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A computational treatment of the constitutive equations of nematodynamics, based on the Leslie-Ericksen
approach, is presented and discussed for a rotating planar nematic sample subjected to a constant magnetic
field. The dynamics of the velocity and directorn fields is taken into account exactly. Coupled partial
differential equations suitable to be solved numerically are worked out, in terms of derived functionalsdf
n and of their spatial and time derivatives. Time-dependent patterns of the director are obtained using a
finite-difference scheme in a spatial polar grid. Several experimental situations are analyzed, corresponding to
common experimental setups: continuously rotating samples for different values of the rotational speed; 30°
and 90° step-rotation experiments. A comparison is made to existing approximate treatments. Dependence
upon the sample dimension is also discussed.

PACS numbgs): 61.30.Gd, 81.10.Jt, 83.20.Jp

[. INTRODUCTION believe that the task of solving numerically the constitutive
equations for NLS’s is worthwhile, despite its intrinsic com-
Liquid crystals are well known examples of non- plication. In this work, it is our purpose to present such a
Newtonian fluids, which can be described by augmented hytreatment at least for the case of bidimensional systems, hav-
drodynamic equations governing the time evolution of fielding in mind as a first and direct application the interpretation
variables associated with complex viscoelastic propertie@f experimental measurements of viscoelastic coefficients in
[1,2]. The richness of observed and/or predictable flow patSPinning samples in cylindrical tubes by means of NMR,
terns and the desire to rationalize measurements of viscosif§?€0-NMR, and ESR experiments. o ,
coefficients using a number of experimental techniques Iikef According to the hydrodynamic description of NLC's
theology, nuclear magnetic resonardMR), electron spin 3,4], the fIU|d_ is descrl_bed by two vector flelds_ in space,
resonanc€ESR), and dielectric relaxation imply the need for nqmely,_ the dlrector_ unitary vecte(r,t), V\_’h'Ch gives the
a complete methodology for solving constitutive equations oP“?mat'or:j qf the dl[jecr:or folr the nematic phase at' space
liquid crystalline phases, in a way comparable to analogou?omtr and timet, and the velocity vectov(r,t). Constitu-

numerical and analytical treatments available for Newtoniar] « .. Leslie-EricksenLE) equationg3,4] provide a closed set
. Y . i partial differential relations which are in principle able to
fluids based on Navier-Stokes equations.

L , . describe the fluid in both space and time, if explicit boundary
Nematic liquid crystalSNLC'’s) are the first example of 5,4 initial conditions are given, and a defect-controlled en-
anisotropic fluids studied by means of hydrodynamic equagjronment is assumed. We shall consider in the following a
tions, and any computational treatment for studying the som,ch studied case, namely, a rotating sample in the presence
called nematodynamic equations is bound to be of considegf 5 constant perpendicular magnetic field. A tube containing
able interest. First of all, a vast amount of existing 3 nematic liquid crystal is spinning about its vertical symme-
experimental data is available for nematic samples, whichry axis, while a uniform magnetic field is turned on in a
evidently depends, for a full understanding, upon the comhorizontal plane. Equivalent or related rheological measure-
plete computational solution of the constitutive hydrody-ments with analogous geometrical setups have been per-
namic equations. Secondly, an effective computational treaftormed in the past, starting with Tsvetkov and Sosnowskii
ment would be of importance not only for the comprehensiori5], who actually used a stationary sample in a rotating mag-
of the dynamics of nematics themselves, but also becauseriktic field. Gasparoux and Prost measured the torque exerted
might eventually be extended to more complex liquid crys-by the fluid on the cylinder as a function of the rotational
talline phases, e.g., biaxial nematic, smeétjor smecticC  speed6]. Leslie, Luckhurst, and Smith performed studies on
phases. Existing treatments of hydrodynamic equations armhe electron spin resonance spectrum of a paramagnetic
usually limited to stationary systems or they neglect partiallyprobe dissolved in the nemati@]. Emsley, Khoo, Lindon,
or completely the backflow effects related to the coupling ofand Luckhurst measured the deuterium NMR spectrum for
director and velocity field dynamics. For these reasons, wéhe nematic phase of a partly deuterated liquid crystal as a

function of sample spinning spee@8]. Kneppe and
Schneider measured the rotational viscosity coefficient of the
*Corresponding author. Email address: A.Polimeno@chfi.unipd.itiquid crystal[9]. Experiments related to fixed geometries of
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the initial orientation of the director in the bulk with respect help the determination of viscoelastic parameters, using any
to the magnetic field have been conducted, more recently, bgf the experimental techniques already mentioned. Very re-
Martins and co-workergl10]. cently, we have started a systematic exploration of dynami-
Recently, substantial advances in the definition and treatcal regimes predicted by numerical solutions of the LE equa-
ment of theoretical models for the comprehension of vistions in planar NLC samples. Preliminary solutiof9]
coelastic properties of NLC's have been made. Although thigvere presented for approximate treatments of systems in sta-
paper will be concerned only with a computational descrip_tionary_ rotation, without backflow effects a.nd imposing a
tion based upon standard LE equations, it is convenient tgefect in the center of the sample. Here we |nt_end to present
summarize someecentcontributions to the understanding of & more advanced treatment of the LE equations, which is

viscoelasticity in nematics, at both the molecular and macro_esse_ntially exact, vv_ithin the limitation of having the sample
nfined to a two-dimensional geometry.

