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Evaluation of the smallest nonvanishing eigenvalue of the Fokker-Planck equation
for the Brownian motion in a potential. [l. The matrix continued fraction approach
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An equation for the smallest nonvanishing eigenvalyeof the Fokker-Planck equatiofFPE) for the
Brownian motion of a particle in a potential is derived in terms of matrix-continued fractions. This equation is
applicable to the calculation; if the solution of the FPE can be reducédy expanding the probability
distribution function in terms of a complete set of appropriate funcjidasthe solution of a multiterm
recurrence relation for the moments describing the dynamics of the Brownian particle. In contrast to the
available continued fraction solution far [H. Risken,The Fokker-Planck EquatiofSpringer, Berlin, 1988,
this equation does not require one to solve numerically a high order polynomial equation. To test the theory,
the smallest eigenvalug, is evaluated for the FPE, which appears in the theory of magnetic relaxation of
single domainsuperparamagnejiparticles. Various regimes of relaxation of the magnetization in superpara-
magnetic particles are governed by a damping parametiee limiting values of which correspond to the high
damping @—) and the low damping4<<1) limits in the theory of the escape rate over potential barriers.

It is shown that for all ranges of the barrier height and damping parameters the smallest eiganvalue
predicted by the continued fraction equation is in agreement with those gained by independent numerical
methods and the asymptotic estimatesXor(in the high barrier limit and, moreover, the matrix continued
fraction approach may be successfully applied to the evaluation ofi those ranges of parameters where
traditional methods fail or are not applicable.

PACS numbeps): 05.40.Jc, 05.10.Gg, 75.50.Tt

I. INTRODUCTION

d
—Ch(1)=Q, Cr_1(1) + Q,Cr(1) + Q/f Cpri1(1),
In the previous papdil], we elaborated on a method used et Cn(H) = Qn Co-a(DF QuCal )+ Qn Coa(V

to calculate the smallest nonvanishing eigenvalyeof the

FPE for the Brownian motion of a particle in a potential, n=123,.... (1)
where the dynamics of the system is governed by an infinite

hierarchy ofscalar three-ternrecurrence equations for the

moments(the expectation values of the dynamic quantitieswhere theCp(t) are the column vectors arranged from the
of interest. As is well known[2,3], for the majority of prob- moments in an appropriate wa@, , Q, , andQ, are time

lems the FPE may not be reduced to the solution of a scaldfdependent noncommutative matrices, ands a character-
three-term recurrence equation. Hence the methiddof Istic time constant. A general method used to solve(Egin

evaluating\ ; based on the conversion of the recurrence relérms of matrix continued fractions has been described by

lation to ordinary continued fractions can no longer be appli—gstl;?ngﬁ]eaelié?tggﬁ);tg:&eg by(go\:‘\fl?ﬁ]t aCI. [(?%':Ag(;g:dt'ﬁg

cable. Examples of this are those problems, which involv | ' i f e (1) | q- b 0

diffusion in phase space and diffusion in configuration spac aplace transform o€4(t) is given by

where the form of a potential is such as to give rise to mul-

titerm recurrence relations. In the present paper, the method_ ” n

[1] is extended formultiterm recurrence equations, which Cl(S)=TsA1(S)[Cl(0)+E I1 Qf_lAk(S)}Cn(O)],

can be solved in terms of matrix-continued fractipas3). n=2 k=2 @
As is known[2], a multiterm scalarrecurrence relation

may be converted to three-term matribone. Such a matrix where the infinite matrix continued fractiax,(s) is defined

three-term recurrence relation may be written down as as

()

An(s)=

+ _
7Sl = Qn—Qp | Qni1

+ -
TSSI_QH+1_QH+1T Sl_Q +2_”'Qn+2
& n
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(the fraction lines designate the matrix inversipasd| is  In Ref.[1] we further developed this approach and suggested
the unit matrix. The initial condition€,(0) in Eq.(2) can  a usable method for evaluating the smallest nonvanishing
be expressed in terms of the matrix continued fracig(0)  eigenvaluex, of the FPE in terms of scalar continued frac-
(see, e.g., Refd§2,3)). tions. In contrast to the previously available solutj@h the

Having determined the Laplace transfo@y(s) from Eq.  Method developed does not require one to solve numerically
(2), one is able to calculate the relaxation timgof thekth @ high order polynomial equation as it was shown that

component, (t) of C;(t), which is defined as may be represented as a sum of products of infinite contin-
’ ued fractions. Besides its advantage for the numerical calcu-
1 C14(0) lation, the equation so obtained is very useful for analytical
Tk:—f Ci(t)dt= ——. (4)  purposes, e.g., for certain problems it may be expressed in
c1x(0) Jo C1x(0)

terms of known mathematicéspecia) functions.

