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Lattice Boltzmann method on composite grids
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A composite block-structured lattice Boltzmann method is proposed for the simulation of two-dimensional
incompressible fluid flows. The grid structure is composed of a coarse base grid and one or several$)ne grid
The former covers the entire physical domain; the latter are placed at regions where local grid refinement is
desirable. The simulation is first carried out on the base grid level at a smaller relaxation time, allowing a rapid
propagation of boundary information throughout the entire domain. Thus large-scale flow features can be
resolved efficiently at a relatively low cost. At a later time, fine grid variables are initiated. The dependent
variables on both grid levels are, then, advanced in time simultaneously with the fine grid boundary conditions
obtained from the base grid solution at the grid interface. As a demonstration, the lid-driven cavity flow is
selected for study. The results show good agreement with benchmark numerical data and those calculated from
the finite-volumeu?RANS model. The proposed method is able to produce accurate solutions on fine grids, with
a considerable saving in CPU time.

PACS numbds): 47.10+g, 47.11+j, 02.70—c

[. INTRODUCTION ventional LBE method is possible. On this basis, Mei and
Shyy [8] solved the LBE in a generalized body-fitted coor-

The lattice Boltzmann equatiofLBE) method has re- dinate system, demonstrating that the LBE method is capable
ceived great attention from the community of computationalof solving fluid flow problems in complex geometries. The
fluid dynamics because of its capability of simulating multi- finite-volume LBE (FVLBE) method was also proposed by
phase flow, interfacial flow phenomena, and flow throughSucciet al. [9] for a simulation of fluid flows in complex
porous media, among othef&]. Several issues, however, geometries. Xiet al.[10,11] proposed a cell-vertex FVLBE
remain to be addressed. One of them is the extension of theethod for simulation of two- and three-dimensional flows.
LBE method from regular grids to irregular grids. With ir- No numerical diffusion resulted from their method.
regular grids, grid refinement can be applied to important The regular grid structure, however, tends to have a better
flow regions, and flow structures along curved boundariesiumerical stability property. Thus an alternative strategy for
can be better resolved. Several efforts have been made tiealing with curved boundaries is to devise a boundary-fitted
overcome this issue, and significant progresses have beeondition for nodes adjacent to these boundaries. Based on
achieved in recent years. the work of Filippova and Hael [12], Mei et al. [13] pro-

For instance, He and LU@,3] demonstrated that the LBE posed a second-order accurate treatment, which has been
is a discretized form of the continuous Boltzmann equationtested on several benchmark cases. Along this line of
leading to the important concept that the discretization othought, the capability of local grid refinement has to be
physical space is not coupled to the discretization of momendeveloped to make a simulation on regular lattice computa-
tum space. An immediate consequence is that arbitrary gridgonally economical. Filippova and el [12] proposed a
can be used in the LBE method. Based on the above concepcal grid refinement method which allows two-way interac-
He et al. [4] proposed an interpolation-supplemented LBEtion at the post-collision stage after rescaling the discrete
(ISLBE) method to simulate a two-dimensional channel flowdistribution functions on both grid levels. In this paper, we
with sudden expansion on a nonuniform grid. Later, He angropose a composite LBE method, which allows one-way
Doolen[5,6] applied the ISLBE method to simulate vortex interaction at the post-streaming stage without rescaling the
shedding behind a circular cylinder on a curvilinear coordi-discrete distribution functions. The proposed method uses a
nate system. This method adds a new interpolation step beaultigrid architecture. The coarse grid covers the entire
tween the streaming and relaxation steps in the conventionghysical domain, and is nested with one or several fine
LBE method, and retains the locality property of the twogrid(s) as in typical grid-nesting techniques, such as that of
steps. At the same time, Catal.[7] indicated that the LBE  Sullivan et al.[14]. Different grid levels operate at different
method is a special finite-difference discretization of the ki-length and time scales. We will demonstrate that more accu-
netic equation of the discrete velocity distribution function. rate solutions are obtained on fine grids, with a considerable
The implication is that by introducing other standard finite-saving in CPU time.
difference discretization methods, the application of nonuni- The paper is organized as follows. In Sec. Il, a two-
form grids and semi-implicit collision schemes to the con-dimensional square lattice model is briefly reviewed. The

effect of characteristic length and time scales of the square

lattice on numerical solutions and CPU time is discussed in
*Email address: ching-long-lin@uiowa.edu Sec. lll. In Sec. IV, a composite block-structured lattice and
TEmail address: yong-gen-lai@uiowa.edu a solution procedure are presented. The results are shown
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wheref is the single-particle distribution functiom, is the