scopic levels. Treatments based upon hydrodynamic modef€ h ) .
P b y y The paper is organized as follows. In the next section the

were presented in the last few years by Ziherl, Vilfan, andLE i brief] ed and di 4ns
Zumer[11,12, to describe director fluctuation in confined equations are briefly summarized and discussed. in Sec.
Il algebraic manipulations are introduced to cast them in a

systems. Mechanical stability conditions in the annular ge- ble t tational soluti q th twal
ometry of a NLC sample were studied by, among othergOrrn amenablie to computational soiutions, an € actua

’ - : computational methodology is presented for calculating tran-
Eglgﬁ;y ;rﬁgrgﬁ’sé?g;zu\g%? al’ZI:vr\;dprcS)gclagt’cil;? ?glsini(rj] cbgn- sien'g di(ectpr patterns. Results.concerning spatial. and angu-
nection with surface anchoring energy, Wére consideredrar distributions of the director f|elq are d|scus.sed in Sec_. v
from different points of view, by Tsuji and ReyL5], Dol- ora S“?‘”d"?“q low molecular We'ght NLC.' F_Inally, a brief
matova and Kozhevnikoy[16], and Porte, Berret, and Discussion is included to summarize our findings.
Harden[17]. Simulations based on the LE equations of bi-
polar droplets were carried out by Chan and RE§], while Il. LESLIE-ERICKSEN EQUATIONS
approximated numerical treatments of the LE equations for
rotating planar NLC’s were recently presented by Polimena,
and Martins[19]. Molecular interpretations of viscosity co-
efficients have been given, for instance, by Larson and Ar- R dv
cher [20], Chrzanowska and SokalskR1], Zubarev and [V-O']Zpa, (N
Iskakova[22], Kroger and Seller§23] and Fialkowski[24].

General viscoelastic theoretical investigations are due to .

Volino and co-worker$25]. G+g+[V-@]=0, 2
Direct measurements of viscoelastic parameters in NLC'’s ) ) )

have also been increasing in number. Ireail. employed ~ Where in the velocity equatiofl) the unknown vectov(r,t)

transient current techniques to determine rotational viscosiS the velocity field of the fluid at point and timet, p is the

ties of NLC display devicef26]; Cipparroneet al. used op- bulk density, o |s_the stress tensor, ar_ld body forces have

tical measurementf27]; Mather et al. investigated stress- P€en neglected; in the director equati) the unknown

oscillation damping with polarized light28]. Rheological unltary.vectom.(r,t) is the director fleld.of the fluid gt point

investigations of viscoelastic micellar solutions were con-' @nd timet, G is the external force acting on the directgr,

ducted by Cappelaere and Cresg@9], while Berret studied is the internal director body force, an® - 7] is an elastic

wormlike micelles[30], and Sequeira and Hill considered term. Notice that inertial terms have been neglected in the

particle suspensions in nemati&i]. Electrorheological ex- director equation. The material time derivative is defined

perim_ents were condu_cted, for instance, by K_uhnauas d/dt=dlot+v-V; if M is a generic matrix we define

Schmiedel, z_ind_ Stannariyi82] ar_1d by Yao_ and_Jamleson_ [@_ M]=M The stress matrixr is written as

[33]. Magnetic field effects used in connection with rheologi-

cal measurements are currently much employed by many oji=— P& — TNy, + 0, 3

researchers. Recent data on low molecular weight NLC’s ’

obtained with NMR proton techniques are given, for in- o

stance, by Gotzig, Grunenberghassanein, and Ni@&gkand J

Grigutschet al. [35]. Extensive studies on rotating samples + asNinAgi+ agnin Ay . (4)

with negative anisotropy of magnetic susceptibility were re-

cently performed by Ciampi and EmsI¢$6]. Viscoelastic  The internal director body forcg is

properties of biomembranes have been studied by Althoff

et al.[37], while polymer nematics were studied by Martins IW

and co-worker$10,38 and Diao and Berry39]. gi=ANi— an, YiNi= v2Aihi, ®)
Despite the relevant amount of theoretical and experimen-

tal work concerning flow properties of NLC’s, a thorough where the following vectors and matrices are defined in

analysis of patterns obtained within the framework of the LEterms of the components of the velocity and director field,

equations, when the full coupling between velocity and di-and of derivatives of the elastic energy:

rector fields is taken into account, appears to be still missing

[40]. Backflow effects are especially important when sudden Aji=3vjitviy), (6)

rotation impulses are impressed on NLC samples, and a bet-

ter understanding of simulated director patterns could greatly wji= %(v“ —vi ) (7)

The Leslie-Ericksen equations for an incompressible nem-
¢ are summarized in this secti@,4]:

jiie

!

i = alnknpAkpnjni + a/zani + a3niNj + a4Aji
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N _dni a1 4 B 1
i=gqr @ikNk (8 agz v orrve=0, (16)
OW taking into account that the pressure gradient is zero afbng

(9) for a steady-state Newtonian cylindrical sample. By assum-
ing that at the boundaries the fluid follows the rotating cyl-
inder, one gets the well known reswly=Qr or v=QXr,

i.e., the fluid is behaving as a rigid body. Notice that in Eq.
(16) the dependence upon the viscosity coefficieptdisap-
pears due to the steady-state condifitl.

