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This paper gives a complete hydrodynamic theory of density relaxation after a temperature step at the
boundary of a cell filled with a nearly supercritical pure fluid in microgravity conditions. It uses the matched
asymptotic expansion technique to solve the one-dimensional Navier-Stokes equations written for a viscous,
low-heat-diffusing, near-critical van der Waals gas. The continuous description obtained for density relaxation
in space and time confirms that it is governed by two fundamental mechanisms, the piston effect and heat
diffusion. It gives a space-resolved description of density inside the cell during the divergently long heat
diffusion time, which is shown to be the ultimate one to achieve complete thermodynamic equilibrium. On that
very long time scale, the still measurable density inhomogeneities are shown to follow the diffusion of the
vanishingly small temperature perturbations left by the piston effect. Temperature, which relaxes first to
nonmeasurable values, and density, which relaxes on a much longer time scale, may thus appear to be
uncoupled. The relaxation of density on the diffusion time scale is shown to be driven by a bulk expansion-
compression process slowly moving at the heat diffusion speed, which is generated by heat diffusion coupled
with the large compressibility of the near-critical fluid. The process is shown to be the signature of the
thermoacoustic events that occur during the very short piston effect time period. The generalization of the
theory to real critical behavior opens the present results to future experimental investigation.

PACS numbes): 64.70.Fx, 65.70y, 68.35.Rh, 81.70.Ha

[. INTRODUCTION Boukari, Pego, and Gammdni 2] studied the dynamics of
the gravity-induced density profile near the liquid-vapor
It is widely admitted now that heat can propagate muckhcritical point. They studied the dynamics of the density pro-
faster than it would by simple diffusion in a convection-free file formation that follows a temperature quench at the lower
near-critical pure fluid owing to a fourth mechanism of heatboundary of a horizontal, infinite, critical xenon layghe
transport named the piston effect or adiabatic effdet4]. upper boundary being cooled more slowly to avoid convec-
This effect corresponds to the adiabatic compression of théve instabilities in great detail to give a reliable model for
bulk phase caused by mass addition into the bulk from thénterpreting earth-bound experiments. In the same way, they
heated, very compressible, initial thermal boundary layerreport that, while temperature is practically homogenized by
which therefore experiences a strong mass depletion. A nunthe piston effect after some tenths of a second, the density
ber of experiments have been performed recently in weightprofile changes over a time scale of hours, that is to say, very
less conditions to check and study this heat transfer procesfowly. Of course the one-dimension&lD) downward
extensively[5—10]. However, attention was soon drawn to gravity-induced advective flow enhances the equilibration in
the fact that density relaxation was, on the contrary, a veryhat case, but the order of magnitude of a diffusive process
slow process. This was mentioned very early by Onuki andtill holds. The relaxation of a density gradient caused by
Ferrel[10] who found a long tail in the density relaxation applying an electrostriction volume force has also been ex-
process and gave a characteristic time for density relaxatioplored recently{13] and shown to occur diffusively. Zim-
that is close to the critically slowing down heat diffusion merly et al.[14], have studied the role of convection in tem-
time. At the same time several experiments also reported perature and density relaxation. They show that, under earth
very long density equilibration time, while temperature wasgravity conditions, the piston effect is still responsible for
already quite homogeneous. Guenoehal. [4] reheated temperature equilibration since it homogenizes temperature
phase-separating GQo above its critical temperature and before convection has time to start. Convection is then trig-
observed, through interferometric images, that the significangered in a practically thermally homogeneous medium by the
density inhomogeneities slowly relaxed diffusively after thestill large density gradients remaining after the piston effect
piston effect had adiabatically homogenized the temperaturdnas played its role. This direct Navier-Stokes simulation
More recently, Zhong and MeydB,11] have studied the pointed out the leading role played by density relaxation,
transient density changes after boundary heating and hawehich rules out the long-lasting, quasi-isothermal convective
clearly shown that the relaxation time diverges after themotion that follows boundary heating. This current interest
sharp response during the adiabatic transfer of energy fronim density relaxation in near-critical fluids stems from the
the boundary region to the bulk fluid by the piston effect.fact that, owing to the diverging compressibility, density per-
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turbations are still significant and accessible to experimentsf density relaxation is another signature of the piston effect.
on a time scale over which temperature perturbations are nafter these theoretical results were obtained, previous raw
longer measurable. It should be recalled that the relative tentemperature data obtained by Beysensl. [15] were pro-
perature and density perturbations differ initially by severalcessed. They studied the thermalization of a near-critical
orders of magnitude owing to the diverging compressibility.fluid cell set at critical density and 6 mK above the critical
Accordingly, when temperature has relaxed to nonmeasuiR0int after 5 mW constant power during 15 s heat pulse.
able values by the piston effect, density perturbations are, ifMlthough  the boundary conditions differ from those under
relative order, still as large as the temperature ones were §Phsideration here, the corresponding temperature evolution
the early stages of the process. The theory of density rela@Xnibits different types of variations with time depending on
ation in near-critical pure fluids thus deserves, beyond th&he location in the cell. These variations show similarities

early formal theoretical work by Onuki and Ferfdlo], an with the present theoretical findings but still need extended

extensive theoretical analysis similar to what has been don%nalyss. In order to prepare for the interpretation of such

for temperature relaxation. The early, fast piston effect e_experiments, we generalize the theory to regl critical expo-
P y P Peyents. Not only does this formal effort thus give a complete

riod has been extensively studied. No such theory exists foE drodvnamic descrintion of the relaxation of a near-critial
the next period of time when the still significantly nonhomo- fly'dob yna IC Iesc(:j ption © h € _ea(;:l on o al ear-c ﬁa
geneous density field relaxes to complete equilibrium uid but it also leads to Insights Into density relaxation that
coupled with temperature perturbations that are several owere not observed or even expgcted bef(_)re. .
ders of magnitude smaller. In particular, no space-resolved Sepuon Il presents the model; the_ prewou;ly obtained de-
description of density relaxation to complete equilibrium ex->Criptions are recalled anq the sqlutlon ob.tamed on Fhe heat
ists today. We therefore develop in this paper the Navier-d'ff.us!On t.|me scale. Sec't|on lll gives a Lllr.uformly.vahd de-
scription in space and time from the initial heating to the

Stokes theory of density relaxation which follows a bound-f. | ilibri d di d it with th
ary temperature increase of a near-critical fluid cell. Thisnal equiiibrium, and diSCUSses and compares it wi €

done with two main aims. The first is to obtain an asymp_descr?ptions_ obtained p_reviously. _Section IV is dev.oted. to
totically matched analytical solution of the Navier—Stokest.he discussion of density I’e|aX<':.l.t.IOI’l on the long d|ﬁfu5|v§

equations that provides scaling for space, time, and physic ime scale. The results for real critical exponents are given in
properties and which is continuously valid in space and time ecs. V and V1.

from the beginning of the heating to complete equilibrium.

