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Shapes, contact angles, and line tensions of droplets on cylinders

C. Bauer and S. Dietrich
Fachbereich Physik, Bergische Universita¨t Wuppertal, D-42097 Wuppertal, Germany

~Received 28 February 2000!

Using an interface displacement model we calculate the shapes of nanometer-size liquid droplets on homo-
geneous cylindrical surfaces. We determine effective contact angles and line tensions, the latter defined as
excess free energies per unit length associated with the two contact lines at the ends of the droplet. The
dependences of these quantities on the cylinder radius and on the volume of the droplets are analyzed.

PACS number~s!: 68.45.Gd, 68.10.2m, 82.65.Dp
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I. INTRODUCTION

The wetting properties of a fiber in liquid matrices~e.g.,
dye mixtures, polymer melts, or molten resins! play an im-
portant role in the textile industry and in the fabrication
high-performance, fiber-reinforced composite materia
Since contact angles of liquid droplets on solid substra
provide a valuable characterization of such wetting prop
ties there are numerous experimental and theoretical stu
of the shape and the spreading of droplets deposited o
cylindrical substrate~see, e.g., Refs.@1–15#!. The morphol-
ogy of liquid drops on a fiber is particularly interesting ins
far as on a planar substrate there is only one, spherical
like droplet shape, whereas on a cylindrical substr
droplets may exhibit two, topologically different shapes
‘‘clamshell’’ and a ‘‘barrel’’ shape, depending on the dropl
volume, the contact angle, and the cylinder radius@1–3#. In
the former case the droplet adheres to one side of the c
der and exhibits a shape comparable with the shell of a m
sel or clam or the armor of a tortoise, whereas in the la
case it surrounds the cylinder axisymmetrically, shaped
a barrel or a bale of thread wound up on a spindle. T
aforementioned studies deal with thick fibers and la
drops, i.e., the length scales aremm and larger. In this range
the fluid structures are determined by macroscopic prope
alone, i.e., volume of the liquid, surface tensions of the
liquid vapor interface, Young’s contact angleu` , and radius
R of the cylinder.

However, with the discovery of nanotubes the interes
such fluid structures has shifted to much smaller sca
There are several applications for which these small sol
fluid structures are very important.~i! For fabricating valu-
able composite materials involving nanotubes their wett
by the liquid host matrix is necessary to couple the inher
strength of the nanotubes to the matrix, reinforcing mater
or fillers for plastics and ceramics@16#. ~ii ! Nanotubes can be
used as supports for heterogeneous catalysis or as temp
for creating small wires or tubular structures by coating th
with metals or metal oxides in the liquid state@17# or by
attaching inorganic and organic moieties to the nanotube
faces@18#. ~iii ! In order to use nanotubes as ‘‘nanostraw
potential candidates for exploiting such capillarity must
screened by first seeing if the liquid wets theoutsideof nano-
tubes@19#. The performance of the nanotubes as cataly
adsorbants, and deodorants can vary depending on wh
they are composed of carbon, boron nitride, or oxid
PRE 621063-651X/2000/62~2!/2428~11!/$15.00
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(SiO2 ,Al2O3 ,V2O5,MoO3,TiO2) @20#. This variety demon-
strates that the substrate potential of these tubes can b
garded as a tunable parameter.~iv! By using nanotubes a
nanotweezers@21# it might be possible to grab and manipu
late small liquid drops. For this application the substra
must be nonwettable.

These small scales are comparable with the range of
substrate potential of the cylinders and of the molecu
forces between the fluid particles adsorbing on them. T
the droplets form under the action of the so-called effect
interface potentialv, which accounts for the net effect of th
competition between the forces among the fluid particles
the substrate potential@22#. Accordingly the calculation of
the corresponding deformed droplet shapes requires a m
detailed theoretical description which takes the effective
terface potential into account. To our knowledge there
only one, recent publication in which this effect ofv on the
droplet shape on fibers has been analyzed@23#. It is the pur-
pose of our study here to refine and to extend this analys
various directions. If the radiusR of the fiber reduces to a
few nm, as it is the case for nanotubes, the effective interf
potential itself will depend onR and thus deviate from that o
the corresponding semi-infinite planar substrate used in R
@23#. Accordingly we present a systematic analysis of t
dependence of the shape of the droplets and their suit
defined contact angles on bothR and the droplet volume
This enables us to describe systematically the crossove
shape and contact angle between those of droplets on a
inder and on the limiting caseR→` of a planar substrate
We remark on how the structure of the effective interfa
potential, depending on whether it leads to first-order or c
tinuous wetting transitions, influences the morphology of
droplets. We confine our analysis to barrel-type droplets
estimate their metastability against roll-up to the clamsh
configuration. Finally we study two types of line tension
The first one concerns the line tension of three-phase con
between liquid, vapor, and substrate emerging at the end
macroscopically large drops on fibers which reduces to
familiar line tension of the straight three-phase contact l
on a planar substrate. The second excess free energy
cerns the effective line tension associated with the circu
shape of the three-phase contact line on a planar substra
a function of the droplet volume. These results are relev
for understanding how to extract line tensions from cont
angle measurements.

We are encouraged to present our refined analyses b
2428 ©2000 The American Physical Society
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PRE 62 2429SHAPES, CONTACT ANGLES, AND LINE TENSIONS . . .
cent experimental advances to determine droplet shapes
as microscopic interferometry@24#, ellipsometric microscopy
@25#, scanning polarization force microscopy@26#, and
tapping-mode scanning force microscopy@27#. These tech-
niques allow one to resolve drop profiles on the submicrom
ter scale@25,26# down to the nanometer scale@27#, both ver-
tically and laterally. In view of the numerous importa
applications mentioned above it would be rather reward
to extend the application of these techniques to nonpla
substrate geometries in order to resolve experimentally
shape of droplets on fibers and tubes as presented in
following sections.