Tii= .
n &ni,j
The elastic energy itself is defined as

W: %Kll(ﬁ n)2+%K22(n€X n)2+%K33(nX€X n)2

(10)
in the spherical approximationK(,=K,,=Kz=K) the Il. A COMPLETE TREATMENT FOR PLANAR SAMPLES
elastic energy is reduced W=Kn; ;n; ;/2. The coefficients We shall consider in this section the definition of a set of
a; (i=1,...,6), y1, andy, in expressiong4) and(5) are  refined equations for the treatment of cylindrical rotating
viscosity coefficients; the following relations hold: nematic samples, without significant additional approxima-
tions, besides assuming a bidimensional geometry. The fol-
1T a3 @z, 1D lowing assumptions will be made in the rest of this section.
Assumption.lIn an infinitely long cylinder, if no external
Y2=azta,=ag— as, (12 flows are imposed along theg axis, the dependence wfand
n upon ther; coordinate may be neglected.
Y3=agt as. (13 Assumption Ll Components of andv along thee; axis

are set to zero.
From Eq.(12) one can see that there are only five indepen- A less relevant approximation, namely, the spherical
dent viscosity coefficientgl,2]. Finally, the functiong(r,t)  treatment of the elastic tensor, will be made mostly for sake
(pressurgand\ (r,t) are indeterminate Lagrange multipli- of simplicity. Inclusion of the complete elastic tensor is
ers deriving from the constraints straightforward, however. We start to consider the velocity
equation(1), and we rewrite explicitly the tensar:
V-v=0, (14
o=—-pl+o*+ o, 17
n-n=1. 19 \where o= — Nk, . According to assumptions | and I,

. . . . . the velocity field can be written in terms of tis¢reamlines
As outlined in the Introduction, in this work we shall be functionW (ry,r,t) [41,42;

concerned with the application of LE equations to the inter-
pretation of dynamical patterns developed by the director o
field in samples of nematic liquid crystals in tubes subjected -

to magnetic fields and to some given profile of rotation. A ora

point in space is identified by the vectorwhich is defined V= v . (18
by the Cartesian coordinates;(r,,r3), or by the cylindrical * ?1

coordinates I(, 4,z). The laboratory frame is defined by the 0

three unitary vectorg;, e,, ande;. The radius of the cyl-

inder is R The magnetic field is defined ad=He,. A partial differential equation in? can be obtained by dif-

The external director body force is given simply 6 ferentiating the first of the velocity equations Byer,, the

_ L2 - . : .
=Xa(H-n)H=xaH"n,&,, where xo=x,~x, (x; and x;  second one by/dr,, and subtracting. The resulting equation
are the principal diamagnetic susceptibilities per unit vol-g

ume. The rotating cylinder is subjected to a rotational mo-

tion around thes; axis with a generic time-dependent speed, V2w=2, (19)
which will be defined in the following a$)f(t), whereQ

has the dimension of an angular velocity drftl) is a func- 9= (P, E)

tion of time specifying the profile of the rotational impulse to = (20

- + _ =
which the vessel is submitted. In the case of constant rota- gt ary.re)

tional velocity, f (t) = 1. In this casdstationary rotationone (expressed for simplicity in Cartesian coordinateghere the
can use an approximate treatment based on the assumptifhciion =, which is essentially the vorticity of the fluid, is

that the velocity fieldv(r,t) of the rotating nematic is equal conveniently introduced. Notice that for genegid, a, 8 the
to the steady-state velocity field of a Newtonian fluid, i-e-'following notation holds:

the velocity equation is simplified by assuming a Newtonian
fluid form for the stress tens¢41,42 o= —pl—a,A, and da  da
the steady-state conditiofv/dt=0. It follows that, for a o a
> ; d(a,b) da I
cylindrical symmetry, the andr components of the velocity =det ) (21)
field vector are zeroy,=v,=0, and thed component , is d(a,pB) @ ﬂ
obtained from the equation da IB
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°2 L 2 1/ ¢ &2
=—|- M +2| =5 —|Msin2
a p ar0r, cos % 2\ ar, &rz) sin24|,
N (a)
(32)
/ v 1 ) P 92 -
r = — — —
18 7 Sin2¢ ar ary? Cos%ﬁrlarz' 32

The a,, a5 term can be calculated after defining the ancillary
functionX =n;N,—n,N;. By inspection one can see that

L0p AW, 1_
2= ) 27

—_—
H (33
FIG. 1. Section of a cylindrical nematic sample, in scaled coor-
dinates. A sample point is defined by cartesian scaled coordinates Y2
—1<x;=<1 and—1=<x,=<1, or by polar coordinates€9x<1 and FR="2
0<6<2w. The polar grid employed in the numerical solution of
LE equations is also shown.