Here we extend the method of Réf] to the problem
under consideration. We consider as an example of the ap-
plicability of the method the problem of magnetic relaxation
of single domain particles. A single domain particle is char-
acterized by an internal potential, which can have several

The relaxation timer, may equivalently be defined in the
context of the FPE converted to the Sturm-Liouville problem
as

E Cim/Nkm local states of equilibrium with potential barriers between
= m ’ (5) therr_1. If the partic_les are smdh-10 nm S0 that the potential
2 C barriers are relatively low, the magnetization vedibrmay
<~ ~km cross over the barriers between one potential well and an-

other due to thermal agitation. The ensuing thermal instabil-
where\ ., andC,,, are the eigenvalues and their correspond-ity of magnetization results in the phenomenon of superpara-
ing weight coefficientgamplitudes$, as magnetisni5]. The thermal fluctuations and relaxation of the
magnetization of superparamagnetic particles currently merit
attention in view of their importance in the context of mag-
Clvk(t)zzm: Cime k. 6) netic recording media and rock magnetism, as well as in
connection with the observation of magnetization reversal in
The relaxation timer, Eq. (5) contains contributions from isolated ferromagnetic nanoparticles and nanowjiéés
all the eigenvalues. In general, it is impossible to evalagte ~ The thermal fluctuations of the magnetizatibh in an
analytically from Eq.(6) as knowledge of alk,,, andC,,,is  individual superparamagnetic particle are described by the
required. As far as a physical interpretation is concerned, ifrPE for the probability density distributio of M [7]:
many cases the relaxation timgis determined by the slow-
est low-frequency relaxation mode that governs transitions of 9
the Brownian particle over the barriers from one potential 27w W= Bla™'u-(gradV x gradw) +div(W gradV)]
well into another. The characteristic frequency of this over-
barrier relaxation mode is determined by the smallest eigen- +AW, (7)
value\ ;. It is apparent from Eq6) that\  is the reciprocal

tir?e const?nt associa;]te?] with T'm;g time bghsvi?:of tlhe whereA is the Laplacian on the surface of the unit sphere,
relaxation function, which is only determined by the slowestig ¢ it vector directed alorig,V is the free energy den-

low-frequency relaxation mode. The behavior of the relax-gjr, of the magnetocrystalline anisotropy expressed as a
ation time and the inverse of the smallest eigenvalyés  ¢,1ction of M

sometimes similar. However, if different time scales are in-
volved, the behavior of these can be quite different. An ex- ) _2
ample of this is the Brownian motion of a particle in a ™W=B7Mg(1+a )2 ®
bistable potential under the action of a constant figltl
where the relaxation time magiverge exponentiallfrom s the characteristic relaxation timg=v/kT, v is the vol-
the inverse of the smallest nonvanishing eigenvalueHere  ume of the particlek is the Bolzmann constant] is the
for moderate values of the constant field a close approximaemperaturey is the gyromagnetic ratioy is the damping
tion to the correlation time is furnished by *; however, as  parameter. M is the saturation magnetization, and
the field strength increases so that the blstable nature of the yyMy is the dimensionless dissipation parameter. A dis-
potential is weakened\l_1 ceases to be a good approxima- cussion of the assumptions made in the derivation of the FPE
tion for the relaxation timésee Sec. Il. A knowledge of\ ; (7) is given elsewherge.g.,[8,9]). It is of importance that
is also of importance because other time constants, such &% general theory of the escape rates over the potential bar-
the mean first passage time and the escape rate, are mairilgrs[10] has a direct application to the present prob[drj.
determined by the slowest low-frequency relaxation modeVarious regimes of relaxation of superparamagnetic particles
Moreover, in many cases the influence of other relaxatiorare governed by the damping parametethe intermediate
modes in the low-frequency relaxation may be ignored andand large (& a<<) and small ¢<1) values of which cor-
thus, the knowledge of; provides sufficient information respond to the intermediate to high damping and the low
about the low-frequency dynamics of the systigth damping limits of the escape rate thediyd,11]. For a=c°

