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Interactions among the multiple degrees of freedom of surfactant molecules cause fascinating richness in the
structure of their monolayers. Beyond this scientific motivation for studying surfactant monolayers, the tech-
nological use of monolayers for interfacial control and molecular assembly demands a clear understanding of
monolayer structure. X-ray and neutron reflectivity have become prime techniques for determining this struc-
ture. We present x-ray reflectivity data for a representative surfactant monolayer system and outline an objec-
tive procedure for obtaining the maximum amount of structural information possible. Our approach combines
tight control of instrumental parameters, dynamically optimized Monte Carlo and simulated annealing to probe
the x? hypersurface, and a set of statistical criteria for accepting and rejecting fits. We justify our procedure
through tests using simulated data. Results indicate that an ensemble of fits must be performed for each set of
reflectivity data in order to survey the? hypersurface adequately. A single good fit may yield structural
parameters which are quite misleading, yet physically plausible. Thus, one must never be satisfied with
performing just a single fit. In cases for which multiple, statistically equivalent fits are obtained, the apparent
ambiguity is substantially mitigated by averaging the parameters over the ensemble of good fits. We also
introduce a method of dealing with cases for which a good fit may be extremely difficult to find. Our analysis
procedures can be generalized to other monolayer or multilayer systems and are also applicable to neutron
reflectivity.

PACS numbes): 68.45—v, 61.10.Kw, 68.55-a

I. INTRODUCTION addition to these intermolecular forces, intramolecular forces
affect the average volume occupied by the tail groups. While
The multiple internal degrees of freedom and the am-{ransisomerization is energetically favored in a hydrocarbon
phiphilic character of surfactant molecules lead to rich ancchain, the presence of songauchebonds may be entropi-
subtle structural variation in assemblies of these moleculesally stabilized.
[1]. The tendency of surfactants to assemble at interfaces Structures formed at solid/liquid and liquid/vapor inter-
leads to their use in a wide variety of technologies, includingfaces are likely to be different from those in bulk solution
complex fluid formulation; interfacial control for wetting, due to the additional interaction between the surfactant mol-
adhesion or lubrication; and molecular assembly for devicecules and the solid surface and the constraints of the two-
applications[2]. Thus both fundamental and applied objec-dimensional interface. All of the interactions mentioned
tives require accurate, reliable determination of the structurabove dictate the area occupied by each molecule at an in-
of surfactant assemblies. In the characterization of monoterface. They also determine how volume is filled when other
layer assemblies, x-ray and neutron reflectivity play a primeconstraints dictate molecular spacifegg., assembling on an
role, along with diffraction, vibrational spectroscopies, andordered surface, surface pressure in Langmuir-Blodgett
imaging scanning probe techniques. The purpose of thdeposition, etg.or when the molecular structure itself pro-
present work is to outline a procedure for measuring andides multiple length scald8]. A monolayer may be depos-
interpreting x-ray reflectivity data which maximizes the ited at the solid/vapor interface either by self-assembly at the
structural information obtained from a surfactant monolayersolid/liquid interface during immersion or by the Langmuir-
at the solid/vapor interface. The technique for data interpreBlodgett technique as the solid is withdrawn from solution.
tation is applicable not only to surfactants but to any mono4n either case, the solid substrate is drawn out of solution
layer structure and to neutron reflectivity as well. through a bulk meniscus and the molecular monolayer pro-
The amphiphilic property of surfactant molecules givesduced at the solid/vapor interface may not have sufficient
rise to self-assembled structures at interfaces as well as imobility to access equilibrium configurations.
bulk. The structure of these assemblies depends upon the There are several important aspects to monolayer struc-
nature of the individual molecules and surfactant concentrature. The overall thickness of the surfactant monolayer pro-
tion. If the solvent is polar, the hydrophobic/hydrophilic in- vides information about the average tilt of the molecules and
teraction tends to minimize contact between the solvent anthe extent to which the tail groups exist in the t@#ins con-
the nonpolar hydrocarbon tail groups and to maximize configuration. The packing density describes the free volume
tact between the solvent and the polar head groups. Thuafforded each molecule. Thus, through systematic studies of
micelles, vesicles, or other partially ordered phases formhomologous series, we may gain insight into the mechanism
The size and shape of these structures depend upon the eleontrolling the molecular spacing. The density of counteri-
trostatic and steric repulsion of the head groups in competiens present in the head group region of an ionic surfactant
tion with the van der Waals attraction of the tail groups. Inmonolayer reveals the nature of the surfactant/surface bind-
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ing mechanism. The roughness of the interfaces boundinficiently sharp and difficult to locate, as is the case for high
the monolayer provides further information on disorder insignal-to-noise data, genetic algorithms may have an advan-
the monolayer. tage over other search techniques. However, as some authors
We attempt to maximize the accuracy and precision ofhave discussed, there are situations in which the fit is not
our reflectivity technique with the goal of evaluating the ef-unique, and the interpretation is rendered ambiguous
ficacy of the method to determine the underlying causes df18,20,21. We propose a method of analysis which mitigates
monolayer structure. We compare parameters and their ub€ problem of nonuniqueness of fits and enables a good fit
certainties to benchmark values of quantities known to chart0 be found even for high signal-to-noise data. _
acterize the physics controlling structure in a variety of In this paper we show that obtaining justified conclusions
monolayer or layered surfactant assemblies. First, the ele€oncerning monolayer structure demands focus on four is-
tron density in the hydrocarbon tail region should not exceegues:(@ careful measurement of all instrumental parameters,
6.0x10% elcn?, corresponding to close-packed alkane () judicious choice of the number of fitting paramete®,
chains. In the liquidlike lamellar phase of lipids,,, the careful attention to the statistics which indicate a “good” fit

electron density is approximately 15% less than this but valand statistically ezquivalently “good” fits, ant) thorough

ues considerably lower may occur even for a completéurveying of they” hypersurface to sample the ensemble of
monolayer if the spacing is dominated by the size of the heaflts describing the data. In the next section we describe both
group. Second, the area per molecule of our monolayers céH experimental techniques, emphasizing careful measure-
be compared to the area per hydrocarbon chaitatrys- ment of instrument parameters, and our analysis techniques,
talline hydrocarbons, where the hydrocarbon tails are alftressing the nature of the* hypersurface and the criteria
trans and tightly packed19 A2) [4]; (b) the hydrocarbon for statistical equivalence of different fits. In Sec. Il we
tails of theL ; lamellar phase of a typical lipid, where the illustrate the problt_ems of ambiguity (_)f interpretation with
chains are mainlytrans and packed in a less well ordered exa_mples of experimental data and simulated data. The ex-
array (24 A?) [5]; and (c) the hydrocarbon tails of the,, perimental data are from a monolayer of SDS. We show how
lamellar phase of a typical lipid, where the chains are almosf CUrsory analysis suggests that the structure of the mono-
liquidlike with many gauchebonds(31 A2) [6]. Third, the layer cannot be determined u.namblguously from the fits. We
uncertainty in the determination of monolayer thickness carf€n generate and analyze simulated data for monolayers of

be compared to the 15% reduction in thickness due to chaipPS in order to determine whether the ambiguity is an in-
disordering in the transition from the, to L, phase of strumental artifact or intrinsic to the experiment. Results of