2 (92

— )Ecos&ﬁ

27 2

1
S sin 2¢+ 3

P arl(?rz

- ;/—lAVZE. (34)
F is a function of derivatives ofV’,= and of the director P

orientation. The derivation of functloﬁf IS Igngthy but The a, term is the simple Newtonia(Navier-Stokep term
straightforward. Here we summarize the main results. Th; 7

function 7 depends upon the stress tensor in the followin

ay:
e =2V, (35
1 9 (aon achl) P ((9012 &022) P
=—|-—|—+—+—| —+—]|.
pl drp\ arqy  ar, ary\ ary  drp Notice that if only this contribution is retained the velocity is

(22 uncoupled from the director orientation, i.e., no effects on
] ) ) ~_ the velocity dynamical behavior are predicted due to the di-
It is convenient to consider separately each contrlbutl_or}ector reorientationbackflow. Finally, the as,as term is

coming from the viscous stress tensor, which we shall writgyptained by similar algebraic manipulations in the form
in the form

6_ Y3¢go—_ Y2on
O'ji=0'jei+0'ﬁ+(Tj2i'3+(rﬁ+a'ﬁ’6—p5ji, (23 F° —%V‘- va N, (36)
o5 == TN (24 N—l PV P - PP .
) B P R v D
o= alnknpAkpnjni ) (25)

Next we shall consider the time-dependent orientation of the
aﬁ’3= asNniN; +a3niNj, (26)  director field. The two nonzero components of the director
unitary vector are conveniently expressed as

4 _
gji = aghi (27 cos
0_j5i,6= a’5njnkAki+ asninkAkj s (28) n= S|g¢ . (38)

so that theF function is obtained as the sum of the corre-

sponding terms, Our starting equation is the equation of motion of the direc-

tor, which can be written as

_ 1, 723 6 .
F=F+ Fr+ F23+ Frt 725, (29 CaH2ne+ g [ ] =0, 39

V.V'thOUt any explicit dependencg upon the pres:;ur‘ee; US " The director equation can be conveniently manipulated by
first consider the elastic contribution. In the spherical AP ultiolving the first and second com onents tyandn
proximation, the tensofr;; is simply 7;; =Kn; ;. It follows Pying P b

that the elastic contributioff can be obtained in the form respectively, and subtracting:

_5 (b, 92) XaHZN1No+Ng; = NG+ o[ Ve ar]—ny [ V- 77]2:0-(40)

= ar)

: (30)
In the spherical approximation the elastic term is simply

where ¢(r,r»,t) is the angle specifying the director orien- given by n,[V-a];—n{[ V- @r],= —KV2¢ [19]. The mag-

tation (see Fig. 1 Next we consider the term proportional netic term assumes the form,H?sin24/2, whereas the

to ay: more complicated viscous part depends upon second deriva-
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tives of ¥ with respect ta'; andr,. Several manipulations Coefficientsay, a; (i=1,--,5), N, andb; (j=1,2) are not
allow us now to obtain an explicit equation i, ¢. Skip-  all independent and they can be written explicitly in terms of
ping unnecessary details, one is left with the following ex-the viscoelastic constantsax=K/s?p, a;=a;/Sp, a,
pression: =vy,Isp, az=—7y1/2Sp, as=(asl2+ y3/4)/sp, and ag
=— y,/2sp=—a,/2 wheres=QR? and\=—17y,/y;, b,
i IV,$) = —xaH?/2y,Q, andb,=K/y;s. Notice that coefficients,
It A(ry,rp) =g (42) are essentially Ekman numbers abgl is the inverse of a
rotational Ericksen number.
The final expression for thé function is given by

1 XaH2 K . s 2y B. Boundary and initial conditions
g=-E- sin2¢+ —V2¢p— —=|sin2¢ . . P i
2 2y, Y1 Y1 ar10r, Definition of boundary and initial conditions is indispens
able for completing the implementation of the hydrodynamic
1 PV PV treatment and for comparing simulated results with available
t5cos% a2 or,? (42 experimental data, which are informative, albeit in an indi-

rect way, about the main features of the director distribution

The final equations for the treatment of a nematic sample it rotating samples, both for start-and-stop and continuously

two dimensions in the presence of a magnetic field are thugdtating setup$7,8,10. Nevertheless, a precise definition of
given by Eqs(19)—(37) and(41) and (42). the beahvior of the fluid at the nematic-solid interface is

difficult, and dependent upon the experimental situation.
Since our purpose in this work is to underline an efficient
methodology for treating nematics effectively and to inter-
For practical implementation it is convenient to definepret qualitatively the main features observed in magnetic
scaled functiong==/€), =W¥/QR? and scaled time and resonance and rheological experiments, we shall dispense
coordinates,7=t(), x;=r;/R, X,=r,/R; here Q has the with an accurate definition of boundary conditions based on
dimension of a rotational velocity. Scaled velocity field com-refined microscopic or macroscopic treatments and assume
ponents are simply,/QR and v,/QR. The system of very simple descriptions of the director and velocity fields at
coupled equations assumes the following, rather complexhe interface.
form: First of all, we shall set the velocity field equal to the
rotational velocity of the cylinder in the vicinity of the inter-
ﬁ (¢ ¢) _ E — (43) nal walls. In terms of thep and ¢ functions, one can write
at  d(Xy,Xz) 2 ’ p(7)—F(1)x%2 and &(7)—2f(r) for x—1, where x
= \/x21+x22 is the scaled radial coordinatex<1 andf(7)
€ Y, é) (¢, V%) 9? is the scaled form of (t), defined in Sec. Il above. These are
a1 a0x.x) =ak I(X1.%0) 1[ - 0X119X2'u cos 2p the well known boundary conditions assumed for Newtonian
fluids in rotating tube$42].

