+1(0)  Ro/"
2.4

Within an interface displacement modglee, e.g., Ref.

[30]) the equilibrium interface configuratidn(z) for a drop-
let of prescribedexcessvolume V,, minimizes the free en-
ergy functional

Fed N(2)]=F[h(2)]—F[ho]

:27r£o dz{o[h(z)V1+h'(2)?—hg]

+Rlw(h(2)-R)—w(hg—R)]} (2.5
under the constraint
w f dz[h?(2) —h§]=Ve (2.6

and the boundary conditions(|z|—«)=h,. We have de-
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1 h"(z)
“lh@rh @2 [+ h'(Z)2]3/2)
IZUH(Z)I—K—iM .
h(z) dh h=h(z)
(2.9

This equation describes the balance between the Laplace
pressure on the left hand side and the capillary plus disjoin-
ing pressure on the right hand side. One kas0 for any
barrel-shaped droplet.

B. Reference profiles

The reference profil@(z) minimizes a similar surrogate
functional:

4

A[a(Z)]=7Tf

' dZ 2ca(z) y1+a'(z)°+ «k*a?(z)]+ const
' 2.9

with the constant independentafz) and the boundary con-
ditions a(=*z;) =h,. Equation(2.9) follows from Eq. (2.7

by omitting w, and replacing« by «*. The corresponding
Euler—Lagrange equation describes the constant-mean-
curvature surface given by

finedF¢Jh(z)] as an excess free energy with respect to the

free energyF[hy] of the homogeneous wetting layb(z)

=h, rendering a mathematically well-defined, finite expres-

sion. The first contribution té-., is the excess free energy

1 B a"(z)
a(z)[1+a’ (2’1" [1+a'(2)*]¥?

=20H(z2)=—«*.
(2.10

due to the increase of the liquid—vapor interface as compared

with a homogeneous cylindrical shape. In generaitself
depends on the curvature and thusR(see, e.g., Sec. 2.2 in
Ref.[29] and references thergirin the following, however,

According to the definition o&(z) the Lagrange multiplier
— k* has to be chosen such that this constant mean curvature
of this surface equals the mean curvature at the apex of the

we do not discuss explicitly this additional parametric depenactual surfacd(z)=1(z) +R

dence orR. The second contribution #, is the free energy

generated by the effective interaction between the cylinder K 1 1
surface and the liquid—vapor interface, reduced by the cor-

*

o

:—R+I(O)+R—O, (21])

responding free energy for the homogeneous wetting layer.

Since the substrate is considered to be homogeneqyk)
depends only on the radial distance h—R from the sub-
strate surface. The equilibrium separatiog=1,+ R of the

whereR, [see Eq(2.2)] andR+1(0) are the principal radii
of curvature at the apex of the actual surfdue), deter-
mined by the former Lagrange multiplies(V,). The solu-

homogeneous wetting layer from the cylinder axis minimizegtion of Eq.(2.10 is given implicitly by

the free energyF(h)=27L[Rw,(h—R)+aoh] where L

>z, is the macroscopic length of the cylinder. The con-

strained minimum of Eq(2.5) is given by the unconstrained
minimum of the surrogate functional

FelN(2)]=Felh(2)]+«

wf dz[hz(z)—hg]—vex).
(2.7

The corresponding optimal profile(z,«) renders the equi-
librium profile F(z,vex)zﬁ(z,x(vex)) upon expressing the
Lagrange multipliers in terms of Ve, by insertingh(z, )
into the left hand side of Eq2.6) which yields the implicit
relationVq,(«). In order to avoid a clumsy notation, in the

following we denoth(z,VeX) by h(z). The Euler—Lagrange
equation corresponding to E€R.7) reads

2 2 —1/2
— - =z+z,, |z|=z,,
g y o C—y2 1 1
(2.12

which fulfills the boundary conditiom(—z;) = hg; this de-
termines implicitlyz; in terms ofhg, Vg, o, andw.. The
integration constart is determined bya’(0)=0 due to the
symmetry ofa(z). The integral in Eq.(2.12 can be ex-
pressed in terms of elliptic integral81,32.

When the drop is macroscopically larg¥/ (=) it is
appropriate to adopt a slightly different point of view. In this
case not the center of the droplet but the position of one of
the two three-phase contact lines, which are defined by the
intersection of the asymptote,,(z) (the constant-mean-
curvature surface appertaining to thniacroscopic dropand
h(z)=h,, is fixed atz=0 [see Fig. 1b)]. The actual inter-
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face profile interpolates between, e.ly(z— —=)=hy and In the limit R—~ the region where the higher order terms
h(z—«»)=a.,(z). This configuration describes a solid cylin- are relevant is shifted towards=« such that, withé,,(R
der which is in contact with bulk vapor on the left hand side—=)=6,,, one recovers the linearly diverging asymptote
(z— —) and with bulk liquid on the right hand side ( ay.(z) [Eqg.(2.19].