II. THEORY

A. Free energy functional

In cylindrical coordinates the droplet surface is describ
by a function h(z) or l (z) of the coordinatez along the
symmetry axis of the cylinder@Fig. 1~a!#. We defineh(z)
and l (z) such thath(z) is the local separation between th

FIG. 1. ~a! Schematic longitudinal cross section through a liqu
droplet residing on a homogeneous cylindrical substrate with ra
R. The system is rotationally symmetric around thez axis and sym-
metric with respect to a reflection at the planez50. h(z) ~full line!
describes the liquid–vapor interface profile; the thickness of
liquid layer is l (z)5h(z)2R. The droplet shape is determined b
the balance of the Laplace, the capillary, and the disjoining pres
@Eq. ~2.8!#. Far from the droplet center, i.e., in the limituzu→`, the
profile h(z) reduces to a homogeneous layerh(uzu→`)5h0 .
aref(z) ~dashed line! describes the reference surface which cons
of a surfacearef(uzu<z1)5a(z) with constant mean curvature an
of the homogeneous layeraref(uzu>z1)5h0 . a(z) is determined by
a(z50)5h(z50) @i.e., it touches the actual surface profileh(z) at
the apex# and by the condition that the two principal radii of cu
vatureh(0) andR0 @which is the radius of curvature of the plan
curve@z,h(z)#, see Eq.~2.2!# of the actual and the reference surfa
at the apex are identical. The break in the slope ofaref(z) at z
56z1 defines the apparent contact angleu. ~b! Same as in~a!, but
for a macroscopic drop, i.e., infinite excess volumeVex. Choosing
the position of one of the contact lines as the originz50 leads to a
configuration for which the cylinder is in contact with bulk vap
for z→2` and with bulk liquid forz→`. aref,m(z→`) and h(z
→`) diverge exponentially.um is defined by the break in the slop
of aref,m(z) at z50.
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liquid–vapor interface and the symmetry axis of the cylind
and l (z)5h(z)2R is the local separation between the cy
inder surface and the liquid–vapor interface, i.e., the liq
layer thickness. The droplet is also symmetric with respec
a reflection at the planez50. For large values ofuzu, i.e., at
large distances from the droplet center atz50, the liquid
forms a thin wetting layer of thicknessl 05h02R around the
cylinder. For reasons of simplicityh(z) is henceforth as-
sumed to be a unique function ofz, i.e., we do not conside
contact anglesu.90°. The shape of the liquid–vapor inte
face enclosing the droplet is determined by the interplay
three physical quantitites: the Laplace pressure@28# 2sH
generated by the mean curvatureH of the interface with sur-
face tensions, the capillary pressure@28# induced by the
finite droplet volume, and the disjoining pressure or, equi
lently, the effective interface potentialvc acting on the
liquid–vapor interface@22#; vc( l ;R) is the cost in free en-
ergy per surface area to maintain a homogeneous we
layer of prescribed thicknessl covering the cylinder surface
and can be expressed in terms of the underlying forces of
substrate and between the fluid particles@29#. In the absence
of the effective interface potential, i.e., for large droplets t
liquid–vapor interface is a minimal surface under the co
straint of a prescribed volume, i.e., it exhibits a const
mean curvature. The influence of the effective interface
tential is most pronounced near the cylinder surface wit
the range of the substrate potential and leads to a deviatio
the actual profileh(z) from the shape which is determine
by the aforementioned constant mean curvature condit
On the other hand, in the limit of large separation from t
cylinder surface the mean curvature is asymptotically c
stant because there the influence of the effective interf
potential vanishes.

Independent of the size of the droplet, for later purpo
we define the ‘‘reference configuration’’@see Fig. 1~a!#

aref~z!5a~z!Q~z12uzu!1h0Q~ uzu2z1!, ~2.1!

where a(z) is that constant-mean-curvature surface t
touches the surfaceh(z), h(z50)5a(z50), and exhibits
the same curvatureH at the apex, i.e., the two principal rad
of curvature

R05
$11@h8~0!#2%3/2

h9~0!
5

1

h9~0!
with h8[

dh

dz
~2.2!

and h(0)5R1 l (0) of h(z) and, correspondingly, ofa(z)
@see Fig. 1~a!# at the apex positionz50 are identical.Q
denotes the Heaviside step function;6z1 are those values o
z wherea(z) and the homogeneous wetting layerh(z)[h0
intersect. In this sense the valuesz56z1 define the positions
of the two three-phase contact lines forming the ends of
droplet. The ‘‘apparent contact angle’’u is defined by the
intersection of the barrel-shaped parta(z) of the reference
profile and the homogeneous wetting layerh(z)[h0 @see
Fig. 1~a!#:

u5 lim
z↗z1

arctan~ ua8~z!u!. ~2.3!

This apparent contact angleu can be expressed@1,2# in terms
of the measurable quantities apex heightl (0) of the droplet,

s

e

re

s



th

s
y
r

n

en

d
o

ye

e

n
d

e

lace
in-

-

ean-

ture
the

is
of

the
-

2430 PRE 62C. BAUER AND S. DIETRICH
radiusR of the cylinder, radiusR1 l 0 of the wetting film, and
radius of curvatureR0 @Eq. ~2.2!# of the profileh(z) at the
apex

cosu5
R1 l ~0!

R1 l 0
2

@R1 l ~0!#22~R1 l 0!2

2~R1 l 0! S 1

R1 l ~0!
1

1

R0
D .

~2.4!

Within an interface displacement model~see, e.g., Ref.
@30#! the equilibrium interface configurationh̄(z) for a drop-
let of prescribedexcessvolume Vex minimizes the free en-
ergy functional

Fex@h~z!#5F@h~z!#2F@h0#

52pE
2`

`

dz$s@h~z!A11h8~z!22h0#

1R@vc„h~z!2R…2vc~h02R!#% ~2.5!

under the constraint

pE
2`

`

dz@h2~z!2h0
2#5Vex ~2.6!

and the boundary conditionsh(uzu→`)5h0. We have de-
fined Fex@h(z)# as an excess free energy with respect to
free energyF@h0# of the homogeneous wetting layerh(z)
[h0 rendering a mathematically well-defined, finite expre
sion. The first contribution toFex is the excess free energ
due to the increase of the liquid–vapor interface as compa
with a homogeneous cylindrical shape. In generals itself
depends on the curvature and thus onR ~see, e.g., Sec. 2.2 i
Ref. @29# and references therein!; in the following, however,
we do not discuss explicitly this additional parametric dep
dence onR. The second contribution toFex is the free energy
generated by the effective interaction between the cylin
surface and the liquid–vapor interface, reduced by the c
responding free energy for the homogeneous wetting la
Since the substrate is considered to be homogeneous,vc( l )
depends only on the radial distancel 5h2R from the sub-
strate surface. The equilibrium separationh05 l 01R of the
homogeneous wetting layer from the cylinder axis minimiz
the free energyF(h)52pL@Rvc(h2R)1sh# where L
@z1 is the macroscopic length of the cylinder. The co
strained minimum of Eq.~2.5! is given by the unconstraine
minimum of the surrogate functional

Fex@h~z!#5Fex@h~z!#1kS pE
2`

`

dz@h2~z!2h0
2#2VexD .