To achieve this, we show the classical description of the fast Il. MODEL

adiabatic heat equilibration, previously obtained on the pis-
ton effect time scale, to be nonuniform in space when time
becomes infinite with respect to that time scale. This makeg
it necessary to rescale time and introduce the heat diffusiop ", -, gas, and the subscripit™*denotes the initial con-

time scale to overcome this singularity and to achieve theditions '

matching of the two time scales. A set of equations is then A 1D (slablike) container is filled with a near-critical van

obtained for this divergently long time scale, which is SOIVeo'der Waals gas at critical density, initially at rest and at ther-

by the Laplace transform technique. It is shown in particular o : ;
that density is governed by a diffusion equation that reflectsr,nal equilibrium, in a zerg environment. The temperature

the diffusion of asvmptotically small temoerature inhomo e_of the left-hand side wall is raised on a time scale equal to
» asymp 'y P ) Y€ diffusion time in the perfect gasome millikelvins in
neities. These inhomogeneities are the remains of the initi

erturbations left in place by the piston effect in a time frame> > < secondsand then kept constant, the right-hand side-
P P y P ‘wall is insulated. The fluid itself is described by the 1D

when both processes, the piston effect and heat diffusion 'Navier-Stokes equations written for a Newtonian fluid, using

the bulk phase, give comparable contributions to the evolu; ; : . . i
tion. The present approach, which is consistent with thé[he following nondimensional parametérspresenting den

purely thermodynamic early scaling work of Onuki and Fer-ﬁ%’l t)gmperature, pressure, velocity, time, and space, respec-
rell, allows the space structure of the hydrodynamic field to y)-

be obtained. The second goal is to explore this structure,

The model presented here is similar to those used in our
revious theoretical workl4,16]. In what follows, the prime
enotes dimensional parameters, the subscript “0” denotes

from the beginning of the heating to complete equilibrium, _ p_' T= 1 p= P’ U= u’
with particular emphasis on the long heat diffusion time pe’ T, per' T Vyor T
scale. When the boundary layer ceases to provide the bulk

with fluid because temperature is almost homogenized by the t! X'

piston effect, the density field is made up of a deep depletion t= o X=17

of fluid in the vicinity of the heated wall and a homoge-
neously increased density in the bulk phase. The asymptotic N ] ]
matching procedure gives access to the space structure Bre T¢., p¢, andP( are the critical coordinates, is the
these inhomogeneities, which are the initial conditions forideal gas constarR” divided by the molar mass of the gas,
the differential equations and thus the key point of the proband t;=L"/+/yor'T¢ is the typical acoustic time, equal to
lem. Diffusion is shown to generate a damped expansion3.3x 10 °s for a 10-mm-long sample cell.

compression process that propagates very slowly at the heat This means that time is first referred to the acoustic char-
diffusion speed in the bulk and evens out the inhomogeneacteristic time and the length is expressed relative to the
ities. This phenomenon is thus the legacy of the fast therwidth of the slablike sample cell. As stated above, the equa-
moacoustic heat transfer period and this particular structurtion of state used here is the van der Waals equation of state,
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which exhibits a T’ — T.) ! divergence of the compressibil- T(t=0)=1+pu, p(t=0)=1,

ity at the critical point. In a real fluid, the thermal conduc- (5)
tivity also diverges. This fact is taken into account by the P(t=0)=P =23(1+ u)—2 —0)—
introduction of the following temperature dependence: (t=0)=Pi=3(1+n)~5 ut=0)=0,

)\/ l A TI_T(,: —1/2
—=1+ .
VA T

and the boundary conditions are

T(x=0)=1+pu+a (6)

t t
This results from the mean field theory, which is consis- to H[to](to 1) '
tent with the van der Waals model. It has long been known
that classical equations of state do not lead to correct criticaNhereH[tO] is the Heaviside step function, equal to zero for
exponents. However, both the numerical experiments angd gmalier thant, and 1 fort greater thart,. Equation(6)
previous asymptotic analys{46,17 have already demon- gjqnifies that the maximum-temperature increasd’() at
sirated that a van der Waals equation can provide rich phe[he boundary is reached fatt, after a linear increcase in

nomenological information concerning, for example, the.. . .
109 . . 9. P time. The order of magnitude of the temperature increases at
mechanism of interaction of a near-critical thermal plume

with a thermostated boundary, while enabling relativelythe boundary is thus proportional to
simple calculatio{18]. This choice was therefore made to
facilitate a formal analysis of the process, rather than a quan-
titative comparison with real experiments. However, as
shown in[6], the calculation based on the van der Waals
equation can be extended to real critical exponents because
of the linear character of the problem. Real critical exponentshe presence of several small quantitiess) in the above
are considered in Sec. VI and a generalized theory is giveBystem suggests that the problem could be treated by an-
which is shown not to change the phenomenology. asymptotic analysis. Since this problem is singular near its
When put into the Navier-Stokes equations, the nondihoundaries for the condition—0, we have chosen to use
mensional parameters listed above lead to the definition ofe matched asymptotic expansion technique to solve the

T,(x=1t)=0 (thermostated cel|

u(x=0)=u(x=1)=0 (rigid boundaries.

the following quantities:

ta, T -T,
= — I , = Y
T M

wheret=L"?/k is the characteristic diffusion time ang
the thermal diffusivity of the ideal gas: and u are very

small when compared to (for instance, in the case of GO
in a 10 mm containers =3.5x 10 8). If the specific heat at

above system of equations analytically.