—). The analysis of the internal structure of a three-phase
contact line on a homogeneous, planar substrate is based on
a similar configuration'see Refs[33] and[34] and refer-
ences therein The interface profile diverges in the limit For the same liquid layer thicknesghe effective inter-

— o0 h(z—)—oo, but this divergence is not linear as in face potentialwc(I;R) of a cylinder differs from that of a
the case of the planar substrate. A macroscopically largelanar substrate,(I). The full expressionv.(l;R) is pre-
drop impliesk— 0. In this limit the volume constraint loses sented in Ref.[29] as obtained from density functional
its meaning. Instead the state of the system is fixed by diftheory and within a so-called sharp-kink approximation for
ferent lateral boundary conditions. In this case the solution othe solid—liquid and the liquid—vapor interface profiles. For

C. Effective interface potential

Eq. (2.12 is given by reasons of simplicity, here we use the leading order of a
series expansion ab.(l;R) in terms ofd,,/R, whered,, is
_ the radial extension of the volume excluded for the fluid
z—D . . .
an(z)=a(z;k=0)=C COS”(T) (2.13 particles due to the repulsive part of the substrate potential
_ 37 53 _[R 2
with two integration constant€ andD. a,,(z) describes a wc(I'R):Taﬁ2F1 5'5'2' h

rotational surface with minimal surface area. From @qL3

one can easily see that the divergence of the interface profile R 2

for macroscopic drops is exponential a(z— ) +8b —42F1[3,2;2;(F) }

=(C/2)exfd (z—D)/C], rather than linear as on a planar sub- h

Ztrrjgei.sThe reference profile appertaining to the macroscopic X 3157 R i 11 9 , R\ 2 o d,,
32 Cpi22%n R/

aref,m(z):am(z)®(z)+h0®(_z)- (2.14 (2.18

The slopes at the intersection of the asymp#giéz) and the  with h=I+R and ,F; hypergeometric functions. In the limit
homogeneous layen(z)=h, at z=0 defines the contact |/R—0 one recovers the expression for the effective inter-
angle 0,,(R) = 6(R,V¢,— ). R=« corresponds to a planar face potential of the corresponding planar substrate
substrate for which the interface profile diverdearly in
the limit z— o wo(l;R—2)=w(l>0R)=wy(l)=al~2+bl3+cl 2.
(2.19
am«(2)—R=Ilg+ztand., (2.195
However, the power-law decay of.(l —) for a fixed, fi-
with the macroscopic contact angle = 6,,(R—=) on the  nite cylinder radiuR is
planar substrate.f., obeys Young's law C08,=(oygq
—ow)/o, whereo,q and o, are the wall-gas and wall—
liquid surface tensions, respectively;,q—ou=w(lo:R w(l—o;R)=
=) is determined by the effective interface potential of the
corresponding planar substraiee, c.f., Sec. Il € On the
cylindrical surface the contact angtg,(R) does not follow i.e., one power faster than that for the corresponding planar
from similar thermodynamic considerations but follows from substrate.
the numerical analysis of the full profile(z) for large Ve, At present there exists, to our knowledge, only one study
(see, c.f., Sec. Il and Fig.)9 concerned with the shapes of droplets on cylinders within the
The integration constant§ andD in Eq. (2.13 can be range of the effective interface potential between the cylinder
determined from the conditiors,(z=0)=R+1, anda’(z  surface and the liquid—vapor interfaf@8]. However, in Ref.
=0)=tané,, so that [23] the disjoining pressure Il (I)=—-[R/(R
+1)]dwc(1)/dl on the right hand side of the Euler—Lagrange
7 1 equation(2.8) as a whole rather than only the effective in-
————— +arccosh——/|. terface potentialy.. is replaced by the disjoining pressure of
R cosé,, cosf,, . =
(2.16 the corresponding planar substrdig(l) = —dw,(1)/dl. In
view of Egs.(2.19 and (2.20, except for the factoR/(R
) ) ) o +1), this corresponds to the short-distance expansiéR (
The series expansion of this expression in terms of stBIl - _, ) of the effective interface potential of the cylinder. This
IS replacement of the disjoining pressure by that of the planar
substrate is expected to yield numerically reliable results
am(Z/R<1)=R+ly+ztand,(R)+O(Zz%). (2.1 only for large cylinder radii and small liquid layer thick-

37

R -4
52 +007, (2.20

an(z)=R cosamcos}‘<
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nesses<R. Therefore in Sec. Il we test the quality of this 0.2
approximation(as well as that of the replacement of,
alone bywp).

