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Simulations of flow-induced director structures in nematic liquid crystals through Leslie-
Ericksen equations. I. Computational methodology in two dimensions
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A computational treatment of the constitutive equations of nematodynamics, based on the Leslie-Ericksen
approach, is presented and discussed for a rotating planar nematic sample subjected to a constant magnetic
field. The dynamics of the velocityv and directorn fields is taken into account exactly. Coupled partial
differential equations suitable to be solved numerically are worked out, in terms of derived functionals ofv and
n and of their spatial and time derivatives. Time-dependent patterns of the director are obtained using a
finite-difference scheme in a spatial polar grid. Several experimental situations are analyzed, corresponding to
common experimental setups: continuously rotating samples for different values of the rotational speed; 30°
and 90° step-rotation experiments. A comparison is made to existing approximate treatments. Dependence
upon the sample dimension is also discussed.

PACS number~s!: 61.30.Gd, 81.10.Jt, 83.20.Jp
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I. INTRODUCTION

Liquid crystals are well known examples of no
Newtonian fluids, which can be described by augmented
drodynamic equations governing the time evolution of fie
variables associated with complex viscoelastic proper
@1,2#. The richness of observed and/or predictable flow p
terns and the desire to rationalize measurements of visco
coefficients using a number of experimental techniques
rheology, nuclear magnetic resonance~NMR!, electron spin
resonance~ESR!, and dielectric relaxation imply the need fo
a complete methodology for solving constitutive equations
liquid crystalline phases, in a way comparable to analog
numerical and analytical treatments available for Newton
fluids based on Navier-Stokes equations.

Nematic liquid crystals~NLC’s! are the first example o
anisotropic fluids studied by means of hydrodynamic eq
tions, and any computational treatment for studying the
called nematodynamic equations is bound to be of consi
able interest. First of all, a vast amount of existi
experimental data is available for nematic samples, wh
evidently depends, for a full understanding, upon the co
plete computational solution of the constitutive hydrod
namic equations. Secondly, an effective computational tr
ment would be of importance not only for the comprehens
of the dynamics of nematics themselves, but also becau
might eventually be extended to more complex liquid cr
talline phases, e.g., biaxial nematic, smecticA, or smecticC
phases. Existing treatments of hydrodynamic equations
usually limited to stationary systems or they neglect partia
or completely the backflow effects related to the coupling
director and velocity field dynamics. For these reasons,
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believe that the task of solving numerically the constituti
equations for NLS’s is worthwhile, despite its intrinsic com
plication. In this work, it is our purpose to present such
treatment at least for the case of bidimensional systems,
ing in mind as a first and direct application the interpretat
of experimental measurements of viscoelastic coefficient
spinning samples in cylindrical tubes by means of NM
rheo-NMR, and ESR experiments.

According to the hydrodynamic description of NLC
@3,4#, the fluid is described by two vector fields in spac
namely, the director unitary vectorn(r ,t), which gives the
orientation of the director for the nematic phase at sp
point r and timet, and the velocity vectorv(r ,t). Constitu-
tive Leslie-Ericksen~LE! equations@3,4# provide a closed se
of partial differential relations which are in principle able
describe the fluid in both space and time, if explicit bounda
and initial conditions are given, and a defect-controlled e
vironment is assumed. We shall consider in the following
much studied case, namely, a rotating sample in the pres
of a constant perpendicular magnetic field. A tube contain
a nematic liquid crystal is spinning about its vertical symm
try axis, while a uniform magnetic field is turned on in
horizontal plane. Equivalent or related rheological measu
ments with analogous geometrical setups have been
formed in the past, starting with Tsvetkov and Sosnows
@5#, who actually used a stationary sample in a rotating m
netic field. Gasparoux and Prost measured the torque exe
by the fluid on the cylinder as a function of the rotation
speed@6#. Leslie, Luckhurst, and Smith performed studies
the electron spin resonance spectrum of a paramagn
probe dissolved in the nematic@7#. Emsley, Khoo, Lindon,
and Luckhurst measured the deuterium NMR spectrum
the nematic phase of a partly deuterated liquid crystal a
function of sample spinning speed@8#. Kneppe and
Schneider measured the rotational viscosity coefficient of
liquid crystal@9#. Experiments related to fixed geometries.it
2288 ©2000 The American Physical Society



ct
,

ea
is

th
ip
t
f
ro
de
n
d
ge
er

-
re

bi

fo
n
-
A

C

os

-

n

d

au
n
gi
an
C
n-

es
re

o
s

e
h

LE
di
in
e
b
at

any
re-
mi-
ua-

sta-
a
ent
is

le

the
ec.
a

tual
an-
gu-
IV

ef

m-

ve

t

the
ed

in
ld,
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the initial orientation of the director in the bulk with respe
to the magnetic field have been conducted, more recently
Martins and co-workers@10#.

Recently, substantial advances in the definition and tr
ment of theoretical models for the comprehension of v
coelastic properties of NLC’s have been made. Although
paper will be concerned only with a computational descr
tion based upon standard LE equations, it is convenien
summarize somerecentcontributions to the understanding o
viscoelasticity in nematics, at both the molecular and mac
scopic levels. Treatments based upon hydrodynamic mo
were presented in the last few years by Ziherl, Vilfan, a
Žumer @11,12#, to describe director fluctuation in confine
systems. Mechanical stability conditions in the annular
ometry of a NLC sample were studied by, among oth
Palffy-Muhoray, Sparavigna, and Strigazzi@13# and by
Kiselev and Reshetnyak@14#. Flow properties, also in con
nection with surface anchoring energy, were conside
from different points of view, by Tsuji and Rey@15#, Dol-
matova and Kozhevnikov@16#, and Porte, Berret, and
Harden@17#. Simulations based on the LE equations of
polar droplets were carried out by Chan and Rey@18#, while
approximated numerical treatments of the LE equations
rotating planar NLC’s were recently presented by Polime
and Martins@19#. Molecular interpretations of viscosity co
efficients have been given, for instance, by Larson and
cher @20#, Chrzanowska and Sokalski@21#, Zubarev and
Iskakova@22#, Kroger and Sellers@23# and Fialkowski@24#.
General viscoelastic theoretical investigations are due
Volino and co-workers@25#.