I1l. PREVIOUS ASYMPTOTIC ANALYSES
A. Acoustic period

As in [7], the asymptotic analysis was first performed on
the acoustic time scale and, for the sake of clarity, we recall
the basic principles of the procedure used in that reference.
The acoustic time scale is the shortest macroscopic time

constant volume is assumed to be constant and equal to th&taie the Navier-Stokes equations can describe, and we thus
of the ideal gas, the choice for the specific heat at constargegan studying the problem on that time scale. Taking into

pressure is imposefand thus its T'—T.) ! divergence
since the van der Waals equation of state is considered.
The resulting system of equations is then as follows:

pit(pu),=0, 1)
1 4
put+pqu=—7—PX+§quX, (2
0

pTi+puTe=—(yo—1)(P+§p?)uy

’)/0 A 1 2
el || 1+ ——=| T 3AT
|Pr0 \/ﬁ XX 2 X
X(T=1)" |+ 3eyo(yo-Duzf, (3
pT o,
P= —5p°. (4)
1-3p °

The initial conditions are

account the fact that the increase in temperature of the wall
occurs on the diffusion time scale in the perfect gas defined
by the variabler=¢t, which is much longer, the increase in
temperature on the acoustic scale is of orgéefrhe diffusion
depth on the acoustic time scale is thus of ordep.%2° in
the supercritical fluid, since the diffusion tends to zero as
1% whereas it is of ordek/e in an ideal gas. It can be
noted now that the heat diffusion time scale in a supercritical
pure fluid is defined by= &+/ut. Without reporting here on
the whole procedure that was used to obtain the solution on
the acoustic time scale a procedure that is explained in detail
in [16], it is, however, worth giving the solution for the flow-
field variables in the thermal boundary layer and in the bulk
phase.

The boundary-layer solution, expressed as a function of
the rescaled space variable and of the tin#hat is to say,
the time in units of the acoustic time, is

1
Tg,_=1+,u+a4t—[tizerfc( 7)
0

—Hp (t—to)i? erfa( 7/ V1 —t/to)], @
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a _q a8 1 2ot 1. 9+a81’23 yo—1
PBL= Egh erfo( 77) ( )= T2 ooty

—H[to](t—to)izerfc( nlN1—t/ty)], (8) < JB:

4c,
ﬁ[tsm_ Hiey(t— to)¥?]

a81/2 2
ug.=—m Do {f(——i"erfo(m)—H[to]m

2 o)
N + ;372”21 [Sn(t,X.O)—H[to]Sn(t—to,X.O)]),
2
X ——ioerfc(n/\/l—t/to)) : 9) i
V7 as'? D, (1= )[t32— Hy(t—t) ¥
ug= T T, \/— {(1—-x[ 1] (t=t0) I}
where
2 e o]
z X/ % A + =35 2, [Calt,%,0) = Hy Calt—t,X,0)] |
n= and D.= . (10 T n=1
2D\t 2Dt ~1Pro
HereD. is a nondimensional coefficient linked to the critical B. Piston effect time scale

part of the heat diffusivity defined by Whent tends to infinity when expressed in units of acous-

tic time, the temperature in the bulk, from E@.2) for T,

NoYoA , YoA ,
= e = ki o = D P PO
PcCpo(70—1) Yo 2 . .
Yo~
This last expression is the first-order expansion of the heat T ~1+'“+ 37 \/_( \/— Wt
diffusivity in the near-critical region:
o 1/2
, +bounded acoustic terms-o
0(1+A/\/_) 734)

pC p0(1+R /CpoM)
and thus grows continuously as the square root of time, since
whereR' = o(yo 1)/y, is the ideal gas constant. Note the acoustic terms remain bounded following the properties
that, accordlng to the van der Waals theory and the meaff the Fresnel integrals. In contrast, in the boundary layer,
field approximation, the heat diffusivity thus tends to zero agrom Eq. (7), the temperature for infinite times counted on

Ju. the acoustic time scale remai@y «); accordingly there ex-
Considering now that, from Ed9), ists a time scale defined b= ¢t, with £<1, for which the
temperature in the bulk is of the same order as the tempera-
\/— ture in the boundary layer:
fim u, = f o WimHg(t—tl, @D e
1/2__
=a= =7= t. 13
F[A‘f &= M—/ﬁ M_I? (13

one can show that this mass addition generates in the bulk
phase an acoustic perturbation of magnitude/? %%
which is u®* stronger than in the perfect fluil6]. The
corresponding solution is

For an ideal gas or a critical fluid far from the critical point,
the time scale is simply=¢t. This means that, for a near-
critical fluid, the cell is thermalized on a time scale much
shorter than the heat diffusion time scale in an ideal gas. The
0 (92 H (t—tg)¥?] time scale itself is much shorter than the diffusion time in the
3 [to] 0 critical fluid (by a factor ). This is the essence of the
so-called piston effect or adiabatic effect, the nature of which
is thermoacoustic and which allows for a temperature ho-
+ F?nzl [S,ﬂ(t,X,O)—H[tO]S,’](t—to,X,O)]) , mogenization over a time scale much shorter than diffusion
- would do. In mathematical terms, it also means that when
time (t) tends to infinity on the acoustic time scale, the match
Co on that time scale between the solution for temperature in the
[t*=Hp (t—t0)*?] bulk and the solution for temperature in the boundary layer is
3\/; no longer obtained. As a matter of fact, the matching condi-
o ) tion between these two solutions is expressed by

2
* ?/221 [Sa(t,x,00=He 1St —to,x,00] |,

12
ag” yo—1

Tg=1+pu+

B I M3/4 Coto

VD,

1/2
a ae”“1 yo—1
=1+ —
pe=1 M3/4 3 Coto VD¢

. fim [T, = (14 ) 1= im T3 (14 0],
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It is indeed fulfilled whent=0(1), since lim_,o[Tg—(1 TPE= 1+ u+ o[ 1— €70 V*Peri0erfe( (yo— 1) VD oy7)]
+ ) ]=(ae¥ ¥4 f(t) means that the first perturbation in ~ © a 7o ¢

; 12 34 BRI
the bulk is of ordelO(ae ™9/ *™), which is zero at the order ngz 1+ a%{l_e(yofl)chinerfd:(,yo_l) /_Dc\/;]}7

a and is thus equal to li;,..[T§, —(1+ «)]=0. This con-
o ! . . (15
dition is no longer fulfilled when—« since temperature in we? 1
the bulk increases continuously a% while temperature in ugt= 7 \/D_C< (70— 1)VD¢
the boundary layer remains of order The necessity to res- Jar

cale time comes from the need to match temperature in the

boundary layer and in the bulk for increasing times. When

we express that matching for increasing times counted in xiCerfd (y 1)\/—\/_])(1 X):

units of the piston effect characteristic time, we find expres-

sion (13) for the characteristic time. From solutions(14) and (15), respectively, in the boundary
The boundary-layer solution for the flow-field variables layer and in the bulk, it is possible to obtain a uniformly

on the time scale as defined in E@.3), which has been valid expression in space which is valid on the piston effect

presented if19], is the following: time scale by employing the classical additive composition

procedure. This procedure consists in forming, for any de-

pendent variable, the function

1— 70~ D™er0 erfdf (o — 1) D \7]