~2.7!

The corresponding optimal profileh̃(z,k) renders the equi-
librium profile h̄(z,Vex)5h̃„z,k(Vex)… upon expressing the
Lagrange multiplierk in terms ofVex by insertingh̃(z,k)
into the left hand side of Eq.~2.6! which yields the implicit
relation Vex(k). In order to avoid a clumsy notation, in th
following we denoteh̄(z,Vex) by h(z). The Euler–Lagrange
equation corresponding to Eq.~2.7! reads
e
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sS 1

h~z!@11h8~z!2#1/2
2

h9~z!

@11h8~z!2#3/2D
52sH~z!52k2

R

h~z!

dvc~h2R!

dh U
h5h(z)

.

~2.8!

This equation describes the balance between the Lap
pressure on the left hand side and the capillary plus disjo
ing pressure on the right hand side. One hask,0 for any
barrel-shaped droplet.

B. Reference profiles

The reference profilea(z) minimizes a similar surrogate
functional:

A@a~z!#5pE
2z1

z1
dz@2sa~z!A11a8~z!21k* a2~z!#1const

~2.9!

with the constant independent ofa(z) and the boundary con
ditions a(6z1)5h0. Equation~2.9! follows from Eq. ~2.7!
by omitting vc and replacingk by k* . The corresponding
Euler–Lagrange equation describes the constant-m
curvature surface given by

sS 1

a~z!@11a8~z!2#1/2
2

a9~z!

@11a8~z!2#3/2D 52sH~z!52k* .

~2.10!

According to the definition ofa(z) the Lagrange multiplier
2k* has to be chosen such that this constant mean curva
of this surface equals the mean curvature at the apex of
actual surfaceh(z)5 l (z)1R

2
k*

s
5

1

R1 l ~0!
1

1

R0
, ~2.11!

whereR0 @see Eq.~2.2!# andR1 l (0) are the principal radii
of curvature at the apex of the actual surfaceh(z), deter-
mined by the former Lagrange multiplierk(Vex). The solu-
tion of Eq. ~2.10! is given implicitly by

E
h0

a(z)

dyF S s

k*
D 2S 2y

C2y2D 2

21G21/2

5z1z1 , uzu<z1 ,

~2.12!

which fulfills the boundary conditiona(2z1)5h0; this de-
termines implicitlyz1 in terms ofh0 , Vex, s, andvc . The
integration constantC is determined bya8(0)50 due to the
symmetry of a(z). The integral in Eq.~2.12! can be ex-
pressed in terms of elliptic integrals@31,32#.

When the drop is macroscopically large (Vex5`) it is
appropriate to adopt a slightly different point of view. In th
case not the center of the droplet but the position of one
the two three-phase contact lines, which are defined by
intersection of the asymptoteam(z) ~the constant-mean
curvature surface appertaining to themacroscopic drop! and
h(z)[h0, is fixed atz50 @see Fig. 1~b!#. The actual inter-
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PRE 62 2431SHAPES, CONTACT ANGLES, AND LINE TENSIONS . . .
face profile interpolates between, e.g.,h(z→2`)5h0 and
h(z→`)5am(z). This configuration describes a solid cylin
der which is in contact with bulk vapor on the left hand si
(z→2`) and with bulk liquid on the right hand side (z
→`). The analysis of the internal structure of a three-ph
contact line on a homogeneous, planar substrate is base
a similar configuration~see Refs.@33# and @34# and refer-
ences therein!. The interface profile diverges in the limitz
→`: h(z→`)→`, but this divergence is not linear as
the case of the planar substrate. A macroscopically la
drop impliesk→0. In this limit the volume constraint lose
its meaning. Instead the state of the system is fixed by
ferent lateral boundary conditions. In this case the solution
Eq. ~2.12! is given by

am~z!5a~z;k50!5C coshS z2D

C D ~2.13!

with two integration constantsC and D. am(z) describes a
rotational surface with minimal surface area. From Eq.~2.13!
one can easily see that the divergence of the interface pr
for macroscopic drops is exponential, am(z→`)
5(C/2)exp@(z2D)/C#, rather than linear as on a planar su
strate. The reference profile appertaining to the macrosc
drop is

aref,m~z!5am~z!Q~z!1h0Q~2z!. ~2.14!

The slopes at the intersection of the asymptoteam(z) and the
homogeneous layerh(z)[h0 at z50 defines the contac
angleum(R)5u(R,Vex→`). R5` corresponds to a plana
substrate for which the interface profile divergeslinearly in
the limit z→`

am,`~z!2R5 l 01z tanu` ~2.15!

with the macroscopic contact angleu`5um(R→`) on the
planar substrate.u` obeys Young’s law cosu`5(swg
2swl)/s, whereswg and swl are the wall–gas and wall–
liquid surface tensions, respectively;swg2swl5vc( l 0 ;R
5`) is determined by the effective interface potential of t
corresponding planar substrate~see, c.f., Sec. II C!. On the
cylindrical surface the contact angleum(R) does not follow
from similar thermodynamic considerations but follows fro
the numerical analysis of the full profileh(z) for large Vex
~see, c.f., Sec. III and Fig. 9!.

The integration constantsC and D in Eq. ~2.13! can be
determined from the conditionsam(z50)5R1 l 0 and a8(z
50)5tanum so that

am~z!5R cosumcoshS z

R cosum
1arccosh

1

cosum
D .

~2.16!

The series expansion of this expression in terms of smallz/R
is

am~z/R!1!5R1 l 01z tanum~R!1O~z2!. ~2.17!
e
on

e

f-
f

le

-
ic

In the limit R→` the region where the higher order term
are relevant is shifted towardsz5` such that, withum(R
→`)5u` , one recovers the linearly diverging asympto
am,`(z) @Eq. ~2.15!#.

