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Evaluation of the smallest nonvanishing eigenvalue of the Fokker-Planck equation
for the Brownian motion in a potential. II. The matrix continued fraction approach

Yu. P. Kalmykov
Centre d’Études Fondamentales, Universite´ de Perpignan, 52 Avenue de Villeneuve, 66860 Perpignan Cedex, France

~Received 21 March 2000!

An equation for the smallest nonvanishing eigenvaluel1 of the Fokker-Planck equation~FPE! for the
Brownian motion of a particle in a potential is derived in terms of matrix-continued fractions. This equation is
applicable to the calculationl1 if the solution of the FPE can be reduced~by expanding the probability
distribution function in terms of a complete set of appropriate functions! to the solution of a multiterm
recurrence relation for the moments describing the dynamics of the Brownian particle. In contrast to the
available continued fraction solution forl1 @H. Risken,The Fokker-Planck Equation~Springer, Berlin, 1989!#,
this equation does not require one to solve numerically a high order polynomial equation. To test the theory,
the smallest eigenvaluel1 is evaluated for the FPE, which appears in the theory of magnetic relaxation of
single domain~superparamagnetic! particles. Various regimes of relaxation of the magnetization in superpara-
magnetic particles are governed by a damping parametera, the limiting values of which correspond to the high
damping (a→`) and the low damping (a!1) limits in the theory of the escape rate over potential barriers.
It is shown that for all ranges of the barrier height and damping parameters the smallest eigenvaluel1

predicted by the continued fraction equation is in agreement with those gained by independent numerical
methods and the asymptotic estimates forl1 ~in the high barrier limit! and, moreover, the matrix continued
fraction approach may be successfully applied to the evaluation ofl1 in those ranges of parameters where
traditional methods fail or are not applicable.

PACS number~s!: 05.40.Jc, 05.10.Gg, 75.50.Tt
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I. INTRODUCTION

In the previous paper@1#, we elaborated on a method use
to calculate the smallest nonvanishing eigenvaluel1 of the
FPE for the Brownian motion of a particle in a potentia
where the dynamics of the system is governed by an infi
hierarchy ofscalar three-termrecurrence equations for th
moments~the expectation values of the dynamic quantit
of interest!. As is well known@2,3#, for the majority of prob-
lems the FPE may not be reduced to the solution of a sc
three-term recurrence equation. Hence the method@1# of
evaluatingl1 based on the conversion of the recurrence
lation to ordinary continued fractions can no longer be ap
cable. Examples of this are those problems, which invo
diffusion in phase space and diffusion in configuration sp
where the form of a potential is such as to give rise to m
titerm recurrence relations. In the present paper, the me
@1# is extended formultiterm recurrence equations, whic
can be solved in terms of matrix-continued fractions@2,3#.

As is known @2#, a multiterm scalarrecurrence relation
may be converted to athree-term matrixone. Such a matrix
three-term recurrence relation may be written down as
PRE 621063-651X/2000/62~1!/227~10!/$15.00
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d

dt
Cn~ t !5Qn

2Cn21~ t !1QnCn~ t !1Qn
1Cn11~ t !,

n51,2,3,... . ~1!

where theCn(t) are the column vectors arranged from t
moments in an appropriate way.Qn

2 , Qn
1 , andQn are time

independent noncommutative matrices, andt« is a character-
istic time constant. A general method used to solve Eq.~1! in
terms of matrix continued fractions has been described
Risken@2# and later extended by Coffeyet al. @3#. According
to @3#, the exact solutionof Eq. ~1! with C0(t)50 for the
Laplace transform ofC1(t) is given by

C̃1~s!5t«D1~s!H C1~0!1 (
n52

` F )
k52

n

Qk21
1 Dk~s!GCn~0!J ,

~2!

where the infinite matrix continued fractionDn(s) is defined
as
Dn~s!5
I

t«sI2Qn2Qn
1

I

t«sI2Qn112Qn11
1

I

t«sI2Qn122¯

Qn12
2

Qn11
2

~3!
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228 PRE 62YU. P. KALMYKOV
~the fraction lines designate the matrix inversions! and I is
the unit matrix. The initial conditionsCp(0) in Eq. ~2! can
be expressed in terms of the matrix continued fractionDp(0)
~see, e.g., Refs.@2,3#!.

Having determined the Laplace transformC̃1(s) from Eq.
~2!, one is able to calculate the relaxation timetk of the kth
componentc1,k(t) of C1(t), which is defined as

tk5
1

c1,k~0!
E

0

`

c1,k~ t !dt5
c̃1,k~0!

c1,k~0!
. ~4!

The relaxation timetk may equivalently be defined in th
context of the FPE converted to the Sturm-Liouville proble
as

tk5

(
m

Ckm /lkm

(
m

Ckm

, ~5!

wherelkm andCkm are the eigenvalues and their correspon
ing weight coefficients~amplitudes!, as

c1,k~ t !5(
m

Ckme2lkmt. ~6!