TEE 1+t put+a

X X
S xPE(x,T):xgE(—T X~ lim ng(—,f),
+e[(7071)z+(771) \/D_CVT] M Xl p— o2, x<1 M
o C( By Zz so that, by invoking the matching condition,
Xiverfc (yp—1)yDeVrt ———=
C 2\/D_°\/; ; pe X ; PE
||m XBL —,T|= ||m X y
=1+u+ cﬁ'gf, X/ pp— o0, x<1 Xx—0
5 one can check that the functiof(x, 7) is uniformly valid at
PBE 1— & elDc(vo~ 1P+ (v~ 1)2] the first order(e) throughout the whole domain. The uni-
3 formly valid description of the flow field as given [19] is
. he following:
xi%rfd (yo—1) VDo V'7] fhe following
= p(r)=pg"
xi%rfc | (yo—1)VDev7+ ————
e : 2‘/D_C‘/; pe_ +Pg[ X
T =Tg| —. 7|,
a2 PE M
=1+ 3pBL’
pe[ X
PPE:PBL ; 7')
PEE=3(1+ )~ +ad{1—elo 17
. e 2
Xloerf({(‘yo_l) \/D_c\/;]} UPE_—372 3 \/—[ (1 X) \/_\/_
=31+ )= 3+ e3Py
1B e 70~ 1B
pe QE 2 1 \/_ (
u
B 3/23 \/— \/—\/— v e—Xz//L2/4DCT

2
————(y—1) D _.e(7o= 1) Dert(vo— X/ p
Fa ) NTNT ¢

% (Y0~ 1)?Der

e”ol)zerfL{ (yo— )7+

2\Dcyr Xl
xerfd (yo—1)yDe\1+ —=——= (16)
1 224D .7 2\/D_°\/;
—erfd (yo—1)\Dey/7]+ AL
TNT
IV. DENSITY RELAXATION

sl EE (14) Equations(14) and (15) give a representation of the phe-
3/23\/_ nomena occurring on the piston effect time scale. The solu-

tion is classical and has been written in the case of different
The boundary-layer thickness@(x) on that time scale and boundary heating or sometimes under different formulations
z=12/pn is the boundary-layer variable. that are nearly equivalent. However, these solutions cannot
The solution in the bulk phase is the following: describe the evolution to final equilibrium since we presently
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show that it is nonuniform in space when time tends to in- lim lim (ng_ 1)=ax0
finity on the piston effect time scale. It is thus necessary, in Tz
order to fulfill the matching condition at all length scales, to
; ; : 2 1
introduce a new time scale, which proves to be the heat £ ax=
diffusion time scale. 3 y—1
=lim lim(pg®—1). (20)
A. The density relaxation time scale % X—0

When time tends to infinity on the piston effect time 4 j5 thys necessary to introduce a new time scale such that
scale, that is to say, when—, solution (16) behaves as  gensity is of the same order of magnitude throughout the
follows for temperature, pressure, and fluid velocity: whole domain. If6=¢7 is such a time scale, longer than the
rscale ¢<1), it should be such that density in the bulk and

TP~ 1+ puta— a; ot i(l_e—XZMDCT)’ density in the boundary layer are of the same order of mag-
Dcya (Yo~ T nitude to fulfill the matching between the two domaing.is
o ( 1) itude to fulfill th hing b h d ing.i
thus such that
PE 3 , 3 1 1 a .
pPE~2(1+pu)—g+a—| 1- : —E=a=¢E=p2
21" (yo-1) Va7 w
17 Density relaxation thus occurs on a time scaldefined by
2ac 1 1 1 1 0=u?r=2\ut, (21)
UP ~Z ap - > (1—X) ] ) )
3 ¥ 2\m 72 b L (7—1) which shows that the scale, which isyu longer than the

heat diffusion scale in the perfect gés), is nothing other
_ o x2UDgru? N 1 . than the divergently long heat diffusion time in the super-
(vo—12  yo—17/] critical fluid. This time scale will drive the system to com-

plete thermodynamic equilibrium. Without entering further
into the detailed solution of the equations that describe the
density relaxation, we should comment on some conse-
quences of the introduction of this heat diffusion time scale.

It can first easily be checked that rewriting expressions
(18) as a function of the time variablé by using Eq.(21)
makes the boundary layer disappear since diffusion is ob-
served now on the diffusion time scale:

Note the singular behavior of solutigh7) for temperature at
(x=0, 7=0) through the behavior of the exponential term
multiplied by 1A/7, which tends to + 5(x) when time tends
to zero.

For density, the asymptotic behaviors obtained from Eqs
(14) and(15) are

ng% 1— e E ; i ie—22/4DcT pEE~ 1- ¢ E ! ! e~ 24D
#3 (yo=1) VD¢ V7 # 3 (yo=1VD V7
1o 2 ! X214D .6
2 1 1 1 =l-a—- e c?
il 2o | 5 (o 114D N
3 %71 (31 VmDeVr
e 2 1 1 1
The matching condition between density in the bulk and den- pg~ltaz _ 1- =
sity in the boundary layer is fulfilled on the piston effect time 3701 (y=1) \/; VD¢ \/;
scale, that is to say, wher=0(1). Theequation
2 1
=l+a— +O(aw).
N 3 (v 1)
lim (pgc—1)=0| —| X0 (19 _ o .
X0 M The matching conditions can be written formally as

lim X(x,7)=lim X(x,#6)

T 0—0

means that the density in the boundary layer matches the
density in the bulk since the first perturbation in the bulk
from Eq.(18) is of orderq, that is to say, much smaller than for all dependent variables, so one must consider that Egs.
ol . However, it is clear from the above equatidd$) that, (17) and(18) written in terms of6 are the initial conditions
when time tends to infinity, density in the bulk phase tends tdor the equations describing the evolution on thescale.

a constant of order of magnitude As density in the bound- These initial conditions, although singular fé=0, show

ary layer continues to decrease with time, it becomes of athat the temperature perturbations in the cell decrease on the
order of magnitude such that the matching condition writtenr scale from their initial order of magnitudeto the order of
above[Eq. (19)] is no longer valid since magnitudeau, which is hardly accessible to experiments.
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Similarly, the asymptotic behavior for density indicates that pP(X,0)~1+ ap(X,6),

the density perturbation decreases on thscale from the

order of magnitudex/u to the ordera. « is the order of

magnitude of the density perturbation at the end of the heat- uf(x, )~ ae \/;ﬁ(x,g), (23

ing period if the gas is an ideal one or set very far away from

its critical conditions in the one-phase region. This meangarrying these expansions into the Navier-Stokes equations
that this period is accessible to experiments, but the singulgeads to the following system of equations:

behavior should be overcome if a valid description of the

density relaxation is to be used.