- ox - microscopic velocity,ﬁf is the gradient of the functiofy =
is the relaxation time due to collision, anff? is the
a A3 2 A Boltzmann-Maxwellian distribution function. Using the lat-

tice Boltzmann nine-bit model in two dimensiofBig. 1),
the above equation can be discretized as

fi(X+e€dt,t+8t)=F(x,t)— %[fi(i,t)— fe9x,1)]. (2

- 5 0 i=1 ] ox
Here the right-hand side of the equation is known as the
collision process, and the left-hand side as the streaming pro-
cess. The discrete velocitiésare expressed deefer to Fig.
1 for the direction represented by the subsci)pt
6 '7 8 '
Y Hp-—
c(0,0), i=0
< e,=4 c(cos#;,sing;), 0,=(i—1)ml4, i=1,357
J2c(cosb; ,sing,), 6,=(i—1)wl4, i=2,4,6,8,
FIG. 1. Two-dimensional square lattice model with a length 3)

scaledx. ) ) ) )
wherec= 6x/ dt, 6x is the adjustable lattice size, adt the

and discussed in Sec. V. Concluding remarks are given ifime step. The equilibrium distribution functioff? is de-
Sec. VL. fined as

_ (e-u) 9(e-u)? 3(u-u)
Il. SQUARE LATTICE MODEL reyy | 1438 LoewT 3¢ ,
' 2 2 ¢t 2 ¢

4)
The Boltzmann equation with the Bhatnagar-Gross-Krook

(BGK) collision operatof 15] reads with the weightswy=4/9, w;=w;=wgs=w,=1/9, andw,

=w,=Wg=Wg=1/36 [2]. The macroscopic density and
velocity vectoru are related to the distribution function by
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FIG. 2. Contours of the stream
! M function at a time 20 000 obtained

256 —— with grid sizes(a) 257X 257, (b)
(c) 129x 129, (c) 65 65, and(d) 33
X 33.
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10° ——T T
— -~ - Using equation (8), n=1.4

0.1, which is the same value as used by Ho@l.[17] on a

e e P 256X 256 grid. Note th_at the flow is not fully developed in
- y—— Calculated from the order to illustrate the time accurate aspect of the method.
513x513 grid solution 3333y i By increasing the lattice characteristic scalessic= 5t
< =2, the number of iterations required to reach the same time
as above is reduced by a factor of 2. In addition, since only
129x 129 grid points withéx=2 are needed to cover the
same physical domain, the number of grid points is reduced
by a factor of 4(in three dimensions, the factor becomes 8
and so are the numbers of streaming and collision operations
per time step. Figure(B) shows contours of stream function
for this grid at time 20 000, using the same contour levels as
& gased before. Note that this case requires only 10000 iterations
A caseb since 5t=2. Both grids produce almost the same results.
0oocasec With 6x=8t=4, on a 65 65 grid, most of large- and small-
5 10 15 20 scale flow structures are still discernible, as shown in Fig.
dx 2(c). On a very coarse lattice 3333, Fig. 2d) shows that
large-scale flow features are captured, while the weak small
vortex at the lower right corner is not resolved. The lattice
model fails to represent macroscopic motions of a fluid
whose characteristic length scale is of the order of the lattice
8 8 unit size. That is, the continuum of fluid motions holds only
Z f.=p, E fiéi :pl]_ (5) when the hydrodynamic length scale in a flow is much larger
i= i= than the lattice scaléx. In Fig. 2d), vortices exist on two

. . different scales, but the scale of the lattice unit is only small
Using the Chapman-Enskog expansidiv,18, the above enough for the central vortex.

equations can recover the Navier-Stokes equations to the set- . .
. . o - Two approaches can be applied to estimate the overall
ond order of accuracy, with the kinematic viscositygiven
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Using Equation (8), n=1.4
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FIG. 3. Normalized average errors for grids of>665, 129
X129, and 25% 257 shown in Fig. 2, and for cases b, andc
listed in Table I. The solid line is the ideal slope 1.4.