So far, due to the volume constraint, our considerations 01 7
apply to nonvolatile liquids. For volatile liquids any droplet
surrounded by a macroscopic reservoir of vapor phase is
thermodynamically unstable against evaporation, leaving be-
hind only the thin equilibrium wetting film. However, we
expect that the actual nonequilibrium state of a condensating — ()
or evaporating liquid observed within a time scale that is 017 o wp (1;R=20s)
small compared with the typical condensation or evaporation e AT
time can be described by solutions of HG.8) with Vg, . . ) . )
given by its momentary value. Only the interface configura- O 2 4 & 8 10 12
tion for k=0, i.e., Vo, =2, which interpolates between a
homogeneous wetting layer and an exponentially diverging I7s
prqfile, describes_a bpna ﬁde,thermOdynamicauy stable state FIG. 2. Model effective interface potentiadg(l) in units of the
which can be maintained by imposing appropriate boundaryanar jiquid—vapor surface tensianas used in all numerical cal-
conditions (see aboveat liquid—vapor coexistence for the ¢jations.w(1:R) and wy(1) are given by Eqs(2.18 and (2.19),
bulk fluid. The thermodynamic state, which in a grand ca-respectively, witha/o=3s2, b/o=—5s%, andc/o=3s8, wheres
nonical ensemble is defined by temperature and chemicakts the length scale of the systétypically s~1 nm). The full
potential, enters parametrically into the actual values of théine denotes the effective interface potentigj(l) for the planar
effective interface potentiab, and the liquid—vapor surface substrate, the dashed line denotegl;R) for a cylinder withR

o()/o

tensiono. =20s. For this choice of parameters and within the range of values
of | shown here the effective interface potentials even of thin cyl-
IIl. SHAPES OF DROPLET SURFACES inders barely differ from that of a planar substrate. Only for ldrge
AND CONTACT ANGLES the long-range decay @b (1) and wg(l) differ qualitatively[com-

pare Eq.(2.20]. This type of effective interface potential with a

We solve the Euler—Lagrange equati@g8) numerically  global minimum atly/s~1.3 and a second, local minimum kt
for fixed values ofx and for a given effective interface po- =< leads to a first-order wetting transition of a planar substrate at
tential w.(1); the value ofx, in turn, determines the excess @ higher wetting transition temperature at which the first minimum
liquid volume V., and allows us to establish the relation raises up t0w=(_)._ In th_e case _of a continuous wetting transition
«(Vey). As boundary conditions in the cage<0 (leadingto (1) would exhibit a single minimum and approaah=0 from
droplets of finite sizewe use thah(z) must approach the below in the absence of a potential barrier in between.
wetting layer thicknesk, for largez and thath’ (z=0)=0.

The distancd./2, at which the system is cut off, is chosen
large enough so thdt(z=L/2) andh’(z=L/2) attain their
asymptotic value$y and 0, respectively, within prescribed
accuracy. The reference profig.{z) is then calculated nu-
merically by solving the differential equatid®.10 with «*
determined by Egs(2.2) and (2.10 and with a(z=0)
=h(z=0) anda’(z=0)=0, up to the point of intersection
of a(z) and hy which defines the coordinate;; a,{(z
=27,)=hg. The contact angl@ is determined from Eq2.3)
and, as a crosscheck, from HG.4).

In all numerical calculations presented henceforth we set
a=30s?, b=-50s% and c=30s® such thats sets the
length scale for the range of the effective interface potential
(typically s=1 nm). We divide both sides of ER.8) by o
so thatw(l)/o is dimensionless and/o has the dimension
of an inverse length. Alternatively, instead of introducimg z/s
as above one can choos@/o as the basic length scale
which describes the decay of the effective interface potential
for our choiceya/o~1.73. The effective interface poten-

tials wc(l;R) [Eq. (2'1_8?] and “’p(l) [Eq_. (2',19)] for the interface potentiak,(1) of the corresponding planar substrate as
above ch.0|ce of coefficients are shown "_q Fig. 2. . shown in Fig. 2. The droplet is so small that its liquid—vapor inter-

~ As afirst example we solve E¢2.8) with the effective 506 jies entirely within the range @,(1). Forz/s=5.25 the in-
interface potentiak,(l) of the corresponding planar sub- terface profild (z) lies above the reference profééz) — R and, for
strate[Eq. (2.19] and the potential coefficients given above. z/s<5.25 upon approaching the apex of the droplet, it reaches the
Figure 3 shows the profile of the droplet surface on a cylinreference profile from below. This particular droplet is possibly
der with radiusR=100s for ks/oc=—0.1. This choice ok = metastable against the “rollup” to the “clamshell” shape because
leads to a small droplet witN.,~1.46x10%s® (i.e., con- the stability criterion Eq(3.1) is not satisfied.