DLPE[7] or a similar size change due to a typical chain tilt € simulations 5“9925t that the ambiguity arises from insuf-
in a monolayer consisting of ordered chaf@$. Fourth, the  ficient surveys of thee” hypersurface and improper interpre-
precision of the determination of the electron density of al@tion of the meaning of a hypersurface with multiple, statis-
head group region can be compared to the possible diffefically equivalent local minima. The apparent ambiguity in
ence in density due to counterions in an ionic monolayermonolayer structure is substantially removed by averaging
e.g., the electron density of the head group region in a mondarameters over an ensemt_)le of statistically equ_walent fits.
layer of sodium dodecyl sulfatSDS increases by 25% if We then return to the gxperlmental data,_ performing a more
all of the Na counterions are present compared to the denthorough search of the® hypersurface to find as many good
sity if no counterions are present. Finally, roughnesses of thfitS as possible. The average of parameters over this en-
interfaces of the monolayer should be compared to the typiS€Mble of fits yields a model which is physically plausible
cal rms roughness of our oxide surfa¢@s4 A), thus reveal- and has very little strgctural amb!gU|ty. In S.ec. IV,_we d|§-
ing if the monolayer smooths over substrate roughness. CUSS the effects of increased signal-to-noise ratio, which
All of the desired structural details can, in principle, be Might be attained using synchrotron sources. With better
determined by means of x-ray reflectivity which probes electounting statistics, thg correct structural model can be recov-
tron density gradients normal to a surfd€e-14). However, ered from the_ data with a higher degree of accuracy. H.ow—
the rapid falloff of specular intensity with angle of incidence €Ver. & good fit to the data may become more difficult to find.
and the presence of diffuse scattering limit the accessibl¥ve conclude in Sec. V with a brief discussion of simulations
range of momentum transfer. This in turn sets a lower limitfor other monolayer structures and a general statement of a
on the length scale of structural features which can bérotocol for data collection and analysis.
probed. A complementary technique, neutron reflectivity,
uses isotopic substitution to enhance contrast between layers Il. EXPERIMENTAL AND ANALYSIS TECHNIQUES
[14,16. However, the same limitations on discernible length
scales apply to an even greater degree, since the intensity of
neutron sources is generally much less than the sources for Our apparatus has been described previol&0]. Here,
x-ray reflectivity. Finally and perhaps most important, thewe emphasize points important for measuring accurate, ab-
nonlinearity of the functions to be fit to reflectivity data in- solute reflectivity curves. The momentum transfer normal to
sures that the’? hypersurface will be highly convolved with the substrate surface @=2ksine, with k being the x-ray
the likelihood of multiple local minima. wave number andrv the grazing angle of incidence. The
Various approaches to analysis and interpretation of reebserved reflectivity signaR(Q), is affected by a number
flectivity data have been propos¢il7—19. Of particular  of instrumental factor§13]. We take considerable care in
note is the implementation of genetic algorithms as an effisetting up measurements so that these factors are well deter-
cient method of finding the best possible[fi9]. If the x>  mined. We use a rotating anode source with a fine focus
hypersurface contains a single global minimum which is suffilament, operated at a maximum of 5.2 kW. A vertically

A. Measurement procedure
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bent graphite monochromator selects copler radiation.  sity in the beam block scan is one-half that of the incident
The incident beam shape and divergence are controlled byeam.« is set to zero at the position of this peak intensity. If
two sets ofXY slits located 100 mm and 454 mm upstreamthe rotation axis passes through the middle of the in-plane
from the sample position. The vertical focusing yields alength of the sample, then the beam block is symmetric about
beam heightparallel to the surfageat the sample of 3 mm. «=0. The final beam block scan also shows the anglat
Because of this vertical focusing, the reciprocal space resdvhich the entire incident beam falls on the sample. Within
lution in the out-of-plane direction is quite broad. In the hori- €rrors due to the beam profile, the observed angle should be
zontal direction, we typically use a beam width of 0.2 mm as@p=W/L, wherew is the beam width andl is the length of
defined by the slits closest to the sample. The upstream slit§e samplg13].

and the x-ray source size determine the angular divergence in

the scattering plane. This divergence determines the resolu- B. Samples

tion width of t_he measurement in the radial direcf[ion .allong Our substrates are polished silicon (111) crystals with the
the specular ridge. Because of the small source size, it is Nfative oxide layer on the surface. The crystals are 50
trivial to calculate this divergence so we determine it frommm><4o mmx3 mm and are suppli.ed by Semiconductor
rocking scans through the (111) Bragg peak of the siliconsy5cessing Company, Boston MA. Crystals of this thickness
substrate. o o are preferred over thinner silicon wafers, which are more
A linear position-sensitive detectdPSD) measures the |ialy to be macroscopically bowed. Bowing reduces the ef-
specular and nearby diffuse scattering at each angle of inCgqtjye resolution and thereby reduces the ratio of specular to
dence[9]. The PSD has the advantage over standard tectyjg e scattering. Substrates are cleaned by a standard
niques of explicitly displaying the specular scattering and thepemical process that produces a charged surface under pH7
diffuse background. The data re_duc'uon program fits a f'VeVVater[15,22. Surfactant monolayers are produced by dip-
parameter PSD response functita Gaussian with weak in0 the crystal in solutions with surfactant concentrations
Lorentzian tails[9) plus a linear background to each PSD o0 0.5 fimes the critical micellar concentratifits, 16,
data set. Since the program generates a full set of plots of thggiectivity curves for samples discussed in this paper were