The continued fraction approach of calculating the eigenthe FPE(7) is similar to that for the rotational Brownian
values of the FPE has been discussed in detail by Rigken motion of a particle in a liquid3].
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A standard approach to the solution of E@) is to ex- Equation(12) allows one to evaluate numerically all the
pand the probability distribution functiohV in terms of eigenvalue$2]. However, if one is interested in the evalua-
spherical harmonicy¥/, ., defined ag12] tion of N\, only, Eq. (12) can be simplified just as for the

scalar continued fractiofl]. In the high barrieXor low tem-
m[EEDA—mt peraturg limit, where 7,\;<1 [2], one may take into ac-
Yim=(=D"y “An(itmy © Pr(cosd), count only the first two terms in the Taylor series expansion

of Ay(—\) for A=\, viz,

Y om= (=1}, C) ,

" . Ap(—A)=A5(0) =My, A5(0)+0((\y7,)).  (14)
where P["(cos®) is the associated Legendre function, and
the asterisk denotes the complex conjugate. This yields ah"us one has from Ed12)
infinite hierarchy of differential-recurrence equations for the T _ n e
momentsc, (t) (the expectation values of the spherical har- def 7 M {l— Q1 A2(0)Q2 }+ Q1+ Q1 A2(0)Q; =0, 1
monics or appropriate correlation functigorn43,14: (15

d where the symbol designates the derivative df,(s) with
TN Cln(D)= 2 i g i (1), (10)  respect tos,. As will be shown below, Eqg14) and (15)
dt v also provide relatively high accuracy in the calculation\ gf
) for intermediate and small barrier heights, where;<1. In
where dy/ nm are the matrix elements of the Fokker- grger to calculate\, from Eg. (15), one should obtain an
Planck operatof14]: d; m |m depend on parameters char- gquation fora 4(0) . This can be accomplished by noting that

acterizing the anisotropy energy, external fields, and dissipaA s) andA’(s) satisfv the following recurrence relations:
tion. An equation fod, | , @t an arbitraryv was derived n(S) n(S) bt g '

in [13]. Equation(10) may be reduced to E§l) by means of _ Ao At - 1-1
the appropriate arrangement of the column veo@y@) and An(9)=[7:8I=Qn=Qn An+2(9)Qn i) (18
the matrice®Q,,, Q. , andQ,, (see, for example, Ref15]). and

The paper is arranged as follows. In Sec. Il, an equation
for the smallest eigenvalue, is derived in terms of matrix- Al(S)=—[1-QF A/, ,(5)Q;.,]1A%(s), (17)
continued fractions. The verification of the validity of this
equation is given in Secs. lll and IV by evaluating for the  respectively{Eq. (17) can be obtained by direct differentia-
FPE for the Brownian motion of a particle in asymmetric tion of Eq. (16)]. Equation(17) can be further rearranged in
bistable potentials, which appears in the theory of superparahe form of the recurrence equation Q¢ _,A/(s)Q,, , viz,
magnetism.

Qn 1 AN9)Qy =— Qi 4[1-QF AL, 1(9)Qn 111A(5)Qy

the solution of which may be obtained by iteration and is
In the context of the matrix continued fraction approach,given by, fors=0,

the eigenvalues of the FPE can be determined by inserting

Il. MATRIX-CONTINUED FRACTION SOLUTION FOR  A;

the separation “ansatz[2] > (n-1
. QAx0Q;=-2 | I on
C,(t)=Ce ™, n=123,.. (11) n=2z \m=1
n—-1
l/n;ﬁJeESq\(”lZ) Thus one can obtain an equation for the eigen- X k];ll Aﬁ_kH(O)Qn—kﬂ)- (18
def 7. A +Q;+ Q7 Ay(—\)Q, ]=0. (12)  Thus the substitution of Ed18) into Eq.(15) yields
The disadvantage of E@L2) is that in some cases it may be det(A 41 =95 =0, (19

extremely difficult to evaluate eigenvalues as it involves

finding the roots of a very high order polynomial equation.

The direct matrix methods, which are based on writing the

set of the moment equatiori$0) as a first-order matrix dif- -1 + -
=— +

ferential equation, S= 77 1t Q1 A2(0Q; ]

where the matribXS is defined as

o

n-1
31 e
n=2 \m=1

-1

d n—-1 , -
GXO=AX(), (13) x| 1L ARk 1(0)Qn i (20

and on subsequent numerical solutions of @@), may also  Here, we have made use of a theordh7], Sec. 14.8-Y,
be inapplicable in those limits, as it is necessary to carry ouivhich states that the eigenvalyesand eigenvectorg of the
the calculations for the dimension of the column vectdt) matrix equation