order of accuracy of the method, when the exact solution is

by not available. One approach uses the following forniEler-
27—1 6x? ziger and Peri¢16]), which requires numerical solutions on
YT et ©)  three grid levels with grid spacing$, 6x/2, and 6x/4:
The pressure can be calculated frpm Cip, with the speed
of soundcs=c/\/3. The above two-dimensional nine-bit E | boxiz— baxl/N
square lattice model is adopted in this study. In
2 | doua— bl IN
Ill. EFFECT OF LATTICE LENGTH AND TIME SCALES n= ™ 7

In the classical BGK model, the square lattice lengik)(
and time (6t) scales are taken to be unity. For instance, Fig.¢ s, represents any dependent variable, such as velocity com-
2(a) exhibits contours of the stream function for a developingponentsu andv, with grid spacingsx. N is the number of
lid-driven cavity flow at a Reynolds number RA000 and  grid points, with which¢ values are compared. Here we use
time 20 000(i.e. 20000 iterations the grid points are 257 u andv data obtained with grids 6865, 129<129, and
X257, with 6x=6t=1. The lid velocity at the top wall is 257x 257, which resolve the lower right corner vortex. The

ot
@ (Gl
8t s\t\ 5t
—»@—» FIG. 4. Integration sequence
of the composite grid.

tl t2 t3 time

Begin
fine-grid
integration
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order of accuracy estimated iis= 1.4. With the assumption

of the 1.4-order convergence of the method, we can further
estimate the average discretization eredfor ¢ s, via Ri-
chardson extrapolatiofiL6]. That is,

A B Cc
( VN \\ f)
E |¢&(/2_ ¢5x|/N r fine grid
e~ . (8 boundary

2"-1 O O )
The estimated error is further normalized using the formula I I
el (Z|PslIN+€), where the denominator represents the O o O Py O
estimated “exact” solution. Figure 3 shows the normalized
average errors on three different grid levels. The average FIG. 5. Schematic of the intergrid communication.

errors are 1.3%, 3.1%, and 8.9% of the exact solution for
grids 257 257, 129< 129, and 6% 65, respectively. They among these cases lies in the relaxation timevhich ap-
closely follow the ideal slope 1.4. pears in Eqgs(2) and (6). With increasingsx and ét, the

The other approach adopted by Hetual.[17] uses a very relaxation timer decreases, leading to a larger changé;of
fine grid solution as the “exact” solution for the calculation for each collision step. An observation of interest is thds
of errors in other coarser grid solutions. To verify the aboveinterchangeable after the streaming step among the four
estimation using this approach, we repeat the simulation witleases, in spite of their different characteristic scales and ac-
a very fine grid 51% 513 andéx= 6t=0.5. Figure 3 shows curacy.
that the error curve generated by this approach nearly paral-
lels the curve of an ideal slope 1.4, and almost overlaps the
curve generated by the previous method. Therefore, by dou- IV. COMPOSITE BLOCK-STRUCTURED LATTICE

bling the grid spacing, the discretization error roughly in-  \ith the above observation, it is possible to construct a
creases by a factor of'2=2.64. On the other hand, the composite block-structured lattice method so that accurate
number of arithmetic operations is reduced by a factor of 8 imymerical solutions can be obtained at designated areas with
two dimensiong16 in three dimensions much less CPU time. The objective of the composite lattice

The above consideration has an immediate consequencg: o place lattices of smaller characteristic length and time
a considerable saving in CPU time can be achieved if coarsefcales at locations where fine-scale eddies exist, akin to the
grids are used in regions where flow structures are smooth @oncept of grid nestinfL4]. The grid structure is composed
not important. For instance, all the above cases are run ogf 3 coarse base grid and one or several fine(gtidrhe
HP-UX 9000/785 workstations. The Fortran library routine former covers the entire physical domain; the latter covers
DTIME is used to record the elapsed execution time for eaclynly subdomains. The characteristic length and time scales
case. The above four casesith lattice sizes of 258257,  (sx and ét) of the base grid are twice those of the fine grid.
129x 129, 65<65, and 3% 33) take 98.02, 4.961, 0.4643,  The integration sequence of the composite grid is illus-
and 0.0658 CPU seconds, respectively. Normalization byrated as in Fig. 4. Before tim&3, flow structures on the
0.0658 yields 1490, 75, 7, and 1, respectively. It verifieshase grid leveldenoted byG1) are solved at a faster rate
that an appreciable amount of CPU time can be saved at @ith a larger time stept. The simulation on the fine grid
moderate loss of accuracy of numerical results. (denoted byG2) starts at a later timt2 with a smaller time