PSD scans and associated fitting parameters, spurious baGkeasyred in air. Repeated measurements are performed to
grounds and any alignment errors which could affect the dat\"}erify that the low-energy surface of the monolayer has not

C. Theory and data fitting

are evident. The separation of the signal at highinto o ome contaminated and is not significantly damaged by
specular and diffuse components depends on the mstrume;g_—ray radiation.
tal resolution. In our experiments the typical angular width
of the specular peak is 0.02°. Diffuse scattering from the
sample prevents measurement of signals weaker R{&)
~10"8. That is, at largeQ, the PSD data sets contain no  While our fitting uses the more rigorous optical matrix
specular peak but have a background well above either th@ethod[23], the Born approximation is helpful for qualita-
detector dark counts per channé@ypically less than 2 tively relating the scattering in reciprocal space to real space
X 10~ per seconglor the background present with the beamdensity variations. In this approximation, the specular reflec-
on but no sample present. Since the apparent intensity dvity is given by the Fourier transform of the gradient of the
diffuse scattering is resolution-dependent, the use of a syrlaterally averaged electron densfty3,24:
chrotron source can improve the signal-to-noise ratio and _ 5
may extend the range of momentum transfer. But as we shall R(Q)= i< ’ f dzd—peiQZ > 1)
show, this may render a good fit to the data extremely diffi- Q4 dz '
cult to find.
To cover many decades of reflectivity, we adjust x-raywhereA is a constant(- - -) denotes an ensemble average,
generator power, absorbers, and counting time. For a givegnd
set of these instrumental quantities, we collect data over
some range o&. At small angles where counting times are — 1
short, we collect overlapping data sets so that the reduction P(2)=1T j de dyp(x.,y,2). 2
program can normalize the sets to each other by matching. xTyIx by
The f|rst data set is normalized to the incident intensity deLX andL, are coherence lengths determined by experimental
termined by a direct measurement of the beam made befolg, .» neters and is the local electron density. The coherence
the sample is put in place. At largewhere counting imes |engih oyt of the scattering plang, , is very small due to
are long, we normalize the data using an incident beane'hoaq resolution in this direction. The in-plane averaging
Ejr?gtrg:?;hseodtgg slow fluctuations in source strength do no‘ength,LX, is of the order of ten microns. MeasuremenQat
Sample alignment requires the definition of the 0 con-  ProPes variations inp or dp/dz of length A=2/Q.
dition and the placement of the sample surface on ¢he Roughly speaking, to resolve structure dOW”‘Fﬁ?n requires
rotation axis. Sample positioning is achieved by a set of'€éasurement W@umax= 27/ N i Interference fringes in the
“beam block” scans in which the detector is positioned to reflectivity data suggest layers of relatively constant
receive the incident bearfwith a narrow receiving slit that bounded by relatively abrupt changespin
blocks any reflected beamThen « is varied to block the In our analysis, we parametrize electron density variations
beam with first one and then the other end of the substratas shown in Fig. 1. The quantity of basic importance is the
The sample is translated into the beam until the peak intenindex of refractionn=1-46+i8, whered and 8 are pro-
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Po 4z sition is justified by the fact that the measurement reports
R LT P laterally averaged densitiewithin the coherence length of
T ! the x rays aneénsemble averaged intensiti@sross the beam
Layer 1 t, 0 width as emphasized in Egél) and (2). The local electron
! density may vary smoothly across an interface due to a
% P 1= 3 smooth evolution in molecular concentration variables. An
additional width is generated by the fact that the interface
Layer 2 t, P itself may vary in position due to static roughn¢24] (or on
- . e el . a fluid surface, kinetic undulatiopsvithin the length scale
T R L,. It should be emphasized that if roughnesses have an
amplitude comparable to or larger than the thickness of a
Layer3 5 Ps bounding layer, then that layer is effectively removed from
l .. A 0 the scattering signal.
Tttt 1Y T Our computer programsPEEDQ uses a combination of
Psubstrate dynamically optimized Monte Carlf25,26 and simulated

o ) o annealing 27] technigues to attempt to find the global mini-
FIG. 1. A schematic diagram showing the parametrization of a,ym of theX2 hypersurface. The program models instru-
surfactant layer on a silicon substrag.andt; are densities and mental effects and offers a variety of options as described in

thicknesses for each Iayer_, white are _ef'fective interface widths or the Appendix. In work on surfactant monolayers, one should
roughnesses. The z axis is perpendicular to the film plane and Wgompute the model reflectivity with the rigorous matrix
define the zero at the nominal position of the bulk silicon surface.

Air is above layer 1 and bulk silicon is below layer 3 method[23,24 rather. than the Nevc?t-Croce approximation
’ [29] because layer thicknesses are likely to be comparable to
bounding roughnesses. The program is initialized by speci-
fying starting points and reasonable limits for each of the
fitting parameters. To illustrate what we mean by reasonable
limits, a surfactant monolayer layer thickness may be al-
lowed to vary between zero and twice the fully extended
b=re2 ZieffNi- 3 molecule length, so as not to rule out the possibility of a
' bilayer, and the electron density of the hydrocarbon tail
group may not exceed that of crystalline hydrocarbon chains.
electrons on atom type(including anomalous effectsand In 'ghe fits presented here, only Fhose parameters which Qe—
N, the number of such atoms in the molecule. Similagy, scrlbg the layer structure are varied. Other parameters.whmh
=(N/4m)ps, with take into account the geometry of _the sample anc_j the instru-
mental resolution are determined independently in the labo-

portional to the local electron density. We writé
=(N\?/27) pb, wherep is the molecular number density of
molecules having scattering length