of the order of 16-10°, and convergence of the solution is

consequently difficult to achiee. 6]. Ay= uBy
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are the eigenvalues and eigenvectors of the ma&rixA. Furthermore, although this model has already been studied in
Thus the smallest nonvanishing eigenvalugis an eigen- Refs.[18,24,27, an equation foi ,, however, which would
value of the matrixS given by Eq.(20). Furthermore, if that be valid for all ranges of the barrier heights, has not yet been
A<\, (A, are all other eigenvalues of the mat®x, then  presented. The continued fraction solution EtP) will be
\1 IS given by compared with the asymptotic solution of Bro\&¥] for \ ;
in the high barrier limit and the solution of Garaniji26] and
Coffey et al. [27] for the longitudinal relaxation time.
N~ de{S] 21) Upon evaluating the longitudinal relaxation of the par-
O SHD]’ ticle, the FPE7) with the potential22) can be reducefl7]
to the solution of the infinite hierarchy of five-term recur-
where the elements of the matrix are the minors of the rence equations for the equilibrium correlation functions
matrix S. The evaluation oh; from Eq.(19) or Eq.(21) is  f,(t), which describes the dynamics of the system under
much more easily accomplished than the calculation,dfy consideration, viz,
solving numerically a high order polynomial E(L.2) or by
using the matrix Eq(13). Equation(19) requires only the
calculation of the matrix-continued fractions,(0). 2y d f O+
n

n(n+1) dt

20
1= (2n—1)(2n+3) il

t)

IIl. APPLICATIONS TO RELAXATION PROBLEMS
OF SUPERPARAMAGNETISM:

BIASED UNIAXIAL POTENTIAL ¢

= onrglin-1(0 = fara(D)]
As an example let us consider a uniaxial superparamag-

netic particle in a strong uniform magnetic figtt}) applied

along the easy axis. Here, the anisotropy energy density is 120

given by[18-2Q

(n—1)
(2n—1)(2n+1)f“*2(t)

_ (n+2)

V—_Kcoszﬁ_HoMSCOS’ﬂ, (22) —mfrwz(t) , (23)
whereK is the anisotropy constant antl is the angle be- where
tweenM and the positive axis. Similar problems related to
the rotational Brownian motion in potentié22) also appear _
in the theory of dielectric relaxation of nematic liquid crys- fa(t) =(cos$(0)Pn[cost(t)I)o
tals[21] and the theory of the dynamic Kerr effd@2]. In
the theory of superparamagnetism, the potent2®) was —(cos¥(0))o(Pn[cost(0)])o,
originally introduced by Nel [23], who gave an expression
for the time of reversal of the magnetization. It was further vK ~ vMgHy

considered by Browri24], who obtained approximate ex- TTXT &= kT

pressions for the lowest eigenvalue in the limit of large and

small K using the Kramers transition state metHj@®] and

perturbation theory, respectively. Later, the smallest eigenare the barrier height and the bias field parameters, respec-
value\; was calculated numerically by Ahardri8]. On the tively, P,, are the Legendre polynomials, at)g designates
other hand, the analysis presented by Garanial. [19,26  the equilibrium average dt=0.

enabled them to derive an integral expression for the longi- Equation (23) can be transformedl27] into the matrix
tudinal relaxation timer from the FPE(7). The relaxation three-term differential-recurrence E@.), wherer,= 7y,

time 7 has also been calculated using the matrix-continued

fraction approacti27], where the bias field effect of the ex-

ponential deviation ofr from the inverse ofA; has been fon—1(1)
discovered. Here we apply the matrix-continued fraction C“(t):( fon(t)
technique to the calculation af,. The model is used here as

an example to verify the continued fraction solution Ep). andQ,, Q. , andQ, are the 22 matrices given by27]

2on(2n—1) n(2n—1)
| @n=3)(an+1) n(2n-1) TS a1
Qn= n(2n+1) 2on(2n+1) : 24
_— n(2n+1)

4n+1 (4n—1)(4n+3)
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2n(4n-1) 0 1o
L7 1?1 '
Qn = . 0.8
n(2n+1) An(n+1)(2n+1) ol
4n+1 T (4n+1)(4n+3) Fos '
5 .’ \\
& 1
4n(n-1)(2n-1)  n(2n-1) Noage e R
E ] / S
| “(@n—1)(an—3) 4n—1 < 1
— 0.2 - L
n 0 2n(4n?2—1) | S
7 16n°—1 0.0 / v . m‘“‘““
(26) "o 2 4 5 8 10

The matrix-continued fractiom ,(0) [Eqg. (3)] with the 2

- + - .
XZ. matncesQn, Q.” » andQ, given by Eqs.(24)—(26) the biased cdsd potential ath=0.1 as a function of the barrier
satisfies the conditions of a theorgiproved in Ref.[28]) height o compared with the asymptotic solutiot® [Eg. (29)]

appropriate to the convergence of matrix-continued fraCtion_S('dashed lingand the solution rendered by the inverse of the corre-
This theorem guarantees the convergence of the matriXztion time r—* [Eq. (30)] (diamonds.

continued fractiom ,(0) defined by Eq(3) to some limit if
two definite conditions are fulfilled, viz,

FIG. 1. \, [Eq. (28)—solid ling] and\ "™ [Eq. (32)—stard for

tions and 10-15 terms in the series were enough to arrive at
an accuracy of not less than six significant digits in the ma-
jority of cases.