Direct measurements of viscoelastic parameters in NL
have also been increasing in number. Imaiet al. employed
transient current techniques to determine rotational visc
ties of NLC display devices@26#; Cipparroneet al. used op-
tical measurements@27#; Mather et al. investigated stress
oscillation damping with polarized light@28#. Rheological
investigations of viscoelastic micellar solutions were co
ducted by Cappelaere and Cressely@29#, while Berret studied
wormlike micelles@30#, and Sequeira and Hill considere
particle suspensions in nematics@31#. Electrorheological ex-
periments were conducted, for instance, by Kuhn
Schmiedel, and Stannarius@32# and by Yao and Jamieso
@33#. Magnetic field effects used in connection with rheolo
cal measurements are currently much employed by m
researchers. Recent data on low molecular weight NL
obtained with NMR proton techniques are given, for i
stance, by Gotzig, Grunenberghassanein, and Noack@34# and
Grigutschet al. @35#. Extensive studies on rotating sampl
with negative anisotropy of magnetic susceptibility were
cently performed by Ciampi and Emsley@36#. Viscoelastic
properties of biomembranes have been studied by Alth
et al. @37#, while polymer nematics were studied by Martin
and co-workers@10,38# and Diao and Berry@39#.

Despite the relevant amount of theoretical and experim
tal work concerning flow properties of NLC’s, a thoroug
analysis of patterns obtained within the framework of the
equations, when the full coupling between velocity and
rector fields is taken into account, appears to be still miss
@40#. Backflow effects are especially important when sudd
rotation impulses are impressed on NLC samples, and a
ter understanding of simulated director patterns could gre
by
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help the determination of viscoelastic parameters, using
of the experimental techniques already mentioned. Very
cently, we have started a systematic exploration of dyna
cal regimes predicted by numerical solutions of the LE eq
tions in planar NLC samples. Preliminary solutions@19#
were presented for approximate treatments of systems in
tionary rotation, without backflow effects and imposing
defect in the center of the sample. Here we intend to pres
a more advanced treatment of the LE equations, which
essentially exact, within the limitation of having the samp
confined to a two-dimensional geometry.

The paper is organized as follows. In the next section
LE equations are briefly summarized and discussed. In S
III algebraic manipulations are introduced to cast them in
form amenable to computational solutions, and the ac
computational methodology is presented for calculating tr
sient director patterns. Results concerning spatial and an
lar distributions of the director field are discussed in Sec.
for a standard low molecular weight NLC. Finally, a bri
Discussion is included to summarize our findings.

II. LESLIE-ERICKSEN EQUATIONS

The Leslie-Ericksen equations for an incompressible ne
atic are summarized in this section@3,4#:

@¹̂•s#5r
dv

dt
, ~1!

G1g1@¹̂•p#50, ~2!

where in the velocity equation~1! the unknown vectorv(r ,t)
is the velocity field of the fluid at pointr and timet, r is the
bulk density,s is the stress tensor, and body forces ha
been neglected; in the director equation~2! the unknown
unitary vectorn(r ,t) is the director field of the fluid at poin
r and timet, G is the external force acting on the director,g
is the internal director body force, and@¹̂•p# is an elastic
term. Notice that inertial terms have been neglected in
director equation. The material time derivative is defin
as d/dt5]/]t1v•¹̂; if M is a generic matrix we define

@¹̂•M # i5M ji , j . The stress matrixs is written as

s j i 52pd j i 2p jknk,i1s j i8 , ~3!

s j i8 5a1nknpAkpnjni1a2njNi1a3niNj1a4Aji

1a5njnkAki1a6ninkAk j . ~4!

The internal director body forceg is

gi5lLni2
]W

]ni
2g1Ni2g2Aiknk , ~5!

where the following vectors and matrices are defined
terms of the components of the velocity and director fie
and of derivatives of the elastic energyW:

Aji 5
1
2 ~v j ,i1v i , j !, ~6!

v j i 5
1
2 ~v j ,i2v i , j !, ~7!
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2290 PRE 62POLIMENO, ORIAN, MARTINS, AND GOMES
Ni5
dni

dt
2v iknk , ~8!

p j i 5
]W

]ni , j
. ~9!

The elastic energy itself is defined as

W5 1
2 K11~¹̂•n!21 1

2 K22~n•¹̂3n!21 1
2 K33~n3¹̂3n!2

~10!

in the spherical approximation (K115K225K33[K) the
elastic energy is reduced toW5Kni , jni , j /2. The coefficients
a i ( i 51, . . .,6), g1 , andg2 in expressions~4! and ~5! are
viscosity coefficients; the following relations hold:

g15a32a2 , ~11!

g25a31a25a62a5 , ~12!

g35a61a5 . ~13!

From Eq.~12! one can see that there are only five indep
dent viscosity coefficients@1,2#. Finally, the functionsp(r ,t)
~pressure! andlL(r ,t) are indeterminate Lagrange multipl
ers deriving from the constraints

¹̂•v50, ~14!

n•n51. ~15!