¢ is the classical electron radiug" the effective number of

ratory and are kept fixed. A typical fit for a surfactant layer
522 HiMiN;, 4 on a silicon crystal with a native oxide layer involves ten
' floating parameters: four roughnesses, three thicknesses, and

whereg; is the absorption coefficient for atom typandM, thr_ee densities. The electron density of bulk silicon is fixed
is the atomic mass. As described in the Appendix, we can fito its known value.
to & and/or3 separately or couple the variationsdrand 3 In order to define the language used below, we need to
via the chemical formula unit number density within the "éview the statistics of least-squares f'tt'ij the function
layer. The latter is practical, for example, when the stoichi-b_e'”g minimized in the fit, is defined according to the expres-
ometry of a layer is known or when it is reasonable to par-S'0n
tition the surfactant layer into sublayers containing the head N 5
and the tail only, with no intermixing of these units across 2=E r(Q)—f(Qi . {py) (5)
the layer boundary. The former method is required if we do X i=1 e '
not want to bias our interpretation by the rather unrealistic
assumption of no intermixing of head and tail across thevhere ther(Q;) are the measured reflectivity data with un-
relatively abrupt variation of the electron density. Absorptioncertaintiesg;, assigned according to Poisson statistics. The
is a small effect for thin layers, primarily affecting reflectiv- f(Q;,{p}) are the calculated reflectivities for a particular set
ity near the critical angle. In the present work, we varfor ~ of model parametergp}. The assumption of Poisson statis-
the surfactant and for the native Si@yer, but keep it fixed tics for our measured intensities is justified since we do not
at the known value for the silicon substrate. The valug&f ~ operate near the dark count levels of our detector. The “stan-
two orders of magnitude smaller thahfor most materials. dard errors” in the fitting parameters are set by bkﬁsﬁn
In this work, we keep eaclg fixed at a nominal value ap- +1 contour about the minimum in the® hypersurfacg30].

propriate to the materidhydrocarbon, Si@or Si). This as- If several sets of data are obtained from the same physical
sumption does not affect the results reported here. system, the value of? for a fixed set of fitting parameters
Also indicated in Fig. 1 are the interface widths;, will vary from one data set to another due to Poisson noise

which characterize the smooth but relatively abrupt transitioron the data. There exists an average valueydffor the
in electron density across an interface. We assume these traersemble of data sets and a standard deviation about this
sitions have error function forms. The use of a smooth tranmean. For a set of model parameters which represents an
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FIG. 2. Examples of residuals plots féa) a good fit, (b) a
marginally unacceptable fit, whosg® exceeds the best fj¢? by
more than 2,2, and(c) a poor fit with obvious systematic devia-

tions.

adequate characterization of the measurement, the mean
value of y? is v=N—d, whereN is the number of data
points, d is the number of fitting parameters, amdis the
number of degrees of freedom in the [f&l]. The “uncer-
tainty” in x? is calculated by taking partial derivatives of
Eqg. (5) with respect to the (Q;), multiplying by e;, and

adding terms in quadrature. The result is {p}

e 2 \/; (6) FIG. 3. lllustrations of possible structure of tyé hypersurface.

(a) The ideal situation: a single global minimum corresponding to a

The reduced chi-squarq,,z,, is defined aS(Z/V and should 9ood fit, local minima corresponding to poor fits) multiple, sta-

have unit mean and a standard deviatie;;z=2/\/;. Any

tistically equivalent minima, all corresponding to good fits: a thor-
ough survey of the hypersurface must be performed to avoid ambi-

sets of parameters which yielgf values withine,2 of the guity or misleading results; angt) the single minimum for high
lowest x> are statistically indistinguishablelf, for one data  signal-to-noise data may be extremely narrow and difficult to locate
set, {p}, is the optimal parameter set witfg, a different by a random search process.

data set from the same physical system will likely yield, for

{plo, ax? value within e,z of XS, but a different parameter residuals plot show no systematic features. In addition, we
set, {p};, will be optimal. We cannot select betwe¢p},  demand that thg? value be withine,2 of the best value we
and {p}; as being more likely to correctly describe the find. Fits which satisfy these criteria are termed “good” fits.

monolayer.

Multiple fits fulfilling these criteria must be considered

We also include in our analysis plots of the residuals, equally valid in determining monolayer structure.

Aj

_1(Q)-(Qi.{pH

For a fit with d free parameters, the? function is a @
+1)-dimensional hypersurface. A two-dimensional cut

()

through the hypersurface is illustrated schematically in Fig.
3. In an ideal situation, the best fit corresponds to a single

Ideally, 95% of the residuals should fall within a band aboutglobal minimum on the hypersurfa¢€ig. 3@]. Any other
zero of width £2. Most important, the fluctuations should local minima should correspond to fits which are unaccept-
have no near-neighbor correlations. An example of such able by the criteria set forth above. In practice, there are
residuals plot is shown in Fig(&. We use the residuals plot situations in which the hypersurface contains one or more
to look for “systematic deviations,” defined as any oscilla- minima which are statistically indistinguishable from the
tion having a “wavelength” which is an appreciable fraction global minimum and show no systematic residuals, but are
of the momentum transfer range covered by the entire datsufficiently separated in parameter space to cause ambiguity
set. Examples of residuals plots showing systematic devian the physical description of the monolayéiig. 3(b)]. We
tions are shown in Figs.(B) and Zc). discuss two examples in detail in Sec. Ill.

Thus, we arrive at two criteria for statistical acceptance of Our general strategy for analysis is to initialize the simu-
a set of parameters. The first criterion is to demand that thated annealing program from several different parameter
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sets and to run the program multiple times from each set of 1
initial conditions. These initial conditions are widely sepa-
rated in parameter space, as evidenced by the variation in the 192
initial value of x2, but all are within physically plausible
limits. This enables us to probe th& hypersurface and to 4
locate as many good fits to the data as possible. We calculateg
the average and standard deviation of the values of eachy
parameter across all the good fits. As more good fits are
found, the uncertaintystandard deviationof the ensemble r
averaged parameters is reduced. When the parameter uncer 108+
tainties have been reduced to the point at which we can draw L
conclusions about the structure with reasonable confidence, ;19 . , ! . . : .
we call an end to the fitting process. 0 01 02 03 04 05 06 07 08

A given attempt to fit data from a specific set of initial Q (A
values of the parameters results in one of three possible out-
comes.(a) The desirable outcome is a “good” fit as judged  FIG. 4. Experimental data from an SDS layer on a silicon sub-
by the residuals p|0tX2 value, and the fact that none of the strate. The solid line is one of three statistically equivalent good fits.
parameters has saturated at the preset limits. In this paper, Ww&e inset shows a plot of the residuals as defined inBgParam-
rely only on fits this type(b) One or more of the parameters eters for the three fits are shown in Table I.
saturates at the preset limits. If this occurs we do not count
the fit as legitimate, regardless of the quality of the @.  parameter sets. The results of these fits are shown in Table I.
The fit yields a parameter set that is within preset limits butHowever, the parameter sets from these fits are statistically
the fit is not “good,” as indicated by a residuals plot with distinct, i.e., the parameters do not agree within the standard
systematic deviations. This may occur if the model is insuf-errors. The solid line in Fig. 4 is one of the three acceptable
ficient to describe the data or if the fit locates and does nofits. The inset shows no systematic variations in the residu-
escape from a local minimum in the? hypersurface. If a als; virtually all deviations are less than two error bars. Fig-
large number of attempts fails to find a good fit, we concludeyre 5 showss(z) for the three fits. Clearly, different density
that the model must be insufficient. The model is then madeyofiles describe the same data equally well.
more general by subdividing a layer into two parts. If high  |n fact, these acceptable fits suggest very different physics
counting statistics are attained on all data points, an accepgoverning the SDS monolayer structure. InGjtthe electron
able fit may exist but the minimum in thg? hypersurface
may be very narrow and hard to fifdee Fig. &)]. We
discuss methods of dealing with this case in Sec. IV.

