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Hydrodynamic theory of density relaxation in near-critical fluids
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This paper gives a complete hydrodynamic theory of density relaxation after a temperature step at the
boundary of a cell filled with a nearly supercritical pure fluid in microgravity conditions. It uses the matched
asymptotic expansion technique to solve the one-dimensional Navier-Stokes equations written for a viscous,
low-heat-diffusing, near-critical van der Waals gas. The continuous description obtained for density relaxation
in space and time confirms that it is governed by two fundamental mechanisms, the piston effect and heat
diffusion. It gives a space-resolved description of density inside the cell during the divergently long heat
diffusion time, which is shown to be the ultimate one to achieve complete thermodynamic equilibrium. On that
very long time scale, the still measurable density inhomogeneities are shown to follow the diffusion of the
vanishingly small temperature perturbations left by the piston effect. Temperature, which relaxes first to
nonmeasurable values, and density, which relaxes on a much longer time scale, may thus appear to be
uncoupled. The relaxation of density on the diffusion time scale is shown to be driven by a bulk expansion-
compression process slowly moving at the heat diffusion speed, which is generated by heat diffusion coupled
with the large compressibility of the near-critical fluid. The process is shown to be the signature of the
thermoacoustic events that occur during the very short piston effect time period. The generalization of the
theory to real critical behavior opens the present results to future experimental investigation.

PACS number~s!: 64.70.Fx, 65.70.1y, 68.35.Rh, 81.70.Ha
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I. INTRODUCTION

It is widely admitted now that heat can propagate mu
faster than it would by simple diffusion in a convection-fr
near-critical pure fluid owing to a fourth mechanism of he
transport named the piston effect or adiabatic effect@1–4#.
This effect corresponds to the adiabatic compression of
bulk phase caused by mass addition into the bulk from
heated, very compressible, initial thermal boundary lay
which therefore experiences a strong mass depletion. A n
ber of experiments have been performed recently in weig
less conditions to check and study this heat transfer pro
extensively@5–10#. However, attention was soon drawn
the fact that density relaxation was, on the contrary, a v
slow process. This was mentioned very early by Onuki a
Ferrel @10# who found a long tail in the density relaxatio
process and gave a characteristic time for density relaxa
that is close to the critically slowing down heat diffusio
time. At the same time several experiments also reporte
very long density equilibration time, while temperature w
already quite homogeneous. Guenounet al. @4# reheated
phase-separating CO2 to above its critical temperature an
observed, through interferometric images, that the signific
density inhomogeneities slowly relaxed diffusively after t
piston effect had adiabatically homogenized the temperat
More recently, Zhong and Meyer@8,11# have studied the
transient density changes after boundary heating and h
clearly shown that the relaxation time diverges after
sharp response during the adiabatic transfer of energy f
the boundary region to the bulk fluid by the piston effe
PRE 621063-651X/2000/62~2!/2353~16!/$15.00
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Boukari, Pego, and Gammon@12# studied the dynamics o
the gravity-induced density profile near the liquid-vap
critical point. They studied the dynamics of the density p
file formation that follows a temperature quench at the low
boundary of a horizontal, infinite, critical xenon layer~the
upper boundary being cooled more slowly to avoid conv
tive instabilities! in great detail to give a reliable model fo
interpreting earth-bound experiments. In the same way, t
report that, while temperature is practically homogenized
the piston effect after some tenths of a second, the den
profile changes over a time scale of hours, that is to say, v
slowly. Of course the one-dimensional~1D! downward
gravity-induced advective flow enhances the equilibration
that case, but the order of magnitude of a diffusive proc
still holds. The relaxation of a density gradient caused
applying an electrostriction volume force has also been
plored recently@13# and shown to occur diffusively. Zim-
merly et al. @14#, have studied the role of convection in tem
perature and density relaxation. They show that, under e
gravity conditions, the piston effect is still responsible f
temperature equilibration since it homogenizes tempera
before convection has time to start. Convection is then t
gered in a practically thermally homogeneous medium by
still large density gradients remaining after the piston eff
has played its role. This direct Navier-Stokes simulati
pointed out the leading role played by density relaxatio
which rules out the long-lasting, quasi-isothermal convect
motion that follows boundary heating. This current intere
in density relaxation in near-critical fluids stems from t
fact that, owing to the diverging compressibility, density pe
2353 ©2000 The American Physical Society



n

em
ra
ty
su
,
e
la
th

o
pe
f

o-
m
o

ve
x

ie
d

hi
p
es
ic
m
m
fa
is

m
ke
sio
th
e

ed
la
c
e
iti
m
n
lu

th
er

t
ur
m

e
bu
th

tio
e-
to
re
fo
ob
io
he
n
e

tu

ct.
raw

ical
al
se.
er
tion
on
es
ed
ch

po-
te
al
at

de-
eat
-

he
the
to

ve
in

our

tes

er-
e
l to

e-
D
ng

pec-

s,
o

ar-
the
ua-
tate,
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turbations are still significant and accessible to experime
on a time scale over which temperature perturbations are
longer measurable. It should be recalled that the relative t
perature and density perturbations differ initially by seve
orders of magnitude owing to the diverging compressibili
Accordingly, when temperature has relaxed to nonmea
able values by the piston effect, density perturbations are
relative order, still as large as the temperature ones wer
the early stages of the process. The theory of density re
ation in near-critical pure fluids thus deserves, beyond
early formal theoretical work by Onuki and Ferrel@10#, an
extensive theoretical analysis similar to what has been d
for temperature relaxation. The early, fast piston effect
riod has been extensively studied. No such theory exists
the next period of time when the still significantly nonhom
geneous density field relaxes to complete equilibriu
coupled with temperature perturbations that are several
ders of magnitude smaller. In particular, no space-resol
description of density relaxation to complete equilibrium e
ists today. We therefore develop in this paper the Nav
Stokes theory of density relaxation which follows a boun
ary temperature increase of a near-critical fluid cell. T
done with two main aims. The first is to obtain an asym
totically matched analytical solution of the Navier-Stok
equations that provides scaling for space, time, and phys
properties and which is continuously valid in space and ti
from the beginning of the heating to complete equilibriu
To achieve this, we show the classical description of the
adiabatic heat equilibration, previously obtained on the p
ton effect time scale, to be nonuniform in space when ti
becomes infinite with respect to that time scale. This ma
it necessary to rescale time and introduce the heat diffu
time scale to overcome this singularity and to achieve
matching of the two time scales. A set of equations is th
obtained for this divergently long time scale, which is solv
by the Laplace transform technique. It is shown in particu
that density is governed by a diffusion equation that refle
the diffusion of asymptotically small temperature inhomog
neities. These inhomogeneities are the remains of the in
perturbations left in place by the piston effect in a time fra
when both processes, the piston effect and heat diffusio
the bulk phase, give comparable contributions to the evo
tion. The present approach, which is consistent with
purely thermodynamic early scaling work of Onuki and F
rell, allows the space structure of the hydrodynamic field
be obtained. The second goal is to explore this struct
from the beginning of the heating to complete equilibriu
with particular emphasis on the long heat diffusion tim
scale. When the boundary layer ceases to provide the
with fluid because temperature is almost homogenized by
piston effect, the density field is made up of a deep deple
of fluid in the vicinity of the heated wall and a homog
neously increased density in the bulk phase. The asymp
matching procedure gives access to the space structu
these inhomogeneities, which are the initial conditions
the differential equations and thus the key point of the pr
lem. Diffusion is shown to generate a damped expans
compression process that propagates very slowly at the
diffusion speed in the bulk and evens out the inhomoge
ities. This phenomenon is thus the legacy of the fast th
moacoustic heat transfer period and this particular struc
ts
no
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of density relaxation is another signature of the piston effe
After these theoretical results were obtained, previous
temperature data obtained by Beysenset al. @15# were pro-
cessed. They studied the thermalization of a near-crit
fluid cell set at critical density and 6 mK above the critic
point after 5 mW constant power during 15 s heat pul
Although the boundary conditions differ from those und
consideration here, the corresponding temperature evolu
exhibits different types of variations with time depending
the location in the cell. These variations show similariti
with the present theoretical findings but still need extend
analysis. In order to prepare for the interpretation of su
experiments, we generalize the theory to real critical ex
nents. Not only does this formal effort thus give a comple
hydrodynamic description of the relaxation of a near-critic
fluid but it also leads to insights into density relaxation th
were not observed or even expected before.