As outlined in the Introduction, in this work we shall b
concerned with the application of LE equations to the int
pretation of dynamical patterns developed by the direc
field in samples of nematic liquid crystals in tubes subjec
to magnetic fields and to some given profile of rotation.
point in space is identified by the vectorr , which is defined
by the Cartesian coordinates (r 1 ,r 2 ,r 3), or by the cylindrical
coordinates (r ,u,z). The laboratory frame is defined by th
three unitary vectorse1 , e2 , ande3 . The radius of the cyl-
inder is R. The magnetic field is defined asH5He1 .
The external director body force is given simply byG
5xa(H•n)H5xaH2n1e1 , where xa5x i2x' ~x i and x'

are the principal diamagnetic susceptibilities per unit v
ume!. The rotating cylinder is subjected to a rotational m
tion around thee3 axis with a generic time-dependent spee
which will be defined in the following asV f (t), whereV
has the dimension of an angular velocity andf (t) is a func-
tion of time specifying the profile of the rotational impulse
which the vessel is submitted. In the case of constant r
tional velocity, f (t)51. In this case~stationary rotation! one
can use an approximate treatment based on the assum
that the velocity fieldv(r ,t) of the rotating nematic is equa
to the steady-state velocity field of a Newtonian fluid, i.
the velocity equation is simplified by assuming a Newton
fluid form for the stress tensor@41,42# s52p12a4A, and
the steady-state condition]v/]t50. It follows that, for a
cylindrical symmetry, thez andr components of the velocity
field vector are zero,vz5v r50, and theu componentvu is
obtained from the equation
-

-
r
d

-
-
,

a-

ion

,
n

a4

]

]r

1

r

]

]r
rvu50, ~16!

taking into account that the pressure gradient is zero alonu
for a steady-state Newtonian cylindrical sample. By assu
ing that at the boundaries the fluid follows the rotating c
inder, one gets the well known resultvu5Vr or v5V3r ,
i.e., the fluid is behaving as a rigid body. Notice that in E
~16! the dependence upon the viscosity coefficienta4 disap-
pears due to the steady-state condition@19#.

III. A COMPLETE TREATMENT FOR PLANAR SAMPLES

We shall consider in this section the definition of a set
refined equations for the treatment of cylindrical rotati
nematic samples, without significant additional approxim
tions, besides assuming a bidimensional geometry. The
lowing assumptions will be made in the rest of this sectio

Assumption I. In an infinitely long cylinder, if no externa
flows are imposed along thee3 axis, the dependence ofv and
n upon ther 3 coordinate may be neglected.

Assumption II. Components ofn andv along thee3 axis
are set to zero.

A less relevant approximation, namely, the spheri
treatment of the elastic tensor, will be made mostly for sa
of simplicity. Inclusion of the complete elastic tensor
straightforward, however. We start to consider the veloc
equation~1!, and we rewrite explicitly the tensors:

s52p11se1s8, ~17!

where s j i
e 52p jknk,i . According to assumptions I and II

the velocity field can be written in terms of thestreamlines
functionC(r 1 ,r 2 ,t) @41,42#:

v5S 2
]C

]r 2

1
]C

]r 1

0

D . ~18!

A partial differential equation inC can be obtained by dif-
ferentiating the first of the velocity equations by]/]r 1 , the
second one by]/]r 2 , and subtracting. The resulting equatio
is

¹̂2C5J, ~19!

]J

]t
1

]~C,J!

]~r 1 ,r 2!
5F ~20!

~expressed for simplicity in Cartesian coordinates!, where the
function J, which is essentially the vorticity of the fluid, i
conveniently introduced. Notice that for generica,b,a,b the
following notation holds:

]~a,b!

]~a,b!
5detS ]a

]a

]a

]b

]b

]a

]b

]b

D . ~21!
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F is a function of derivatives ofC,J and of the director
orientation. The derivation of functionF is lengthy but
straightforward. Here we summarize the main results. T
function F depends upon the stress tensor in the follow
way:

F5
1

r F2
]

]r 2
S ]s11

]r 1
1

]s21

]r 2
D1

]

]r 1
S ]s12

]r 1
1

]s22

]r 2
D G .

~22!

It is convenient to consider separately each contribut
coming from the viscous stress tensor, which we shall w
in the form

s j i 5s j i
e 1s j i

1 1s j i
2,31s j i

4 1s j i
5,62pd j i , ~23!

s j i
e 52p jknk,l , ~24!

s j i
1 5a1nknpAkpnjni , ~25!

s j i
2,35a2njNi1a3niNj , ~26!

s j i
4 5a4Aji , ~27!

s j i
5,65a5njnkAki1a6ninkAk j , ~28!

so that theF function is obtained as the sum of the corr
sponding terms,

F5Fe1F11F2,31F41F5,6, ~29!

without any explicit dependence upon the pressurep. Let us
first consider the elastic contribution. In the spherical a
proximation, the tensorp j i is simply p j i 5Kni , j . It follows
that the elastic contributionF can be obtained in the form

Fe5
K

r

]~f,¹̂2f!

]~r 1 ,r 2!
, ~30!

wheref(r 1 ,r 2 ,t) is the angle specifying the director orien
tation ~see Fig. 1!. Next we consider the term proportion
to a1 :

FIG. 1. Section of a cylindrical nematic sample, in scaled co
dinates. A sample point is defined by cartesian scaled coordin
21<x1<1 and21<x2<1, or by polar coordinates 0<x<1 and
0<u<2p. The polar grid employed in the numerical solution
LE equations is also shown.
e
g

n
e

-

F15
a1

r F2
]2

]r 1]r 2
M cos 2f1

1

2 S ]2

]r 1
22

]2

]r 2
2D M sin 2fG ,

~31!

M5
1

2
sin 2fS ]2C

]r 1
22

]2C

]r 2
2D 2cos 2f

]2C

]r 1]r 2
. ~32!

Thea2 ,a3 term can be calculated after defining the ancilla
function S5n1N22n2N1 . By inspection one can see that

S5
]f

]t
1

]~C,f!

]~r 1 ,r 2!
2

1

2
J, ~33!

F2,35
g2

r F ]2

]r 1]r 2
S sin 2f1

1

2 S ]2

]r 1
22

]2

]r 2
2DS cos 2fG

2
g1

2r
¹̂2S. ~34!

The a4 term is the simple Newtonian~Navier-Stokes! term
@41,42#

F45
a4

2r
¹̂2J. ~35!