(ai

r(Q)-f(Q)

1076 -

TABLE I. Three fits to experimental data from an SDS mono-
layer. Fitting parameters are as defined in Fig. 1. Quantities in ital-
ics are derived from the fitting parameters. Numbers in parentheses
Ill. STATISTICAL DETERMINATION OF MONOLAYER indicate the uncertainty in the preceding digit. The column labeled

STRUCTURE “average” is the (unweightedd mean and standard deviation of 21
good fits to the data. The value &%=7.37x10 ¢ was fixed to

A. Analysis of experimental data from an SDS layer correspond to the bulk density.

In this section we present the results of fits to experimen

tal data obtained from an SDS monolayer on silicon. This  Parameter Fih  FitB FitC 21 fit average
exercise demonstrates the problems described above. The
data, shown in Fig. 4, span more than eight decades in reEO:l f&A) i;slgi? if?%i 121'48729(15) 1264(2
flectivity and extend tdQma=0.74 A1 or Npin=9 A. As 10§ ) 521) 10. 8205 8
discussed in Sec. Il, all instrumental parameters were al o1 1.791)  1.8703) 2.2162) 1.91)
. ’ : . A 27.8(2) 20.14(4) 26.19(3) 20(2)

carefully determined as possible. Attempts to fit the data to ity (A)
model with two layergsurfactant plus oxideyield statisti- 72 (A) 6.6529) 3.243) 5.1214) 595
cally unsatisfactory results so we fit the data to a model witH2 (A) 2.01(1)  4.381)  8.441) 6.57)
three layers: two regions representing the SDS monolayetd 92 1.0547) 2.7995) 6.5112) 6.16)
and one representing the silicon oxide. We recognize thafztz (A) 2.12(2) 12.26(4) 55.13(7) 40(6)
adding a layer to the model adds three parameters to the fi#3 A 4.732) 7.5085) 2.772) 4.1(5)
and thus may overparametrize the data. This may lead to tHe (A) 8.073) 10.242) 11.629) 11.25)
multiplicity of good fits we find. However, imposing a con- 10°5; 7.8074) 7.8923) 7.3412) 7.406)
straint coupling the properties of the surfactant sublayersts (A) 63.0(2) 80.81(8) 85.3(7) 82.61(5)
would require precise knowledge of some aspect of filmo, (A) 1.804) 2792  2.61) 2.1(3)
structure. In the present case, we have no such knowledgez?_,t; (A) 17.53(1) 15.15(1) 20.28(1) 17.0(7)

To obtain a reasonably complete survey of jffehyper- =3t (A) 25.60(3) 25.39(2) 31.9(1) 28.1(8)
surface, we start the simulated annealing from three widelg? | st; 29.9(3) 32.4(1) 81.4(7) 55(4)
different initial parameter sets. In this exercise, a total ofarea per molecule 55.6(6) 51.3(2) 20.5(2) 36(5)
thirteen simulated annealings were performed. This revealedk?)
three “good” fits with statistically equivaleny?. Each of X2 0.64 0.60 0.65

the good fits was obtained from more than one of the initial .



PRE 62 USING X-RAY REFLECTIVITY TO DETERMINE THE . .. 2411

102 %

1074

r(Q)-f(Q)

Q 106F .
& z | 12
=
10-8 + -
10-10 i
10—17 1 1 [ 1 1 1 1 | L 1 1
0 0.2 0.4 0.6 0.8 1.0 1.2

Q(A™h

FIG. 6. Simulated data for an SDS layer on a silicon substrate.
Z(A) The solid line is one of five statistically equivalent good fits. The

] ) i inset shows a plot of the residuals as defined in(#y.Parameters
FIG. 5. The contrast variable(z), obtained from three fits t0 oy the five fits are shown in Table II.

the data of Fig. 4. Parameters are shown in Table I.

B. Analysis of simulated data
density of layer 2 is substantially greater than that of layer 1,

as indicated by the paramete, For the SDS molecule this We usesPEEDOtO generate reflectivity data points which

. . : ould arise from the x-ray reflection experiment on a plau-
suggests a configuration with head groups downward towargble SDS monolayer. To these data we add random num-