The relaxation timetk Eq. ~5! contains contributions from
all the eigenvalues. In general, it is impossible to evaluatetk
analytically from Eq.~6! as knowledge of alllkm andCkm is
required. As far as a physical interpretation is concerned
many cases the relaxation timetk is determined by the slow
est low-frequency relaxation mode that governs transition
the Brownian particle over the barriers from one poten
well into another. The characteristic frequency of this ov
barrier relaxation mode is determined by the smallest eig
valuel1 . It is apparent from Eq.~6! thatl1 is the reciprocal
time constant associated with thelong time behaviorof the
relaxation function, which is only determined by the slowe
low-frequency relaxation mode. The behavior of the rela
ation time and the inverse of the smallest eigenvaluel1 is
sometimes similar. However, if different time scales are
volved, the behavior of these can be quite different. An
ample of this is the Brownian motion of a particle in
bistable potential under the action of a constant field@4#,
where the relaxation time maydiverge exponentiallyfrom
the inverse of the smallest nonvanishing eigenvaluel1 . Here
for moderate values of the constant field a close approxi
tion to the correlation time is furnished byl1

21; however, as
the field strength increases so that the bistable nature o
potential is weakened,l1

21 ceases to be a good approxim
tion for the relaxation time~see Sec. III!. A knowledge ofl1
is also of importance because other time constants, suc
the mean first passage time and the escape rate, are m
determined by the slowest low-frequency relaxation mo
Moreover, in many cases the influence of other relaxat
modes in the low-frequency relaxation may be ignored a
thus, the knowledge ofl1 provides sufficient information
about the low-frequency dynamics of the system@2#.

The continued fraction approach of calculating the eig
values of the FPE has been discussed in detail by Risken@2#.
-
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In Ref. @1# we further developed this approach and sugges
a usable method for evaluating the smallest nonvanish
eigenvaluel1 of the FPE in terms of scalar continued fra
tions. In contrast to the previously available solution@2#, the
method developed does not require one to solve numeric
a high order polynomial equation as it was shown thatl1
may be represented as a sum of products of infinite con
ued fractions. Besides its advantage for the numerical ca
lation, the equation so obtained is very useful for analyti
purposes, e.g., for certain problems it may be expresse
terms of known mathematical~special! functions.

Here we extend the method of Ref.@1# to the problem
under consideration. We consider as an example of the
plicability of the method the problem of magnetic relaxati
of single domain particles. A single domain particle is ch
acterized by an internal potential, which can have seve
local states of equilibrium with potential barriers betwe
them. If the particles are small~;10 nm! so that the potentia
barriers are relatively low, the magnetization vectorM may
cross over the barriers between one potential well and
other due to thermal agitation. The ensuing thermal insta
ity of magnetization results in the phenomenon of superpa
magnetism@5#. The thermal fluctuations and relaxation of th
magnetization of superparamagnetic particles currently m
attention in view of their importance in the context of ma
netic recording media and rock magnetism, as well as
connection with the observation of magnetization reversa
isolated ferromagnetic nanoparticles and nanowires@6#.

The thermal fluctuations of the magnetizationM in an
individual superparamagnetic particle are described by
FPE for the probability density distributionW of M @7#:

2tN

]

]t
W5b@a21u•~gradV3gradW!1div~W gradV!#

1DW, ~7!

whereD is the Laplacian on the surface of the unit sphereu
is the unit vector directed alongM ,V is the free energy den
sity of the magnetocrystalline anisotropy expressed a
function of M ,

tN5bhMs
2~11a22!/2 ~8!

is the characteristic relaxation time,b5n/kT, n is the vol-
ume of the particle,k is the Bolzmann constant,T is the
temperature,g is the gyromagnetic ratio,h is the damping
parameter. Ms is the saturation magnetization, anda
5ghMs is the dimensionless dissipation parameter. A d
cussion of the assumptions made in the derivation of the F
~7! is given elsewhere~e.g., @8,9#!. It is of importance that
the general theory of the escape rates over the potential
riers@10# has a direct application to the present problem@11#.
Various regimes of relaxation of superparamagnetic partic
are governed by the damping parametera, the intermediate
and large (1<a<`) and small (a!1) values of which cor-
respond to the intermediate to high damping and the
damping limits of the escape rate theory@10,11#. For a5`
the FPE~7! is similar to that for the rotational Brownian
motion of a particle in a liquid@3#.
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A standard approach to the solution of Eq.~7! is to ex-
pand the probability distribution functionW in terms of
spherical harmonicsYl ,m defined as@12#

Yl ,m5~21!mA~2l 11!~ l 2m!!