Section II presents the model; the previously obtained
scriptions are recalled and the solution obtained on the h
diffusion time scale. Section III gives a uniformly valid de
scription in space and time from the initial heating to t
final equilibrium, and discusses and compares it with
descriptions obtained previously. Section IV is devoted
the discussion of density relaxation on the long diffusi
time scale. The results for real critical exponents are given
Secs. V and VI.

II. MODEL

The model presented here is similar to those used in
previous theoretical work@14,16#. In what follows, the prime
denotes dimensional parameters, the subscript ‘‘0’’ deno
the ideal gas, and the subscript ‘‘i’’ denotes the initial con-
ditions.

A 1D ~slablike! container is filled with a near-critical van
der Waals gas at critical density, initially at rest and at th
mal equilibrium, in a zero-g environment. The temperatur
of the left-hand side wall is raised on a time scale equa
the diffusion time in the perfect gas~some millikelvins in
some seconds! and then kept constant; the right-hand sid
wall is insulated. The fluid itself is described by the 1
Navier-Stokes equations written for a Newtonian fluid, usi
the following nondimensional parameters~representing den-
sity, temperature, pressure, velocity, time, and space, res
tively!:

r5
r8

rc8
, T5

T8

Tc8
, P5

P8

rc8r 8Tc8
, u5

u8

Ag0r 8Tc8
,

t5
t8

ta8
, x5

x8

L8
.

Here Tc8 , rc8 , and Pc8 are the critical coordinates,r 8 is the
ideal gas constantR8 divided by the molar mass of the ga
and ta85L8/Ag0r 8Tc8 is the typical acoustic time, equal t
3.331025 s for a 10-mm-long sample cell.

This means that time is first referred to the acoustic ch
acteristic time and the length is expressed relative to
width of the slablike sample cell. As stated above, the eq
tion of state used here is the van der Waals equation of s
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which exhibits a (T82Tc8)
21 divergence of the compressibi

ity at the critical point. In a real fluid, the thermal condu
tivity also diverges. This fact is taken into account by t
introduction of the following temperature dependence:

l8

l08
511LS T82Tc8

Tc8
D 21/2

.

This results from the mean field theory, which is cons
tent with the van der Waals model. It has long been kno
that classical equations of state do not lead to correct crit
exponents. However, both the numerical experiments
previous asymptotic analysis@16,17# have already demon
strated that a van der Waals equation can provide rich p
nomenological information concerning, for example, t
mechanism of interaction of a near-critical thermal plum
with a thermostated boundary, while enabling relative
simple calculation@18#. This choice was therefore made
facilitate a formal analysis of the process, rather than a qu
titative comparison with real experiments. However,
shown in @6#, the calculation based on the van der Wa
equation can be extended to real critical exponents bec
of the linear character of the problem. Real critical expone
are considered in Sec. VI and a generalized theory is gi
which is shown not to change the phenomenology.

When put into the Navier-Stokes equations, the non
mensional parameters listed above lead to the definition
the following quantities:

«5
ta8

td8
Pr0 , m5

Ti82Tc8

Tc8
,

wheretd85L82/k08 is the characteristic diffusion time andk08
the thermal diffusivity of the ideal gas.« and m are very
small when compared to 1~for instance, in the case of CO2
in a 10 mm container,«53.531028). If the specific heat at
constant volume is assumed to be constant and equal to
of the ideal gas, the choice for the specific heat at cons
pressure is imposed@and thus its (T82Tc8)

21 divergence#
since the van der Waals equation of state is considered.

The resulting system of equations is then as follows:

r t1~ru!x50, ~1!

rut1ruux52
1

g0
Px1 4

3 «uxx , ~2!

rTt1ruTx52~g021!~P1 9
8 r2!ux

1«H g0

Pr0
F S 11

L

AT21
D Txx2

1
2 LTx

2

3~T21!23/2G1 4
3 «g0~g021!ux

2J , ~3!

P5
rT

12 1
3 r

2 9
8 r2. ~4!

The initial conditions are
-
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d
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nt

T~ t50!511m, r~ t50!51,
~5!

P~ t50!5Pi5
3
2 ~11m!2 9

8 , u~ t50!50,

and the boundary conditions are

T~x50,t !511m1aF t

t0
2H @ t0#S t

t0
21D G . ~6!

WhereH @ t0# is the Heaviside step function, equal to zero f

t smaller thant0 and 1 for t greater thant0 . Equation~6!
signifies that the maximum-temperature increase (aTc8) at
the boundary is reached forta8t0 after a linear increase in
time. The order of magnitude of the temperature increase
the boundary is thus proportional to

Tx~x51,t !50 ~ thermostated cell!,

u~x50!5u~x51!50 ~rigid boundaries!.

The presence of several small quantities~«,m! in the above
system suggests that the problem could be treated by
asymptotic analysis. Since this problem is singular near
boundaries for the condition«→0, we have chosen to us
the matched asymptotic expansion technique to solve
above system of equations analytically.

III. PREVIOUS ASYMPTOTIC ANALYSES

A. Acoustic period

As in @7#, the asymptotic analysis was first performed
the acoustic time scale and, for the sake of clarity, we re
the basic principles of the procedure used in that referen
The acoustic time scale is the shortest macroscopic t
scale the Navier-Stokes equations can describe, and we
began studying the problem on that time scale. Taking i
account the fact that the increase in temperature of the
occurs on the diffusion time scale in the perfect gas defi
by the variablet5«t, which is much longer, the increase
temperature on the acoustic scale is of order«. The diffusion
depth on the acoustic time scale is thus of orderA«m0.25 in
the supercritical fluid, since the diffusion tends to zero
m20.5, whereas it is of orderA« in an ideal gas. It can be
noted now that the heat diffusion time scale in a supercrit
pure fluid is defined byu5«Amt. Without reporting here on
the whole procedure that was used to obtain the solution
the acoustic time scale a procedure that is explained in d
in @16#, it is, however, worth giving the solution for the flow
field variables in the thermal boundary layer and in the b
phase.

The boundary-layer solution, expressed as a function
the rescaled space variable and of the timet, that is to say,
the time in units of the acoustic time, is

TBL
a 511m1a4

1

t0
@ t i 2 erfc~h!