The smallest nonvanishing eigenvalhge is determined
by Eq.(19). As here the matrix8 in Eq. (19) has the dimen-
sion 2X 2, one can readily obtain

def Q. 1(Qn+1)~11defQ,, 1 (—Qy) ~H=zfor n>1)

and

N
lim 4M]] defQy. 1(Qns2)*1defQn (= Qu)~*1=0.

N— (28)
(27)

N1=3 (S11+ Soo— V(S11— S20)°+4S,,5,9),

. N ) N _whereS;; are the elements of the matr¥
It can be readily verified that the matric@s, Q, , andQ, The results of the calculation of; from Eg. (28) are
in Egs. (24—(26) satisfy the above conditions. Thus the presented in Table | and Figs. 1 and 2, where they are com-

matrix-continued fraction defined by E3) convergesin pared with the asymptotic estimate fog given by[7,24]
our calculation, the infinite matrix-continued fractidr,(0)

was approximated by a matrix-continued fraction of finite oo )
order (by putting Q=0 at somen=N). The value ofN as 0 (1—h%)
mu;t b_e chpsen by stipulating the accuracy of the calculation ™ * TN\/;

a priori as it depends on the parameterand . The calcu-

lation has shown that the matrix-continued fractions and the

series involved in Eq(19) converge very rapidly, thus and with the inverse of the relaxation timeof the correla-

10-15 downward iterations in calculating the continued frac-tion functionf,(t) defined by Eq(2), which may be equiva-

lently presented in the integral form g26]

{(1+h)e o+ (1 _p)e-odl-n%

(29

TABLE I. Numerical values for the biased uniaxial potential Eq.

(22) ath=0.1
1.0
N Vil NN TNASS wI/T 1 *
o [Eq.32] [Eq.(28] [Eq.(29]  [Eq.(30)] 08
0 1.0 1.0 0.0 1.0 o] \\ h=025
1 0.6569 0.6562 0.4068 0.6587 Z 08 .
2 0.4161 0.4151 0.4359 0.4202 2 \ .
3 0.2557 0.25450 0.3146 0.2602 i v R L
4 0.1530 0.1526 0.1964 0.1566 & RSN,
5 0.0893 0.0891 0.1141 0.0917 ~
6 0.0508 0.0508 0.0636 0.0523
7 0.0283 0.0282 0.0345 0.0291
8 0.0154 0.0154 0.0183 0.0158 00 g
9 0.0082 0.0082 0.0096 0.0085 -
10 0.0043 0.0043 0.0049 0.0045

FIG. 2. The same as in Fig. 1 for=0.25.
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27 IV. UNIAXIAL PARTICLES IN OBLIQUE FIELD

~ Z(({cos 9)o—(cos)§) In general the fielHH, may be applied at some angle to
the easy axis of the particle. In this case, free energy per unit

' ’ BVv(z') 2 e volume has the form
r__ - z !
XJ_l“_l(z (cosd)g)e dz 12 dz
V=—(M-Hgy)—Kcog 6
(30)
B 2 ]
Hereh=¢/20, =—HoMs \Y} ?{('yX'H'yY)Yl,—l'i‘ WZAZAET
1 (1 . 4K T K
<cosﬁ)0=zf xe Ay, —(?’x—WY)Yl,]}—? T V20" 3 (33
-1

where yy,vy,vz are the direction cosines of the fiekd,.
1, — V() This problem has recently been investigated in Ref§,29,
(cog 19>0—Zﬁlx e dx, 30]. However, it has become apparent that E) used in
those papers for the numerical calculationaf were not
applicable at small dampinge(<0.01) and high barriers
(0>10). In order to demonstrate the versatility of the
. matrix-continued fraction approach, we show below that it
2 _ —BV(%) works well at those ranges of the parameterand o where
BVOO=—o(x+2hx), 2= f,le dx. B o ditional methods fail.
As has been described in detail in Refs4,31], the lon-

The results of the calculation of, from Eq. (28) are also gitudinal relaxation of the particle is governed by a system of

compared in Table | with those obtained from the numericalll'te_rm recurrence equations for the equilibrium correlation
solution of the set of Eq23) transformed into the matrix Eq. UNCUONSCh (1):

and

(13) (see, for detaild,27]). The IowgsF eigenv(_allu).ﬁ'e1 is then d 2 1

the smallest root of the characteristic equation ™ &C'vm(t):,zz 521 dis 1/ mest mCler mes(t), (34)
dei{\l—-A)=0, (32 where

where A is a five-diagonal system matrix in E¢L3), the Cnm(t)=(c0osY(0) Y, m(t))o—(cosd(0))g

elements of which are determined by E&3). For the prob- X (oS 9(0) Y (D)o (35

lem in question, the evaluation af"™ from Eq.(32) creates
no difficulties and it is used here only for the purpose ofg
comparison with the results of the continued fraction ap
proach.