I(z) /s

I FIG. 3. Profilel(z) of the droplet surfacéfull line) and the
corresponding reference profile.(z) —R (dashed ling for R
=1005, ks/o=—0.1 s0 thatV,~1.46x 10°s®, and the effective
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150 | NN
7] 2 ‘\‘ '
~ — \ :
— N - \
N 100 § = 2 L
< \ :
Vo
]
5 1 I
0t |
6 470 480 490 -4 1 Vi
4 1Y
0 200 400 0 260 4(')0
z/s z/s

FIG. 4. Profilel(z) of the droplet surfacéfull line) and the FIG. 5. Full line: di —

. . . . 5. Full line: differenceAh(z) =h(z) —hy(z) between the
correspotndflng refertence pTOfé@fEf%Z);T (-(;,?S[leijohgggor tt?wet two droplet profilesh, and h, for xs/o=—0.005 [leading to a
same set o par?me €rs asin 7g. 3, but washo= =195 SO tha droplet withl (0)~361s andz,~453] andR= 200 which are cal-
Ve~ 1.67x10Ps3. In contrast to the situation shown in Fig. 3, here culated by usingw,(I;R=20s) and w,(l), respectively. For com-
the droplet is so large that it extends up to distances from the Cylbarison the dotteé Iilne shows the d?f‘fer’ence betweer.1 the phafile
inder surface where the effective interface potential is negligible.f R— 2’05 dxs/o— —0.005 and th (& for R=20s. b
The inset magnifies the region around the three-phase contact line W R= andxsio=—0. and the profilé, for s ut
2=2,~483%. In the region around the apex of the droplet the pro-W'th, « chosen such that the excess volumes.of Ilqulld for both
file I(z) lies below the reference profile. Since the effective inter-'oromes‘.hp .and hf are identical. In order to ac.hleve this, for the
face potential is the same as in Fig. 3 the absolute deviatitifz)f ~ determination oh, the value ofks/o™ has to be increased by 1.63
from a,,(z) is about the same size as in Fig.(Se the inset x10"®. In both cases the maximal difference is of the ordes.of
According to Eq.(3.1) this droplet is stable against “rollup.” SinceAh changes sign as a function xfit is not possible to find an

effective valuex¢; such that for a given value of the resulting
taining roughly 10 fluid particle whose liquid—vapor in- profile cglculated withw, _is identical with the profi_lehc. The
terface lies entirely within the range of the effective interfacedashed line denotes the differenth between the profilé(2) for
potential. Therefore the deviation of the profile from the as-kS/o=—0.005 andR=20s and the profileh,,(z) for which, as in
ymptote a(z) extends up to the apex of the droplet. The Ref. [23], in Eq. (2.8 the entire disjoining pressurgR/(R
model effective interface potential used here resembles &!)1dwc/d! (instead of onlydw,/dl) is replaced by the disjoining
typical interface potential leading to first-order wetting on aPressure of the planar substrate, /dl; here for the d?t(aermlnatlon
planar substraté22]. The droplet surface crosses the refer-0f hp the value ofks/a has been increased by 6680 " in order
ence profile and, upon approaching the apex of the droplet, ip have identical excess liquid volumes. This approximation is
reaches the reference profile from below. worse than the substitution of the effective interface potential alone,

Carroll[2] has shown that, in the absence of the effective?though the differencah is still on the order of.

interface potential, the axisymmetric droplet configuration is

only stable for i.e., for macroscopic drops, and for contact angles smaller

than 90°(as stated in Sec. Il here we do not consider the case
h(0)\3 h(0)\? 0>90°) the rotationally symmetric interface shape is stable
2 _R cosf—3 _R +1>0, (31) for any value ofR.

Figure 4 shows the droplet shape for the same choice of
i.e., if the droplet is large compared with the diameter of thepotential parameters and for the same cylinder wRh

cylinder and if the contact angle is small. When the droplet=100s, but for xs/o=—0.005. This choice ok leads to a
volume decreases or the contact angle increases the axisymch bigger droplet withV ,~1.67x 10°s®. The apex of the
metric droplet becomes metastable against a so-calledroplet is located at such a large distance from the cylinder
“rollup” towards the “clamshell” configuration[35]. By  surface that the effective interface potential is almost negli-
applying the stability criterion Eq3.1) to the interface pro- gible. Therefore the application of E@3.1) is reliable; it