2H @ t0#~ t2t0!i 2 erfc~h/A12t/t0!#, ~7!
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rBL
a 512

a8

m3

1

t0
@ t i 2 erfc~h!

2H @ t0#~ t2t0!i 2 erfc~h/A12t/t0!#, ~8!

uBL
a 5

a«1/2

m3/4 ADc

1

t0
FAtS 2

Ap
2 i 0 erfc~h!D 2H @ t0#A~ t2t0!

3S 2

Ap
2 i 0 erfc~h/A12t/t0!D G , ~9!

where

h5
z

2ADcAt
5

x/Am

2ADcAt
and Dc5

g0

g021

L

Pr0
. ~10!

HereDc is a nondimensional coefficient linked to the critic
part of the heat diffusivity defined by

k85
l08goL

rc8Cp08 ~g021!
Am5k08

g0L

g021
Am5k08DcPr0Am.

This last expression is the first-order expansion of the h
diffusivity in the near-critical region:

k85
l08~11L/Am!

rc8Cp08 ~11R8/Cp08 m!
,

where R85Cp08 (g021)/g0 is the ideal gas constant. Not
that, according to the van der Waals theory and the m
field approximation, the heat diffusivity thus tends to zero
Am.

Considering now that, from Eq.~9!,

lim
z→`

uBL
a 5

2

Ap

ADc

t0
@At2H @ t0#A~ t2t0!#, ~11!

one can show that this mass addition generates in the
phase an acoustic perturbation of magnitudea«1/2/m3/4,
which is m3/4 stronger than in the perfect fluid@16#. The
corresponding solution is

TB
a511m1

a«1/2

m3/4

g021

c0t0
ADcS 4c0

3Ap
@ t3/22H @ t0#~ t2t0!3/2#

1
2

p3/2 (
n51

`

@Sn8~ t,x,0!2H @ t0#Sn8~ t2t0 ,x,0!# D ,

rB
a511

a«1/2

m3/4

1

3

g021

c0t0
ADcS 4c0

3Ap
@ t3/22H @ t0#~ t2t0!3/2#

1
2

p3/2 (
n51

`

@Sn9~ t,x,0!2H @ t0#Sn9~ t2t0 ,x,0!# D ,

~12!
at

n
s

lk

PB
a5

3

2
~11m!2

9

8
1

a«1/2

m3/4

3

2

g021

c0t0

3ADcS 4c0

3Ap
@ t3/22H @ t0#~ t2t0!3/2#

1
2

p3/2 (
n51

`

@Sn~ t,x,0!2H @ t0#Sn~ t2t0 ,x,0!# D ,

uB
a5

a«1/2

m3/4

ADc

t0
S 2

Ap
$~12x!@ t3/22H @ t0#~ t2t0!3/2#%

1
2

p3/2 (
n51

`

@Cn~ t,x,0!2H @ t0#Cn~ t2t0 ,x,0!# D .

B. Piston effect time scale

Whent tends to infinity when expressed in units of acou
tic time, the temperature in the bulk, from Eq.~12! for T,
becomes

TB'11m1
a«1/2

m3/4 ADcS 4

3

g021

Ap
At

1bounded acoustic termsD 1oS a«1/2

m3/4 D
and thus grows continuously as the square root of time, s
the acoustic terms remain bounded following the proper
of the Fresnel integrals. In contrast, in the boundary lay
from Eq. ~7!, the temperature for infinite times counted o
the acoustic time scale remainsO(a); accordingly there ex-
ists a time scale defined byt5jt, with j!1, for which the
temperature in the bulk is of the same order as the temp
ture in the boundary layer:

a«1/2

m3/4 j21/25a⇒j5
«

m3/2⇒t5
«

m3/2 t . ~13!

For an ideal gas or a critical fluid far from the critical poin
the time scale is simplyt5«t. This means that, for a near
critical fluid, the cell is thermalized on a time scale mu
shorter than the heat diffusion time scale in an ideal gas.
time scale itself is much shorter than the diffusion time in t
critical fluid ~by a factorAm). This is the essence of th
so-called piston effect or adiabatic effect, the nature of wh
is thermoacoustic and which allows for a temperature
mogenization over a time scale much shorter than diffus
would do. In mathematical terms, it also means that wh
time ~t! tends to infinity on the acoustic time scale, the ma
on that time scale between the solution for temperature in
bulk and the solution for temperature in the boundary laye
no longer obtained. As a matter of fact, the matching con
tion between these two solutions is expressed by

lim
z→`

@TBL
a 2~11m!#5 lim

x→0
@TB

a2~11m!#.
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It is indeed fulfilled whent5O(1), since limx→0@TB
a2(1

1m)#5(a«1/2/m3/4) f (t) means that the first perturbation
the bulk is of orderO(a«1/2/m3/4), which is zero at the orde
a and is thus equal to limz→`@TBL

a 2(11m)#50. This con-
dition is no longer fulfilled whent→` since temperature in
the bulk increases continuously asAt while temperature in
the boundary layer remains of ordera. The necessity to res
cale time comes from the need to match temperature in
boundary layer and in the bulk for increasing times. Wh
we express that matching for increasing times counted
units of the piston effect characteristic time, we find expr
sion ~13! for the characteristic timet.

The boundary-layer solution for the flow-field variabl
on the time scale as defined in Eq.~13!, which has been
presented in@19#, is the following:

TBL
PE511m1aF12e~g021!2Deti 0 erfc@~g021!ADcAt#

1e@~g021!z̄1~g21!2ADcAt#

3 i 0 erfcS ~g021!ADcAt1
z̄

2ADcAt
D G

511m1aT̃BL
PE,

rBL
PE512

a

m

2

3
e@Dc~g021!2t1~g021!z̄#

3 i 0erfc@~g021!ADcAt#

3 i 0erfc S ~g021!ADcAt1
z̄

2ADcAt
D

511
a2

m3
r̃BL

PE,

PBL
PE5 3

2 ~11m!2 9
8 1a 3

2 $12e~g021!2Dct

3 i 0erfc@~g021!ADcAt#%

5 3
2 ~11m!2 9

8 1a 3
2 P̃BL

PE,

uBL
PE5

a«

m3/2

2

3

1

ADc
H ADc

ApAt
~g021!

3e~g021!2DctFe~g021!z̄ erfcS ~g021!At1
z̄

2ADcAt
D

2erfc@~g021!ADcAt#1
1

ApAt
~12ez̄2/4Dct!G J

5
a«21

m3/23ADc

ũBL
PE. ~14!

The boundary-layer thickness isO(m) on that time scale and
z̄5z/m is the boundary-layer variable.
The solution in the bulk phase is the following:
e
n
in
-

TB
PE511m1a@12e~g021!2Dcti 0 erfc~~g021!ADcAt!#,

rB
PE511a 2

3 $12e~g021!2Dcti 0 erfc@~g021!ADcAt#%,

~15!

uB
PE5

a«2

m3/23
ADcS 1

ApAt
2~g021!ADc

3 i 0erfc@~g021!ADcAt# D ~12x!.