B
B. Description of density relaxation on the @ scale a0 ox
When rewritten as a function of the variallethe expan-
sions of the hydrodynamic variables fer-« as given by P
Egs.(17) and(18) become a_:(),
X
(24)
3 9 3 3 1 1 1
p~-(lt+tu)——-ta-—ap— - ; 34dU T t
2 8 2 2 yo—1 D P p L0
1 1 1 2 ~_ 3% 9~
T~l+a—a —(1—e ¥ 14Dct), P=3T+3p,
* b vo=1 Ve o

(22)  which must be complemented by singular initial conditions
given by the limits ford— 0 of expression$22), and by the
U — a6 \/;51 1 1 1 D0 following boundary conditions:

7D, vo— 1 2X¢

T=0, T=0 atx=0,

2 1 ;ie_XZMDce_l _
3% 1| VmD, V0 7
5:0, U=0 atx=1.

p~l—«a

According to the matching principle, which imposes for

p, T, u,andp . o
It must be emphasized here that the energy equation in Egs.
(24) involves both the compression term of pressure forces
lim X(x,7)=lim X(x, ), and the diffusion term. The hypercompressibility property
s 00 thus influences the bulk equations even though, on earlier

time scales, it acts on the bulk only through boundary match-
Egs. (22) give the initial conditions for evolution on thé ing, i.e., there is a strong mass addition in the bulk but un-
scale. They are the legacy of the piston effect on the diffuchanged acoustic equations compared to the ideal gas. This
sion scale: a strong depletion in the heated wall region and & a consequence of the fact that, at earlier times, the bulk
homogeneous overdensity in the bulk region. They are alsprocess is governed by acoustic isentropic modes only and
singular, i.e., they can be written as generalized functionsthus by the isentropic compressibility, which does not show
The one forp is, for example, a dramatic singular behavior. On the diffusion time scale, the
bulk phase no longer undergoes an isentropic process and the
isothermal compressibility acts on the bulk phase as it did in
the boundary layer only on shorter time scales. The system
of equations(24) is solved by means of the Laplace trans-
form and only needs the use of classical transform tables.
Equations(22) also indicate that the solutions that describeDetails are given in the Appendix. However, we can already
the evolution of the legacy of the piston effect on thecale ~ See that density is driven by a pure diffusion equation, which
must be sought under the form of the following asymptoticiS Striking for a pure fluid:
expansions:

l 0 z2 1 5 1
im p(x,0)=— 5 ——=[8(x)—1].
M)p( ,0) 3 70_1[ (x)—1]

J 32 1
P b_2_~ 5.

2
~ —— D —=—
TP(X,0)~1+ p+aHg(0) + apT(X,6), 90 Cox? 3 y—1

The solution obtained for the hydrothermodynamic variable
PP(X,0)~5(1+u)—§+3aH(0)+ auP(x,0), can be written as follows on the scale:
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FIG. 1. Evolution of hydrodynamic variables within the sample
as given by the solution valid on the heat diffusion time scédg:
density, (b) temperature, an¢t) velocity.
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T(x,0)=2—— >, exp(—n?w2D.0)
Yo~ in=1
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|

Yo—1

[

1
1-2Y, exp(—n?m2D.0)
n=1

Yo—1

P(x,0)=

|
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(25
2 o]
P(x.0)=3 (1—2;::1(—1)n
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The functionsp, p, T, andti that are plotted on Figs.(4)—

1(c) show clearly the singular behavior of the solution for the
0 scale whend— 0, which can be removed by applying the
additive composition matching procedure to the solutions on
the 6 and rtime scales. This shows that density relaxation on
the long time scale is that of an initial Dirac-like strong mass
depletion atx=0 in a medium initially not at equilibrium.
This configuration is the remains of the temperature inhomo-
geneities left by the piston effect, which diffuse to complete
equilibrium on the long diffusion time scale. These functions
can be checked to smoothly match with expansids and
(18) when 6—0.

C. Uniformly valid description for boundary heating:
The whole field

In the preceding sections, three characteristic times have
been mentioned: the acoustic time scale, the piston effect
time scale, and the heat diffusion time scale. The acoustic
time scale does not intervene directly in experiments on tem-
perature or density relaxation, so we shall focus our attention
on the piston effect time scale and the heat diffusion time
scale only. The additive composition procedure is used to
obtain a uniform description in time from the initial heating
to complete equilibrium. 1X denotesu,p, T, or p, then the
additive composition procedure consists of constructing the
following function that is uniformly valid at any time scale:

6
X(x,0)= xF’E( X, 7= F) + XP(X,0)

lim XP(x,0)

6—0

lim
0/,4;2—>90,0<1

XPE(x, 7)" (26)

Both limits in this formula are, of course, equal because
matching was imposed between the descriptions obtained on
different time scales. Thescale(piston effect appears to be

an initial boundary layer in time for the heat diffusion time
scale: temperature relaxation by the piston effect occurs
within an initial boundary layer in time, the thickness of
which is u?, i.e.,

In a similar way, the uniformly valid description in space has
been written as a function of the largest space sgalEhe
uniformly valid description in time is expressed here as a
function of time counted on the largest scale in tiftiee heat
diffusion timg. The analytical expressions for the hydrody-
namic variables that are valid over all the length and time
scales are thus
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The pressure being homogeneous for all times, there is only The heating function used is a boundary temperature in-

an initial boundary layer. crease ofAT'=0.02K in At’=0.1s, that is to sayg=6.6
X105, t,=2.8x 10°. The heating is thus over very early on
V. RESULTS AND DISCUSSION the piston effect time scale, which is defined by Et3),
) since the piston characteristic time is of the order of 0.442 s,
A. Typical values for the parameters which has to be compared to 0.1 s of heating time. The

In what follows we consider parameters that Correspond}hal’actel’istic time for heat diffusion in a critical fluid set in
to experimental conditions not very close to the criticalthe initial conditions described above is equal to 16 700 s
point, but the parametex can be changed if necessary. The (calculated as ?/x’) whereas it is 3076 gcalculated as
parameters used are sample cell 4 in length, and L% () in the ideal gas.
sample fluid, carbon dioxide:
B. Orders of magnitude
ko=3.25x10"8 m?s™L 1»'=7.3x10"8 m?s; _ _
1. Time regions

pe=467.8 kg m?3: T.=304.13 K. The orders of magnitude of the time periods that have

been pointed out compare well with the one found by Onuki
The initial conditions are and Ferrel[10], the slight differences coming from the fact
that the definition of orders of magnitude may differ from