In the above calculation, the use 8k= 6t gives a con-  stepst/2. At timet2, the fine grid boundary conditions are
stantc= 6x/é6t=1, and, as a result, the same discrete veloCigptained from the base grid solutions at timds and t3
ties € [Eq. (3)] and equilibrium distribution functiofiEq. through linear interpolation. Whereas at tind the fine grid
(4)] are used for all of the above cases. Since kinematiboundary conditions are provided by the base grid solution at
viscosity v is determined by Reynolds number Re time t3 alone, because solutions on both grids are at the
=UiqLiq /v, whereU,;4 andL,y are the lid velocity and same time levels, and no interpolation in time is needed.
length, v remains constant for all cases. The only difference When the fine grid solution procedure is activated at time

TABLE I. Simulation parameters. Caseis a single fine grid system. Cabas a two-grid system. Case
c is a four-grid system. Case is a two-grid systemG1 represents a base grid, a2, G3, andG4
represent composite fine grids, j() designates the coordinates of the lower left corner of the composite grid
relative to theG1 grid. The Reynolds number for these cases is 1000.

Case G1 G2 G3 G4

Size Size @) Size Qi) Size ()
a 255% 255
b 128x 128 255¢ 137 (1,2)
c 128x 128 57X 57 (1,2) 11X 99 (73,1) 10k 101 (1,78)
d 46X 46 43x 37 (1,28)
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TABLE Il. Locations and values of maximum and minimum stream functions for three vortices of the
lid-driven cavity flow at a Reynolds number of 1000.

Case Primary vortex Lower left vortex Lower right vortex

Umax  XILjig  Y/Lig min XILjig  Y/Ljig Ymin XILjig  Y/Ljg
Ghiaet al. 0.1179 0.5313 0.5625 —0.000231 0.0859 0.0781—0.00175 0.8594 0.1094

Hou et al. 0.1178 0.5333 0.5647 —0.000222 0.0902 0.0784 —0.00169 0.8667 0.1137

U?RANS 0.1171 0.5315 0.5669 —0.000231 0.0866 0.0748—-0.00173 0.8661 0.1102
Casea 0.1140 0.5315 0.5669 —0.000201 0.0827 0.0787 —0.00160 0.8622 0.1142
Caseb, G1  0.1140 0.5276 0.5669 —0.000195 0.0866 0.0787 —0.00158 0.8661 0.1181
Caseb, G2 —0.000204 0.0827 0.0787—0.00171 0.8583 0.1142
Casec, G1 0.1140 0.5276 0.5669 —0.000195 0.0866 0.0787 —0.00158 0.8661 0.1181
Casec, G2 —0.000239 0.0866 0.0827

Casec, G3 —0.00176 0.8583 0.1142

t2, f; values in this grid are initialized through the following carried out for later comparison. The grid size is chosen to be
two steps. The first step is to insert the time-averafjed close to a 25& 256 lattice used by Howt al. [17]. They
values on the base grid into the lattice nodes that are comtiffer by one grid point in thex andy directions to allow grid
mon to both grids, and are denoted by the open circles in Figsoarsening by a factor of 2 in our case. The same problem
5. The second step is to use linear interpolation for the calwith the same mesh is also calculated by tfieaNs finite-
culation of f; values at lattice nodes denoted by the grayyolume codd19] for comparison. We will also compare our
circles in Fig. 5. Note that the above initialization procedureresyits with the benchmark numerical solutions of Gitial.
takes place at the post-streaming stage of the base grid gig] who used a finite-difference stream-vorticity method.
time t3. After the initialization step, only the fine grid The convergence criterion is taken as that the change of the
boundary conditions along the bold solid line in Fig. 5 aréyayimum value of stream function for 10000 consecutive
required. They are obtained in the same fashion as above'iterations is less than’610~%, similar to that of Houet al.