C. Effective interface potential

For the same liquid layer thicknessl the effective inter-
face potentialvc( l ;R) of a cylinder differs from that of a
planar substratevp( l ). The full expressionvc( l ;R) is pre-
sented in Ref.@29# as obtained from density functiona
theory and within a so-called sharp-kink approximation
the solid–liquid and the liquid–vapor interface profiles. F
reasons of simplicity, here we use the leading order o
series expansion ofvc( l ;R) in terms ofdw /R, wheredw is
the radial extension of the volume excluded for the flu
particles due to the repulsive part of the substrate poten

vc~ l ;R!5
3p

2
a

R

h3 2F1F5

2
,
3

2
;2;S R

h D 2G
18b

R

h4 2F1F3,2;2;S R

h D 2G
1

315p

32
c

R

h9 2F1F11

2
,
9

2
;2;S R

h D 2G1OS dw

R D ,

~2.18!

with h5 l 1R and 2F1 hypergeometric functions. In the limi
l /R→0 one recovers the expression for the effective int
face potential of the corresponding planar substrate

vc~ l ;R→`!5vc~ l→0,R!5vp~ l !5al221bl231cl28.
~2.19!

However, the power-law decay ofvc( l→`) for a fixed, fi-
nite cylinder radiusR is

vc~ l→`;R!5
3p

2
a

R

l 3
1O~ l 24!, ~2.20!

i.e., one power faster than that for the corresponding pla
substrate.

At present there exists, to our knowledge, only one stu
concerned with the shapes of droplets on cylinders within
range of the effective interface potential between the cylin
surface and the liquid–vapor interface@23#. However, in Ref.
@23# the disjoining pressure Pc( l )52@R/(R
1 l )#dvc( l )/dl on the right hand side of the Euler–Lagran
equation~2.8! as a whole rather than only the effective i
terface potentialvc is replaced by the disjoining pressure
the corresponding planar substratePp( l )52dvp( l )/dl. In
view of Eqs.~2.19! and ~2.20!, except for the factorR/(R
1 l ), this corresponds to the short-distance expansion (l /R
→0) of the effective interface potential of the cylinder. Th
replacement of the disjoining pressure by that of the pla
substrate is expected to yield numerically reliable resu
only for large cylinder radii and small liquid layer thick
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2432 PRE 62C. BAUER AND S. DIETRICH
nessesl !R. Therefore in Sec. III we test the quality of th
approximation~as well as that of the replacement ofvc
alone byvp).

So far, due to the volume constraint, our considerati
apply to nonvolatile liquids. For volatile liquids any dropl
surrounded by a macroscopic reservoir of vapor phas
thermodynamically unstable against evaporation, leaving
hind only the thin equilibrium wetting film. However, w
expect that the actual nonequilibrium state of a condensa
or evaporating liquid observed within a time scale that
small compared with the typical condensation or evapora
time can be described by solutions of Eq.~2.8! with Vex
given by its momentary value. Only the interface configu
tion for k50, i.e., Vex5`, which interpolates between
homogeneous wetting layer and an exponentially diverg
profile, describes a bona fide thermodynamically stable s
which can be maintained by imposing appropriate bound
conditions ~see above! at liquid–vapor coexistence for th
bulk fluid. The thermodynamic state, which in a grand c
nonical ensemble is defined by temperature and chem
potential, enters parametrically into the actual values of
effective interface potentialvc and the liquid–vapor surfac
tensions.

III. SHAPES OF DROPLET SURFACES
AND CONTACT ANGLES

We solve the Euler–Lagrange equation~2.8! numerically
for fixed values ofk and for a given effective interface po
tential vc( l ); the value ofk, in turn, determines the exces
liquid volume Vex and allows us to establish the relatio
k(Vex). As boundary conditions in the casek,0 ~leading to
droplets of finite size! we use thath(z) must approach the
wetting layer thicknessh0 for largez and thath8(z50)50.
The distanceL/2, at which the system is cut off, is chose
large enough so thath(z5L/2) andh8(z5L/2) attain their
asymptotic valuesh0 and 0, respectively, within prescribe
accuracy. The reference profilearef(z) is then calculated nu
merically by solving the differential equation~2.10! with k*
determined by Eqs.~2.2! and ~2.10! and with a(z50)
5h(z50) anda8(z50)50, up to the point of intersection
of a(z) and h0 which defines the coordinatez1 ; aref(z
>z1)5h0. The contact angleu is determined from Eq.~2.3!
and, as a crosscheck, from Eq.~2.4!.

In all numerical calculations presented henceforth we
a53ss2, b525ss3, and c53ss8 such thats sets the
length scale for the range of the effective interface poten
~typically s'1 nm). We divide both sides of Eq.~2.8! by s
so thatv( l )/s is dimensionless andk/s has the dimension
of an inverse length. Alternatively, instead of introducings
as above one can chooseAa/s as the basic length scal
which describes the decay of the effective interface poten
for our choiceAa/s'1.73s. The effective interface poten
tials vc( l ;R) @Eq. ~2.18!# and vp( l ) @Eq. ~2.19!# for the
above choice of coefficients are shown in Fig. 2.

As a first example we solve Eq.~2.8! with the effective
interface potentialvp( l ) of the corresponding planar sub
strate@Eq. ~2.19!# and the potential coefficients given abov
Figure 3 shows the profile of the droplet surface on a cy
der with radiusR5100s for ks/s520.1. This choice ofk
leads to a small droplet withVex'1.463104s3 ~i.e., con-
s

is
e-

g
s
n

-

g
te
ry

-
al
e

et

al

l;

.
-

FIG. 2. Model effective interface potentialsv( l ) in units of the
planar liquid–vapor surface tensions as used in all numerical cal
culations.vc( l ;R) andvp( l ) are given by Eqs.~2.18! and ~2.19!,
respectively, witha/s53s2, b/s525s3, andc/s53s8, wheres
sets the length scale of the system~typically s'1 nm). The full
line denotes the effective interface potentialvp( l ) for the planar
substrate, the dashed line denotesvc( l ;R) for a cylinder with R
520s. For this choice of parameters and within the range of val
of l shown here the effective interface potentials even of thin c
inders barely differ from that of a planar substrate. Only for largl
the long-range decay ofvp( l ) andvc( l ) differ qualitatively@com-
pare Eq.~2.20!#. This type of effective interface potential with
global minimum atl 0 /s'1.3 and a second, local minimum atl
5` leads to a first-order wetting transition of a planar substrate
a higher wetting transition temperature at which the first minim
raises up tov50. In the case of a continuous wetting transitio
v( l ) would exhibit a single minimum and approachv50 from
below in the absence of a potential barrier in between.