4p~ l 1m!!
eimwPl

m~cosq!,

Yl ,2m5~21!mYl ,m* , ~9!

where Pl
m(cosq) is the associated Legendre function, a

the asterisk denotes the complex conjugate. This yields
infinite hierarchy of differential-recurrence equations for t
momentscl ,m(t) ~the expectation values of the spherical h
monics or appropriate correlation functions! @13,14#:

tN

d

dt
cl ,m~ t !5 (

l 8,m8
dl 8,m8,l ,mcl 8,m8~ t !, ~10!

where dl 8,m8,l ,m are the matrix elements of the Fokke
Planck operator@14#: dl 8,m8,l ,m depend on parameters cha
acterizing the anisotropy energy, external fields, and diss
tion. An equation fordl 8,m8,l ,m at an arbitraryV was derived
in @13#. Equation~10! may be reduced to Eq.~1! by means of
the appropriate arrangement of the column vectorsCn(t) and
the matricesQn , Qn

1 , andQn
2 ~see, for example, Ref.@15#!.

The paper is arranged as follows. In Sec. II, an equa
for the smallest eigenvaluel1 is derived in terms of matrix-
continued fractions. The verification of the validity of th
equation is given in Secs. III and IV by evaluatingl1 for the
FPE for the Brownian motion of a particle in asymmet
bistable potentials, which appears in the theory of superp
magnetism.

II. MATRIX-CONTINUED FRACTION SOLUTION FOR l1

In the context of the matrix continued fraction approac
the eigenvalues of the FPE can be determined by inser
the separation ‘‘ansatz’’@2#

Cn~ t !5Ĉne2lt, n51,2,3,... ~11!

into Eq. ~1!. Thus one can obtain an equation for the eige
values, viz,

det@t«lI1Q11Q1
1D2~2l!Q2

2#50. ~12!

The disadvantage of Eq.~12! is that in some cases it may b
extremely difficult to evaluate eigenvalues as it involv
finding the roots of a very high order polynomial equatio
The direct matrix methods, which are based on writing
set of the moment equations~10! as a first-order matrix dif-
ferential equation,

d

dt
X~ t !5AX ~ t !, ~13!

and on subsequent numerical solutions of Eq.~13!, may also
be inapplicable in those limits, as it is necessary to carry
the calculations for the dimension of the column vectorX(t)
of the order of 104-105, and convergence of the solution
consequently difficult to achieve@16#.
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Equation~12! allows one to evaluate numerically all th
eigenvalues@2#. However, if one is interested in the evalu
tion of l1 only, Eq. ~12! can be simplified just as for the
scalar continued fraction@1#. In the high barrier~or low tem-
perature! limit, where t«l1!1 @2#, one may take into ac-
count only the first two terms in the Taylor series expans
of D2(2l) for l5l1 , viz,

D2~2l1!5D2~0!2l1t«D28~0!1O„~l1t«!2
…. ~14!

Thus one has from Eq.~12!

det@t«l1$I2Q1
1D28~0!Q2

2%1Q11Q1
1D2~0!Q2

2#50,
~15!

where the symbol8 designates the derivative ofD2(s) with
respect tost« . As will be shown below, Eqs.~14! and ~15!
also provide relatively high accuracy in the calculation ofl1
for intermediate and small barrier heights, wheret«l1<1. In
order to calculatel1 from Eq. ~15!, one should obtain an
equation forD28(0) . This can be accomplished by noting th
Dn(s) andDn8(s) satisfy the following recurrence relations

Dn~s!5@t«sI2Qn2Qn
1Dn11~s!Qn11

2 #21 ~16!

and

Dn8~s!52@ I2Qn
1Dn118 ~s!Qn11

2 #Dn
2~s!, ~17!

respectively@Eq. ~17! can be obtained by direct differentia
tion of Eq. ~16!#. Equation~17! can be further rearranged i
the form of the recurrence equation forQn21

1 Dn8(s)Qn
2 , viz,

Qn21
1 Dn8~s!Qn

252Qn21
1 @ I2Qn

1Dn118 ~s!Qn11
21 #Dn

2~s!Qn
2 ,

the solution of which may be obtained by iteration and
given by, fors50,

Q1
1D28~0!Q2

252 (
n52

` S )
m51

n21

Qm
1D

3S )
k51

n21

Dn2k11
2 ~0!Qn2k11

2 D . ~18!

Thus the substitution of Eq.~18! into Eq. ~15! yields

det~l1I2S!50, ~19!

where the matrixS is defined as

S52t«
21@Q11Q1

1D2~0!Q2
2#F I1 (

n52

` S )
m51

n21

Qm
1D

3S )
k51

n21

Dn2k11
2 ~0!Qn2k11

2 D G21

. ~20!

Here, we have made use of a theorem~@17#, Sec. 14.8-7!,
which states that the eigenvaluesm and eigenvectorsy of the
matrix equation

Ay5mBy
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230 PRE 62YU. P. KALMYKOV
are the eigenvalues and eigenvectors of the matrixB21A.
Thus the smallest nonvanishing eigenvaluel1 is an eigen-
value of the matrixS given by Eq.~20!. Furthermore, if that
l1!ln ~ln are all other eigenvalues of the matrixS!, then
l1 is given by

l1'
det@S#

Sp@D#
, ~21!

where the elements of the matrixD are the minors of the
matrix S. The evaluation ofl1 from Eq. ~19! or Eq. ~21! is
much more easily accomplished than the calculation ofl1 by
solving numerically a high order polynomial Eq.~12! or by
using the matrix Eq.~13!. Equation~19! requires only the
calculation of the matrix-continued fractionsDn(0).