The lowest eigenvaluk; from Eq.(28) is in good agree-

quations for thal,, ., . s are given in Refs[14,31]. Having
‘determinedc; o(t) andc, 4(t) from Eq.(34), one can evalu-
ate the normalized longitudinal relaxation function of the

magnetizatior 31]:
ment with the numerical solutions;"™ of the characteristic J 131
Eq. (32) for all o (see Table | and Figs. 1 and. 2\s one can ¥2C1 (1) — V2 Re{ (yx—i yy)Cp1(1)}
also see in Figs. 1 and 2 and in Table I, in the high barrier Ci(t)= ZL ", X - Lt )
limit X, is in excellent agreement with2®, calculated from 726100) = V2 Re[(yx—i7v)C14(0);}

the asymptotic Eq(29). Thus Eq.(28) may be used to cal-

The relaxation timer of C,(t) is then given b
culate\; for all values ofo. Figure 2 also shows the deple- i g y

tion effect, which consists of the drastic deviation of the 1 o
relaxation timer [Eq. (30)] from A; * in the low temperature =c | CGbdt (36)
limit starting from some critical valuds, of the parameteh 10 70
and that is due to depletion of the upgishallow potential The matrix-continued fraction solution of E(34) is as

well involved into the relaxation process. The critical valuefg|iows, Let us introduce a vectaE,(t), consisting of &
is known to beh,~0.17[26]. The phenomenon was diSCov- glements:

ered for uniaxial particles by Coffegt al. [27] and later

explained by Garanifi26], who showed that this effect is a Con,—2n(t)

natural consequence of the depletion of the shallower of the
two potential wells(which are involved in the barrier cross-
ing) by the uniform field. Thus at low temperatures the fast

CZn,72‘n+1(t)

modes may come to dominate the relaxation. Furthermore, in C,(t)= Cznan(t) ol (37)
Ref. [4] it has been shown that this depletion effect always Can-1,-2n+1(t)
exists in relaxation in bistable potentials and it has also been Czn—l,—_2n+z(t)

asserted that such an effect is a general feature of relaxation :
in biased double well potentials. Con—1.n—1(1)
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[=]

log,(4,z,), log,(z, /)

A

a=1,¥Y=7/6

FIG. 3. A, [Eq. (16)—solid lined for the oblique field potential
as a function of the barrier height compared with the asymptotic
IHD solution \'° [Eq. (39)] (stars and crossesind the solution
rendered by the inverse of the correlation time' [Eq. (36)] (dia-
monds and filled circles Here we have takeny=sinV¥, y,=0,
vz=cosV.

with Cy(t)=0. Then Eq.(34) can be transformefB1] in a
matrix three-term differential-recurrence equati@n where
the matricesQ,,, Q. , andQ,, are described in detail in the
Appendix.

In the context of the continued fraction approach, the

smallest eigenvalug, is determined by Eq19). The results
of the calculation of\; from Eq.(19) are presented in Figs.
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energy per unit volum&/(M) has a bistable structure with
minima atn; and n, separated by a potential barrier that
contains a saddle point ap. If (a{?,a%,a{’) denote the
direction cosines oM, andM is close to the stationary point
n; of the potential, the’V(M) can be approximated to sec-
ond order ina(" as

V=Vi+3[ct(af)?+ ey (a))?]. (38)
Upon substituting Eq.38) into the FPE7), the latter may be
solved in the vicinity of the saddle point to yie[d,14]

Q
IHD 0 —B(Vg—V - B(Vo—V.
N ~27Tw0{wle AVo=VD 4 e AV~ V2L (39)
where
2 2 2
2. Y (. 2V o). 2_ Y (0.0
wl_M_gch)C(Z)v wZ_M_gc(l)C(Z)v wo _M_gc(l)C(Z)
(40)

are the squares of the well and saddle angular frequencies,
respectively, and theovendamped saddle angular frequency
Qg is

h’
0 0 0 0 — 0)~(0
Q== [—c?—c¥+ (e —c{V)2—4a"2cPcP].