T'=T,+15 K; p'=p, one approach to the other. We shall give the name “piston

effect period” to values of time such that
and the corresponding parameters

0
D.=1.15, Pr=2274, §=2274<10°%, pu=5%10"2 O<z=t
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The matching with the acoustic period could also have been
performed on the basis of the available solutions on the dif- 5 4 3 2 4 0 12
ferent time scales but this would not have provided new R AR O AL WAL AR AL ML
insights into density relaxation. e zﬁ[mm@wﬁ [memsmq
After the piston effect period comes the overlapping pe- F \ De%

riod of time, or intermediate period, which corresponds 1 oy L= pertuation |
mathematically to the matching zone between the solutions 1 ; \/
that describe the evolution on thescale(piston effect and zp \
on thed scale(diffusion). This period is defined by values of u N\
time 6 such that 4L

0 L

—>1 and #<1. °

o

FIG. 2. Evolution of temperaturésolid) and density(dashed

Depending on the location, this period of time is centered oPerturbation in the sample cell.

different values of time but the above asymptotic relation is . ) o L
always fulfilled. phases during the piston effect period is an acoustic field

After the overlapping period is over, the long diffusion 9enérated by mass addition from the expanding boundary-
period starts, which is simply defined by layer region. As temperature and density pgrturbatlons in an
acoustic field have the same order of magnitude, the density

6=0(1). perturbation term in the equation of state, which is multiplied

by the reciprocal of the isothermal compressibility, is negli-
gible compared to the pressure and temperature terms. Den-
) . _sity and temperature in nondissipative regions are coupled
The orders of magnitude of the different dependent varipnly through velocity and the mass conservation statement.

ables as they vary on the different time scales can be dison the diffusion time scale, when diffusion fills the whole

cussed. We shall comment particularly on density and tempylk phase, heat diffusion is again the driving force in the

perature. It should be recalled first that, due to the divergingame way it was the driving force on earlier time scales in
isothermal compressibility, the order of magnitude of thethe houndary layers. So density and temperature perturbation
density perturbation is greater than that of the temperaturgave huge differences in orders of magnitude and are thus

perturbation by a factow. During the piston effect time directly coupled in the equation of state.
scale, after the wall heating has been stopped, the tempera-
ture inhomogeneity is of order, while the density inhomo-
geneity is still of ordera/u. At the end of the piston effect
period(0.44 s under the present conditipras shown by Eq.
(22), temperature is homogenized at orderw while the
density inhomogeneity has relaxed to the order of magnitude Both temperature and relaxation effects are simulta-
« it would have if the fluid were an ideal gas. Then, in theneously present but they intervene at different orders of mag-
heat diffusion periodreferred to a unit timefo4 h and 37  nitude in a given time frame. The evolutions of the normal-
min under the presenﬂy chosen typica] Conditbmsmpera_ ized density and temperature inhomogeneities within the
ture and density inhomogeneities relax diffusively to com-sample are defined by

plete equilibrium. This means that the heat diffusion period,

which evens out the very small temperature inhomogeneities Ap= w and AT
left by the piston effect, involves hardly measurable tempera- a ed

ture differences. To a first approximation the piston effect i ) .
relaxes temperature first while heat diffusion relaxes densit@nd plotted on Fig. 2 on a log-log scale as a function of time
later on. Density and temperature thus reach a given smafounted in units of the heat diffusion time. _
value considered as a relaxed value on different time scales 1he normalized inhomogeneity would be of order 1 in an
and by different mechanisms. This is why one can illustratddeal gas. Itis clear first that density and temperature always
this feature by saying that the two relaxation processes arée€p a ratiou because of the diverging compressibility. In
uncoupled in near-critical fluids. Of course, the variablesthe time period v_vher_l Solgtlons on both the piston effect time
themselves are still coupled but differently from the wayScale and the diffusion time scale are simultaneously valid,
they are in ideal gases. This is indeed the case when orif€ time variable satisfying the condition

looks at the approximate equation of state in the nondissipa-

tive regions(the bulk phase on the acoustic or piston effect ﬁ>1 and 9<1

time scalek It can be written as follow§16,20: z '

2. Orders of magnitude of the dependent variables

C. Evolution of density and temperature inhomogeneities
in a near-critical 1D sample from the initial heat deposit
to complete equilibrium

1+ utety—T(L6)

v OP=a 8T, which can be considered to extend fraw2.5x 107 ° to 6
=2.5x10"1, the density perturbations become of order 1,
which means that there is a real uncoupling of temperaturgrhich means that they take the value they would have if the
and density in the equation of state that is specific to nearfluid were an ideal gas or at least a normally compressible
critical fluids. The driving force for the evolution in bulk one. At the same time, temperature has reached the order of
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FIG. 3. Density perturbation in the sample as given by the uni-
formly valid solution. FIG. 4. Velocity in the sample as given by the uniformly valid
description.

magnitudeau, which can be considered as the new equilib-sgmple, the velocity is negative everywhere, there is no
rium at first order. In that time frame, density and temperaionger a piston effect, and diffusion becomes the only driv-
ture follow the matching function in time of E§L7) written ing force.

atx=0 and thus keep decreasing as/a/ which was men-

tioned as the bulk behavior by Onuki and Ferfre0]. We E. Time history of density at different locations in the sample

shall see later that the present theory leads to a different . . . .
P Y In this section we explore the evolution of density over

behavior in the bulk. For larger values 6f the density in- . . . . .
. ) . t|5ne at different locations in the sample by studying the nor-
homogeneity undergoes exponential decay as also predicte

by Onuki and Ferre[10] and detected as a “long diffusive Malized density perturbation as defined by
tail” in the experiments by Boukari, Pego, and Gammon p(x,0)—1
[12]. This diffusive decay thus occurs in an isothermal me- Ap= .

dium at first order. @

Even if some locations are below the resolution in space that
it is possible to achieve in real experiments, we shall present
them to back up the coherence of the whole theory. As the
The density profiles are plotted on Fig. 3 for different piston effect time scale appears as a boundary layer in time,
times from the late piston effect period€2.5x10 °) to  the results are presented in a log-Cartesian frame. The dif-
the early diffusion time scaleé=10 2). These values of ferent features concerning the density time history at a given
time cover the intermediate period. The deeply depleted ardlacation will be correlated in the next section with those
located near the heated wall for small valueséotorre-  concerning the velocity field.
sponds to the thermal boundary layer that lost mass during
the piston effect period. As time increases, the diffusion 1. Time history of density at a point located in the middle
depth is wider and back-diffusion begins to fill the depleted of the bulk (x=0.5)

boundary-layer area again. It should be noted that the bulk Figure 5 represents the time history and shows that, on the

region contjnues to bg c'ompres.sed bep_ause de.nsi.ty in ”Eﬁston effect period, density increases according to the mass
bulk keeps increasing in time. This specific behavior is dem-

onstrated by the uniformly valid description that accounts for
both the piston effect and bulk diffusion in the intermediate