FIG. 3. Profile l (z) of the droplet surface~full line! and the
corresponding reference profilearef(z)2R ~dashed line! for R
5100s, ks/s520.1 so thatVex'1.463104s3, and the effective
interface potentialvp( l ) of the corresponding planar substrate
shown in Fig. 2. The droplet is so small that its liquid–vapor int
face lies entirely within the range ofvp( l ). For z/s*5.25 the in-
terface profilel (z) lies above the reference profilea(z)2R and, for
z/s&5.25 upon approaching the apex of the droplet, it reaches
reference profile from below. This particular droplet is possib
metastable against the ‘‘rollup’’ to the ‘‘clamshell’’ shape becau
the stability criterion Eq.~3.1! is not satisfied.
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taining roughly 107 fluid particles! whose liquid–vapor in-
terface lies entirely within the range of the effective interfa
potential. Therefore the deviation of the profile from the a
ymptote a(z) extends up to the apex of the droplet. T
model effective interface potential used here resemble
typical interface potential leading to first-order wetting on
planar substrate@22#. The droplet surface crosses the refe
ence profile and, upon approaching the apex of the drople
reaches the reference profile from below.

Carroll @2# has shown that, in the absence of the effect
interface potential, the axisymmetric droplet configuration
only stable for

2S h~0!

R D 3

cosu23S h~0!

R D 2

11.0, ~3.1!

i.e., if the droplet is large compared with the diameter of
cylinder and if the contact angle is small. When the drop
volume decreases or the contact angle increases the axi
metric droplet becomes metastable against a so-ca
‘‘rollup’’ towards the ‘‘clamshell’’ configuration@35#. By
applying the stability criterion Eq.~3.1! to the interface pro-
file shown in Fig. 3, we find that this barrel-type configur
tion is possibly metastable towards forming the ‘‘clamshe
shape. A definitive statement about the stability would
quire us to refine the criterion in Eq.~3.1! by incorporating
the effect of the effective interface potential. However, t
determination of the nonaxisymmetric ‘‘clamshell’’ equilib
rium shape requires a much larger numerical effort and
therefore beyond the scope of the present paper. One
define a critical valueVex,c such that forVex.Vex,c the axi-
symmetric droplet is stable. Upon increasingR, Vex,c in-
creases, too;Vex,c→` in the limit R→`. Only for Vex5`,

FIG. 4. Profile l (z) of the droplet surface~full line! and the
corresponding reference profilearef(z)2R ~dashed line! for the
same set of parameters as in Fig. 3, but withks/s520.005 so that
Vex'1.673108s3. In contrast to the situation shown in Fig. 3, he
the droplet is so large that it extends up to distances from the
inder surface where the effective interface potential is negligi
The inset magnifies the region around the three-phase contact li
z5z1'483s. In the region around the apex of the droplet the p
file l (z) lies below the reference profile. Since the effective int
face potential is the same as in Fig. 3 the absolute deviation ofh(z)
from aref(z) is about the same size as in Fig. 3~see the inset!.
According to Eq.~3.1! this droplet is stable against ‘‘rollup.’’
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i.e., for macroscopic drops, and for contact angles sma
than 90°~as stated in Sec. II here we do not consider the c
u.90°) the rotationally symmetric interface shape is sta
for any value ofR.

Figure 4 shows the droplet shape for the same choice
potential parameters and for the same cylinder withR
5100s, but for ks/s520.005. This choice ofk leads to a
much bigger droplet withVex'1.673108s3. The apex of the
droplet is located at such a large distance from the cylin
surface that the effective interface potential is almost ne
gible. Therefore the application of Eq.~3.1! is reliable; it
shows that this particular droplet is indeed stable aga
‘‘rollup.’’ In the vicinity of the cylinder surface the absolute
deviation of the interface profile from the asymptote is sim
lar to that in Fig. 3. As compared with the situation shown
Fig. 3, the point wherel (z) crosses the reference profi
a(z)2R is shifted to the right and lies near the three-pha
contact line atz5z1. For the model effective interface po
tential used here and in Fig. 3, in the region around the a
of the droplet the profile lies below the reference profi
These results are in accordance with the findings for the
nar, homogeneous substrate@33,34# with the same type of

l-
.
at

-
-

FIG. 5. Full line: differenceDh(z)5hc(z)2hp(z) between the
two droplet profileshc and hp for ks/s520.005 @leading to a
droplet with l (0)'361s andz1'453s# andR520s which are cal-
culated by usingvc( l ;R520s) and vp( l ), respectively. For com-
parison, the dotted line shows the difference between the profilhc

for R520s andks/s520.005 and the profileh̃p for R520s, but
with k chosen such that the excess volumes of liquid for b
profiles hp and hc are identical. In order to achieve this, for th

determination ofh̃p the value ofks/s has to be increased by 1.6
31026. In both cases the maximal difference is of the order ofs.
SinceDh changes sign as a function ofz, it is not possible to find an
effective valuekeff such that for a given value ofk the resulting
profile calculated withvp is identical with the profilehc . The
dashed line denotes the differenceDh between the profilehc(z) for

ks/s520.005 andR520s and the profileh̄p(z) for which, as in
Ref. @23#, in Eq. ~2.8! the entire disjoining pressure@R/(R
1 l )#dvc /dl ~instead of onlydvc /dl) is replaced by the disjoining
pressure of the planar substratedvp /dl; here for the determination

of h̄p the value ofks/s has been increased by 6.5831026 in order
to have identical excess liquid volumes. This approximation
worse than the substitution of the effective interface potential alo
although the differenceDh is still on the order ofs.
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2434 PRE 62C. BAUER AND S. DIETRICH
interface potential. If, on the other hand,v( l ) corresponds to
a system undergoing a continuous wetting transition,
exhibiting a single minimum without a potential barrier, th
profile of the droplet shape approaches its asymptote f
the outside without crossing it~see Fig. 8 in Ref.@34#!.