A. Scaled equations

1/ &2 5? ) Simplified boundary conditions for the director can be
+ E(le_ %2 e Sin 2¢) imposed essentially in two ways: One can assume that re-
gardless of the fluid rotation the orientation of the director in
2 _ 1 * 9 the proximity of the walls is constant. This is the case of
tap ax xS SN 20+ 5 X2 ax_zz) strong anchoring, i.e., Dirichlet boundary conditiors()
—const forx— 1. On the other extreme, we can assume that
- s . o0 in the neighborhood of the internal walls the LE equations
Xscos2p|+azVistaViétasver, are satisfied without significant changes of the director ori-
entation due to interaction with the walls. This is the case of
(44 zero anchoring¢(7)/dx—0 for x— 1, or Neumann bound-
ary conditions. We shall consider in the following only zero-
e=V2y, (45  anchoring conditions, i.e., we shall assume that the behavior
of the nematic in the rotating sample, in a boundary layer
— ; &2 close to internal walls of the cylindrical container, is essen-
$=A7+by Sin 2440,V ¢, (46 tially independent of interaction with the walls. This choice
1 Py Py P2y is plearly not realis}ic if one considers the case of a nonro-
7= = COS 2p| —5— _2) +5sin2¢ , (47)  tating tube whose internal surface has been treated to align
2 X1~ Xy IX19X3 the director along some easy axis, but it can be accepted as a
rough description for a fast rotating surface, for which the
_ Py Py P major contribution to the free energy of the nematic in the
H=7SIn 2¢( a2 ax 2) —cos2p P (48)  poundary layer comes from the kinetic term. Measurements
! 2 of azimuthal(in the plane anchoring free energy per unit
1 Py Py 2 area give valu_es smaller than*ﬁ]] m2 [43], Wherez_is f(_)r the
v=—cos <_2_ 2) sin 2¢ . (49 cases treated in the following sections the free kinetic energy
2 2SN IX19%;5 could be estimated one or two orders of magnitude larger.
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TABLE |. Parameters employed in the simulations.

Density p 10°kgm™3
Susceptibility xa 1x10°7
Field H 0.3349 T
Average elastic constant K 1x10° 1 N
Leslie coefficients a; —0.0087,—0.052,—0.002, 0.058,
0.038,—0.016 Pas
Critical velocity Q, 112t

However, it is clear that a more accurate description of the.e., sincef (0)=0, one can simply assume that at the begin-
interaction between director and walls, using a suitable funcning the system is at resi/& £=0) and perfectly aligned
tional for the free energy of the director at the boundarywith the magnetic field $=0).
layer, should be employed for a realistic description of the
interface. In this work, mainly devoted to exploration of the
computational methodology for treating the hydrodynamical
behavior of a nematic fluid in two dimensions, we shall not The methodology chosen to solve numerically the system
investigate the effects of different descriptions of the inter-of partial differential equations outlined in the previous sec-
face, reserving an analysis of the problem to future studiestions is straightforward, and it is described as follows. We
Notice that by assuming no spatial dependence in théave adopted on purpose a strategy based on robustness and
whole sample for the director field and Newtonian behaviorsimplicity, at the price of a certain loss of computational
of the velocity field one recovers the following simplified efficiency in terms of storage memory and CPU time. Re-

C. Computational procedure

law for the director orientation at the walls: finements to speed up the codes and make them less demand-
dg () ing on computer resources are currently being investigated.
r : . AT
—f(r)+bysing(r), x—1, (50) Our approach is then based on a simple finite-difference
dr algorithm; for symmetry reasons, it is convenient to use a

polar grid (see Fig. 1in the circular region of the sample.
which is, not surprisingly, the simplified equation obtainedThe scaled equations are then discretized in space, using
for the director orientation in previous standard treatmentstraightforward extensions of constant step difference
[1] that neglect space dependence. Initial conditions will beschemes, with increased accuracy. We have explored grids
defined in all the following calculations assuming thatrat up to 1500 points, and all the simulations presented here
=0 boundary conditions are extended to the whole sampleyere performed with a grid of 801 points, i.e., 20 points

L
. 1 . . |
Os 0.6s 1.2s Os
.Bs .45 .Ds .Bs

(a) ®)

1.2s

rf \,
A 2_45\43.05

FIG. 2. (Color) Director patterns at different times for continuous rotatiof)at (2 ./2 (a) and ) (b). Each circle shows the director
pattern in the nematic sample at a given time, in scaled coordieftdSig. 1), using a false color representation of the director argie
each point of the sample. The red dot represents the amount of rotation of the tube at the same time. The shots are shown for times 0, 0.6,
1.2, 1.8, 2.4, and 3 s; for a sample of radRis 5 mm.
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L1

00is

%

0.04s 0.05s

%
2:.55

(b)

B .. o
0’ 90" 180°

¢

FIG. 3. (Color) Director patterns at different times for step-rotation pulses of 30Rferl mm (a) and 5 mm(b). Each circle shows the
director pattern in the nematic sample at a given time, in scaled coordifftésg. 1), using a false color representation of the director
angle¢ in each point of the sample. The red dot represents the amount of rotation of the tube at the same time. The shots are shown for times
0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.3, and 0.5 s for the caRe=df mm and 0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.2, 0.6, and 1.0 s for the case
of R=5 mm.