From solutions~14! and ~15!, respectively, in the boundar
layer and in the bulk, it is possible to obtain a uniform
valid expression in space which is valid on the piston eff
time scale by employing the classical additive composit
procedure. This procedure consists in forming, for any
pendent variable, the function

XPE~x,t!5XBL
PES x

m
t D1XB

PE~x,t!2 lim
x/m→`,x!1

XBL
PES x

m
,t D ,

so that, by invoking the matching condition,

lim
x/m→`,x!1

XBL
PES x

m
,t D5 lim

x→0
XB

PE,

one can check that the functionX(x,t) is uniformly valid at
the first order~«! throughout the whole domain. The un
formly valid description of the flow field as given in@19# is
the following:

p~t!5pB
PE,

TPE5TBL
PES x

m
,t D ,

rPE5rBL
PES x

m
,t D ,

uPE5
a«

m3/2

2

3
ADcH ~12x!F 1

ApAt

2~g021!ADce
~g21!2Dct erfc@~g021!ADcAt#G

2
e2x2/m2/4Dct

ApAt
~g021!ADce

~g021!2Dct1~g021!x/m

3erfcS ~g021!ADcAt1
x/m

2ADcAt
D J . ~16!

IV. DENSITY RELAXATION

Equations~14! and ~15! give a representation of the phe
nomena occurring on the piston effect time scale. The so
tion is classical and has been written in the case of differ
boundary heating or sometimes under different formulatio
that are nearly equivalent. However, these solutions can
describe the evolution to final equilibrium since we presen



in
, i
to
e

e

m

q

en
e

t
lk
n

t

f a
te

that
the
e
d

ag-

er-
-

er
the
se-
le.
ns

ob-

qs.

the

ts.

2358 PRE 62DIDIER BAILLY AND BERNARD ZAPPOLI
show that it is nonuniform in space when time tends to
finity on the piston effect time scale. It is thus necessary
order to fulfill the matching condition at all length scales,
introduce a new time scale, which proves to be the h
diffusion time scale.

A. The density relaxation time scale

When time tends to infinity on the piston effect tim
scale, that is to say, whent→`, solution ~16! behaves as
follows for temperature, pressure, and fluid velocity:

TPE'11m1a2a
1

ADcAp

1

~g021!

1

At
~12e2x2/4Dct!,

pPE' 3
2 ~11m!2 9

8 1a
3

2 S 12
1

~g021!

1

ApADcAt
D ,

~17!

uPE'
2

3

a«

m3/2

1

2Ap

1

t3/2

1

ADc

F 1

~g021!2 ~12x!

2e2x2/4Dctm2S 1

~g021!2 1
1

g021
zD G .

Note the singular behavior of solution~17! for temperature at
(x50, t50) through the behavior of the exponential ter
multiplied by 1/At, which tends to 12d(x) when time tends
to zero.

For density, the asymptotic behaviors obtained from E
~14! and ~15! are

rBL
PE'12

a

m

2

3

1

~g021!

1

ADc

1

Ap
e2z2/4Dct,

~18!

rB
PE'11a

2

3

1

g021 S12
1

~g021!

1

ApADcAt
D .

The matching condition between density in the bulk and d
sity in the boundary layer is fulfilled on the piston effect tim
scale, that is to say, whent5O(1). Theequation

lim
x→`

~rBL
PE21!5OS a

m D30 ~19!

means that the density in the boundary layer matches
density in the bulk since the first perturbation in the bu
from Eq.~18! is of ordera, that is to say, much smaller tha
a/m. However, it is clear from the above equations~18! that,
when time tends to infinity, density in the bulk phase tends
a constant of order of magnitudea. As density in the bound-
ary layer continues to decrease with time, it becomes o
order of magnitude such that the matching condition writ
above@Eq. ~19!# is no longer valid since
-
n

at

s.

-

he

o

n
n

lim
t→`

lim
z→`

~rBL
PE21!5a30

Þa3
2

3

1

g021

5 lim
t→`

lim
x→0

~rB
Pe21!. ~20!

It is thus necessary to introduce a new time scale such
density is of the same order of magnitude throughout
whole domain. Ifu5jt is such a time scale, longer than th
t scale (j!1), it should be such that density in the bulk an
density in the boundary layer are of the same order of m
nitude to fulfill the matching between the two domains.j is
thus such that

a

m
Aj5a⇒j5m2.

Density relaxation thus occurs on a time scaleu defined by

u5m2t5«Amt, ~21!

which shows that theu scale, which isAm longer than the
heat diffusion scale in the perfect gas~«t!, is nothing other
than the divergently long heat diffusion time in the sup
critical fluid. This time scale will drive the system to com
plete thermodynamic equilibrium. Without entering furth
into the detailed solution of the equations that describe
density relaxation, we should comment on some con
quences of the introduction of this heat diffusion time sca

It can first easily be checked that rewriting expressio
~18! as a function of the time variableu by using Eq.~21!
makes the boundary layer disappear since diffusion is
served now on the diffusion time scale:

rBL
PE'12

a

m

2

3

1

~g021!ADc

1

ApAt
e2z2/4Dct

512a
2

3

1

~g021!ADc

1

ApAu
e2x2/4Dcu,

rB
PE'11a

2

3

1

g021 S 12
1

~g21!ApADc

1

At
D

511a
2

3

1

~g021!
1O~am!.

The matching conditions can be written formally as

lim
t→`

X~x,t!5 lim
u→0

X~x,u!

for all dependent variables, so one must consider that E
~17! and ~18! written in terms ofu are the initial conditions
for the equations describing the evolution on theu scale.
These initial conditions, although singular foru50, show
that the temperature perturbations in the cell decrease on
t scale from their initial order of magnitudea to the order of
magnitudeam, which is hardly accessible to experimen
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Similarly, the asymptotic behavior for density indicates th
the density perturbation decreases on thet scale from the
order of magnitudea/m to the ordera. a is the order of
magnitude of the density perturbation at the end of the h
ing period if the gas is an ideal one or set very far away fr
its critical conditions in the one-phase region. This mea
that this period is accessible to experiments, but the sing
behavior should be overcome if a valid description of t
density relaxation is to be used.

B. Description of density relaxation on theu scale

When rewritten as a function of the variableu, the expan-
sions of the hydrodynamic variables fort→` as given by
Eqs.~17! and ~18! become

p'
3

2
~11m!2

9

8
1a

3

2
2am

3

2

1

g021

1

Ap

1

ADcAu
,

T'11a2am
1

ApADc

1

g021

1

Au
~12e2x2/4Dcu!,

~22!

u'2a«Am
1

3

1

ApADc

1

g021

1

u3/2xe2x2/4Dcu,

r'12a
2

3

1

g021 S 1

ApADc

1

Au
e2x2/4Dcu21D .

According to the matching principle, which imposes f
p, T, u, andr

lim
t→`

X~x,t!5 lim
u→0

X~x,u!,

Eqs. ~22! give the initial conditions for evolution on theu
scale. They are the legacy of the piston effect on the di
sion scale: a strong depletion in the heated wall region an
homogeneous overdensity in the bulk region. They are a
singular, i.e., they can be written as generalized functio
The one forr is, for example,

lim
u→0

r~x,u!52
2

3

1

g021
@d~x!21#.

Equations~22! also indicate that the solutions that descri
the evolution of the legacy of the piston effect on theu scale
must be sought under the form of the following asympto
expansions:

Tr~x,u!'11m1aH @0#~u!1amT̃~x,u!,

pr~x,u!' 3
2 ~11m!2 9

8 1 3
2 aH @0#~u!1am p̃~x,u!,
t

t-

s
ar

-
a
o

s.

rr~x,u!'11ar̃~x,u!,

ur~x,u!'a«Amm̃~x,u!. ~23!