the sub_stra_te and .ta" groups upward. The thlcknes§ of .thSers, Gaussian distributed about zero, scaled proportionally
layer 2 In fit C, while less thaq that of the outer region, is (5 e squareroot of the reflectivity. To mimic experimental
?;t?;tj?n?zlasmlli)I?);g;rethsagsthr?woTclaZceulgf t‘lr']r?issill:?gtgeeggag %Egﬁeata in which statistical accuracy worsens as the reflectivity
- ‘ : - decays(in spite of adjustments in counting time and source
degree of disorder in the head group region. The produtt of powey, different proportionality factors are used in different
and 5, summed over the surfactant regions, is inversely resections of the simulated data. The magnitude of the added
lated f&c;the projected area per molecule. FoCfthis yields  noise is comparable to that for the experimental data in Fig.
20.5 A, which falls midway between the minimum for 4.
close-packed hydrocarbon chains andltheggel) phase. The In our simulations, we exclude limitations d@ due to
electron density of the outermost region is considerablydiffuse scattering. Thus the simulated défég. 6) cover an
lower than either of these two. The complete picture pro-even larger range o and reflectivity than our real data
vided by fit C is consistent with a layer of SDS molecules (Fig. 4). Further, thespEEDOalgorithm generates data similar
which are highly staggered in the direction normal to theto but not identical to real experimental data. Approximate
surface, with tail groups in nearly the alans configuration. ~ correction factorge.qg., overfilling of the sample by the inci-
By contrast, fitB has an area per molecule of over 58, A dentbeam and scaling of the data to unit reflectivityed in
which is considerably greater than required for the liquidlike@n@lyzing real data are simulated as if they were exact. Since
phase of hydrocarbon chains dominatedgaychebonds. Fit vv_e_W|II shov_v below th_at S|mulated_data give rise to the same
B also has higher density in layer 2, but the difference isd'ff'cu“y_ of interpretation as seen in real <_jafca, itis clear that
much less than in fiC. This could suggest a highly disor- S%ther mstrumental cgmprllmatl?ns nor “n]l'ts ? dl.Je to
dered monolayer, having some of the head groups down?us€ scattering can be the sole cause of ambiguity.
ward, but with substantial intermixing of head and talil The_S|mu_Iated data shown in Fl.g' 6 are g(_an_erated from a
” : model in which the tail groups are in the, (liquidlike) state
groups. The area per molecule ofAits comparable to fiB, and the electron density in the head region is determined by
. . . _ agtoichiometry. The complete set of model parameters is
higher electron density. This would also suggest a highlys,,\yn in Table I1. Following the procedure of the preceding
disordered monolayer, but with more of the head groups igction, we performed eighteen simulated annealings and
the upper region. ) _ found five distinctly different, good fits to the data, all of
(Ii_b\lnous_ly, thE){[I hy;:izrrlsurfa(;e ;(_)rhthls set of (;Jl?ta hasl which are statistically indistinguishable. One of these fits is
multiple minima, at least three of which correspond to eXcelshown in Fig. 6. Parameters for the five distinct, good fits are
lent but quite distinct fits. On the basis of this analysis, weshown in Table II. Figure 7 shows that dramatically different
cannot draw conclusions regarding key structural charactedensity profiles can fit the same data set. The trends across
istics: e.g., division of the surfactant layer into separate taithese fits are virtually identical to those for the experimental
and head regions, theans/gauch@somerization of the tail, data: The resulté, of the individLrI]aI :;its do nothagree wiltlh theI .
or the packing density of molecules on the surface. In thgparameters used to generate the data. Further, equally vali
next section, we present an analysis of simulated data ifits give very different pictures of the monolayer.
order to explore the conditions which give rise to the ob- The ensemble of fits to the simulated data is consistent
served ambiguity and a resolution of that ambiguity. with a x? hypersurface as illustrated in Figit. Instead of a
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TABLE Il. Five acceptable fits to simulated data for an SDS (next-to-last column in Table )llare all within a standard
monolayer and comparison to the model parameters. Standard edeviation of the known model parameters.
rors on individual fitting parameters are omitted for clarity. The  We conclude that this procedure produces a valid method
“Average” column contains the unweighted mean of parametersof arriving at a unique model of the monolayer structure.
for these five fitgstandard deviation in parenthegeQuantities in  While each individual good fit describes a monolayer struc-
italics are derived from the fitting parameters. ture consistent with the data, the statistical ensemble of these
good fits yields valid estimates for the model parameters as
Parameter FiA FitB FitC FitD FitE Average Model well as their uncertainties. Thus, this analysis of the reflec-
tivity data produces a unique picture of the structure of the
monolayer which is highly likely to be correct.

or (A) 3219 2465 2713 2248 2.859 R 2.40

t; (A) 1.721 12.67 11.74 12.66 10.42 (1D 115

1085, 2.727 3.428 3.013 2.616 3.425 ®&@D 2.85 C. Experimental data revisited

S5t (A) 469 434 354 331357 30(13) 32.7 _ ' _ _

o (R) 2206 3.408 2.311 3.408 7.251 (2 2.40 Given the procedure. suggested by our S|mu_lat|0ns, we
t, (A) 11.48 6524 2.315 6435 2011 (%  3.60 now return to the experimental data fOI" SDS W_hlch we ex-
10°5, 3.971 7.241 5281 7.221 1581 (% 555 amined in Sec. lll A. We perform aadditional thirty-four

simulated annealings. Twenty-one fits were “good,” with
Sata (A) 456 472 122 465 318 31(19) 19.9 statistically equivalent values of?. The ensemble averaged
3 (A) 2.603 8.999 2.856 8.661 3.232 (B  2.40 values of the fitting parameters for these (listed in the last

ts (A) 17.09 1000 15.10 10.01 1657 (B 140  column of Table ) yield a picture of the monolayer which
10°5, 7.201 7.109 7.073 6.983 7.082 7(@P 7.05 has a region of higher electron densitsyer 2 adjacent to

Sst3 (A)  123.1 70.1 106.8 69.9 117.3 97(23)98.7 the substrate. The density suggests SDS head groups with
a4 (A) 1.686 2.403 2.046 2.641 2.052 23 2.40 counterions present. The thickness of this region is approxi-
32 .t (A) 13.2 19.19 14.05 19.10 12.4316(3) 15.1 mately twice as large as the SDS head group, indicating sub-
=3 .t (A) 30.29 29.19 29.15 29.11 29.0®9.35) 29.1 stantial disorder. The thickness of the outermail group
s2.,8t, 5059 90.6 47.6 79.9 38.88 61(10)52.6 region and the overall area per molecule are both consistent
area per 33.09 183 34.95 209 428 30(5) 31.5 with hydrocarbon chains in thie, phase. Thus, the tail re-

molecule gion likely contains considerablgaucheconformations and
(A? probably dictates the molecular spacing. The roughness of
G 1.09 1.02 0.965 1.143 1.008 the outermost interfacetween the air and the tail groyps

is comparable to the expected 2—4 A rms roughness which is
typical of polished silicon crystals. This shows that the
single, well-defined global minimum, corresponding to themonolayer as a whole follows _the contours of the solid sur-
best fit, there are several local minima withifz of one face. The roughness of the interfaces bounding the head
another, all of which represent good fits to the data. Thegroup region is two to three times larger than the outermost
broad minimum in which these local minima occur has aihterface, again consistent with a highly disordered head re-
width comparable to the standard deviation obtained by avgion. The density of the third region is consistent with the
eraging parameters over the set of local minima. By comparknown structure of low-density SiQand the thickness of
ing the last two columns of Table Il, we can see that thethe layer is typical of native oxide layers on silicon crystals.

averaged parameters from the ensemble of acceptable fitdws, by averaging the parameters obtained from an en-
semble of statistically equivalent, good fits to the data, we

8 ——r————1——— obtain a model which is physically plausible in every detail.