D. Density profiles within the 1D sample

period of time. This means that at the same time as diffusion 2§
begins driving the system back to equilibrium in the 1.75¢
boundary-layer area, the piston effect keeps driving the sys- 1.5F
tem out of equilibrium by compressing the bulk phase. It can 1.25E
be checked in Fig. 2 that the bulk density instead decreases 3 4F
monotonically in time when described by the solution valid = g
in the heat diffusion time period only. The velocity plots for 075E
the same values of time as the density profileig. 4) show 05
that a return flow(negative velocityappears in the boundary 0.25F

layer region while the velocity is still positive in the bulk,
which confirms that there is still mass addition and thus a ‘
piston effect. Accordingly, there is an inversion of the veloc- -
ity gradient in the sample which will be shown, in the next
section, to play an important role in the relaxation process. FIG. 5. Evolution of density at=0.5 as given by the uniformly
For larger values of time, when one enters the diffusion pevalid description and plotted as a function of the time in units of
riod, the diffusion area reaches a macroscopic scale in thkeat diffusion characteristic time.
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FIG. 6. Evolution of density at=0.1 as given by the uniformly FIG. 7. Evolution of the density at=0.01 as given by the
valid description and plotted as a function of the time in units of uniformly valid description and plotted as a function of the time in
heat diffusion characteristic time. units of heat diffusion characteristic time.

transfer from the boundary-layer region to the bulk. Then, ineven to negative values, since this station now belongs to the
the intermediate period, the density drops down suddenlyhermal boundary layer. Continuation of the evolution for
because the piston effect ceases and the return flow refills thenger times displays another difference from that in the
depleted area near the origin. The density drop follows theyulk: when the return flow appears, density again increases
matching function given by Eq22) for p. This function has  diffusively by following the long diffusive exponential tail to
also been plotted in Fig. 5 with the solutions that are valid orreach the final equilibrium value again.

the 7 scale(piston effect and on thef scale(diffusion) to

illustrate the concept of asymptotic matching and make 3. Time history at the heated wall

things clearer. In particular, it is visible without further dem-

onstration that the common part of the three functions is the AL ihe.heli‘lte.d WS"’ Iats pIotlted In F'g.'t % (Ijen5|t3t/ w;k(ire{ahses
increasing branch of the matching function monotonically In absoluteé value since it belongs to the ther-

mal boundary layer at all times and thus never experiences

the piston effect.
i 1 e—x2/4DC0_ 1
Jm Do

F. Density and velocity in the sample:
An expansion-compression zone traveling

given by Eq.(22) atx=0.5. One can thus say that, when the o X
at the diffusion velocity

thermal boundary layer passes a given location within the
bulk, it can be detected by a steep decrease to the initial The preceding section can be summarized in the follow-
equilibrium as (11/5)e*x2/4Dc0. For larger values of time ing way: density only increases monotonically in time at the
referred to the diffusion time6), the density continues to heated boundarin fact it decreases first during the heating
relax monotonically. This part of the curve, which extendsperiod, which is not visible on the heat diffusion time sgale
approximately fromé=1 to infinity, represents the long ex- it increases, decreases, and increases again in time when
ponential diffusive tail that drives the system back to equi-close to the heated boundary; it only increases and decreases
librium. One should remember here that the characteristié? time when far in the bulk. In order to obtain a better
time is 4 h and 37 min. This shows that the intermediate

region plays an important role in the density relaxation pro-

cess. 50

2. Time history at points located close to the heated boundary

The time histories of density at two measurement stations
located atx=5x10"2 and 0.1 as given by our analytic so-
lution are plotted in Figs. 6 and 7, respectively, in the same
system of coordinates as in Fig. 5. The evolution at these
locations, in contrast with that in the bulk, is no longer

monotonic. Density still experiences an increase first because :

the piston effect still has time to increase it by isentropic -250F

compression before the diffusion layer extends to the loca- 3005 o
tion. The increasing period is longer when the location is T4 32 0 0

farther from the boundary since it takes a longer time for
diffusion to reach it. Then, as time goes by, heat diffusion FIG. 8. Evolution of the density at=0 as given by the uni-
reaches the location under considerati@f course much formly valid description and plotted as a function of the time in
earlier than in the bulkand density thus decreases strongly,units of heat diffusion characteristic time.
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peared, in the same way as it loses its expansion branch very
close to the wall. The point beyond which the density history
becomes a simple relaxation in the bulk phase is given by the
location where the minimum in the velocity profile disap-
pears. This means that, beyond this particular location, the
bulk never experiences the initial diffusion boundary layer
but only the leftward diffusion that drives the bulk back to
thermodynamic equilibrium.

VI. GENERALIZATION TO REAL CRITICAL EXPONENTS

As the sound velocity tends to zero when the critical point
is approached in the supercritical region on the critical iso-
chore, accounting for the variations of the specific heat at
constant volume requires a definition of nondimensional time

as follows:
3 t/
oot | [omoams t=ir =L or TeCl/Cl,
(b)m3 e X'O}sL s whereC!, is the specific heat at constant volume far from

the critical point. The nondimensional equations of continu-

FIG. 9. Evolution of density and velocitya) Density as a func- ity, momentum, and energy can be written as

tion of time at various locations in the samp(b) velocity profile in
the sample at the moment when density is minimum at the location 7 _
under consideration. NCro/ Copit (pu)y=0,

understanding of the processes involved, we must correlate c c _ 1 4

L : ST T V Uit pul,= — — P+ 38Uyy,
the density field with the hydrodynamic velocity field in the v~y PR PEEX R
sample.