Carrying these expansions into the Navier-Stokes equat
leads to the following system of equations:

]r̃

]u
1

]ũ

]x
50,

] p̃

]x
50,

~24!

3]ũ

2]x
2Dc

]2T̃

]x2 5
t0

g21
d~u!,

p̃5 3
2 T̃1 9

4 r̃,

which must be complemented by singular initial conditio
given by the limits foru→0 of expressions~22!, and by the
following boundary conditions:

T̃50, ũ50 at x50,

]T̃

]x
50, ũ50 at x51.

It must be emphasized here that the energy equation in
~24! involves both the compression term of pressure for
and the diffusion term. The hypercompressibility prope
thus influences the bulk equations even though, on ea
time scales, it acts on the bulk only through boundary mat
ing, i.e., there is a strong mass addition in the bulk but
changed acoustic equations compared to the ideal gas.
is a consequence of the fact that, at earlier times, the b
process is governed by acoustic isentropic modes only
thus by the isentropic compressibility, which does not sh
a dramatic singular behavior. On the diffusion time scale,
bulk phase no longer undergoes an isentropic process an
isothermal compressibility acts on the bulk phase as it did
the boundary layer only on shorter time scales. The sys
of equations~24! is solved by means of the Laplace tran
form and only needs the use of classical transform tab
Details are given in the Appendix. However, we can alrea
see that density is driven by a pure diffusion equation, wh
is striking for a pure fluid:

]r

]u
2Dc

]2r

]x2 5
2

3

1

g21
d~u!.

The solution obtained for the hydrothermodynamic varia
can be written as follows on theu scale:
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T̃~x,u!52
1

g021 (
n51

`

exp~2n2p2Dcu!

3„211~21!n$cos@np~12x!#%…,

p̃~x,u!5
3

2

1

g021 S 122(
n51

`

exp~2n2p2Dcu!D ,

~25!

r̃~x,u!5
2

3

1

g021 S 122(
n51

`

~21!n

3exp~2n2p2Dcu!cos@np~12x!# D ,

ũ~x,u!5
2

3

1

g021 S ~12x!d~u!22pDc

3 (
n51

`

exp~2n2p2Dcu!~21!n sin@np~12x!# D .

FIG. 1. Evolution of hydrodynamic variables within the samp
as given by the solution valid on the heat diffusion time scale:~a!
density,~b! temperature, and~c! velocity.
The functionsp̃, r̃, T̃, andũ that are plotted on Figs. 1~a!–
1~c! show clearly the singular behavior of the solution for t
u scale whenu→0, which can be removed by applying th
additive composition matching procedure to the solutions
theu andt time scales. This shows that density relaxation
the long time scale is that of an initial Dirac-like strong ma
depletion atx50 in a medium initially not at equilibrium.
This configuration is the remains of the temperature inhom
geneities left by the piston effect, which diffuse to comple
equilibrium on the long diffusion time scale. These functio
can be checked to smoothly match with expansions~17! and
~18! whenu→0.

C. Uniformly valid description for boundary heating:
The whole field

In the preceding sections, three characteristic times h
been mentioned: the acoustic time scale, the piston ef
time scale, and the heat diffusion time scale. The acou
time scale does not intervene directly in experiments on te
perature or density relaxation, so we shall focus our atten
on the piston effect time scale and the heat diffusion ti
scale only. The additive composition procedure is used
obtain a uniform description in time from the initial heatin
to complete equilibrium. IfX denotesu,p,T, or r, then the
additive composition procedure consists of constructing
following function that is uniformly valid at any time scale

X~x,u!5XPES x,t5
u

m2D1Xr~x,u!

2H lim
u→0

Xr~x,u!

lim
u/m2→`,u!1

XPE~x,t!. ~26!

Both limits in this formula are, of course, equal becau
matching was imposed between the descriptions obtaine
different time scales. Thet scale~piston effect! appears to be
an initial boundary layer in time for the heat diffusion tim
scale: temperature relaxation by the piston effect occ
within an initial boundary layer in time, the thickness
which is m2, i.e.,

t5
u

m2 .

In a similar way, the uniformly valid description in space h
been written as a function of the largest space scalex. The
uniformly valid description in time is expressed here as
function of time counted on the largest scale in time~the heat
diffusion time!. The analytical expressions for the hydrod
namic variables that are valid over all the length and ti
scales are thus
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The pressure being homogeneous for all times, there is
an initial boundary layer.

V. RESULTS AND DISCUSSION

A. Typical values for the parameters

In what follows we consider parameters that correspo
to experimental conditions not very close to the critic
point, but the parameterm can be changed if necessary. T
parameters used are sample cell 1022 m in length, and
sample fluid, carbon dioxide:

k0853.2531028 m2 s21; n857.331028 m2 s21;

rc85467.8 kg m23; Tc85304.13 K.

The initial conditions are

T85Tc811.5 K; r85rc8 ,

and the corresponding parameters

Dc51.15, Pr52.274, «52.27431028, m5531023.
ly

d
l

The heating function used is a boundary temperature
crease ofDT850.02 K in Dt850.1 s, that is to say,a56.6
31025, t052.83103. The heating is thus over very early o
the piston effect time scale, which is defined by Eq.~13!,
since the piston characteristic time is of the order of 0.44
which has to be compared to 0.1 s of heating time. T
characteristic time for heat diffusion in a critical fluid set
the initial conditions described above is equal to 16 70
~calculated asL2/k8) whereas it is 3076 s~calculated as
L2/k08) in the ideal gas.

B. Orders of magnitude

1. Time regions

The orders of magnitude of the time periods that ha
been pointed out compare well with the one found by On
and Ferrel@10#, the slight differences coming from the fac
that the definition of orders of magnitude may differ fro
one approach to the other. We shall give the name ‘‘pis
effect period’’ to values of time such that

0,
u

m2 <1.
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The matching with the acoustic period could also have b
performed on the basis of the available solutions on the
ferent time scales but this would not have provided n
insights into density relaxation.

After the piston effect period comes the overlapping p
riod of time, or intermediate period, which correspon
mathematically to the matching zone between the soluti
that describe the evolution on thet scale~piston effect! and
on theu scale~diffusion!. This period is defined by values o
time u such that

u

m2 @1 and u!1.

Depending on the location, this period of time is centered
different values of time but the above asymptotic relation
always fulfilled.

After the overlapping period is over, the long diffusio
period starts, which is simply defined by

u5O~1!.