(angular coordinate} 40 points(radial coordinateplus the — susceptibility and the density are chosen to have typical
center. values like 1x10 7 and 1§ kg/m’. These values were
Time is treated using an implicit scheme with an adjust-chosen ~ having ~in  mind  the  nematogen
able step, employing a standard solver for stiff systems oN-(p-methoxybenzylidenep-butylalanine (MBBA) 10 K
ordinary differential equations. For each time step, the pribelow its clearing point. The magnetic field is chosen to
mary functions¢ and £ are known; first one evaluates accu- have a value characteristic for a standard ESR experiment,
rately spatial derivatives ap,¢ and solves the Poisson equa- 0.3349 T.
tion in ¢ (this being a particularly simple operation in the  In order to quantify the coupling strength of the magnetic
chosen gritt then derivatives ofy are calculated, together field with the director vector, it is useful to employ a derived
with ancillary functionss, 7, u, andv. The time derivatives parameter, the so-called critical veloclfl, , which is calcu-
of ¢ and ¢ are thus calculated. The whole procedure is therlated from the simplified standard treatment of a continu-
repeated at the following time step. The computational CPLusly rotating sample, when spatial dependence and time de-
time is relatively high: on a Silicon Graphics Octane a full pendence are completely neglectdd7]. In this case, the
simulation (see below for actual dataakes a time ranging condition for a stationarghomogeneoyddirector orientation
from 3to 5 h. is given simply by

IV. CALCULATED RESULTS sin2¢= Qﬁ (5D

We shall illustrate in this work results related to a fixed ¢

set of viscoelastic parameters, chosen to represent a lowhere Q.= y,H?/2y,. Only if Q<Q. does the simplified

viscosity standard nematisee Table )t Leslie coefficients treatment predict a stationary distribution. We shall see that
are chosen to be of the order of 0.1 Pa4d], the average predictions of the simplified treatment are obeyed roughly by
elastic constant is taken to bex10 !N, the magnetic the actual simulations, at least for the case of a sample in
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(b)

0° 90° 180°

¢

FIG. 4. (Color) Director patterns at different times for step-rotation pulses of 90Rferl mm (a) and 5 mm(b). Each circle shows the
director pattern in the nematic sample at a given time, in scaled coordifwhtésg. 1), using a false color representation of the director
angle¢ in each point of the sample. The red dot represents the amount of rotation of the tube at the same time. The shots are shown for times
0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.3, and 0.5 s for the caRe=df mm and 0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.2, 0.6, and 1.0 s for the case
of R=5 mm.

continuous rotation. For this reason we shall still (lgeas a  a linear acceleration is imposed on the systera,fQt) <1,
useful parameter to discriminate among different cases. Whkasting a finite time of 0.001 s; finally, the system is kept in
shall present simulations in conditions of continuous rotamotion at constant speed, i.e., f(t)=1. The sequence of
tion, at various rotational speeds, for a “standard” geometrytimes is chosen to mimic a “realistic” experimental situa-
corresponding to a tube with a radius of 5 mm. We shall therjon, although other sequences could well be used, like a
apply our model to the exploration of step-rotation experi-smootmy accelerating velocity profile.

ments, i.e., fast pulsed rotations of fixed angular amounts, in \ye shall visualize the results of the simulations in terms
two geometries, characterized by a different radius of tub€yf 4 girector spatial distribution, i.e., as a map of the director

namely,R=1 and 5 mm. field orientation in the sample. For a given time, a false color
_ ) representation is used to visualize the director distribution:
A. Continuous rotation the color map associates values @fwith colors, ranging
Let us first consider the case of a continuously rotatingrom 0° (blue), through 45°(cyan, 90° (green, 135° (yel-
sample. A clear observation that can be inferred from calculow), to 180°(red). A red dot indicates, with its position, the
lations is that, if one neglects transient time dependence iamount of(counterclockwisgrotation of the sample at the
the initial acceleration phase, the spatial dependence of thehosen time. Figure 2 shows some chosen snapshots of the
director distribution is relatively unimportant for low veloci- director distributions fol}=Q /2 [Fig. 2@] and Q=2Q,
ties (below the critical valug whereas it is relatively impor- [Fig. 2(b)], i.e., half or twice the critical velocity. Not sur-
tant for high velocitiegabove the critical valye The depen-  prisingly, the predictions of the simplified treatment are con-
dence upon the dimension of the sample is in any case rathérmed, at least in the first case: fét=(./2 the system
weak. We comment here on results only for the case of aapidly reaches a stationary state, with a homogeneous dis-
sample with radius equal to 5 mm. The following conditionstribution close to¢=15°, as predicted by Eq51). The
have been imposed: the system is initially sfi{lt)=0; then critical velocity maintains its role of critical parameter, di-
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. .
1ol B. Pulsed rotation