Notice that if only this contribution is retained the velocity
uncoupled from the director orientation, i.e., no effects
the velocity dynamical behavior are predicted due to the
rector reorientation~backflow!. Finally, the a5 ,a6 term is
obtained by similar algebraic manipulations in the form

F5,65
g3

4r
¹̂2J2

g2

2r
¹̂2N, ~36!

N5
1

2
cos 2fS ]2C

]r 1
22

]2C

]r 2
2D 2sin 2f

]2C

]r 1]r 2
. ~37!

Next we shall consider the time-dependent orientation of
director field. The two nonzero components of the direc
unitary vector are conveniently expressed as

n5S cosf
sinf

0
D . ~38!

Our starting equation is the equation of motion of the dire
tor, which can be written as

xaH2n1e11g1@¹̂•p#50. ~39!

The director equation can be conveniently manipulated
multiplying the first and second components byn2 andn1 ,
respectively, and subtracting:

xaH2n1n21n2g12n1g21n2@¹̂•p#12n1@¹̂•p#250.
~40!

In the spherical approximation the elastic term is simp
given by n2@¹̂•p#12n1@¹̂•p#252K¹̂2f @19#. The mag-
netic term assumes the formxaH2 sin 2f/2, whereas the
more complicated viscous part depends upon second de

-
es
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tives of C with respect tor 1 and r 2 . Several manipulations
allow us now to obtain an explicit equation inC, f. Skip-
ping unnecessary details, one is left with the following e
pression:

]f

]t
1

]~C,f!

]~r 1 ,r 2!
5G. ~41!

The final expression for theG function is given by

G5
1

2
J2

xaH2

2g1
sin 2f1

K

g1
¹̂2f2

g2

g1
Fsin 2f

]2C

]r 1]r 2

1
1

2
cos 2fS ]2C

]r 1
22

]2C

]r 2
2D G . ~42!

The final equations for the treatment of a nematic sampl
two dimensions in the presence of a magnetic field are t
given by Eqs.~19!–~37! and ~41! and ~42!.

A. Scaled equations

For practical implementation it is convenient to defi
scaled functionsj5J/V, c5C/VR2, and scaled time and
coordinates,t5tV, x15r 1 /R, x25r 2 /R; here V has the
dimension of a rotational velocity. Scaled velocity field com
ponents are simplyv1 /VR and v2 /VR. The system of
coupled equations assumes the following, rather comp
form:

]f

]t
1

]~c,f!

]~x1 ,x2!
2

1

2
j5§, ~43!

]j

]t
1

]~c,j!

]~x1 ,x2!
5aK

]~f,¹̂2f!

]~x1 ,x2!
1a1F2

]2

]x1]x2
m cos 2f

1
1

2 S ]2

]x1
22

]2

]x2
2Dm sin 2fG

1a2F ]2

]x1]x2
§ sin 2f1

1

2 S ]2

]x1
22

]2

]x2
2D

3§ cos 2fG1a3¹̂2§1a4¹̂2j1a5¹̂2n,

~44!

j5¹̂2c, ~45!

§5lh1b1 sin 2f1b2¹̂2f, ~46!

h5
1

2
cos 2fS ]2c

]x1
22

]2c

]x2
2D 1sin 2f

]2c

]x1]x2
, ~47!

m5
1

2
sin 2fS ]2c

]x1
22

]2c

]x2
2D 2cos 2f

]2c

]x1]x2
, ~48!

n5
1

2
cos 2fS ]2c

]x1
22

]2c

]x2
2D 2sin 2f

]2c

]x1]x2
. ~49!
-

in
s

-

x,

CoefficientsaK , ai ( i 51,•••,5), l, andbj ( j 51,2) are not
all independent and they can be written explicitly in terms
the viscoelastic constants:aK5K/s2r, a15a1 /sr, a2
5g2 /sr, a352g1/2sr, a45(a4/21g3/4)/sr, and a5
52g2/2sr52a2/2 wheres5VR2; and l52g2 /g1 , b1
52xaH2/2g1V, andb25K/g1s. Notice that coefficientsai
are essentially Ekman numbers andb2 is the inverse of a
rotational Ericksen number.

B. Boundary and initial conditions

Definition of boundary and initial conditions is indispen
able for completing the implementation of the hydrodynam
treatment and for comparing simulated results with availa
experimental data, which are informative, albeit in an in
rect way, about the main features of the director distribut
in rotating samples, both for start-and-stop and continuou
rotating setups@7,8,10#. Nevertheless, a precise definition
the beahvior of the fluid at the nematic-solid interface
difficult, and dependent upon the experimental situati
Since our purpose in this work is to underline an efficie
methodology for treating nematics effectively and to inte
pret qualitatively the main features observed in magne
resonance and rheological experiments, we shall dispe
with an accurate definition of boundary conditions based
refined microscopic or macroscopic treatments and ass
very simple descriptions of the director and velocity fields
the interface.

First of all, we shall set the velocity field equal to th
rotational velocity of the cylinder in the vicinity of the inter
nal walls. In terms of thef and j functions, one can write
c(t)→ f (t)x2/2 and j(t)→2 f (t) for x→1, where x
5Ax1

21x2
2 is the scaled radial coordinate 0<x<1 and f (t)

is the scaled form off (t), defined in Sec. II above. These a
the well known boundary conditions assumed for Newton
fluids in rotating tubes@42#.

Simplified boundary conditions for the director can
imposed essentially in two ways: One can assume that
gardless of the fluid rotation the orientation of the director
the proximity of the walls is constant. This is the case
strong anchoring, i.e., Dirichlet boundary conditions,f(t)
→const forx→1. On the other extreme, we can assume t
in the neighborhood of the internal walls the LE equatio
are satisfied without significant changes of the director o
entation due to interaction with the walls. This is the case
zero anchoring]f(t)/]x→0 for x→1, or Neumann bound-
ary conditions. We shall consider in the following only zer
anchoring conditions, i.e., we shall assume that the beha
of the nematic in the rotating sample, in a boundary la
close to internal walls of the cylindrical container, is esse
tially independent of interaction with the walls. This choic
is clearly not realistic if one considers the case of a non
tating tube whose internal surface has been treated to a
the director along some easy axis, but it can be accepted
rough description for a fast rotating surface, for which t
major contribution to the free energy of the nematic in t
boundary layer comes from the kinetic term. Measureme
of azimuthal~in the plane! anchoring free energy per un
area give values smaller than 1023 J m2 @43#, whereas for the
cases treated in the following sections the free kinetic ene
could be estimated one or two orders of magnitude larg
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TABLE I. Parameters employed in the simulations.