Figure 5 displays the effect of the replacement of the
fective interface potential of a cylindervc( l ;R) @Eq. ~2.18!#
by that of the corresponding planar substratevp( l ) @Eq.
~2.19!# for a droplet with ks/s520.005 so that l (0)
'361s and z1'453s on a thin cylinder withR520s. This
droplet also satisfies the stability criterion in Eq.~3.1!. For
reasons of clarity in this figure we have plotted the differen
Dh(z) between corresponding profiles instead of the profi
themselves. The influence of approximatingvc( l ;R) by
vp( l ) turns out to be rather small: the differenceDh(z) is at
most on the order of s. It is even smaller in the case
smaller droplets and thicker cylinders: the quality of appro
matingvc( l ;R) by vp( l ) improves if the cylinder is thicker
and the droplet is smaller. In Ref.@23# the disjoining pres-
sure of a cylinder rather than the effective interface poten
is replaced by its planar-substrate counterpart. This co
sponds to replacing the term (R/h)dvc /dl on the right hand
side of Eq.~2.8! by dvp /dl. The dashed line in Fig. 5 show
the effect of this approximation on the surface profile.
expected, the quality of this approximation is worse than
substitution of the effective interface potential alone,
though the differenceDh is still of the order ofs.

Figure 6 shows the apparent contact angles for the
amples presented in Figs. 3 and 4, as well as for the sam
of potential parameters but withR520s, R5200s, and R
5500s as function of the excess liquid volumeVex. Upon

FIG. 6. Apparent contact anglesu for the same effective inter
face potentialvp( l ) as used for Figs. 3 and 4 and for differe
cylinder radiiR as a function of the liquid excess volumeVex. The
main effect of increasingR is a shift of the curves upwards and
the right. The limitVex→` corresponds to macroscopic drops o
equivalently, a cylinder in contact with bulk vapor at one end a
with bulk liquid at the other@compare Fig. 1~b! and, c.f., Figs. 8 and
9#. The differences between the curves are minimal in the li
Vex→`. u(Vex) is, for any value ofR, a monotonously decreasin
function with vanishing slopedu/dVex50 in the limit Vex→`. The
symbolsl indicate the critical valuesVex,c above which according
to the criterion in Eq.~3.1! the axisymmetric droplet shape consi
ered here is stable, but below which the ‘‘clamshell’’ configurati
is stable.
.,
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increasingR the curves are shifted upwards and to the rig
Due to the exponential divergence of the interface profile
a macroscopic drop@which is more pronounced for smalle
R, see the discussion of Eqs.~2.16! and~2.17! above and see
Fig. 8#, the determination of the apparent contact angles
very large drops is, in particular for thin cylinders, nume
cally difficult. However, the data indicate that, for any valu
of R, u(Vex) is a monotonously decreasing function, with
vanishing slopedu/dVex50 at Vex5`. The differences be-
tween the contact angles for differentR are minimal atVex
5`. For anyR there is a sizeable increase of the appar
contact angle upon decreasing droplet size.

Figure 7 shows the effect of replacingvp by vc on the
apparent contact angles for the system withR520s ~com-
pare Fig. 5!. The difference between the contact angles c
culated by usingvc andvp is significant. It is much smaller
for thicker cylinders whose contact angles are displayed
Fig. 6. However, the qualitative functional form of the d
pendence ofu(Vex) is not affected by the replacement ofvc
by vp .

For macroscopic drops~i.e., k50 or, equivalently,Vex
5`) the Euler–Lagrange equation is solved with the init
value h(z5L1)5h0 and a small initial slopeh8(z5L1)
@e.g., h8(z5L1)51028#; the initial slope h8(z5L1)50
would yield the trivial solutionh5h0. In order to find the
asymptote we determine the integration constantsC andD in
Eq. ~2.13! such thatam(L2)5h(L2) and am8 (L2)5h8(L2),
wherez5L2 is the coordinate up to which the differentia
equation is integrated numerically; the system sizeL22L1 is
chosen large enough so that upon further increase of
system sizeC and D remain unchanged within prescribe
accuracy. The contact angleum can be inferred from the
value of C @Eq. ~2.16!#. Finally the coordinate system i

d

it

FIG. 7. Apparent contact anglesu calculated by usingvc( l ;R)
~dotted line! as compared with those calculated based onvp( l ) ~full
line! as a function of the excess liquid volumeVex for a cylinder
with R520s ~i.e., the full line is identical to the full line in Fig. 6!.
Both curves exhibit the same qualitative behavior. For thicker c
inders whose contact anglesu(Vex) are shown in Fig. 6 the differ-
ences between the curves are much smaller. The symbolsl indi-
cate the critical valuesVex,c above which the axisymmetric drople
shape considered here is stable, but below which the ‘‘clamsh
configuration is stable@compare Eq.~3.1!#. The difference between
the two curves is largest for macroscopically large drops.
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PRE 62 2435SHAPES, CONTACT ANGLES, AND LINE TENSIONS . . .
shifted laterally such that the intersection ofam(z) and h0
define the positionz50 ~which corresponds toz52z1 for
kÞ0). As mentioned before, for macroscopic drops the
tationally symmetric configuration satisfies the stability c
terion Eq.~3.1! for any R.

The dependence of the liquid–vapor interface profiles
macroscopic drops on the cylinder radiusR is shown in Fig.
8 usingvp( l ) and with the same set of interaction potent
parameters as in the previous examples. In accordance
Eq. ~2.16!, the interface profiles for cylinders of finite thick
ness diverge exponentially in the limitz→`. In the limit R
→` the region where higher-order corrections to the lin
behavior@Eq. ~2.17!# are relevant is shifted towardsz→`
such that in the limiting caseR5` corresponding to the
planar substrate the linear divergence of the reference pr
is recovered. Figure 9~a! displays the apparent contact angl
um corresponding to the profiles shown in Fig. 8 as a fu
tion of R. Upon increasing the cylinder radiusR, um ap-