2. Orders of magnitude of the dependent variables

The orders of magnitude of the different dependent v
ables as they vary on the different time scales can be
cussed. We shall comment particularly on density and te
perature. It should be recalled first that, due to the diverg
isothermal compressibility, the order of magnitude of t
density perturbation is greater than that of the tempera
perturbation by a factorm. During the piston effect time
scale, after the wall heating has been stopped, the temp
ture inhomogeneity is of ordera, while the density inhomo-
geneity is still of ordera/m. At the end of the piston effec
period~0.44 s under the present conditions!, as shown by Eq.
~22!, temperature is homogenized at ordera m while the
density inhomogeneity has relaxed to the order of magnit
a it would have if the fluid were an ideal gas. Then, in t
heat diffusion period~referred to a unit time of 4 h and 37
min under the presently chosen typical conditions!, tempera-
ture and density inhomogeneities relax diffusively to co
plete equilibrium. This means that the heat diffusion peri
which evens out the very small temperature inhomogene
left by the piston effect, involves hardly measurable tempe
ture differences. To a first approximation the piston eff
relaxes temperature first while heat diffusion relaxes den
later on. Density and temperature thus reach a given s
value considered as a relaxed value on different time sc
and by different mechanisms. This is why one can illustr
this feature by saying that the two relaxation processes
uncoupled in near-critical fluids. Of course, the variab
themselves are still coupled but differently from the w
they are in ideal gases. This is indeed the case when
looks at the approximate equation of state in the nondiss
tive regions~the bulk phase on the acoustic or piston effe
time scales!. It can be written as follows@16,20#:

n dP5a dT,

which means that there is a real uncoupling of tempera
and density in the equation of state that is specific to ne
critical fluids. The driving force for the evolution in bul
n
f-
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n
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-
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phases during the piston effect period is an acoustic fi
generated by mass addition from the expanding bound
layer region. As temperature and density perturbations in
acoustic field have the same order of magnitude, the den
perturbation term in the equation of state, which is multipli
by the reciprocal of the isothermal compressibility, is neg
gible compared to the pressure and temperature terms. D
sity and temperature in nondissipative regions are coup
only through velocity and the mass conservation statem
On the diffusion time scale, when diffusion fills the who
bulk phase, heat diffusion is again the driving force in t
same way it was the driving force on earlier time scales
the boundary layers. So density and temperature perturba
have huge differences in orders of magnitude and are
directly coupled in the equation of state.

C. Evolution of density and temperature inhomogeneities
in a near-critical 1D sample from the initial heat deposit

to complete equilibrium

Both temperature and relaxation effects are simu
neously present but they intervene at different orders of m
nitude in a given time frame. The evolutions of the norm
ized density and temperature inhomogeneities within
sample are defined by

Dr5
r~1,u!2ur~0,u!u

a
and DT5

11m1«t02T~1,u!

a

and plotted on Fig. 2 on a log-log scale as a function of ti
counted in units of the heat diffusion time.

The normalized inhomogeneity would be of order 1 in
ideal gas. It is clear first that density and temperature alw
keep a ratiom because of the diverging compressibility.
the time period when solutions on both the piston effect ti
scale and the diffusion time scale are simultaneously va
the time variable satisfying the condition

u

m2 @1 and u!1,

which can be considered to extend fromu52.531025 to u
52.531021, the density perturbations become of order
which means that they take the value they would have if
fluid were an ideal gas or at least a normally compress
one. At the same time, temperature has reached the ord

FIG. 2. Evolution of temperature~solid! and density~dashed!
perturbation in the sample cell.
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magnitudeam, which can be considered as the new equil
rium at first order. In that time frame, density and tempe
ture follow the matching function in time of Eq.~17! written
at x50 and thus keep decreasing as 1/Au, which was men-
tioned as the bulk behavior by Onuki and Ferrel@10#. We
shall see later that the present theory leads to a diffe
behavior in the bulk. For larger values ofu, the density in-
homogeneity undergoes exponential decay as also pred
by Onuki and Ferrel@10# and detected as a ‘‘long diffusiv
tail’’ in the experiments by Boukari, Pego, and Gamm
@12#. This diffusive decay thus occurs in an isothermal m
dium at first order.

D. Density profiles within the 1D sample

The density profiles are plotted on Fig. 3 for differe
times from the late piston effect period (u52.531025) to
the early diffusion time scale (u51022). These values of
time cover the intermediate period. The deeply depleted a
located near the heated wall for small values ofu corre-
sponds to the thermal boundary layer that lost mass du
the piston effect period. As time increases, the diffus
depth is wider and back-diffusion begins to fill the deplet
boundary-layer area again. It should be noted that the b
region continues to be compressed because density in
bulk keeps increasing in time. This specific behavior is de
onstrated by the uniformly valid description that accounts
both the piston effect and bulk diffusion in the intermedia
period of time. This means that at the same time as diffus
begins driving the system back to equilibrium in th
boundary-layer area, the piston effect keeps driving the s
tem out of equilibrium by compressing the bulk phase. It c
be checked in Fig. 2 that the bulk density instead decrea
monotonically in time when described by the solution va
in the heat diffusion time period only. The velocity plots f
the same values of time as the density profiles~Fig. 4! show
that a return flow~negative velocity! appears in the boundar
layer region while the velocity is still positive in the bulk
which confirms that there is still mass addition and thu
piston effect. Accordingly, there is an inversion of the velo
ity gradient in the sample which will be shown, in the ne
section, to play an important role in the relaxation proce
For larger values of time, when one enters the diffusion
riod, the diffusion area reaches a macroscopic scale in

FIG. 3. Density perturbation in the sample as given by the u
formly valid solution.
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sample, the velocity is negative everywhere, there is
longer a piston effect, and diffusion becomes the only dr
ing force.

E. Time history of density at different locations in the sample

In this section we explore the evolution of density ov
time at different locations in the sample by studying the n
malized density perturbation as defined by

Dr5
r~x,u!21

a
.

Even if some locations are below the resolution in space
it is possible to achieve in real experiments, we shall pres
them to back up the coherence of the whole theory. As
piston effect time scale appears as a boundary layer in ti
the results are presented in a log-Cartesian frame. The
ferent features concerning the density time history at a gi
location will be correlated in the next section with tho
concerning the velocity field.

1. Time history of density at a point located in the middle
of the bulk „xÄ0.5…

Figure 5 represents the time history and shows that, on
piston effect period, density increases according to the m

i-
FIG. 4. Velocity in the sample as given by the uniformly val

description.

FIG. 5. Evolution of density atx50.5 as given by the uniformly
valid description and plotted as a function of the time in units
heat diffusion characteristic time.



, i
n
t

th

o

k
-

th

he
th
it

ds
-
ui
st
at
ro

y

on
-
m
es
er
u

pic
ca
i

fo
io

ly

the
or
he
ses

es
er-
ces

w-
he
g

e
hen

ases
er

o in

in

2364 PRE 62DIDIER BAILLY AND BERNARD ZAPPOLI
transfer from the boundary-layer region to the bulk. Then
the intermediate period, the density drops down sudde
because the piston effect ceases and the return flow refills
depleted area near the origin. The density drop follows
matching function given by Eq.~22! for r. This function has
also been plotted in Fig. 5 with the solutions that are valid
the t scale~piston effect! and on theu scale~diffusion! to
illustrate the concept of asymptotic matching and ma
things clearer. In particular, it is visible without further dem
onstration that the common part of the three functions is
increasing branch of the matching function

1

Ap

1

ADcAu
e2x2/4Dcu21

given by Eq.~22! at x50.5. One can thus say that, when t
thermal boundary layer passes a given location within
bulk, it can be detected by a steep decrease to the in
equilibrium as (1/Au)e2x2/4Dcu. For larger values of time
referred to the diffusion time~u!, the density continues to
relax monotonically. This part of the curve, which exten
approximately fromu51 to infinity, represents the long ex
ponential diffusive tail that drives the system back to eq
librium. One should remember here that the characteri
time is 4 h and 37 min. This shows that the intermedi
region plays an important role in the density relaxation p
cess.