III. APPLICATIONS TO RELAXATION PROBLEMS
OF SUPERPARAMAGNETISM:

BIASED UNIAXIAL POTENTIAL

As an example let us consider a uniaxial superparam
netic particle in a strong uniform magnetic fieldH0 applied
along the easy axis. Here, the anisotropy energy densi
given by @18–20#

V52K cos2q2H0Ms cosq, ~22!

whereK is the anisotropy constant andq is the angle be-
tweenM and the positivez axis. Similar problems related t
the rotational Brownian motion in potential~22! also appear
in the theory of dielectric relaxation of nematic liquid cry
tals @21# and the theory of the dynamic Kerr effect@22#. In
the theory of superparamagnetism, the potential~22! was
originally introduced by Ne´el @23#, who gave an expressio
for the time of reversal of the magnetization. It was furth
considered by Brown@24#, who obtained approximate ex
pressions for the lowest eigenvalue in the limit of large a
small K using the Kramers transition state method@25# and
perturbation theory, respectively. Later, the smallest eig
valuel1 was calculated numerically by Aharoni@18#. On the
other hand, the analysis presented by Garaninet al. @19,26#
enabled them to derive an integral expression for the lon
tudinal relaxation timet from the FPE~7!. The relaxation
time t has also been calculated using the matrix-contin
fraction approach@27#, where the bias field effect of the ex
ponential deviation oft from the inverse ofl1 has been
discovered. Here we apply the matrix-continued fract
technique to the calculation ofl1 . The model is used here a
an example to verify the continued fraction solution Eq.~19!.
g-

is

r

d

n-

i-

d

n

Furthermore, although this model has already been studie
Refs.@18,24,27#, an equation forl1 , however, which would
be valid for all ranges of the barrier heights, has not yet b
presented. The continued fraction solution Eq.~19! will be
compared with the asymptotic solution of Brown@24# for l1
in the high barrier limit and the solution of Garanin@26# and
Coffey et al. @27# for the longitudinal relaxation time.

Upon evaluating the longitudinal relaxation of the pa
ticle, the FPE~7! with the potential~22! can be reduced@27#
to the solution of the infinite hierarchy of five-term recu
rence equations for the equilibrium correlation functio
f n(t), which describes the dynamics of the system un
consideration, viz,

2tN

n~n11!

d

dt
f n~ t !1F12

2s

~2n21!~2n13!G f n~ t !

5
j

2n11
@ f n21~ t !2 f n11~ t !#

12sF ~n21!

~2n21!~2n11!
f n22~ t !

2
~n12!

~2n11!~2n13!
f n12~ t !G , ~23!

where

f n~ t !5^cosq~0!Pn@cosq~ t !#&0

2^cosq~0!&0^Pn@cosq~0!#&0 ,

s5
nK

kT
, j5

nMsH0

kT

are the barrier height and the bias field parameters, res
tively, Pn are the Legendre polynomials, and^&0 designates
the equilibrium average att50.

Equation ~23! can be transformed@27# into the matrix
three-term differential-recurrence Eq.~1!, wheret«5tN,

Cn~ t !5S f 2n21~ t !
f 2n~ t ! D

andQn , Qn
1 , andQn

2 are the 232 matrices given by@27#
Qn5S 2sn~2n21!

~4n23!~4n11!
2n~2n21! 2j

n~2n21!

4n21

j
n~2n11!

4n11

2sn~2n11!

~4n21!~4n13!
2n~2n11!

D , ~24!
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Qn
15S 2s

2n~4n221!

16n221
0

2j
n~2n11!

4n11
2s

4n~n11!~2n11!

~4n11!~4n13!

D .

~25!

Qn
25S s

4n~n21!~2n21!

~4n21!~4n23!
j

n~2n21!

4n21

0 s
2n~4n221!

16n221

D .

~26!

The matrix-continued fractionDn(0) @Eq. ~3!# with the 2
32 matricesQn , Qn

1 , and Qn
2 given by Eqs.~24!–~26!

satisfies the conditions of a theorem~proved in Ref.@28#!
appropriate to the convergence of matrix-continued fractio
This theorem guarantees the convergence of the ma
continued fractionDn(0) defined by Eq.~3! to some limit if
two definite conditions are fulfilled, viz,

det@Qn11
1 ~Qn11!21#det@Qn11

2 ~2Qn!21#< 1
4 for n.1)

and

lim
N→`

4N)
n51

N

det@Qn11
1 ~Qn11!21#det@Qn11

2 ~2Qn!21#50.

~27!