Density r 103 kg m23

Susceptibility xa 131027

Field H 0.3349 T
Average elastic constant K 1310211 N

Leslie coefficients a i 20.0087,20.052,20.002, 0.058,
0.038,20.016 Pa s

Critical velocity Vc 1.12 s21
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However, it is clear that a more accurate description of
interaction between director and walls, using a suitable fu
tional for the free energy of the director at the bounda
layer, should be employed for a realistic description of
interface. In this work, mainly devoted to exploration of t
computational methodology for treating the hydrodynami
behavior of a nematic fluid in two dimensions, we shall n
investigate the effects of different descriptions of the int
face, reserving an analysis of the problem to future stud

Notice that by assuming no spatial dependence in
whole sample for the director field and Newtonian behav
of the velocity field one recovers the following simplifie
law for the director orientation at the walls:

df~t!

dt
5 f ~t!1b1 sinf~t!, x→1, ~50!

which is, not surprisingly, the simplified equation obtain
for the director orientation in previous standard treatme
@1# that neglect space dependence. Initial conditions will
defined in all the following calculations assuming that at
50 boundary conditions are extended to the whole sam
e
c-
y
e

l
t
-
.
e
r

ts
e

e;

i.e., sincef (0)50, one can simply assume that at the beg
ning the system is at rest (c5j50) and perfectly aligned
with the magnetic field (f50).

C. Computational procedure

The methodology chosen to solve numerically the syst
of partial differential equations outlined in the previous se
tions is straightforward, and it is described as follows. W
have adopted on purpose a strategy based on robustnes
simplicity, at the price of a certain loss of computation
efficiency in terms of storage memory and CPU time. R
finements to speed up the codes and make them less dem
ing on computer resources are currently being investigat

Our approach is then based on a simple finite-differe
algorithm; for symmetry reasons, it is convenient to use
polar grid ~see Fig. 1! in the circular region of the sample
The scaled equations are then discretized in space, u
straightforward extensions of constant step differen
schemes, with increased accuracy. We have explored g
up to 1500 points, and all the simulations presented h
were performed with a grid of 801 points, i.e., 20 poin
r

es 0, 0.6,
FIG. 2. ~Color! Director patterns at different times for continuous rotation atV5Vc/2 ~a! and 2Vc ~b!. Each circle shows the directo
pattern in the nematic sample at a given time, in scaled coordinates~cf. Fig. 1!, using a false color representation of the director anglef in
each point of the sample. The red dot represents the amount of rotation of the tube at the same time. The shots are shown for tim
1.2, 1.8, 2.4, and 3 s; for a sample of radiusR55 mm.
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FIG. 3. ~Color! Director patterns at different times for step-rotation pulses of 30° forR51 mm ~a! and 5 mm~b!. Each circle shows the
director pattern in the nematic sample at a given time, in scaled coordinates~cf. Fig. 1!, using a false color representation of the direc
anglef in each point of the sample. The red dot represents the amount of rotation of the tube at the same time. The shots are show
0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.3, and 0.5 s for the case ofR51 mm and 0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.2, 0.6, and 1.0 s for the
of R55 mm.
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(angular coordinate)340 points~radial coordinate! plus the
center.

Time is treated using an implicit scheme with an adju
able step, employing a standard solver for stiff systems
ordinary differential equations. For each time step, the
mary functionsf andj are known; first one evaluates acc
rately spatial derivatives off,j and solves the Poisson equ
tion in c ~this being a particularly simple operation in th
chosen grid!; then derivatives ofc are calculated, togethe
with ancillary functions§, h, m, andn. The time derivatives
of f andj are thus calculated. The whole procedure is th
repeated at the following time step. The computational C
time is relatively high: on a Silicon Graphics Octane a f
simulation ~see below for actual data! takes a time ranging
from 3 to 5 h.

IV. CALCULATED RESULTS

We shall illustrate in this work results related to a fix
set of viscoelastic parameters, chosen to represent a
viscosity standard nematic~see Table I!: Leslie coefficients
are chosen to be of the order of 0.1 Pa s@44#, the average
elastic constant is taken to be 1310211N, the magnetic
-
f

i-

n
U
l

w-

susceptibility and the density are chosen to have typ
values like 131027 and 103 kg/m3. These values were
chosen having in mind the nematoge
N-(p-methoxybenzylidene)-p-butylalanine ~MBBA ! 10 K
below its clearing point. The magnetic field is chosen
have a value characteristic for a standard ESR experim
0.3349 T.

In order to quantify the coupling strength of the magne
field with the director vector, it is useful to employ a derive
parameter, the so-called critical velocityVc , which is calcu-
lated from the simplified standard treatment of a contin
ously rotating sample, when spatial dependence and time
pendence are completely neglected@1,7#. In this case, the
condition for a stationary~homogeneous! director orientation
is given simply by

sin 2f5
V

Vc
, ~51!

whereVc5xaH2/2g1 . Only if V,Vc does the simplified
treatment predict a stationary distribution. We shall see t
predictions of the simplified treatment are obeyed roughly
the actual simulations, at least for the case of a sampl
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FIG. 4. ~Color! Director patterns at different times for step-rotation pulses of 90° forR51 mm ~a! and 5 mm~b!. Each circle shows the
director pattern in the nematic sample at a given time, in scaled coordinates~cf. Fig. 1!, using a false color representation of the direc
anglef in each point of the sample. The red dot represents the amount of rotation of the tube at the same time. The shots are show
0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.3, and 0.5 s for the case ofR51 mm and 0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.2, 0.6, and 1.0 s for the
of R55 mm.
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continuous rotation. For this reason we shall still useVc as a
useful parameter to discriminate among different cases.
shall present simulations in conditions of continuous ro
tion, at various rotational speeds, for a ‘‘standard’’ geome
corresponding to a tube with a radius of 5 mm. We shall th
apply our model to the exploration of step-rotation expe
ments, i.e., fast pulsed rotations of fixed angular amounts
two geometries, characterized by a different radius of tu
namely,R51 and 5 mm.