2. Time history at points located close to the heated boundar

The time histories of density at two measurement stati
located atx5531022 and 0.1 as given by our analytic so
lution are plotted in Figs. 6 and 7, respectively, in the sa
system of coordinates as in Fig. 5. The evolution at th
locations, in contrast with that in the bulk, is no long
monotonic. Density still experiences an increase first beca
the piston effect still has time to increase it by isentro
compression before the diffusion layer extends to the lo
tion. The increasing period is longer when the location
farther from the boundary since it takes a longer time
diffusion to reach it. Then, as time goes by, heat diffus
reaches the location under consideration~of course much
earlier than in the bulk! and density thus decreases strong

FIG. 6. Evolution of density atx50.1 as given by the uniformly
valid description and plotted as a function of the time in units
heat diffusion characteristic time.
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even to negative values, since this station now belongs to
thermal boundary layer. Continuation of the evolution f
longer times displays another difference from that in t
bulk: when the return flow appears, density again increa
diffusively by following the long diffusive exponential tail to
reach the final equilibrium value again.

3. Time history at the heated wall

At the heated wall, as plotted in Fig. 8, density increas
monotonically in absolute value since it belongs to the th
mal boundary layer at all times and thus never experien
the piston effect.

F. Density and velocity in the sample:
An expansion-compression zone traveling

at the diffusion velocity

The preceding section can be summarized in the follo
ing way: density only increases monotonically in time at t
heated boundary~in fact it decreases first during the heatin
period, which is not visible on the heat diffusion time scal!;
it increases, decreases, and increases again in time w
close to the heated boundary; it only increases and decre
in time when far in the bulk. In order to obtain a bett

f
FIG. 7. Evolution of the density atx50.01 as given by the

uniformly valid description and plotted as a function of the time
units of heat diffusion characteristic time.

FIG. 8. Evolution of the density atx50 as given by the uni-
formly valid description and plotted as a function of the time
units of heat diffusion characteristic time.
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understanding of the processes involved, we must corre
the density field with the hydrodynamic velocity field in th
sample.

From Eqs.~27!, which give the uniformly valid descrip
tions, we plot in Fig. 9~a! the time histories at some loca
tions, among which are those mentioned in the preced
section. When measurement stations farther from the he
wall are considered, the minimum is less and less p
nounced and disappears completely, giving way to a sim
decay to the initial equilibrium. We also plot in Fig. 9~b! the
velocity profiles within the sample at the moment when d
sity is minimum. For the measurement stations atx50.05
and 0.1, the velocity profile in the sample exhibits a mi
mum located at the measurement station under considera
For values ofx greater than the given location, the veloci
gradient is positive, corresponding to an expansion zo
while for smaller values ofx the velocity gradient is nega
tive, corresponding to a compression region. The den
variation in time at a given location is thus the result of t
passage of an expansion-compression zone traveling r
ward at the diffusion speed, the driving force of which is t
diffusion of a given initial density perturbation in a nonequ
librium homogeneous hypercompressible medium. Den
first drops since the fluid is accelerated to the left; then
the expansion-compression zone propagates rightwar
compression occurs since the velocity must be zero at the
boundary and density increases again. While traveling rig
ward, the depth of the velocity minimum decreases, eve
ally to disappear completely. In fact, the low-density zo
created at the heated wall is filled, while moving rightwa
by the bulk density excess. It ultimately disappears bef
reaching the other end of the sample cell.

This is why, for the measurement station located ax
50.5, the evolution is again a monotonic relaxation, sin
the compression branch of the velocity profile has dis

FIG. 9. Evolution of density and velocity.~a! Density as a func-
tion of time at various locations in the sample;~b! velocity profile in
the sample at the moment when density is minimum at the loca
under consideration.
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peared, in the same way as it loses its expansion branch
close to the wall. The point beyond which the density histo
becomes a simple relaxation in the bulk phase is given by
location where the minimum in the velocity profile disa
pears. This means that, beyond this particular location,
bulk never experiences the initial diffusion boundary lay
but only the leftward diffusion that drives the bulk back
thermodynamic equilibrium.

VI. GENERALIZATION TO REAL CRITICAL EXPONENTS

As the sound velocity tends to zero when the critical po
is approached in the supercritical region on the critical i
chore, accounting for the variations of the specific heat
constant volume requires a definition of nondimensional ti
as follows:

t5
t8

ta8
, ta85L8/Ag0r 8Tc8ACn8/Cn08 ,

whereCn08 is the specific heat at constant volume far fro
the critical point. The nondimensional equations of contin
ity, momentum, and energy can be written as

ACn08 /Cnr t1~ru!x50,

ACn08 /Cn8 rut1ruux52
1

g0
Px1 4

3 «uxx ,

ACn8/Cn08 ~rTt1ruTx!52~g021!TS ]P

]T D
r

ux

1«H g0

Pr0
F S l8

l08
DTxx1S l8

l08
D

x

TxG J
1

4

3
«g0~g021!ux

2.

The equation of state is written in its linearized form as

P2Pi5S ]P

]T D
r
U

Ti ,r i

~T2Ti !1S ]P

]r D
T
U

Ti ,r i

~r2r i !,

where the subscripti denotes the initial conditions. The criti
cal behaviors are given by

ACn8/Cn08 .m2a, S ]P

]r D
T

.mg, S l8

l08
D 5m2c.

In order to avoid misunderstanding, the order of magnitu
of the temperature increase at the boundary is denoted bw
in this section.

Similar arguments to those used for the van der Waals
analysis lead to the following definitions of the time scale

t5«S 3r

]PD
T
S l8

l08
D ~ACn08 /Cn8!3/2t

for the piston effect time scalet and

n



a
be

o

io

ale

the
nly
n

re-
gas,
x-

2366 PRE 62DIDIER BAILLY AND BERNARD ZAPPOLI
u5S Cn8

Cn08
D 2S ]P

]r D
T

2

t

for the density relaxation time scaleu. When expressed as
function of the critical components, the above relations
come

t5«m2g2c13a/2t and u5m2g22at.

The boundary-layer thickness is found to bed
5(]P/]r)T(Cn8/Cn08 ) on the piston effect time scale, ord
5mg2a when expressed as a function of the critical exp
nents.