It can be readily verified that the matricesQn , Qn
1 , andQn

2

in Eqs. ~24!–~26! satisfy the above conditions. Thus th
matrix-continued fraction defined by Eq.~3! converges. In
our calculation, the infinite matrix-continued fractionDn(0)
was approximated by a matrix-continued fraction of fin
order ~by putting Qn

150 at somen5N!. The value ofN
must be chosen by stipulating the accuracy of the calcula
a priori as it depends on the parameterss andj. The calcu-
lation has shown that the matrix-continued fractions and
series involved in Eq.~19! converge very rapidly, thus
10–15 downward iterations in calculating the continued fr

TABLE I. Numerical values for the biased uniaxial potential E
~22! at h50.1

s
tNl1

num

@Eq. ~32!#
tNl1

@Eq. ~28!#
tNl1

as

@Eq. ~29!#
tN /t

@Eq. ~30!#

0 1.0 1.0 0.0 1.0
1 0.6569 0.6562 0.4068 0.6587
2 0.4161 0.4151 0.4359 0.4202
3 0.2557 0.25450 0.3146 0.2602
4 0.1530 0.1526 0.1964 0.1566
5 0.0893 0.0891 0.1141 0.0917
6 0.0508 0.0508 0.0636 0.0523
7 0.0283 0.0282 0.0345 0.0291
8 0.0154 0.0154 0.0183 0.0158
9 0.0082 0.0082 0.0096 0.0085

10 0.0043 0.0043 0.0049 0.0045
s.
x-

n

e

-

tions and 10–15 terms in the series were enough to arriv
an accuracy of not less than six significant digits in the m
jority of cases.

The smallest nonvanishing eigenvaluel1 is determined
by Eq. ~19!. As here the matrixS in Eq. ~19! has the dimen-
sion 232, one can readily obtain

l15 1
2 ~S111S222A~S112S22!

214S12S21!, ~28!

whereSi j are the elements of the matrixS.
The results of the calculation ofl1 from Eq. ~28! are

presented in Table I and Figs. 1 and 2, where they are c
pared with the asymptotic estimate forl1 given by @7,24#

l1
as;

s3/2~12h2!

tNAp
$~11h!e2s~11h!2

1~12h!e2s~12h!2
%,

~29!

and with the inverse of the relaxation timet of the correla-
tion function f 1(t) defined by Eq.~2!, which may be equiva-
lently presented in the integral form as@26#

FIG. 1. l1 @Eq. ~28!—solid line# andl1
num @Eq. ~32!—stars# for

the biased cos2 q potential ath50.1 as a function of the barrie
height s compared with the asymptotic solutionl1

as @Eq. ~29!#
~dashed line! and the solution rendered by the inverse of the cor
lation timet21 @Eq. ~30!# ~diamonds!.

FIG. 2. The same as in Fig. 1 forh50.25.
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232 PRE 62YU. P. KALMYKOV
t5
2tN

Z~^cos2 q&02^cosq&0
2!

3E
21

1 F E
21

z

~z82^cosq&0!e2bV~z8!dz8G2 ebV~z!

12z2 dz.

~30!

Hereh5j/2s,

^cosq&05
1

Z E
21

1

xe2bV~x!dx,

^cos2 q&05
1

Z E
21

1

x2e2bV~x!dx,

and

bV~x!52s~x212hx!, Z5E
21

1

e2bV~x!dx. ~31!

The results of the calculation ofl1 from Eq. ~28! are also
compared in Table I with those obtained from the numeri
solution of the set of Eq.~23! transformed into the matrix Eq
~13! ~see, for details,@27#!. The lowest eigenvaluel1 is then
the smallest root of the characteristic equation

det~lI2A!50, ~32!

where A is a five-diagonal system matrix in Eq.~13!, the
elements of which are determined by Eq.~23!. For the prob-
lem in question, the evaluation ofl1

num from Eq.~32! creates
no difficulties and it is used here only for the purpose
comparison with the results of the continued fraction a
proach.

The lowest eigenvaluel1 from Eq.~28! is in good agree-
ment with the numerical solutionsl1

num of the characteristic
Eq. ~32! for all s ~see Table I and Figs. 1 and 2!. As one can
also see in Figs. 1 and 2 and in Table I, in the high bar
limit l1 is in excellent agreement withl1

as, calculated from
the asymptotic Eq.~29!. Thus Eq.~28! may be used to cal
culatel1 for all values ofs. Figure 2 also shows the deple
tion effect, which consists of the drastic deviation of t
relaxation timet @Eq. ~30!# from l1

21 in the low temperature
limit starting from some critical valueshc of the parameterh
and that is due to depletion of the upper~shallow! potential
well involved into the relaxation process. The critical val
is known to behc'0.17 @26#. The phenomenon was discov
ered for uniaxial particles by Coffeyet al. @27# and later
explained by Garanin@26#, who showed that this effect is
natural consequence of the depletion of the shallower of
two potential wells~which are involved in the barrier cross
ing! by the uniform field. Thus at low temperatures the fa
modes may come to dominate the relaxation. Furthermore
Ref. @4# it has been shown that this depletion effect alwa
exists in relaxation in bistable potentials and it has also b
asserted that such an effect is a general feature of relaxa
in biased double well potentials.
l

f
-

r

e

t
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s
n
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IV. UNIAXIAL PARTICLES IN OBLIQUE FIELD