2
(41)

Equation(39) is clearly of the same form as the IHD formula

3 and 4, where they are compared with asymptotic estimategerived by Kramer$25]. Equations foV; and w; are given

for A;. The calculation of asymptotic estimates\gffor the
oblique field problem is well documentdd6,29,30. Here
the axially symmetric asymptote for;, Eq. (29), may be

elsewherd 14].
A low damping (LD) asymptotic formula forx; in the
energy diffusion controlled25] limit, i.e., for a<1, was

used only if the fieldH, is parallel to the easy axis and there derived by Klik and Gunthef9]. Their formula applied to
is uniaxial anisotropy. In other cases, the range of values ahe present problem yield9,11]

the damping factog, for which a particular escape rate for-

mula is valid, must be taken into accoydf] just as in the
conventional Kramers theofy25] of the escape of particles
over potential barriers.

In order to evaluata ; in the intermediate to high damp-
ing (IHD) limit, i.e., for =1, it is supposed7] that the free

h=025 ¥=7/6
0 :}-:-:'17::»-::_: 44444 —
el et :: -.-\f';'.::ii}\.. )
K*XER Tl ey,
. RN ~ley
* -~ e
: {1’{{{{{& T e
2t O
\‘Sé \{% \\‘\\ \\\.:‘...
2 ) . N
o i,
2 . . . -
l-a=1 {{{{K I
2 2-a=0.1 e,
3-a2=0.01 ~
4-a=0.001 - ’
0 5 I 10 ' 1s 20
s

FIG. 4. \; [Eq. (16)—curves 1-4for the oblique field potential
ath=0.25 as a function of the barrier heighfor various values of
the damping parameter compared with the asymptotic IHD solu-
tion AP [Eq. (39)] (star$ and the asymptotic LD solution3[Eq.

(42)] (filled circles.

LD (,L)]_AE

—B(Vo—Vy)
e ’
1 wkT

(42

wherew; is the frequency of oscillation in the potential well
11

1-u? &Vd ! &Vd
(1-uz) G5, Ve 172 5 VA%

(43)

AE=av é
V:VO

is the energy loss per circle of the almost periodic motion at
the saddle point energyV,, andu,=cosd. Here instead of
the numerical evaluation of the integral in E43) (which is
of the order of the barrier heiglif]) we have used an ap-
proximationAE~ avV.

In the IHD limit, the lowest eigenvalug; from Eq. (19)
is in good agreement with the asymptotic solut}dflD [Eq.
(39)] at higho (Fig. 3). Just as for the uniaxial problerh,
<h., A, and 7! are very close to each other for all barrier
heights. However, fon>h. the depletion effect appears and
\; and 7~ * diverge exponentially. In Fig. 4.° calculated
from the asymptotic Eq(42) is also presented. As one can
see in Fig. 4, in contrast to the biased uniaxial poteriSalc.
III') X, for the oblique field problem strongly depends on the
damping parametes. As one can see\, is in good agree-
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ment with the asymptotic estimates for both the IHD and LDbecome badly conditioned so that the method is no longer
limits. Here the LD limit corresponds to values @f  applicable for numerical calculation®.g., for the model
=<0.001 that are in agreement with the independent calculasonsidered in Sec. IV the computational problems arise at
tion [32]. However, for crossover values of (at abouta a<10%).

~0.05 neither the IHD formula39) nor the LD Eq.(42)

yield reliable quantitative estimates. Here a more detailed ACKNOWLEDGMENTS
analysis is necessafy82] in order to obtained asymptotic i
formulas. | thank Professor W. T. Coffey, Professor J. L.j&xdin,
Dr. P. M. Dgardin, and Dr. S. V. Titov for useful discus-
V. CONCLUSIONS sions. The support of this work by the International Associa-

tion for the Promotion of Cooperation with Scientists from

We have derived an approximate formiiiag. (19)] for  the New Independent States of the Former Soviet Union
the smallest nonvanishing eigenvalg using the matrix-  (Grant No. INTAS 96-0668is gratefully acknowledged.
continued fraction approach for the problem of the Brownian
motion i_n a potential, whose r_elaxation behavior is governed  AppENDIX: THE MATRICES Q.. QF, Q7 FORTHE
by mu_ltlterm recurrence relatlons for th_e_ mome_fttse ex- OBLIQUE FIELD PROBLEM
pectation values of the dynamic quantities of intereds
was demonstrated on several examples, the results of this Equation(34) can be presented in the form of E(),
matrix-continued fraction approach are in agreement withwhere the matrice®,, Q. , andQ,, are given by[{31]
those obtained by independent methods and, furthermore,
this approach may be used to evaluriein those ranges of
parameters where traditional methods fail or their application Qn=
encounters difficulties. In the IHD limit, the condition of the
applicability (r,A1<<1) of Eq.(19) is valid in the high bar- 7 Y
rier (or low temperaturelimit. Moreover, as we have dem- Q+:( 2n 2n )
onstrated, Eq(19) also provides a sufficient accuracy for
intermediate and small barrier heights, whega;<1. This
has the merit that in the IHD limit one now has an equation 2n+1_.
for A, at all ranges of the barrier heights. We have shown in mzwz
Sec. IV that the continued fraction approach may be very Q,= , (A3)
useful in the evaluation ok, in the low damping limit as Wop_ g = T
well. However, in this limit the conditionr,\ ;<1 may be 2n—372n
broken in some casdgg.g., for relaxation of superparamag-
netic particles with cubic anisotropy for small and interme-Where the superscrigt in Eq. (A3) means the transposition
diate barriers, where \;>1 [15]) and thus Eq(19) is no  andO is the zero matrix of appropriate dimension. The di-
longer applicable for the evaluation f . Here, there is also  mensions of the matriced,, Q, , andQ, are accordingly
a general restriction of the matrix-continued fraction ap-equal to §X8n, 8nX8(n+1), and §1X8(n—1). The ex-
proach in the calculation of; based on Eq(12) [2], viz, for ~ ception isQ; , which degenerates to a column vector of
very small damping the dimension of matrices to be invertedlimension 8. The submatricés, Y,, W,, Z, in Egs.(Al)—
may increase considerably and/or the matrices involved magA3) are given by{31]