C ] The uncertainties in the parameters give reasonably tight
bounds on all parameters compared to the benchmark values
we discussed in Sec. I.

Since the thickness of the head group region is at the limit
of our length scale resolution, conclusions about structural
details of this region are rather tenuous. However, the pres-
ence of counterions, as suggested by the ensemble averaged
fitting parameters, provides insight into the physics of the
formation of the SDS monolayer. The organic ion of the SDS
molecule has the same charge as the silica substrate at neu-
tral pH. Thus, a self-assembled monolayer is unlikely to
form at the solid/liquid interface if the counterion and or-
ganic ion are mostly dissociated in solution. With counteri-
ons present in the head group region, the organic ion is neu-
tralized, enabling the molecule as a whole to be attracted to
Z(A) the substrate.
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FIG. 7. The contrast variablé(z), obtained from five fits to the IV. IMPROVED COUNTING STATISTICS
simulated data for an SDS monolayer with, tails (Fig. 6). The
original model is indicated by the solid line. Parameters are shown The data we examined above had statistics typical of an
in Table II. experiment using a rotating anode source. Given the avail-
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ability of synchrotron sources, we ask what changes in the
situation described above will occur if these more powerful
sources were used. First, the issue of sample degradation
must be treated carefully since high x-ray doses are known to
degrade surfactant monolayéd®]. Second, since the sepa-
ration of the signal at higkQ into specular and diffuse com-
ponents depends on the instrumental resolution, the higher
resolution available at synchrotron sources, combined with
increased flux, may provide an additional decade or more of
specular intensity. Depending on the sample, this could ex-
tend theQ range of the reflectivity data to approximately 1
A~1 However, as we suggested in the preceding section,
limitation of the Q range due to diffuse scattering does not
seem to be a significant cause of ambiguity of interpretation.
Finally, we could obtain reflectivity data with better statistics
at all Q. In this section we investigate the effects of these
higher counting statistics. Z(A)

We use the same simulated SDS model as above, but add
scatter to the ideal model data which is reduced by a factor of FIG. 8. The contrast variabl@, for a simulated SDS monolayer
10. In a real measurement, this would Correspond to 10®vith L,B tails. The solid line is the model. The dashed line is a fit to
times the counting statistics. Thirty fits were performed fromthe data with added noise.
a variety of initial parameter sets. Three of these fits are

“good” and locate the same minimum in the’ hypersur-  cases where contrasts are greater, we have also performed
face. Further, the parameters obtained at this minimum argimylations for monolayers of cetyl trimethylamonium bro-
within the standard error of the original model parameters iqe (C16TAB) with tail groups in theL, state, and for SDS
Thus, extremely precise data allow recovery of the correChith tajls in thel 4 (gel-like) state. FoiC;gTAB the electron
parameters for even this rather smeared electron density prggnsity contrast is good between head group and substrate,
file (similar to Fig. 7 and the uncertainties in these param-y ¢ poor between the head and tail regions. LLikeSDS, the
eters are decreased by the higher statistics. monolayer has a region which is not well resolved as a sepa-

A caveat to the above conclusion is that the reduced nOiSgye |ayer, and the results of fitting the data are similar. At
has made the global minimum extremely narrow and difficulty e signal-to-noise ratio, the essential physics of the

to locate[see Fig. &)]. Further, a second best set of param-pn|ayer is recoverable, but there is a high degree of un-
eters exists which is much more easily located than the firse tainty in the details of the head group region. At higher
(found in eight out of the thirty attemptsOur criteria reject  gignato-noise ratio all of the structural details are recov-
this as a “good” fit because the residuals plot contains sysgaq. ForL ; SDS, the electron density of the head group is
tematic features. However, if the lower minimum Were gqniticantly higher than that of the underlying SiG\s can
missed in the statistical survey, one might assume this Wasg seen in'Fig. 8, the head group region is better resolved as
the best possible fit and add another layer, unnecessarily senarate Jayer. All of the structural details of this mono-

oye_rparam_etrizing the fit. S_ince th_e_ global min_imum _is SOIayer were recovered by ensemble averaging of the good fits,
difficult to find, we tried adding additional Gaussian noise t0,yan for lower signal-to-noise data.

the data. We found that when the noise is comparable to that 5 nsssible concern when using high statistics data is that
of the previous SDS simulatioand to our experimental data he measurement becomes highly sensitive to the functional
setg we could f9||ow ’t’hg procedure outlined in Sec. lll and ¢, .\ of the interfacial density profiles. The error function
_obta|n_mult|ple_ good” fits. Using each of these fits as start- rofile, which is the typical form used to fit data, may not be
Ing points for_f|ts to the nondegraded data, we_recovr_ered thEorrect and may give misleading information. To test this
correct best fit from at least one of these starting points. idea, we simulated a data set in which the profile connecting
the head and tail regions of the molecule follows a hyper-
bolic tangent form. We fitted this data set in the usual way,
assuming error-function transitions at all interfaces. The re-
Relative contrasts between the subsections of the monault is essentially a null result: the error function fits the
layer can improve or degrade the ability of reflectivity datahyperbolic tangent to within a few percent; there is very little
to discern monolayer structure. We have discussed in detadlifference between these functional forms.
experimental data and simulations for SDS with tail groups We have outlined a procedure for analyzing reflectivity
in the L, (liquidlike) state. Even with signal-to-noise data data that yields reliable and objective structural information
typical of a rotating anode experiment, most of the importanfor monolayer systems. The? hypersurface is probed by
physics of the monolayer structure can be deduced by erperforming multiple fits to the data from a variety of starting
semble averaging of the fitting parameters for all statisticallypoints using the method of simulated annealing. For a mono-
equivalent good fits. High signal-to-noise data are required téayer system in which the features are not all well resolved
discern the details of the head group region. We attribute thiand the signal-to-noise ratio is comparatively low, multiple
to the relatively poor electron density contrast between thatatistically equivalent minima exist in the? hypersurface
SDS head group and the underlying Sil@yer. To examine  which correspond to different physically plausible structural
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V. DISCUSSION AND CONCLUSIONS
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pictures. For this reason, a single good fit to the data is insimulated annealing and our implementation of the dynamic
sufficient to make certain types of claims of structural detail.optimization technique.