file shown in Fig. 3, we find that this barrel-type configura- shows that this particular droplet is indeed stable against
tion is possibly metastable towards forming the “clamshell” “rollup.” In the vicinity of the cylinder surface the absolute
shape. A definitive statement about the stability would re-deviation of the interface profile from the asymptote is simi-
quire us to refine the criterion in E¢3.1) by incorporating lar to that in Fig. 3. As compared with the situation shown in
the effect of the effective interface potential. However, theFig. 3, the point wherd(z) crosses the reference profile
determination of the nonaxisymmetric “clamshell” equilib- a(z) —R is shifted to the right and lies near the three-phase
rium shape requires a much larger numerical effort and igontact line atz=2z,. For the model effective interface po-
therefore beyond the scope of the present paper. One caential used here and in Fig. 3, in the region around the apex
define a critical value/,, . such that forVe,> Ve, . the axi-  of the droplet the profile lies below the reference profile.
symmetric droplet is stable. Upon increasiRy Ve, in-  These results are in accordance with the findings for the pla-
creases, tooY e, — in the limit R—o. Only for Vg,=%,  nar, homogeneous substrd8,34 with the same type of
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FIG. 6. Apparent contact anglesfor the same effective inter- FIG. 7. Apparent contact angléscalculated by usingo(l;R)
face potentialwy(l) as used for Figs. 3 and 4 and for different (dotted ling as compared with those calculated basedg(l) (full
cylinder radiiR as a function of the liquid excess volurkg,. The line) as a function of the excess liquid volunw, for a cylinder

main effect of increasin® is a shift of the curves upwards and to with R=20s (i.e., the full line is identical to the full line in Fig.)6

the right. The limitV,,— corresponds to macroscopic drops or, Both curves exhibit the same qualitative behavior. For thicker cyl-
equivalently, a cylinder in contact with bulk vapor at one end andinders whose contact anglé§V.,) are shown in Fig. 6 the differ-
with bulk liquid at the othefcompare Fig. () and, c.f., Figs. 8and ences between the curves are much smaller. The symbaisdi-

9]. The differences between the curves are minimal in the limitcate the critical value¥,, . above which the axisymmetric droplet
Ve —2. 8(Vey) is, for any value ofR, a monotonously decreasing shape considered here is stable, but below which the “clamshell”
function with vanishing slopd 6/dV,,= 0 in the limitV¢,—. The  configuration is stablecompare Eq(3.1)]. The difference between
symbols ¢ indicate the critical value¥, . above which according the two curves is largest for macroscopically large drops.

to the criterion in Eq(3.1) the axisymmetric droplet shape consid-

here i | | hich the “cl hell” fi ion . . . .
?sri(tjab(lae:e is stable, but below which the “clamshell” con Igurat'onlncreasng the curves are shifted upwards and to the right.

Due to the exponential divergence of the interface profile of
interface potential. If, on the other hana(l) corresponds to @ macroscopic dropwhich is more pronounced for smaller
a system undergoing a continuous wetting transition, i.e.R see the discussion of Eq2.16) and(2.17) above and see
exhibiting a single minimum without a potential barrier, the Fig. 8], the determination of the apparent contact angles for
profile of the droplet shape approaches its asymptote frord€ry large drops is, in particular for thin cylinders, numeri-
the outside without crossing (see Fig. 8 in Ref[34]). cally difficult. However, the data indicate that, for any value

Figure 5 displays the effect of the replacement of the ef0f R, 6(Ve,) is @ monotonously decreasing function, with a
fective interface potential of a cylindes.(1;R) [Eq.(2.18]  vanishing slopel8/dVe,=0 atVe=. The differences be-
by that of the corresponding planar substratg(l) [Eq. tween the contact angles for differeRtare minimal atV,

(2.19] for a droplet with ks/oc=—0.005 so thatl(0) =, For anyR there is a sizeable increase of the apparent
~361s andz,~453 on a thin cylinder withR=20s. This ~ contact angle upon decreasing droplet size.
droplet also satisfies the stability criterion in H8.1). For Figure 7 shows the effect of replacing, by w. on the

reasons of clarity in this figure we have plotted the differenceapparent contact angles for the system vtk 20s (com-
Ah(z) between corresponding profiles instead of the profileare Fig. 5. The difference between the contact angles cal-
themselves. The influence of approximating(l;R) by culatgd by usi'nguc andw, is significant. It is much'smaller '
wy(1) turns out to be rather small: the differensé(z) is at ~ for thicker cylinders whose contact angles are displayed in
most on the order of s. It is even smaller in the case ofig. 6. However, the qualitative functional form of the de-
smaller droplets and thicker cylinders: the quality of approxi-pendence of)(Ve,) is not affected by the replacement ©f
mating o (1;R) by wy(l) improves if the cylinder is thicker by wp,. . . _
and the droplet is smaller. In RgR23] the disjoining pres- For macroscopic drop§.e., k=0 or, equivalently,Ve,
sure of a cylinder rather than the effective interface potential=*) the Euler—Lagrange equation is solved with the initial
is replaced by its planar-substrate counterpart. This correvalue h(z=L;)=hy and a small initial slopeh’(z=L,)
sponds to replacing the terrR{h)dw,/dl on the right hand [e.g., h'(z=L;)=10"%]; the initial slope h’(z=L;)=0
side of Eq.(2.8) by dw,,/dl. The dashed line in Fig. 5 shows would yield the trivial solutionh=h,. In order to find the
the effect of this approximation on the surface profile. Asasymptote we determine the integration const@wsdD in
expected, the quality of this approximation is worse than thé=q. (2.13 such thata,(L,)=h(L,) anda,(L,)=h"(L,),
substitution of the effective interface potential alone, al-wherez=L, is the coordinate up to which the differential
though the differencéh is still of the order ofs. equation is integrated numerically; the system sigze L, is
Figure 6 shows the apparent contact angles for the exshosen large enough so that upon further increase of the
amples presented in Figs. 3 and 4, as well as for the same sgtstem sizeC and D remain unchanged within prescribed
of potential parameters but witR=20s, R=200s, andR  accuracy. The contact anglg, can be inferred from the
=500 as function of the excess liquid volumé,,. Upon  value of C [Eq. (2.16]. Finally the coordinate system is
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FIG. 9. (a) Apparent contact angle,, for macroscopicdrops
(Ve=) as a function ofR (full line) corresponding to the inter-
face profiles shown in Fig. 8. As indicated by the dashed line, in the
limit R—o the apparent contact angles attain Young’s contact
angle 6.,~30.5° on the corresponding planar substrat&as 6,
~R™1. (b) Apparent contact angle céf smalldroplets(full line)