sl Next we shall consider simulated experimental conditions
‘ of step-rotation experiments, in which the system is sub-
A 06F jected to a rapid rotational pulse of a given angle. In the
= following we shall treat the cases of pulses of 30° and 90°.
’7% 0.4r In Figs. 3 and 4 we show the calculated director patterns
Vool for the cases of samples of radius 1 and 5 mm and pulse
angles of 30° and 90°. Simulations have been performed by
0.0F first accelerating the system for 0.001 s, then rotating at con-
02 02 06 10 12 18 322 stant speed for 0.0(30°) or 0.03 s(90°), and finally decel-
t(s) eratiljg the system for 0.001 s. The im.posed rotationa! speed
(a) was in all cases equal to 50 rad'sAgain, the parametriza-
tion for the rotational pulse has been chosen to simulate re-
08 - alistically an experimental setlig]. The results show clearly
that a strong dependence on the dimension of the sample and
o6l the imposed rotation angle is present. For the case of radius
' equal to 1 mnjFigs. 3a) and 4a)] the system behaves more
A o4l or less like a rigid system, except at very short times com-
= parable to the pulse duration. The director exhibits a delay
e time in adjusting its orientation to the velocity field, but once
v 02r the velocity field is stabilized the director reaches a station-
ary pattern, and, since the momentum of rotation is rapidly
0.0 spread from the vessel walls to the whole sample in a time
02 02 06 10 T2 18 29 comparable to the pulse duration, the director rapidly reaches
X(s) an almpst uniform orientation close to the rotation angle. The
relaxation to a state of alignment with the magnetic field then
(b) follows, in a much longer time scale that is comparable to
the inverse of the critical velocity.
FIG. 5. Average value of sfp vs time for step-rotation experi- The director patterns for the case of large radiBgs.
ments,R=1mm (a) and 5 mm(b), with pulses 30%dashed line  3(b) and 4b)] show clearly the nonrigid and non-Newtonian
and 90°(full line). behavior of the liquid crystalline fluid. The effect of the ro-

tation is spread more slowly to the center of the sample and
viding stable solutions evolving to stationary conditions andthe dynamical evolution of the director and velocity fields
unstable solutions. The solution shown for=2(Q) . isin fact  takes place well beyond the duration of the pulse itself, when
characterized by director vortices, which are rapidly changthe rotation of the tube is stopped.
ing in time. The presence of unstallescillatory or other- Analysis of the director patterns shows that in general
wise) patterns in the director distribution for continuously during the fast rotation time the director starts to orient itself
rotating samples above the critical velocity is a relevant reperpendicularly to the magnetic field from two areas corre-
sult which will be thoroughly explored in a following work. sponding to the maximum velocitglose to the bordejsand
Here we would like to stress thé) simplified standard treat- at maximum angle with the initial director. These two areas
ments certainly cannot certainly account for these kinds ofapidly grow to an annular region. When the cylindrical ves-
“complex” dynamical behaviors, which arise only in con- sel ceases its rotation, the fluid is left under the influence of
nection with a full exploration of the velocity-director cou- elastic and magnetic forces only, which causes the director to
pling and(ii) although it is tempting to assume that patternsrelax back to the original configuration aligned with the mag-
of this kind are produced in rotating samples during realnetic field. Notice that there is always a retardation effect,
experiments, it is necessary to consider the effect of differente., the director field change takes place at slower time
boundary conditions, order of magnitude of viscosity param-scales than the velocity field evolution: thus the realignment
eters, radius of the sample, initial conditions, and profile ofto the field starts well beyond the time when the sample
the rotation velocity function. For instance, very high valuesrotation is stopped.
of the viscosity numbers should lead to a rigidlike behavior By looking at the dynamic evolution of the director pat-
of the director, with a homogeneous distribution of the directerns we can therefore distinguish several time regimes in
tor rotating in time, boundary conditions of Dirichlet type pulse step experiments. There is an initial short titpe
can lead to the creation of circular disclination at the bound<haracterized by a fast adjustment of the velocity field at the
aries[1], and so forth. Notice that, at least in the present seboundaries from the initial zero value to the stationary con-
of calculated results, the velocity field in all cases reaches dition; in this first phase the velocity does not have any direct
stationary Newtonian behavior, i.e/=x?/2, after a transient influence on the director reorientation, except in a region
time of the order of 0.01-0.1 s at most. The transient regimelose to the boundaries, where the director starts to depart
in continuous rotation experiments is equivalent to the firsfrom the initially aligned distributiont ... is close in magni-
part of step-rotation experiments, and therefore the discugude to the duration of the acceleration part of the rotation
sion of the velocity behavior at transient times is postponegbulse, i.e., in our case of the order of 0.001 s. Next the
to the next subsection. director reorientation is spread to an annulus; this process
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FIG. 6. DistributionP(¢) vs director orientatiorp (in degreesat different times for a pulse rotation of 30°; fB=1 mm (a) times are
0.01, 0.03, 0.05, and 0.5 s and fer=5 mm (b) times are 0.02, 0.2, 0.6, and 1.0 s.

seems to take place in a timg. that is of the order of time scalétga, roughly inversely proportional to the critical
magnitude of the entire pulse duration, 0.01-0.03 s. After theelocity, 1-2 s. Naturally, depending essentially upon the
tube has ceased its rotation, the region of realigned direct@ample dimension and the angle of rotation, the director pat-
field is spread to the rest of the sample in a titgg.,qthat  terns are inhomogenously distributed in the sanpée Figs.
depends on the sample dimension; it is very short for the3(b) and 4b)].