X2n W2n (Al)

Y2n—1 X2n—1

(A2)

X|Y,| X|J'r7| 0 e 0
Xi—141 XI,-1+1 X|J,r—|+1
X, = O Xli,—'|+2 XI,—.|+2 0 '
0 0 0 - X-1 X
0 0 0 X|_’| X|’|
Vi Y- Y|Jf—| 0
0O Yiois1 Yi-1+1
Y, 0 0 Y|_,—:|+2 0 ,
Yii-1 y|JT|—1 0
"

i Yii o Y
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Wi -1 0 0
Wi i1 Wioh
Wi_jt2 Wi—iv2 Wi _j4 0
W, = :
Wi -2 W|J,r|—2
Wii-1 Wii-1
0 W |
00z, 0 - 0 0 00
00 0 .. - 0 0 00
2|t ) : ) . S
00 O 0 z,., O
0 0 z, 0
|
The elements oK, Y,, W,, Z, are (Yan,—2n)0
(Yan,—2n+1)0
oll(1+1)—3m?] I(1+1) mohy,
mTToImn2+3) 2 a o (Yanando
" (Yan-1-2n+1)0
ah(yx—ivyy) <Y2n—1,.—2n+2>0

Xm=— (X _m)* = T\/(I+m+1)(l—m),

(Yon—1.2-1)0

T 2
L and 0 is a zero column vector. The solution of E44) is
(21+1)(21+3)’ given by

1
Rn=&Rn_1=Egl S,

Yim= (72h|+|

Yim=—(y ¥

_loh( yx i Vy) \/(I+m+1(|+m+2)
(21+1)(21+3)

whereS, is the matrix-continued fraction defined as

“2_ 2 _ " PP
W|,m=0'(hyz(|+1)—ig> 4|2—_m1 Sn_[_Qn_QnSHl] 1Qn-

Thus the initial condition&<,,(0) are given by

WIJ,rm:_(WIim)* n-1
. 1
(I+1)oh(yx—iyy) [(I—m(-m-1) TR KH
_ o 2‘}’x Yy el Cn(0) m[Kn+(Kn+ Kmsm)sﬁkl:[l S..
__ o [ where
3m= 3713 @I+1)(2I+5 [Fan Dan | _( o o)
“l0h, Pt 7 Tlom o)

The vectors of the initial condition€,(0) appearing in
Eqg. (2) can also be calculated with the help of matrix- with
continued fractions. Namely, it can be shoy81] that the
equilibrium averagegY, ) satisfy the matrix recurrence . 0
relation Kl:(Dl

Q Ry 1+QuR\*+QFR,11=0, n=123,.., (A4 (the superscripH denotes the Hermitian conjugate, i.e., the
transposition and the complex conjugatEhe matrice,,

where K, consist of two submatrices:
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4
F=-—v 3 RE (Y100~ V2(yx—iyv){Y1D0ll,

andD,, which has the same form as the submatkix. The
dimensions of, andD, are equal to (R+1)Xx(21+1) and
(21+1)x(21—-1), respectively. The elements of the subma-
trix D, are given by

1°—m?
dm=vz\ 7221
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(I+m)

) X tiyy [0+m-1)
d|,m:_(d|,*m)*:(’yX 2|’}/Y \/( m4|2_1

It was verified by means of the numerical calculation that the
matricesQ,, Q, , andQ,, given by Eqs(24)—(26) fulfil the
conditions (27). This guarantees the convergence of the
matrix-continued fractiom\,(0) defined by Eq(3).
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