The solutions on the piston effect and density relaxat
time scales can be written as

TPE511m1wF12e~g021!2Dcti 0 erfc@~g21!ADcAt#

1e@~g021!z̄1~g21!2ADcAt#i 0 erfcS ~g021!ADcAt

1
z̄

2ADcAt
D G ,

rPE512
w

mg

2

3
e@Dc~g021!2t1~g21!z̄ #

3 i 0erfc@~g021!ADcAt# i 0 erfcS ~g021!ADcAt

1
z̄

2ADcAt
D ,

PPE5
3
2 ~11m!2 9

8 1w 3
2 $12e~g021!2Dct

3 i 0erfc@~g021!ADcAt#%, ~28!
-

-

n

uPE5w«m2g2c1a
2

3
ADcF ~12x!S 1

ApAt

2~g021!ADce
~g21!2Dct erfc@~g021!ADcAt# D

2
e2x2/m2/4Dct

ApAt
1~g021!ADc

3e~g021!2Dct1~g021!x/m erfcS ~g021!ADcAt

1
x/m

2ADcAt
D G ,

whereas they are written on the density relaxation time sc
as

Tr~x,u!'11m1aH @0#~u!1wm2a1gT̃~x,u!,

pr~x,u!' 3
2 ~11m!2 9

8 1 3
2 aH @0#~u!1wm2a1gp̃~x,u!,

rr~x,u!'11wm2ar̃~x,u!,

ur~x,u!5w«mg2c1aũ~x,u!,

where the functionsT̃, p̃, r̃, and ũ are given by Eqs.~25!
The introduction of real exponents thus does not change
way the functions depend on space and time but o
changes the order functions. It can be checked that whea,
g, andc take their van der Waals values, i.e.,a50, g51,
andc5 1

2 , one again finds the expressions written in the p
vious sections. In the same way as for the van der Waals
a uniformly valid expression can be obtained, which is e
pressed as
T~x,u!511m1wF12e~g021!2Dcu/m2g22a
i 0 erfcS ~g021!ADc

Au

mg2aD
1e@~g021!x/mg2a1~g021!2ADcAu/mg2a#i 0 erfcS ~g021!ADc

Au

mg2a 1
x

2ADcAu
D G

1wm2a1g
1

~g021!ADc
F2ADc(

n51

`

e2n2p2DcuH 211~21!n cos@np~12x!%1
1

Ap

1

Au
~12e2x2/4Dcu!G ,

r~x,u!512
2

3

w

mg e@Dc~g021!2u/m2g22a1~g021!x/mg2a#i 0 erfc@~g021!ADcAu/mg2a#

3 i 0 erfcS ~g021!ADcAu/mg2a1
x/mg2a

2ADcAu/mg2aD 1wm2a
2

3
~12e~g021!2Dcu/m2~g2a!

3 i 0erfc@~g021!ADcAu/mg2a#!1wm2a
2

3

1

ADc~g021!
S e2x2/Dcu

ApAu
2ADc2(

n51

`

~21!ne2n2p2Dcu cos@np~12x!# D ,
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u~x,u!5w«m2g2c1a 2
3 ADcH ~12x!F 1

ApAu/mg2a
2~g021!ADce

~g021!2Dcu/m2g22a
erfcS ~g021!ADc

Au

mg2aD G
2

e2x2/m2~g2a!/4Dcu/m2~g2a!

ApAu/mg2a
1~g021!ADce

~g021!2Dcu/m2g22a1~g021!x/mg2a

3erfcS ~g021!ADcAu/mg2a1
x

2ADcAu
D J 1w«mg2c1a

2

3

1

g021 S xe2x2/4Dcu

2ADcApAu3
22pDc

3 (
n51

`

e2n2p2Dcu~21!n sin@np~12x!# D ,

p~x,u!5 3
2 ~11m!2 9

8 1w
3

2 F12e~g021!2Dcu/m2g22a
i 0 erfcS ~g021!ADc

Au

mg2aD G1wm2a1g
3
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1
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3S 1
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We thus observe that the structure of the solution is
changed. Even if the order functions~which are the coeffi-
cients that make the asymptotic sequence and which de
on the initial conditions! have changed, they lead to a scali
of the physical variables that keeps the same order of m
nitude.

VII. CONCLUDING REMARKS

The present hydrodynamic theory of density relaxation
nearly supercritical fluids based on singular asymptotic
pansion techniques gives a uniformly valid analytical d
scription in space and time for fluid velocity, pressure, d
sity, and temperature following a temperature step at
boundary. It confirms that the process driving density bac
equilibrium involves two time scales, the short, piston eff
time scale and the long, heat diffusion one. The match
procedure allows the initial conditions to be obtained for
long lasting density relaxation period. These initial con
tions reflect the way the weakening piston effect gives pl
continuously to diffusion. The specific structure of the h
drodynamic field that was essentially thermally equilibra
by the piston effect involves a homogeneous bulk phase
a strongly mass-depleted area in the slightly hotter bound
region. It evolves diffusively and density relaxation is show
to be governed by a damped expansion-compression
which slowly propagates in the bulk at the diffusion spee

After this theory was completed, we observed that so
earlier, unpublished measurements look like the present
havior. The generalization of the theory to real critical exp
nents also given in the paper allows for future data anal
or experimental investigation.

However, this description becomes invalid when the i
tial conditions are either far from the critical point@21# or
nearer than a certain value@20#. Our theoretical efforts will
thus be devoted to exploring these two limits. For the fi
the initial conditions are far from the critical point so that t
transport modes, i.e., adiabatic and entropy modes, are
-

nd

g-

n
-
-
-
e
o
t
g
e
-
e

-
d
nd
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ne
.
e
e-
-
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-

t,

ot

yet fully separated in terms of time scales and thus m
comparable contributions@21#. For the second, the initia
conditions are very close to the critical point so that sup
critical fluid hydrodynamics is driven by acoustic mode
Inside this close neighborhood of the critical point, puzzli
mechanisms have been put forward theoretically, such
heat propagation at the speed of sound@20# or the inversion
of acoustic wave reflection rules@22,23#.

APPENDIX

Putting expansions~23! into the Navier-Stokes equation
leads to the system of equations~24!. The initial conditions
are given by the limits foru→0 of the perturbations in Eqs
~22!. These limits being singular, it is easier to perform t
following change of variables:

p̂5 p̃2
3

2

1

g021

1

ApAk0

1

Au
,

T̂5T̃2
1

ApAk0

1

g021

1

Au
~12e2x2/4k0u!,

û5ũ2
1

3

1

ApAk0

1

g021

1

Au3/2
xe2x2/4k0u),

r̂5 r̃2
2

3

1

g021 S 1

ApAk0

1

Au
e2x2/4k0u21D ,

which leads to the equations

]r̂

]u
1

]û

]x
,

] p̂

]x
50,
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3

2

]û

]x
2k0

]2T̂

]x2 5
t0

g21
d~u!,

p̂5 3
2 T̂1 9

4 r̂,

with the initial boundary conditions

u50, T̂5 r̂5 p̂5û50,

x50, T̂5û50,

x51,
]T̃

]x
52

1

2Apk0
3

1

g021

e21/4k0u

u3/2 ;

û52
1

3Apk

1

g021

e21/4k0u

u3/2 .

The singular behavior of the initial conditions has been tra
ferred to the boundary conditions. The Laplace transfo
technique leads to the following system of equations:

mr̂1
]û

]x
50,

] p̂

]x
50,
m

n

m

.
ys
-

3

2

]û

]x
2k0

]2T̂

]x2 5
t0

g21
,

p̂5 3
2 T̂1 9

4 r̂.

After some algebra, the following solution is obtained
Laplace space:

T̂5
1

g021

1

Ak0

1

Am
S cosh~Am/Ak0~12x!!

sinh~Am/Ak0!

2
cosh~Am/Ak0!

sinh~Am/Ak0!
D ,

r̃5
2

3

1

g021

1

m S Am

Ak0

cosh@Am/Ak0~12x!#

sinh~Am/Ak0!
D ,

p̃5
2

3

1

g021

1

m S Am

Ak0

cosh~Am/Ak0!

sinh~Am/Ak0!
D ,

ũ5
2

3

1

g021 S ~12x!2
sinh@Am/Ak0~12k!#

sinh~Am/Ak0!
D .

The inversion of these with the aid of elementary tab
gives the solution on theu scale.
uid
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