In general the fieldH0 may be applied at some angle
the easy axis of the particle. In this case, free energy per
volume has the form

V52~M•H0!2K cos2 u

52H0MSA2p

3
$~gX1 igY!Y1,211gZ&Y1,0

2~gX2 igY!Y1,1%2
4K

3
Ap

5
Y2,02

K

3
. ~33!

wheregX ,gY ,gZ are the direction cosines of the fieldH0 .
This problem has recently been investigated in Refs.@16,29,
30#. However, it has become apparent that Eq.~13! used in
those papers for the numerical calculation ofl1 were not
applicable at small damping (a,0.01) and high barriers
(s.10). In order to demonstrate the versatility of th
matrix-continued fraction approach, we show below tha
works well at those ranges of the parametersa ands where
traditional methods fail.

As has been described in detail in Refs.@14,31#, the lon-
gitudinal relaxation of the particle is governed by a system
11-term recurrence equations for the equilibrium correlat
functionscn,m(t):

tN

d

dt
cl ,m~ t !5 (

I 8522

2

(
s521

1

dl 1 l 8,m6s,l ,mcl 1 l 8,m6s~ t !, ~34!

where

cn,m~ t !5^cosq~0!Yn,m~ t !&02^cosq~0!&0

3^cosq~0!Yn,m~ t !&0 . ~35!

Equations for thedn,m,r ,s are given in Refs.@14,31#. Having
determinedc1,0(t) andc1,1(t) from Eq. ~34!, one can evalu-
ate the normalized longitudinal relaxation function of t
magnetization@31#:

Ci~ t !5
gZc1,0~ t !2& Re$~gX2 igY!c1,1~ t !%

gZc1,0~0!2& Re$~gX2 igY!c1,1~0!%
.

The relaxation timet of Ci(t) is then given by

t5
1

Ci~0!
E

0

`

Ci~ t !dt. ~36!

The matrix-continued fraction solution of Eq.~34! is as
follows. Let us introduce a vectorCn(t), consisting of 8n
elements:

Cn~ t !5S c2n,22n~ t !
c2n,22n11~ t !

]

c2n,2n~ t !
c2n21,22n11~ t !
c2n21,22n12~ t !

]

c2n21,2n21~ t !

D , ~37!
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with C0(t)50. Then Eq.~34! can be transformed@31# in a
matrix three-term differential-recurrence equation~1!, where
the matricesQn , Qn

1 , andQn
2 are described in detail in th

Appendix.
In the context of the continued fraction approach, t

smallest eigenvaluel1 is determined by Eq.~19!. The results
of the calculation ofl1 from Eq. ~19! are presented in Figs
3 and 4, where they are compared with asymptotic estim
for l1 . The calculation of asymptotic estimates ofl1 for the
oblique field problem is well documented@16,29,30#. Here
the axially symmetric asymptote forl1 , Eq. ~29!, may be
used only if the fieldH0 is parallel to the easy axis and the
is uniaxial anisotropy. In other cases, the range of value
the damping factora, for which a particular escape rate fo
mula is valid, must be taken into account@10# just as in the
conventional Kramers theory@25# of the escape of particle
over potential barriers.

In order to evaluatel1 in the intermediate to high damp
ing ~IHD! limit, i.e., for a>1, it is supposed@7# that the free

FIG. 3. l1 @Eq. ~16!—solid lines# for the oblique field potential
as a function of the barrier heights compared with the asymptoti
IHD solution l1

IHD @Eq. ~39!# ~stars and crosses! and the solution
rendered by the inverse of the correlation timet21 @Eq. ~36!# ~dia-
monds and filled circles!. Here we have takengX5sinC, gY50,
gZ5cosC.

FIG. 4. l1 @Eq. ~16!—curves 1–4# for the oblique field potential
at h50.25 as a function of the barrier heights for various values of
the damping parametera compared with the asymptotic IHD solu
tion l1

IHD @Eq. ~39!# ~stars! and the asymptotic LD solutionl1
as @Eq.

~42!# ~filled circles!.
e

es

of

energy per unit volumeV(M ) has a bistable structure wit
minima at n1 and n2 separated by a potential barrier th
contains a saddle point atn0 . If ( a1

( i ) ,a2
( i ) ,a3

( i )) denote the
direction cosines ofM , andM is close to the stationary poin
ni of the potential, thenV(M ) can be approximated to sec
ond order ina ( i ) as

V5Vi1
1
2 @c1

~ i !~a1
~ i !!21c2

~ i !~a2
~ i !!2#. ~38!

Upon substituting Eq.~38! into the FPE~7!, the latter may be
solved in the vicinity of the saddle point to yield@7,14#

l1
IHD;

V0

2pv0
$v1e2b~V02V1!1v2e2b~V02V2!%, ~39!

where

v1
25

g2

Ms
2 c1

~1!c2
~1! , v2

25
g2

Ms
2 c1

~2!c2
~2! , v0

252
g2

Ms
2 c1

~0!c2
~0!