) X ) - on theplanar substrate as a function of the radiisof the base of
contact line a=0; here we use the same graphical notation as MNhe spherical cap acting as the corresponding reference configura-

(a). Each reference configuration consists of the horizontal Iinetion For large drops cos varies according to the Neumann—

I(z).=I0 for z<0 and of the asymptotic brandi,(z)~R for z g\ ka equatioridashed lingcosf—cos6, = — . /(a2;) which al-
>0; for R<e this asymptote diverges exponentially in the limit lows one to determine experimentally the line tenstonof three-

zo0 [see Eq(.2.l®.]. R=o corresponds to the planar. supstrate for phase contact on a planar substrate. Hete=1.31ss. The
which ap,.(2) is alinear function. As demonstrated if@), in the deviation between the full line and the dashed line shows that the

limit R—co the region where higher-order corrections to the lin- \;o,\mann—Boruvka equation is applicable only fgf's=500
early diverging asymptote become relevant is progressively shifted '

towardsz—<, such that forR=c only the linear divergence re- ,
mains. The appertaining contact angigsand the line tension as proaches YOl{nlg s contact angde, for the planar substrate
a function ofR are shown in, c.f., Figs. 9 and 10, respectively. Since@S -~ fm~R"~.

for macroscopic drops the contact angles attain a finite value, for N Fig. 9(b) we show the apparent contact anglesiwiall

any radiusR the stability criterion in Eq(3.1) for the barrel-type ~ droplets on aplanar substrate, i.e., in the limiR— but
shape is fulfilled. with V<. In this case the reference configuration is a

_ ] _ spherical cap whose circular base has a radiugsee Fig.
shifted laterally such that the intersection af(z) and hg 1(a)]. For large droplets cogreaches Young’s contact angle

«#0). As mentioned before, for macroscopic drops the ro-

tationally symmetric configuration satisfies the stability cri- -
terion Eq.(3.1) for anyR. cosf—cosh.,, = — —, (3.2)

The dependence of the liquid—vapor interface profiles of 0Zy
macroscopic drops on the cylinder radirss shown in Fig.
8 usingw,(l) and with the same set of interaction potential which allows one to determine experimentally the line ten-
parameters as in the previous examples. In accordance witiion 7., of three-phase contact on a planar substrate by vary-
Eg. (2.16, the interface profiles for cylinders of finite thick- ing the droplet size. Figure(B) demonstrates that this linear
ness diverge exponentially in the linit>. In the limit R relationship between casand z; * is valid only for z,/s
—oo the region where higher-order corrections to the linear=500, i.e., forz;=500 nm. From Fig. @) one infers that
behavior[Eq. (2.17)] are relevant is shifted towards— oo cosf decreases more rapidly than predicted by E32).
such that in the limiting cas®=« corresponding to the This behavior can be accounted for by an effective line ten-
planar substrate the linear divergence of the reference profilgion 7.4(z;) which due to the circular bending of the three-
is recovered. Figure(8) displays the apparent contact anglesphase contact line irger than the valuer., of the corre-
0., corresponding to the profiles shown in Fig. 8 as a func-spondingstraight three-phase contact line. Similar results
tion of R. Upon increasing the cylinder radil® 6, ap- have been obtained by Dobp37].