FIG. 8. ~a! Liquid–vapor interface profilesl (z)5h(z)2R of
macroscopic drops (Vex5`) for R520s ~full line!, R5100s ~dot-
ted line!, R51000s ~dashed line!, andR5` ~dashed-dotted line!,
calculated withvp( l ). ~b! The profilesl (z) ~thick lines! and their
corresponding reference configurationsaref(z)2R ~thin lines! for
R520 s andR5` are shown in the magnified region around t
contact line atz50; here we use the same graphical notation as
~a!. Each reference configuration consists of the horizontal
l (z)5 l 0 for z,0 and of the asymptotic brancham(z)2R for z
.0; for R,` this asymptote diverges exponentially in the lim
z→` @see Eq.~2.16!#. R5` corresponds to the planar substrate
which am,`(z) is a linear function. As demonstrated in~a!, in the
limit R→` the region where higher-order corrections to the l
early diverging asymptote become relevant is progressively sh
towardsz→`, such that forR5` only the linear divergence re
mains. The appertaining contact anglesum and the line tensiont as
a function ofR are shown in, c.f., Figs. 9 and 10, respectively. Sin
for macroscopic drops the contact angles attain a finite value,
any radiusR the stability criterion in Eq.~3.1! for the barrel-type
shape is fulfilled.
-
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proaches Young’s contact angleu` for the planar substrate
asu`2um;R21.

In Fig. 9~b! we show the apparent contact angles ofsmall
droplets on aplanar substrate, i.e., in the limitR→` but
with Vex,`. In this case the reference configuration is
spherical cap whose circular base has a radiusz1 @see Fig.
1~a!#. For large droplets cosu reaches Young’s contact ang
cosu` according to the Neumann–Boruvka equation@28,36#

cosu2cosu`52
t`

sz1
, ~3.2!

which allows one to determine experimentally the line te
siont` of three-phase contact on a planar substrate by v
ing the droplet size. Figure 9~b! demonstrates that this linea
relationship between cosu and z1

21 is valid only for z1 /s
*500, i.e., forz1*500 nm. From Fig. 9~b! one infers that
cosu decreases more rapidly than predicted by Eq.~3.2!.
This behavior can be accounted for by an effective line t
sion teff(z1) which due to the circular bending of the thre
phase contact line islarger than the valuet` of the corre-
spondingstraight three-phase contact line. Similar resu
have been obtained by Dobbs@37#.

n
e

d

or

FIG. 9. ~a! Apparent contact anglesum for macroscopicdrops
(Vex5`) as a function ofR ~full line! corresponding to the inter
face profiles shown in Fig. 8. As indicated by the dashed line, in
limit R→` the apparent contact angles attain Young’s cont
angleu`'30.5° on the corresponding planar substrate asu`2um

;R21. ~b! Apparent contact angle cosu of smalldroplets~full line!
on theplanar substrate as a function of the radiusz1 of the base of
the spherical cap acting as the corresponding reference config
tion. For large drops cosu varies according to the Neumann
Boruvka equation~dashed line! cosu2cosu`52t` /(sz1) which al-
lows one to determine experimentally the line tensiont` of three-
phase contact on a planar substrate. Heret`51.31ss. The
deviation between the full line and the dashed line shows that
Neumann–Boruvka equation is applicable only forz1 /s*500.
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2436 PRE 62C. BAUER AND S. DIETRICH
u and um depend on the liquid–vapor surface tensions
which in turn also exhibits a behaviors(R)2s(`);R21.
In accordance with the discussion in Sec. II A, Fig. 9 do
not yet take into account this indirect dependence ofu and
um on R via s(R).

IV. LINE TENSION

As long as the size of a droplet isfinite and fixed it is
impossible to extract from the total free energy unambi
ously and in a strict thermodynamic sense a line tens
associated with the three-phase contact lines at the end
the droplet because there are arbitrarily many ways to fo
the total free energy as a sum of various terms. Howe
well-definedline tensions emerge as coefficients in thesize
dependenceof the free energy of droplets upon approachi
macroscopic drops. To this end we consider the limit of la
drops, i.e.,Vexs

23@1 andz1 /s@1 @see Fig. 1~a!#. Within
the interface displacement model the excess free energ
Eq. ~2.5! can be rewritten as

Fex5sAb24pRvc~ l 0!z12sAc1L, ~4.1!

where

Ab52pE
2z1

z1
dzaref~z!A11@aref8 ~z!#2 ~4.2!

is the surface area of the ‘‘barrel’’ part of the reference s
facearef(z), 2z1<z<z1 , Ac54ph0z1 is the surface area o
the cylinder with radiush0 and lengthz1 @see Fig. 1~a!#, and

L52pE
2`

`

dz$s@h~z!A11@h8~z!#2

2aref~z!A11@aref8 ~z!#2#1R@v„h~z!2R…

2v„aref~z!2R…#%12pRE
2z1

z1
dzv„aref~z!2R….

~4.3!

For Vex→`, Fex @Eq. ~4.1!# is dominated by the termsAb
which scales proportional to the surface area of the drop
thus represents a two-dimensional contribution. The lead
subdominant terms are24pRvc( l 0)z1 and 24ph0sz1,
which scale with the linear dimension 2z1 of the drop repre-
senting one-dimensional contributions. Finally, the last te
in Eq. ~4.1! remains finite forVex, Ab , andz1→`

L~z1!5T1O~z1
21! ~4.4!

and thus represents a zero-dimensional contribution. In
turn T depends on the cylinder radiusR such that for largeR
it scales proportional toR, which leads to the following defi-
nition of an excess free energy per unit length, hencefo
called ‘‘line tension,’’ associated with the two contact lin
formed at the ends of the droplet with total length 4pR:

t5
T

4pR
. ~4.5!
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We note thatT is only well defined in the thermodynami
limit lim

Ab ,z1→`
„Fex2sAb14pRvc( l 0)z11sAc… so that

higher order terms, e.g.,;z1
21, omitted on the right hand

side of Eq.~4.4!, drop out. In the followingT is understood
to have been obtained via this procedure. It can be expre
in terms of the solution of Eq.~2.8! for k50 and ofaref,m(z)
@Eqs.~2.13! and ~2.14!#

T54pE
2`

`

dz{ s@h~z!A11~h8~z!#2

2aref,m~z!A11@aref,m8 ~z!#2%1R$v„h~z!2R…

2v„aref,m~z!2R…%14pRE
0

`

dzv~aref,m~z!2R!.

~4.6!