small radius sample while it is at least ten times the duration To support these general observations quantitatively, we
of the pulse for the large radius sample, 0.1-0.2 s. Finallyshow plots of(sir? ¢) vs time for radius 1 mm in Fig. (&)

the director starts relaxing back to the initial configurationand 5 mm in Fig. &). The intrinsic “rigidity” of the small
aligned to the field, this process happening on a much longesample is evident: the director is reoriented rigidly during the
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FIG. 7. Director anglep vs x4, i.e., along the horizontal diam- X4
eter of the sample, for a pulse rotation of 30° &1 mm (a) and
5 mm (b). Times(in s) are reported in the figure.

(b)

rotation pulse and it reaches a maximum displacement from FIG. 8. Scaled component of the velocity field/ QR vs x, for
the initial distribution which corresponds to the pulse anglesa pulse rotation of 30° ané=1 mm(a) and 5 mm(b). Times(in s)
30 or 90°. The time e, Which we can identify as the time are reported in the figure.

required by the velocity field to reach a stationary state, cov-

ers the duration of the pulseyyeaqis very short. Afterward  yelocity dynamics, which are relevant especially during the
th_e system relaxes_ back to the initial configuration alignedspreading phase of the directyse<t<tgpeaqafter pulse
with the magnetic field. For the larger radius samplg..q4iS  rotation, and at long times when the velocity field is sensing
longer, and the system is unable to reach a maximum alignhe slow relaxation of the director under the influence of the
ment equal to the rotation angle of the system. In othefnagnetic torque. The dynamical behavior of the velocity
WOde, the director field in the bulk of the fluid is Weakly field is sketched in F|g 8, where we show the Scajng
influenced, during the short rotation of the tube: the systengomponent at several times for the section along the horizon-
has an average orientation close to half the rotation angles iy diameter: notice that during the pulse rotation the behav-
the three cases considered. The slow processes of realiggy of the velocity is rather similar in the two samples, i.e.,
ment are essentially similar to the small radius case. Analofor very short times and large acceleration the system reacts
gous information concerning the director orientation can bengre or less as a rigid body; the velocity backshot is then
obtained from analyzing probability plots, i.e., distributions enhanced in the 5 mm sample after the pulse is terminated,
P(¢) at different times in the sample. In Fig. 6 we show aajthough it is weakly present also in the 1 mm sample at
selection of distributions for four timesee the captionfor  |onger times, not shown here, where the velocity is almost
the case of a 30° pulse and radius 1 fiffiy. 6@] and 5mm  totally relaxed back to zero and residual fluxes are due only

[Fig. 6(b)]. Naturally, the local behavior of the director field to the backflow effect induced by the slow director relax-
can be analyzed in detail also by looking directly at the timegtjon.

evolution along sections of the sample or in defined areas. In
Fig. 7 we show, for further comparison, the director field
values along the horizontal diameter.

The velocity field of the nematic fluid can also be ana- The purpose of this work was to analyze the dynamical
lyzed in detail. The main information we obtain from our behavior of a low viscosity nematic liquid crystal in a rotat-
simulations is that the general dynamics of the velocity fielding cylinder in the presence of a magnetic field, as described
of a low viscosity nematic fluid is essentially of a Newtonian by Leslie-Ericksen equations for the coupled director and
type, i.e., the general features of velocity profiles, averagesielocity fields, through a full numerical solution confined to
and local values, are interpreted in a satisfactory way by &wo dimensions.

Navier-Stokes behavior. Naturally, backflow effects are A computational methodology has been presented to de-
present due to the effect of the director reorientation upon thecribe different experimental setups, defined by suitable pro-

V. SUMMARY
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files of the rotational speed imposed on the cylindrical vesiated step-rotation experiments, director patterns are created
sel. In particular, we have analyzed the director patterns of éirst as localized areas at the borders where the displacement
continuously rotating sample and several cases of step roté@etween velocity and director field is maximum, then spread
tion, i.e., simulated experiments in which the rotation is im-in an annular region, and finally inhomogeneously diffused
posed for a short duration at high velocities. We have choseto the whole sample.
simplified boundary conditions equivalent to weak anchoring Once time- and space-dependent solutions for the director
at the borders. We have shown that the velocity field is infield are available, it is possible to start quantitatively relat-
general well described by a Navier-Stokes or Newtonian-likeng experimental evidence, coming especially from nuclear
dynamics, whereas the director adjusts slowly under the inmagnetic and electron spin resonance measurements, with
fluence of the velocity field distribution and of elastic andthe director patterns predicted by the hydrodynamic model.
magnetic torques. It has been shown that the sample dimein the following paper, we shall discuss the interpretation of
sion is important in determining the rigidity of the director NMR spectra of nematics on the basis of the present com-
response: larger samples show the presence of transient iplete numerical procedure and of approximate solutions.
homogeneous patterns, which are not present in smaller
samples. The distribution of director orientations in the fluid ACKNOWLEDGMENTS
has been shown to evolve in time from the initial homoge-
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