FIG. 8. (a) Liquid—vapor interface profile$(z)=h(z)—R of
macroscopic drops\Me,=) for R=20s (full line), R=100s (dot-
ted ling, R=1000G (dashed ling andR=c (dashed-dotted line
calculated withw,(I). (b) The profilesl(z) (thick lines and their
corresponding reference configuratiomg{z) —R (thin lines for
R=20 s andR=« are shown in the magnified region around the
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6 and 6, depend on the liquid—vapor surface tension We note that7 is only well defined in the thermodynamic
which in turn also exhibits a behaviar(R) — o(<)~R™*.  limit lm,  _ (Fe—oAs+47Ro(lg)z,+0A:) so that
In accordance with the discussion in Sec. Il A, Fig. 9 doesnigher order terms, e.g+z; !, omitted on the right hand
not yet take into account this indirect dependencé@ @ind  gjqe of Eq.(4.4), drop out. In the following'is understood
Om ON R via o(R). to have been obtained via this procedure. It can be expressed
in terms of the solution of Eq2.8) for k=0 and ofaef m(2)
IV. LINE TENSION [Egs.(2.13 and(2.14]

As long as the size of a droplet fiite and fixed it is o
impossible to extract from the total free energy unambigu- T=477f dZ{ o[h(2)V1+(h'(2)]?
ously and in a strict thermodynamic sense a line tension -
associated with the three-phase contact lines at the ends of -~ ta. (22 _
the droplet because there are arbitrarily many ways to form Aretm(2) V1t [arerm(2) 171+ R{w(h(2) —R)
the total free energy as a sum of various terms. However, o
well-definedline tensions emerge as coefficients in giee _w(aref,m(z)_R)}+47TRf dzw(arerm(z) —R).
dependencef the free energy of droplets upon approaching 0
macroscopic drops. To this end we consider the limit of large (4.6
drops, i.e.Ves 3>1 andz;/s>1 [see Fig. 18)]. Within
the interface displacement model the excess free energy faonsequently7is twice the characteristic excess free energy

Eqg. (2.5 can be rewritten as associated with the structure of a macroscopic drop near one
of its ends without interference from the other end. On the
Fox=0A,—47mRw(19)21— 0A+ L, (4.2 other hand7, and thusr, are defined for any value & The
ratio 7 formed in Eq.(4.5) has the property that in the limit
where R—oo it reduces to the line tension, of the straight three-

phase contact line on the corresponding planar substete
7 - 5 e.g., Refs[30,33,34,39, which is an experimentally observ-
Ab:z”f_z dZ8ed(2) V1+[ared2)] (42 aple quantity{compare Fig. ®)].
! At this stage one should note that the above consider-
is the surface area of the “barrel” part of the reference Sur_ation_s tacitly assume that_another thermodynamic limit con-
facea,(z), —zy<z<z,, A.=4mhyz, is the surface area of C€MINg the total system size, such as the volume of the sur-

the cylinder with radiusi, and lengtte, [see Fig. 1a)], and rounding vapor phase and the lengtlof the solid cylinder,
has already been carried out in advanE¢h,) is propor-

tional to L and has been subtracted before. Moreover, we

£=277J' dZ{o[h(z)V1+[h'(2)]? have not considered the bulk free energy of the surrounding
*°° vapor phase and the bulk free energy of the liquid in the drop
— aef2) 1+ [a2) 2]+ Rlw(h(2)—R) proportional toV,, because they do not enter the description

of the droplet shape in terms of an interface displacement
1 model. As a careful analysis of the line tensien within
. dzo(are(z) —R). density functional theory for a volatile liquid at gas—liquid
! coexistence shows, in comparison with this more complete
4.3 theory the interface displacement model misses a contribu-
tion which is independent of the shapéx) and is deter-
For Ve,—, Fey [Eq. (4.1] is dominated by the terrA,  mined byé.,, andl (the first term in the sum in Eq2.19 in
which scales proportional to the surface area of the drop ang¢ [34], denoted as in Egs.(4.2), (4.3, and(4.5) in Ref.
thus represents a two-dimensional contribution. The Ieadin?g:ﬂ)_ Sir;ce, however, this constant contribution turns out to

subdominant terms ‘_”‘re477_R“’C(|P)Zl and —4whooz;,  pe numerically much smaller than those contributions cap-
which scale with the linear dimensiorz2of the drop repre- a4 by the interface displacement modsée Fig. 15 in

;enting one—dim(.ansi(')n.al contributions. Finally, the last termg ¢ [33]), we have refrained from determining it for the

in Eq. (4.1) remains finite fotVe,, Ay, andz; — present, much more complicated geometry, assuming that the
size ratios of these types of contributions remain roughly the
same for the planar and the cylindrical substrate.