A. Continuous rotation

Let us first consider the case of a continuously rotat
sample. A clear observation that can be inferred from ca
lations is that, if one neglects transient time dependenc
the initial acceleration phase, the spatial dependence o
director distribution is relatively unimportant for low veloc
ties ~below the critical value!, whereas it is relatively impor-
tant for high velocities~above the critical value!. The depen-
dence upon the dimension of the sample is in any case ra
weak. We comment here on results only for the case o
sample with radius equal to 5 mm. The following conditio
have been imposed: the system is initially still,f (t)50; then
e
-
y
n
-
in
e,

g
-
in
he

er
a

a linear acceleration is imposed on the system, 0, f (t),1,
lasting a finite time of 0.001 s; finally, the system is kept
motion at constant speedV, i.e., f (t)51. The sequence o
times is chosen to mimic a ‘‘realistic’’ experimental situ
tion, although other sequences could well be used, lik
smoothly accelerating velocity profile.

We shall visualize the results of the simulations in ter
of a director spatial distribution, i.e., as a map of the direc
field orientation in the sample. For a given time, a false co
representation is used to visualize the director distributi
the color map associates values off with colors, ranging
from 0° ~blue!, through 45°~cyan!, 90° ~green!, 135° ~yel-
low!, to 180°~red!. A red dot indicates, with its position, th
amount of~counterclockwise! rotation of the sample at the
chosen time. Figure 2 shows some chosen snapshots o
director distributions forV5Vc/2 @Fig. 2~a!# and V52Vc
@Fig. 2~b!#, i.e., half or twice the critical velocity. Not sur
prisingly, the predictions of the simplified treatment are co
firmed, at least in the first case: forV5Vc/2 the system
rapidly reaches a stationary state, with a homogeneous
tribution close tof515°, as predicted by Eq.~51!. The
critical velocity maintains its role of critical parameter, d
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viding stable solutions evolving to stationary conditions a
unstable solutions. The solution shown forV52Vc is in fact
characterized by director vortices, which are rapidly cha
ing in time. The presence of unstable~oscillatory or other-
wise! patterns in the director distribution for continuous
rotating samples above the critical velocity is a relevant
sult which will be thoroughly explored in a following work
Here we would like to stress that~i! simplified standard treat
ments certainly cannot certainly account for these kinds
‘‘complex’’ dynamical behaviors, which arise only in con
nection with a full exploration of the velocity-director cou
pling and~ii ! although it is tempting to assume that patter
of this kind are produced in rotating samples during r
experiments, it is necessary to consider the effect of differ
boundary conditions, order of magnitude of viscosity para
eters, radius of the sample, initial conditions, and profile
the rotation velocity function. For instance, very high valu
of the viscosity numbers should lead to a rigidlike behav
of the director, with a homogeneous distribution of the dire
tor rotating in time, boundary conditions of Dirichlet typ
can lead to the creation of circular disclination at the bou
aries@1#, and so forth. Notice that, at least in the present
of calculated results, the velocity field in all cases reache
stationary Newtonian behavior, i.e.,c5x2/2, after a transient
time of the order of 0.01–0.1 s at most. The transient reg
in continuous rotation experiments is equivalent to the fi
part of step-rotation experiments, and therefore the disc
sion of the velocity behavior at transient times is postpon
to the next subsection.

FIG. 5. Average value of sin2 f vs time for step-rotation experi
ments,R51 mm ~a! and 5 mm~b!, with pulses 30°~dashed line!
and 90°~full line!.
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B. Pulsed rotation

Next we shall consider simulated experimental conditio
of step-rotation experiments, in which the system is s
jected to a rapid rotational pulse of a given angle. In t
following we shall treat the cases of pulses of 30° and 9

In Figs. 3 and 4 we show the calculated director patte
for the cases of samples of radius 1 and 5 mm and p
angles of 30° and 90°. Simulations have been performed
first accelerating the system for 0.001 s, then rotating at c
stant speed for 0.01~30°! or 0.03 s~90°!, and finally decel-
erating the system for 0.001 s. The imposed rotational sp
was in all cases equal to 50 rad s21. Again, the parametriza
tion for the rotational pulse has been chosen to simulate
alistically an experimental setup@7#. The results show clearly
that a strong dependence on the dimension of the sample
the imposed rotation angle is present. For the case of ra
equal to 1 mm@Figs. 3~a! and 4~a!# the system behaves mor
or less like a rigid system, except at very short times co
parable to the pulse duration. The director exhibits a de
time in adjusting its orientation to the velocity field, but on
the velocity field is stabilized the director reaches a stati
ary pattern, and, since the momentum of rotation is rapi
spread from the vessel walls to the whole sample in a t
comparable to the pulse duration, the director rapidly reac
an almost uniform orientation close to the rotation angle. T
relaxation to a state of alignment with the magnetic field th
follows, in a much longer time scale that is comparable
the inverse of the critical velocity.

The director patterns for the case of large radius@Figs.
3~b! and 4~b!# show clearly the nonrigid and non-Newtonia
behavior of the liquid crystalline fluid. The effect of the ro
tation is spread more slowly to the center of the sample
the dynamical evolution of the director and velocity fiel
takes place well beyond the duration of the pulse itself, wh
the rotation of the tube is stopped.