The interpretation of the data must be derived from the av- In applying simulated annealing to least-squares fitting,
erage and standard deviation of fitting parameters across aff takes the role of an energy function, and Boltzmann sta-
ensemble of statistically equivalent, good fits. Since the glotistics with an effective temperatur&, are applied to trial
bal minimum in they? hypersurface may be too sharp to changes in parametefsr “moves”). The analogy is to ther-
locate in a reasonable amount of computing time for highmal annealing and slow cooling of a physical system in order
signal-to-noise data, it may be difficult to find any good fit. to put the system into its ground state. Trial moves are gen-
One can try the addition of noise as an intermediate step. Arrated through a random procésee below. A move which
appropriate amount of noise will broaden tpeminimum. If  reducesy? is always accepted.e., the fitting parameters are
good fits are found, the corresponding parameters for at leaspdated to the trial setA move which increaseg? is ac-
one of them should be within a standard error of the correctepted with probabilitya‘AXz’T. In our algorithm, the num-

ones. One can then remove the added noise and start a fjgr of Monte Carlo trial moves at eag@hs adjustable, and is
with each of the previously obtained parameter sets to see §caed by a factod?®, whered is the number of free param-
a good fit is obtained. . o eters in the fit. Thus, as the dimensionality of the parameter
Whereas genetic algorithms may provide an efficient wayset becomes large, simulations become time consuming. As
to eliminate all but the best possible fit to the data, our Simuthe simulation proceedd; is reduced in an attempt to find
lations indicate a need to perform multiple fits in order to getine global minimum ofy? and the corresponding parameter
a sense of the complexity of theé* hypersurface. There may set. In our algorithm T is reduced exponentially, with an
exist parameter sets which are different from the correchdjustable number of steps per decade. A typical simulated
model, but which yield equally “good™ or slightly “better”  annealing used in this paper performs 6324 trial moves at
fits to the data. Thus, reliance on only a single good fit—each temperature, with four temperature steps per decade.
even the best possible fit—may be misleading. Our results \we have implemented the dynamic optimization proce-
suggest that neither uncertainty in instrument parameters n@fyre of Bouzida, Kumar, and Swendg@6]. This procedure
limitations on the range o@ due to diffuse scattering are agjusts the average step size in any direction in the parameter
significant causes of this ambiguity. Rather, the apparent angpace so that the acceptance ratio for trial moves is neither
biguity in the monolayer structure is the result of inadequatgog |arge nor too small. Small steps lead to slow changes in
surveying of thex” hypersurface, particularly when there is ,2 even if all trials are accepted:; large moves lead to slow
poor contrast in the electron density profile and/or insuffi-changes imy? because few trials are accepted. During the
cient signal-to-noise ratio. simulation, the size and shape ofiaimensional correlation
Although we have focused in this paper on the structurgyjipsoid is adjusted; each trial move is then defined in a

of surfactant monolayers, our method can be generalized fyndom direction in this ellipse, with larger changes in
any monolayer system, including thiols, block copolymers,soft’ directions than in “hard” directions.

etc. Our results have shown that high signal-to-noise data are \we mention here a few of the details of hasPEEDO

not necessarily required to deduce all of the structural detailg,orks. The program can either generate a reflectivity curve
of a monolayer, provided that the various regions of thepased on input parametet$orward model”) or it can read
sample are well resolved in the electron density profile. Uny gata file and perform a fit. The reflectivity can be calculated
fortunately, this is often not the case. The success of neutrop, several ways. The computationally efficier®“ Q,” ap-
reflectivity depends upon isotopic s_;ubstit_ution to compensatgyoximation[24,29 is appropriate when all layers are thicker
for the comparatively low source intensity. But there is Nothan their bounding roughnesses. The rigorous optical calcu-
analogous technique for x rays. Perhaps the most importaiftion [28,23 is more general. The program inserts error-
conclusion of our work is that the essential physics of monofynction transitions between layers with widths given by the
layer structures can still be deduced—even when the eIectro[%ugrmess parameters. The error function is approximated by
density contrast is not high for all the regions—by thor- 5 series of steps of width/(8Q,,,). One may also read a
oughly surveying thec® hypersurface and ensemble averag-fiie with an arbitrary$ vs z and havesPEEDOgenNerate the
ing the parameters obtained from all statistically equivalentgresponding reflectivity. There are several instrument pa-
good fits. rameters. The reciprocal space resolution is computed from
the angular divergence of the input beam. The program
ACKNOWLEDGMENT checks the spacing of experimental data points and gives a
warning if this spacing is larger than the resolution. In this
This material is based upon work supported by the Nacase, a file is generated which contains the original data
tional Science Foundation under Grant No. DMR9802290. points plus additional pointéwith 100% errors which fa-
cilitate correct computation of the resolution convolution
sum. A wavelength distribution can also be includednve-
nient for neutron work A correction is made to the com-
Our computer program, callesPEEDO[32], uses a dy- puted reflectivity for the case where a fraction of the input
namically optimized Monte Carlf26] simulated annealing beam misses the sample at low angtes{n «/sin«, as long
[27] technique to find optimal parameter sets. The use ofs this is<1, «, being the minimum angle at which the
such a complex algorithm is justified when thé hypersur-  complete width of the beam is on the samgl&3]. Finally,
face, defined in the space of fitting parameters, is rough andn overall normalization factor multiplies the computed
has more than one local minimum. Here, we briefly describeurve. It should be noted that in fitting, these instrument

APPENDIX: SPEEDO
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parameters can interact with the physical parameters describy defining a molecular scattering length and absorption
ing layer structures. While the instrument parameters can beross sectiorithen allowing the molecular number density to
used as fitting parameters, one must determine the values waary), or one can describe a layer by independent variation of
closely as possible through independent measurenteaés & and 8. The incident medium can be defined to be other
main texj. than vacuum and can be included in the fitting parameters
All parameters describing a layer structure and all thelagain convenient for neutron work and for electrochemical
instrument parameters are potential fitting parameters. Eadtudies|33)).
potential parameter is given an initial value whighcan be In contrast to standarg?® minimization algorithmg31],
fixed, (ii) can be constrained to a specified rangegjjiiorcan  simulated annealing allows the parameter set to move over
be tied to a similar parameter in another lag@nvenient for  local maxima to locate deep minima far from the starting
multilayer samplels Narrowing the variation of a parameter point. For a roughy? surface, however, performance of
to a physically plausible range reduces the volume of paramsimulations and interpretation of results is not straightfor-
eter space which must be covered and makes simulatioward. We demonstrate in the body of this paper a means of
more efficient. One may specify the composition of a layerdealing with such complex situations.
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