~40!

are the squares of the well and saddle angular frequen
respectively, and the~over!damped saddle angular frequen
V0 is

V05
h8

2
@2c1

~0!2c2
~0!1A~c2

~0!2c1
~0!!224a22c1

~0!c2
~0!#.

~41!

Equation~39! is clearly of the same form as the IHD formu
derived by Kramers@25#. Equations forVi andv i are given
elsewhere@14#.

A low damping ~LD! asymptotic formula forl1 in the
energy diffusion controlled@25# limit, i.e., for a!1, was
derived by Klik and Gunther@9#. Their formula applied to
the present problem yields@9,11#

l1
LD;

v1DE

pkT
e2b~V02V1!, ~42!

wherev1 is the frequency of oscillation in the potential we
1,

DE5an R
V5V0

F ~12uz
2!

]

]uz
Vdw2

1

12uz
2

]

]w
VduzG

~43!

is the energy loss per circle of the almost periodic motion
the saddle point energynV0 , anduz5cosq. Here instead of
the numerical evaluation of the integral in Eq.~43! ~which is
of the order of the barrier height@9#! we have used an ap
proximationDE'anV0 .

In the IHD limit, the lowest eigenvaluel1 from Eq. ~19!
is in good agreement with the asymptotic solutionl1

IHD @Eq.
~39!# at highs ~Fig. 3!. Just as for the uniaxial problem,h
,hc , l1 andt21 are very close to each other for all barri
heights. However, forh.hc the depletion effect appears an
l1 andt21 diverge exponentially. In Fig. 4,l1

LD calculated
from the asymptotic Eq.~42! is also presented. As one ca
see in Fig. 4, in contrast to the biased uniaxial potential~Sec.
III ! l1 for the oblique field problem strongly depends on t
damping parametera. As one can see,l1 is in good agree-
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ment with the asymptotic estimates for both the IHD and
limits. Here the LD limit corresponds to values ofa
<0.001 that are in agreement with the independent calc
tion @32#. However, for crossover values ofa ~at abouta
'0.05! neither the IHD formula~39! nor the LD Eq.~42!
yield reliable quantitative estimates. Here a more deta
analysis is necessary@32# in order to obtained asymptoti
formulas.

V. CONCLUSIONS

We have derived an approximate formula@Eq. ~19!# for
the smallest nonvanishing eigenvaluel1 using the matrix-
continued fraction approach for the problem of the Brown
motion in a potential, whose relaxation behavior is govern
by multiterm recurrence relations for the moments~the ex-
pectation values of the dynamic quantities of interest!. As
was demonstrated on several examples, the results of
matrix-continued fraction approach are in agreement w
those obtained by independent methods and, furtherm
this approach may be used to evaluatel1 in those ranges o
parameters where traditional methods fail or their applicat
encounters difficulties. In the IHD limit, the condition of th
applicability (t«l1!1) of Eq. ~19! is valid in the high bar-
rier ~or low temperature! limit. Moreover, as we have dem
onstrated, Eq.~19! also provides a sufficient accuracy fo
intermediate and small barrier heights, wheret«l1<1. This
has the merit that in the IHD limit one now has an equat
for l1 at all ranges of the barrier heights. We have shown
Sec. IV that the continued fraction approach may be v
useful in the evaluation ofl1 in the low damping limit as
well. However, in this limit the conditiont«l1!1 may be
broken in some cases~e.g., for relaxation of superparama
netic particles with cubic anisotropy for small and interm
diate barriers, wheret«l1@1 @15#! and thus Eq.~19! is no
longer applicable for the evaluation ofl1 . Here, there is also
a general restriction of the matrix-continued fraction a
proach in the calculation ofl1 based on Eq.~12! @2#, viz, for
very small damping the dimension of matrices to be inver
may increase considerably and/or the matrices involved m
a-

d

n
d

his
h
re,

n

n
n
y

-

-

d
y

become badly conditioned so that the method is no lon
applicable for numerical calculations~e.g., for the model
considered in Sec. IV the computational problems arise
a,1024!.

ACKNOWLEDGMENTS

I thank Professor W. T. Coffey, Professor J. L. De´jardin,
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APPENDIX: THE MATRICES Q n , Qn
¿ , Qn

À FOR THE
OBLIQUE FIELD PROBLEM

Equation ~34! can be presented in the form of Eq.~1!,
where the matricesQn , Qn

1 , andQn
2 are given by@31#

Qn5S X2n W2n

Y2n21 X2n21
D . ~A1!

Qn
15S Z2n Y2n

O Z2n21
D . ~A2!