Analysis of the director patterns shows that in gene
during the fast rotation time the director starts to orient its
perpendicularly to the magnetic field from two areas cor
sponding to the maximum velocity~close to the borders! and
at maximum angle with the initial director. These two are
rapidly grow to an annular region. When the cylindrical ve
sel ceases its rotation, the fluid is left under the influence
elastic and magnetic forces only, which causes the directo
relax back to the original configuration aligned with the ma
netic field. Notice that there is always a retardation effe
i.e., the director field change takes place at slower ti
scales than the velocity field evolution: thus the realignm
to the field starts well beyond the time when the sam
rotation is stopped.

By looking at the dynamic evolution of the director pa
terns we can therefore distinguish several time regimes
pulse step experiments. There is an initial short timetacc
characterized by a fast adjustment of the velocity field at
boundaries from the initial zero value to the stationary co
dition; in this first phase the velocity does not have any dir
influence on the director reorientation, except in a reg
close to the boundaries, where the director starts to de
from the initially aligned distribution;tacc is close in magni-
tude to the duration of the acceleration part of the rotat
pulse, i.e., in our case of the order of 0.001 s. Next
director reorientation is spread to an annulus; this proc
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FIG. 6. DistributionP(f) vs director orientationf ~in degrees! at different times for a pulse rotation of 30°; forR51 mm ~a! times are
0.01, 0.03, 0.05, and 0.5 s and forR55 mm ~b! times are 0.02, 0.2, 0.6, and 1.0 s.
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seems to take place in a timetpulse that is of the order of
magnitude of the entire pulse duration, 0.01–0.03 s. After
tube has ceased its rotation, the region of realigned dire
field is spread to the rest of the sample in a timetspreadthat
depends on the sample dimension; it is very short for
small radius sample while it is at least ten times the dura
of the pulse for the large radius sample, 0.1–0.2 s. Fina
the director starts relaxing back to the initial configurati
aligned to the field, this process happening on a much lon
e
or

e
n
y,

er

time scalet relax, roughly inversely proportional to the critica
velocity, 1–2 s. Naturally, depending essentially upon
sample dimension and the angle of rotation, the director p
terns are inhomogenously distributed in the sample@see Figs.
3~b! and 4~b!#.

To support these general observations quantitatively,
show plots of^sin2 f& vs time for radius 1 mm in Fig. 5~a!
and 5 mm in Fig. 5~b!. The intrinsic ‘‘rigidity’’ of the small
sample is evident: the director is reoriented rigidly during t
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rotation pulse and it reaches a maximum displacement f
the initial distribution which corresponds to the pulse ang
30 or 90°. The timetpulse, which we can identify as the time
required by the velocity field to reach a stationary state, c
ers the duration of the pulse;tspreadis very short. Afterward
the system relaxes back to the initial configuration align
with the magnetic field. For the larger radius sampletspreadis
longer, and the system is unable to reach a maximum al
ment equal to the rotation angle of the system. In ot
words, the director field in the bulk of the fluid is weak
influenced, during the short rotation of the tube: the syst
has an average orientation close to half the rotation angle
the three cases considered. The slow processes of rea
ment are essentially similar to the small radius case. An
gous information concerning the director orientation can
obtained from analyzing probability plots, i.e., distributio
P(f) at different times in the sample. In Fig. 6 we show
selection of distributions for four times~see the caption! for
the case of a 30° pulse and radius 1 mm@Fig. 6~a!# and 5 mm
@Fig. 6~b!#. Naturally, the local behavior of the director fie
can be analyzed in detail also by looking directly at the ti
evolution along sections of the sample or in defined areas
Fig. 7 we show, for further comparison, the director fie
values along the horizontal diameter.

The velocity field of the nematic fluid can also be an
lyzed in detail. The main information we obtain from o
simulations is that the general dynamics of the velocity fi
of a low viscosity nematic fluid is essentially of a Newtoni
type, i.e., the general features of velocity profiles, avera
and local values, are interpreted in a satisfactory way b
Navier-Stokes behavior. Naturally, backflow effects a
present due to the effect of the director reorientation upon

FIG. 7. Director anglef vs x1 , i.e., along the horizontal diam
eter of the sample, for a pulse rotation of 30° andR51 mm ~a! and
5 mm ~b!. Times~in s! are reported in the figure.
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velocity dynamics, which are relevant especially during t
spreading phase of the directortpulse,t,tspread after pulse
rotation, and at long times when the velocity field is sens
the slow relaxation of the director under the influence of
magnetic torque. The dynamical behavior of the veloc
field is sketched in Fig. 8, where we show the scaledv2 /VR
component at several times for the section along the horiz
tal diameter: notice that during the pulse rotation the beh
ior of the velocity is rather similar in the two samples, i.e
for very short times and large acceleration the system re
more or less as a rigid body; the velocity backshot is th
enhanced in the 5 mm sample after the pulse is termina
although it is weakly present also in the 1 mm sample
longer times, not shown here, where the velocity is alm
totally relaxed back to zero and residual fluxes are due o
to the backflow effect induced by the slow director rela
ation.

V. SUMMARY

The purpose of this work was to analyze the dynami
behavior of a low viscosity nematic liquid crystal in a rota
ing cylinder in the presence of a magnetic field, as descri
by Leslie-Ericksen equations for the coupled director a
velocity fields, through a full numerical solution confined
two dimensions.