From Egs.(27), which give the uniformly valid descrip- — JP
tions, we plot in Fig. ga) the time histories at some loca- VC,/Cio(pTetpuT) == (7~ DT| =5 Ux
tions, among which are those mentioned in the preceding P

section. When measurement stations farther from the heated Yo [N\’ N
wall are considered, the minimum is less and less pro- te Pr. (7 Tyxt IV Ty
nounced and disappears completely, giving way to a simple 0 0 0/ x

decay to the initial equilibrium. We also plot in Fig() the 4
velocity profiles within the sample at the moment when den- + = eyo(vo— 1)u)2(.
sity is minimum. For the measurement stationsxat0.05 3

X : ” . . aP
gradient is positive, corresponding to an expansion zone, p_p.=|— (T-T)+ (p—pi),
passage of an expansion-compression zone traveling rightz| pehaviors are given by
first drops since the fluid is accelerated to the left; then, as op Mo

and 0.1, the velocity profile in the sample exhibits a mini- h i f state i itten in its i ed f

mum located at the measurement station under consideratio-rq. € equation of state 1S written In Its linearized form as

For values ofx greater than the given location, the velocity Jp

while for smaller values ok the velocity gradient is nega- aT o1 o &P)T T

tive, corresponding to a compression region. The density t

variation in time at a given location is thus the result of theare the subscriptdenotes the initial conditions. The criti-

ward at the diffusion speed, the driving force of which is the

diffusion of a given initial density perturbation in a nonequi- JP G

librium homogeneous hypercompressible medium. Density C,/IClo=p" 7, (—) =u”, ( )z,uc.
T

the expansion-compression zone propagates rightward, a o . .
compression occurs since the velocity must be zero at the leff! order to avoid misunderstanding, the order of magnitude

boundary and density increases again. While traveling right?f the temperature increase at the boundary is denoteg by

ward, the depth of the velocity minimum decreases, eventdl this section.

ally to disappear completely. In fact, the low-density zone Similar arguments to those used for the van der Waals gas

created at the heated wall is filled, while moving rightward,analys's lead to the following definitions of the time scales:

by the bulk density excess. It ultimately disappears before ,

reach'ing. the other end of the sample cell. . 7_28(3_”) ()‘_, (m)a/zt
This is why, for the measurement station locatedxat P )\ \g e

=0.5, the evolution is again a monotonic relaxation, since

the compression branch of the velocity profile has disapfor the piston effect time scaleand
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The solutions on the piston effect and density relaxation x/
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The introduction of real exponents thus does not change the
way the functions depend on space and time but only
changes the order functions. It can be checked that vdhen

+ - — — ’ . .
2\/Dc\/; v, andc take their van der Waals values, i.e.=0, y=1,
andc=1, one again finds the expressions written in the pre-
Pee=3(1+p)— 2+ 3{1— e(70~1)?Dcr vious sections. In the same way as for the van der Waals gas,
a uniformly valid expression can be obtained, which is ex-
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Xi%erfd (yo—1) VDOl u? ™ + —— | + pu %= (1— (70~ D*Dctlu
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Xi%rfd (yo—1) VDOl w? ™))+ ou™ “3 o 1)('}[ VD22, (—1)"e ™™ Pl cognm(1-x)]],
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We thus observe that the structure of the solution is unyet fully separated in terms of time scales and thus make
changed. Even if the order functiofiwhich are the coeffi- comparable contributionf21]. For the second, the initial
cients that make the asymptotic sequence and which deperdnditions are very close to the critical point so that super-
on the initial conditionshave changed, they lead to a scaling critical fluid hydrodynamics is driven by acoustic modes.
of the physical variables that keeps the same order of magdnside this close neighborhood of the critical point, puzzling
nitude. mechanisms have been put forward theoretically, such as
heat propagation at the speed of sofiad] or the inversion
of acoustic wave reflection rulg22,23.
VII. CONCLUDING REMARKS

The present hydrodynamic theory of density relaxation in APPENDIX

nearly supercritical fluids based on singular asymptotic ex- Putting expansion&23) into the Navier-Stokes equations
pansion techniques gives a uniformly valid analytical de-leads to the system of equatio(®4). The initial conditions
scription in space and time for fluid velocity, pressure, dengre given by the limits fod—0 of the perturbations in Egs.
sity, and temperature following a temperature step at th€22). These limits being singular, it is easier to perform the
boundary. It confirms that the process driving density back tdollowing change of variables:

equilibrium involves two time scales, the short, piston effect

time scale and the long, heat diffusion one. The matching 3 1 1 1
procedure allows the initial conditions to be obtained for the p=p--—m———,
long lasting density relaxation period. These initial condi- 2 -1 \/_\/— \/—

tions reflect the way the weakening piston effect gives place

continuously to diffusion. The specific structure of the hy- A= 1 1 1 g
drodynamic field that was essentially thermally equilibrated T=T- W m ﬁ(l_ e ),
by the piston effect involves a homogeneous bulk phase and 0
a strongly mass-depleted area in the slightly hotter boundary

region. It evolves diffusively and density relaxation is shown 0=T— E L L 7x2/4:<06’)
to be governed by a damped expansion-compression zone 3 \/; ko Yo~ 1 /632 ’
which slowly propagates in the bulk at the diffusion speed.

After this theory was completed, we observed that some o 1 1 1 ,
earlier, unpublished measurements look like the present be- p=p— =z ——| == ——=e X Mrl_1],
havior. The generalization of the theory to real critical expo- 31 \/;\/K—o @

nents also given in the paper allows for future data analysis
or experimental investigation. which leads to the equations
However, this description becomes invalid when the ini-

tial conditions are either far from the critical poif21] or &_p &_u
nearer than a certain vali20]. Our theoretical efforts will a6
thus be devoted to exploring these two limits. For the first, .
the initial conditions are far from the critical point so that the P _ 0

transport modes, i.e., adiabatic and entropy modes, are not X
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390 ATt 3a0 ATt
7 o Ko = 51 00, 3o T T
2 X X 1 2 ox X y—1
A 3%, 9~ A—3T4 9%
p:§T+ZP1 p_2T+4p-
with the initial boundary conditions After some algebra, the following solution is obtained in
Laplace space:
9=0, T=p=p=0=0,
p=p . 1 1 1 (cosr(\/alx/x—o(l—x))
~ . | [ —
x=0, T=0=0, 70~ 1 Vo Vm| sinh(Vm/ Vo)

JT 1 1 e Mot cosh{v/m/ \/K—O))

x=1, =— ; -
x  2Jmd vl 6% sint(ym/ yxg)

. 2 1 1 Jm costivm/Vio(1-x)]
=- 1 P=— — ,
3Vmk Yo ¢ 3y,—1m \/K—o sinh( \/E/\/K_o)
The singular behavior of the initial conditions has been trans-
ferred to the boundary conditions. The Laplace transform p:z 11 ﬁ costiym/ Vo)
technique leads to the following system of equations: 3 v0—1m\ Jk, sinb(Vm/Vkg) |
mit g 21 it ym/ Vico(1- )]
P ox =5 ——| (1-x)~— : :
371 sinh(\m/ ko)
@:O The inversion of these with the aid of elementary tables
ax gives the solution on thé scale.
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