Qn
25S 2

2n11

2n22
Z2n22

T O

W2n21 2
2n

2n23
Z2n23

T
D , ~A3!

where the superscriptT in Eq. ~A3! means the transpositio
and O is the zero matrix of appropriate dimension. The d
mensions of the matricesQn , Qn

1 , andQn
2 are accordingly

equal to 8n38n, 8n38(n11), and 8n38(n21). The ex-
ception is Q1

2 , which degenerates to a column vector
dimension 8. The submatricesX l , Y l , W l , Z l in Eqs.~A1!–
~A3! are given by@31#
X l5S xl ,2 l xl ,2 l
1 0 ¯ 0 0

xl ,2 l 11
2 xl ,2 l 11 xl ,2 l 11

1
¯ 0 0

0 xl ,2 l 12
2 xl ,2 l 12 ¯ 0 0

] ] ] � ] ]

0 0 0 ¯ xl ,l 21 xl ,l 21
1

0 0 0 ¯ xl ,l
2 xl ,l

D ,

Y lS yl 2 l
2 yl ,2 l yl ,2 l

1
¯ 0 0 0

0 yl ,2 l 11
2 yl ,2 l 11 ¯ 0 0 0

0 0 yl ,2 l 12
2

¯ 0 0 0

] ] ] � ] ] ]

0 0 0 ¯ yl ,l 21 yl ,l 21
1 0

0 0 0 ¯ yl ,l
2 yl ,l yl ,l

1

D ,
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W l5S wl ,2 l
1 0 0 ¯ 0 0

wl ,2 l 11 wl ,2 l 11
1 0 . . . 0 0

wl ,2 l 12
2 wl ,2 l 12 wl ,2 l 12

1
¯ 0 0

] ] ] � ] ]

0 0 0 ¯ wl ,l 22 wl ,l 22
1

0 0 0 ¯ wl ,l 21
2 wl ,l 21

0 0 0 . . . 0 wl ,l
2

D ,

Z l5S 0 0 zl ,2 l 0 ¯ 0 0 0 0

0 0 0 zl ,2 l 11 ¯ 0 0 0 0

] ] ] ] � ] ] ]

0 0 0 0 ¯ zl ,l 21 0 0 0

0 0 0 0 ¯ 0 zl ,l 0 0

D .
x-

e

he
The elements ofX l , Y l , W l , Z l are

xl ,m5
s@ l ~ l 11!23m2#

~2l 21!~2l 13!
2

l ~ l 11!

2
2 i

mshgZ

a
,

xl ,m
1 52~xl ,2m

2 !* 52 i
sh~gX2 igY!

2a
A~ l 1m11!~ l 2m!,

yl ,m52sS gZhl1 i
m

a DA ~ l 11!22m2

~2l 11!~2l 13!
,

yl ,m
1 52~yl ,2m

2 !*

5
lsh~gX2 igY!

2
A~ l 1m11!~ l 1m12!

~2l 11!~2l 13!
,

wl ,m5sS hgZ~ l 11!2 i
m

a DAl 22m2

4l 221
.

wl ,m
1 52~wl ,2m

1 !*

5
~ l 11!sh~gX2 igY!

2
A~ l 2m!~ l 2m21!

4l 221
,

zl ,m52
s l

2l 13
A@~ l 12!22m2#@~ l 11!22m2#

~2l 11!~2l 15!
.

The vectors of the initial conditionsCn(0) appearing in
Eq. ~2! can also be calculated with the help of matri
continued fractions. Namely, it can be shown@31# that the
equilibrium averageŝYn,m&0 satisfy the matrix recurrenc
relation

Qn
2Rn211QnRn1Qn

1Rn1150, n51,2,3,..., ~A4!

where
Rn5S ^Y2n,22n&0

^Y2n,22n11&0

]

^Y2n,2n&0

^Y2n21,22n11&0

^Y2n21,22n12&0

]

^Y2n21,2n21&0

D ,

and 0 is a zero column vector. The solution of Eq.~A4! is
given by

Rn5SnRn215
1

A4p
)
k51

n

Sk ,

whereSn is the matrix-continued fraction defined as

Sn5@2Qn2Qn
1Sn11#21Qn

2 .

Thus the initial conditionsCn(0) are given by

Cn~0!5
1

A4p
@K̂n1~Kn1K̂n11

H Sn11!Sn# )
k51

n21

Sk .

where

Kn5S F2n D2n

D2n
H F2n21

D , K̂n5S O O

D2n21 OD ,

with

K̂15S 0
D1

D
~the superscriptH denotes the Hermitian conjugate, i.e., t
transposition and the complex conjugate!. The matricesKn ,
K̂n consist of two submatrices:
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Fl52A4p

3
Re@gZ^Y1,0&02&~gX2 igY!^Y1,1&0#I ,

andDl , which has the same form as the submatrixW l . The
dimensions ofFl andDl are equal to (2l 11)3(2l 11) and
(2l 11)3(2l 21), respectively. The elements of the subm
trix Dl are given by

dl ,m5gZAl 22m2

4l 221
,

s.

.
e

.

s-

e

-

dl ,m
2 52~dl ,2m

1 !* 5
~gX1 igY!

2
A~ l 1m21!~ l 1m!

4l 221
.

It was verified by means of the numerical calculation that
matricesQn , Qn

1 , andQn
2 given by Eqs.~24!–~26! fulfil the

conditions ~27!. This guarantees the convergence of t
matrix-continued fractionDn(0) defined by Eq.~3!.
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