A computational methodology has been presented to
scribe different experimental setups, defined by suitable p

FIG. 8. Scaled component of the velocity fieldv2 /VR vs x1 for
a pulse rotation of 30° andR51 mm~a! and 5 mm~b!. Times~in s!
are reported in the figure.
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files of the rotational speed imposed on the cylindrical v
sel. In particular, we have analyzed the director patterns
continuously rotating sample and several cases of step
tion, i.e., simulated experiments in which the rotation is i
posed for a short duration at high velocities. We have cho
simplified boundary conditions equivalent to weak anchor
at the borders. We have shown that the velocity field is
general well described by a Navier-Stokes or Newtonian-
dynamics, whereas the director adjusts slowly under the
fluence of the velocity field distribution and of elastic a
magnetic torques. It has been shown that the sample dim
sion is important in determining the rigidity of the direct
response: larger samples show the presence of transien
homogeneous patterns, which are not present in sm
samples. The distribution of director orientations in the flu
has been shown to evolve in time from the initial homog
neous one to an intermediate inhomogeneous distribut
whose spatial dependence depends upon the sample di
sion and the magnitude of the rotational velocity, and fina
to relax back to a distribution aligned with the field.

In the case of a cylindrical vessel continuously rotatin
we have shown that numerically exact solutions of the
equations in two dimensions support standard predictions@1#
based on simplified treatments of the director and velo
fields, at low rotational velocities. At high rotational veloc
ties the director exhibits nonstationary patterns. For sim
ys

st
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lated step-rotation experiments, director patterns are cre
first as localized areas at the borders where the displacem
between velocity and director field is maximum, then spre
in an annular region, and finally inhomogeneously diffus
to the whole sample.

Once time- and space-dependent solutions for the dire
field are available, it is possible to start quantitatively rel
ing experimental evidence, coming especially from nucl
magnetic and electron spin resonance measurements,
the director patterns predicted by the hydrodynamic mod
In the following paper, we shall discuss the interpretation
NMR spectra of nematics on the basis of the present c
plete numerical procedure and of approximate solutions.
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Gonçalves, J. Figueirinhas, C. Cruz, and A. F. Martins,ibid.
15, 1485~1993!.

@11# P. Ziherl, M. Vilfan, and S. Zˇumer, Phys. Rev. E52, 690
~1995!.

@12# P. Ziherl and S. Zˇumer, Phys. Rev. E54, 1592~1996!.
@13# P. Palffy-Muhoray, A. Sparavigna, and A. Strigazzi, Li

Cryst.14, 1143~1993!.
@14# A. D. Kiselev and V. Y. Reshetnyak, Mol. Cryst. Liq. Crys

Sci. Technol., Sect. A265, 527 ~1995!.
@15# T. Tsuji and A. D. Rey, J. Non-Newtonian Fluid Mech.73,

127 ~1997!.
@16# N. G. Dolmatova and E. N. Kozhevnikov, Akust. Zh.43, 350
.

,

~1997! @Acoust. Phys.43, 300 ~1997!#.
@17# G. Porte, J. F. Berret, and J. L. Harden, J. Phys. II7, 459

~1997!.
@18# P. K. Chan and A. D. Rey, Liq. Cryst.23, 677 ~1997!.
@19# A. Polimeno and A. F. Martins, Liq. Cryst.25, 545~1998!; A.

Polimeno, L. Orian, P. L. Nordio, and A. F. Martins, Mo
Cryst. Liq. Cryst. Sci. Technol., Sect. A336, 17 ~1999!; A.
Polimeno, L. Orian, P. L. Nordio, and A. F. Martins,ibid. ~to
be published!.

@20# R. G. Larson and L. A. Archer, Liq. Cryst.19, 883 ~1995!.
@21# A. Chrzanowska and K. Sokalski, Phys. Rev. E52, 5228

~1995!.
@22# A. Y. Zubarev and L. Y. Iskakova, Physica A229, 188~1996!.
@23# M. Kroger and S. Sellers, Phys. Rev. E56, 1804~1997!.
@24# M. Fialkowski, Phys. Rev. E58, 1955~1998!.
@25# F. Volino, Ann. Phys.~N.Y.! 22, 1 ~1997!; F. Volino, H. Ger-

ard, and G. Gebel,ibid. 22, 181 ~1997!.
@26# M. Imai, H. Naito, M. Okuda, and A. Sugimura, Mol. Crys

Liq. Cryst. Sci. Technol., Sect. A259, 37 ~1995!; 262, 267
~1995!.

@27# G. Cipparrone, D. Duca, C. Versace, C. Umeton, and N.
Tabiryan, Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A266,
263 ~1995!.

@28# P. T. Mather, D. S. Pearson, R. G. Larson, D. F. Gu, and A.
Jamieson, Rheol. Acta36, 485 ~1997!.

@29# E. Cappelaere and R. Cressely, Colloid Polym. Sci.275, 407
~1997!.

@30# J. F. Berret, Langmuir13, 2227~1997!.
@31# V. Sequeira and D. A. Hill, J. Rheol.42, 203 ~1998!.
@32# U. Kuhnau, H. Schmiedel, and R. Stannarius, Mol. Cryst. L

Cryst. Sci. Technol., Sect. A261, 293 ~1995!.
@33# N. Yao and A. M. Jamieson, J. Rheol.42, 603 ~1998!.



tu

us

G

2300 PRE 62POLIMENO, ORIAN, MARTINS, AND GOMES
@34# H. Gotzig, S. Grunenberghassanein, and F. Noack, Z. Na
forsch., Sci. Technol., Sect. A261, 283 ~1995!.

@35# M. Grigutsch, N. Klopper, H. Schmiedel, and R. Stannari
Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A261, 283~1995!.

@36# E. Ciampi and J. W. Emsley, Liq. Cryst.22, 543 ~1997!.
@37# G. Althoff, N. J. Heaton, G. Grobner, R. S. Prosser, and

Kothe, Colloids Surf., A115, 31 ~1996!.
@38# J. P. Casquilho, L. N. Gonc¸alves, and A. F. Martins, Liq.

Cryst.21, 651 ~1996!.
r-

,

.

@39# B. B. Diao and G. C. Berry, Liq. Cryst.22, 225 ~1997!.
@40# Pattern Formation in Liquid Crystals, edited by A. Buka and

L. Kramer ~Springer, Berlin, 1996!.
@41# L. Landau and E. Lifsits,Mécanique des Fluides~Mir, Mos-
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