] ] o ~ Figure 10 shows the dependence of the line tensiom

and thus represents a zero-dimensional contribution. In itghe cylinder radius using the planar effective interface po-
turn 7'depends on the cylinder radiéssuch that for larg® — tential w(1). 7 is given byso times a numerical factor on

it scales proportional t&, which leads to the following defi- the order of 1. It decreases monotonously for decreaBing

nition of an excess free energy per unit length, henceforthng attains its maximum value, for R—x as 7..— 7(R)
called “line tension,” associated with the two contact lines _g-1 e note that this decrease of the line tension upon

z

—0(@el(2) —R)]}+ ZWRJ

L(z)=T+O(z; Y (4.4

formed at the ends of the droplet with total lengtirR: decreasing the radius of curvatuReof the contact line is
opposite to the increase of the effective line tensigg(z;)
— l (4.5) observed for a decreasing radius of curvateyeof the cir-
47R cular three-phase contact line on a planar substrate as can be
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1.3 V. SUMMARY
1205 B Based on an interface displacement mddsi. (2.5] we
have analyzed the shape and the free energy of “barrel”-
121 type droplets of fixed volum¥, covering a cylindrical sub-
© strate of radiusk (Fig. 1). For sufficiently small droplets
R their shapeh(z) =R+1(2) is not only governed by the sur-
= face tensions of the liquid—vapor interface but also by the
1.1 effective interface potentiab.(I;R) with a generic form as
shown in Fig. 2. We have obtained the following main re-
1.05 sults:
(1) Figures 3 and 4 show how the deviation of the actual
1 . . N droplet shapé(z) from a suitably defined reference configu-
0 0002 0.004 0.006 0.008 0.01 rationa,«(z) depends on the droplet size. The reference con-

figuration is uniquely defined by the requirement to touch the
s/R actual shape at the apex and to have a constant mean curva-

FIG. 10. Dependence of the line tensiorifull curve) of mac-  ture which equals the actual one at the ame(z) allows
roscopic “barrel-type drops £=0) on cylinders of radiui& The ~ ONe to introduce an apparent contact angleharacterizing
corresponding interface profiles and apparent contact angles af8€ actual shape, which can be expressed in terms of the
shown in Figs. 8 and 9, respectively.is calculated by using the ©XPerimentally accessible quantities cylinder radiisadii
planar effective interface potentiaby(l). As indicated by the of curvature at the apex, heightO) of the droplet, and
dashed lines approaches., for R—x asr,—7~R~L. 7, is the  thicknessly of the wetting layer outside the barrgEq.

line tension of the straight three-phase contact line on the corre' 2.4)] ) . )
sponding planar substrate. (2) The dependence of the effective interface potential

w¢(I;R) on the cylinder radiuR influences the shape of the

inferred from Fig. 9b). Thus line tensions of curved three- dreopg)alﬁfjgrr:ctehias;?era?;uter;emr:rnkge?fe?fé(c!t; E)n (tEE.aS);at\rr];t con-
phase contact lines can be smaller or larger than the Iin? n PP

i . . . act angle(Fig. 7).
tension of the qorrespo_ndmg straight co_ntact lines. N (3) The apparent contact angles increase for smaller drop-
Whereasr,, is experimentally accessible by monitoring let

) s and for thicker cylinderéFig. 6). The contact angles of
the apparent contact angle of sessile droplets on a plangtacroscopically large drops approach the Young's contact

substra_te as a fur_1ct|on of the o_IropIet sizéR) ‘cannot be “angle on a planar substrate proportional t8 [Fig. 9(a)].
determined experimentally by direct observation. The basic (4) In the limiting case of small droplets on a planar sub-
reason for this difference is that the lengthrZ of the three-  strate the circular bend of the three-phase contact line leads
phase contact line of the sessile drop on the planar substragg an effectively increased value of the corresponding line
can vary as a function of the droplet size so that the optimajension [Fig. 9b)]. This deviation from the Neumann-—
shape of the droplet responds to the associated cosi2, Boruvka equation becomes relevant if the droplet radius is
of the free energy, whereas the excess free enefgyiZR) less than roughly 500 nm. This observation is relevant for
for the ends of the droplets is a constant contribution withexperimental determinations of line tensions via contact
respect to the droplet size on the cylinder due to the fixedngle measurements.

value ofR. This, however, holds only for the “barrel”-type ~ (5) For macroscopically large drops their shdije) in-
shape of the drop, for which the length of the three-phaséreases linearly on a planar substrate but exponentially on a
contact lines is fixed. For “clamshell-type droplet shapes cylinder[Fig. 1(b)]. Figure 8 illustrates the smooth crossover
the length of the three-phase contact line does depend on thgtween these types of behavior for increasing cylinder radii.
droplet size so that in this case the line tension will influence _(6) For large cylinder radii the line tension associated
the droplet shape. Nonetheless there are systems for whid}fth the ends of macroscopically large drops approaches the
7(R) can be experimentally relevant. If the cylinder is not a ine tension of three-phase contact on a planar substrate pro-

hard solid rod but consists of a soft material like, e.g.,Portional to 1R (Fig. 10.
vesicles or tobacco viruses, which float vertically at the
liquid—vapor interface of a solvent, the positive line tension
7(R) will strangle the object locally, depending on its restor- ~ This work has been supported by the German Science
ing elastic forces. According to Fig. 10 this tweaking force Foundation within the Special Research Initiative “Wetting
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