Consequently,T is twice the characteristic excess free ener
associated with the structure of a macroscopic drop near
of its ends without interference from the other end. On
other hand,T, and thust, are defined for any value ofR. The
ratio t formed in Eq.~4.5! has the property that in the limi
R→` it reduces to the line tensiont` of the straight three-
phase contact line on the corresponding planar substrate~see,
e.g., Refs.@30,33,34,38#!, which is an experimentally observ
able quantity@compare Fig. 9~b!#.

At this stage one should note that the above consid
ations tacitly assume that another thermodynamic limit c
cerning the total system size, such as the volume of the
rounding vapor phase and the lengthL of the solid cylinder,
has already been carried out in advance:F(h0) is propor-
tional to L and has been subtracted before. Moreover,
have not considered the bulk free energy of the surround
vapor phase and the bulk free energy of the liquid in the d
proportional toVex because they do not enter the descripti
of the droplet shape in terms of an interface displacem
model. As a careful analysis of the line tensiont` within
density functional theory for a volatile liquid at gas–liqu
coexistence shows, in comparison with this more comp
theory the interface displacement model misses a contr
tion which is independent of the shapel (x) and is deter-
mined byu` andl 0 ~the first term in the sum in Eq.~2.19! in
Ref. @34#, denoted ast̃ in Eqs.~4.2!, ~4.3!, and~4.5! in Ref.
@33#!. Since, however, this constant contribution turns out
be numerically much smaller than those contributions c
tured by the interface displacement model~see Fig. 15 in
Ref. @33#!, we have refrained from determining it for th
present, much more complicated geometry, assuming tha
size ratios of these types of contributions remain roughly
same for the planar and the cylindrical substrate.

Figure 10 shows the dependence of the line tensiont on
the cylinder radiusR using the planar effective interface po
tential vp( l ). t is given byss times a numerical factor on
the order of 1. It decreases monotonously for decreasinR
and attains its maximum valuet` for R→` as t`2t(R)
;R21. We note that this decrease of the line tension up
decreasing the radius of curvatureR of the contact line is
opposite to the increase of the effective line tensionteff(z1)
observed for a decreasing radius of curvaturez1 of the cir-
cular three-phase contact line on a planar substrate as ca
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inferred from Fig. 9~b!. Thus line tensions of curved three
phase contact lines can be smaller or larger than the
tension of the corresponding straight contact lines.

Whereast` is experimentally accessible by monitorin
the apparent contact angle of sessile droplets on a pl
substrate as a function of the droplet size,t(R) cannot be
determined experimentally by direct observation. The ba
reason for this difference is that the length 2pz1 of the three-
phase contact line of the sessile drop on the planar subs
can vary as a function of the droplet size so that the opti
shape of the droplet responds to the associated cost 2pz1t`

of the free energy, whereas the excess free energy 2pRt(R)
for the ends of the droplets is a constant contribution w
respect to the droplet size on the cylinder due to the fi
value ofR. This, however, holds only for the ‘‘barrel’’-type
shape of the drop, for which the length of the three-ph
contact lines is fixed. For ‘‘clamshell’’-type droplet shap
the length of the three-phase contact line does depend o
droplet size so that in this case the line tension will influen
the droplet shape. Nonetheless there are systems for w
t(R) can be experimentally relevant. If the cylinder is no
hard solid rod but consists of a soft material like, e.
vesicles or tobacco viruses, which float vertically at t
liquid–vapor interface of a solvent, the positive line tensi
t(R) will strangle the object locally, depending on its resto
ing elastic forces. According to Fig. 10 this tweaking for
2d@t(R)R#/dR is weaker for thin cylinders.

FIG. 10. Dependence of the line tensiont ~full curve! of mac-
roscopic ‘‘barrel’’-type drops (k50) on cylinders of radiusR. The
corresponding interface profiles and apparent contact angles
shown in Figs. 8 and 9, respectively.t is calculated by using the
planar effective interface potentialvp( l ). As indicated by the
dashed line,t approachest` for R→` ast`2t;R21. t` is the
line tension of the straight three-phase contact line on the co
sponding planar substrate.
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V. SUMMARY

Based on an interface displacement model@Eq. ~2.5!# we
have analyzed the shape and the free energy of ‘‘barre
type droplets of fixed volumeVex covering a cylindrical sub-
strate of radiusR ~Fig. 1!. For sufficiently small droplets
their shapeh(z)5R1 l (z) is not only governed by the sur
face tensions of the liquid–vapor interface but also by th
effective interface potentialvc( l ;R) with a generic form as
shown in Fig. 2. We have obtained the following main r
sults:

~1! Figures 3 and 4 show how the deviation of the act
droplet shapeh(z) from a suitably defined reference config
rationaref(z) depends on the droplet size. The reference c
figuration is uniquely defined by the requirement to touch
actual shape at the apex and to have a constant mean c
ture which equals the actual one at the apex.aref(z) allows
one to introduce an apparent contact angleu, characterizing
the actual shape, which can be expressed in terms of
experimentally accessible quantities cylinder radiusR, radii
of curvature at the apex, heightl (0) of the droplet, and
thickness l 0 of the wetting layer outside the barrel@Eq.
~2.4!#.

~2! The dependence of the effective interface poten
vc( l ;R) on the cylinder radiusR influences the shape of th
droplet on the scale of the ranges of vc( l ;R) ~Fig. 5!; this
dependence has a rather marked effect on the apparent
tact angle~Fig. 7!.

~3! The apparent contact angles increase for smaller d
lets and for thicker cylinders~Fig. 6!. The contact angles o
macroscopically large drops approach the Young’s con
angle on a planar substrate proportional to 1/R @Fig. 9~a!#.

~4! In the limiting case of small droplets on a planar su
strate the circular bend of the three-phase contact line le
to an effectively increased value of the corresponding l
tension @Fig. 9~b!#. This deviation from the Neumann–
Boruvka equation becomes relevant if the droplet radius
less than roughly 500 nm. This observation is relevant
experimental determinations of line tensions via cont
angle measurements.

~5! For macroscopically large drops their shapel (z) in-
creases linearly on a planar substrate but exponentially o
cylinder @Fig. 1~b!#. Figure 8 illustrates the smooth crossov
between these types of behavior for increasing cylinder ra

~6! For large cylinder radii the line tension associat
with the ends of macroscopically large drops approaches
line tension of three-phase contact on a planar substrate
portional to 1/R ~Fig. 10!.
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