bolfngg?e (’i‘) ::j!czlogn 3 '; 0Fetg}etr:léa'll[.tz?dofg'?og?uf\r:;?_ga(:k [17]. Thus, for case, the number of iterations for conver-
undary iion 1S applied, the interpolationiphvalues . n 00 i 200 000.

for nodeB is not possible. A special treatment for assigning .
values to fine grid nodes of this type is described below. At a Reynolds number of 1000, three vortices are gener-

First, the average velocities at noBein Fig. 5 are calcu- ated: one near the center of the domain, one at the lower
lated, through interpolation, by using the velocities at nGde !eft corne;, an_d_ one at tlhe Iowfertk?ghttcorner.f Thte_ max-
and by invoking the no-slip boundary condition at node Imum -and. minimum values o e stream functioh

Thenf; values are estimated using the equilibrium distribu—"’.lssoc'."’“ed with these vortices, and their [ocat|ons, are
tion function[Eq. (2)]. listed in Table Il. The maximum stream functiah,, for

casea is found at nearly the same location as others, and is
only 2.5% smaller in magnitude. Since the normalized grid
spacing is 1/2540.004, the locations of the lower vortices

Simulation of a lid-driven cavity flow at a Reynolds num- differ, if any, by only one grid point as compared with other
ber 1000 on a single grid 255255 (casea in Table |) is first ~ cases.

(@) (b)

V. RESULTS AND DISCUSSIONS

250 ‘
L G1
200
150 F ﬁ) FIG. 6. Mesh and solution_for
E caseb (refer to Table ). (a) Grid
> -G \/ layout; only every eighth grid line
100 is displayed.(b) Contours of the
I stream function on both grids.
50 |
0 R R 1 O A A |
0 50 100 150 200 250
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grid communication procedure described in Sec. IV properly
0 0.2 0.4 0.6 0.8 1 transfers the base grid information to the fine grid.

T e In Table Il, the locations and stream functions of the cen-
] ters of three vortices for cadeare listed. TheG1 grid so-

0.8 lution is expected to contain more error, and predicts a rela-
[ A ] tively lower ¢, for the two lower vortices. On the other
Hatm 1 hand, theG2 grid solution produces more accuratg;, val-

z | ) 108 z ues than th&1 grid as compared with the results from Ghia
D 0F---———— g - - - -~~~ o et al.[20], Hou et al.[17], and theu?RANS model. By using
> I i ] 4>' Richardson extrapolatiofEg. (8)] and solutions from the

G1 andG2 grids, we are able to estimate the average error

Ghiaetal. 2g

|

| |

05 : 1 in the G2 grid. This error is marked in Fig. 3, and its order of

i | U’RANS 702 magnitude agrees well with the foregoing error analysis. We
! G1, 126428 1 also use thé&1 grid solution of this case along with the fine
| o G2, 255x137 . . .

gl 1y grid solution of case for an evaluation of the error of the
-1 -05 0 0.5 1 latter. The resul{Fig. 3) shows that the error has the same
uU,, order of magnitude as other fine grid cases. Thus2Reyrid

. ) ) solution is more accurate than tkl grid solution.
FIG. 7. Velocity profileau(y)/U;q andv(x)/U,;4 at the vertical 9

and horizontal centerline&enoted by dashed linesf the lid-
driven cavity at Re=1000. The benchmark data of Greaal. are
displayed for comparisorG1 andG2 stand for the coarse and fine Next we test a four-grid system, which is composed of a
grids, respectivelyrefer to casé in Table ). coarse base gricé1 and three fine grid&2, G3, andG4
(refer to case in Table l). The grid layout is shown in Fig.
8(a). The G2 andG3 grids cover the lower left and right
corner vortices, respectively; th®4 grid is placed at the
For caseb in Table |, the fine gridG2 consists of 255 upper left corner. The contours of stream function at time
X137 grid points, and is placed at the lower half of the200000 for the four grids are displayed in FighB These
domain, as shown in Fig.(&). The vertical extent of the grid contours almost collapse, except those near the lower corner
is chosen to be slightly above the horizontal centerline, alvortices. A comparison of the lower left vortex in Table Il
lowing a comparison af velocity profile at the centerline on shows that its location differs from tH@2 solution of casé
both grids, and with the aforementioned numerical results agnly by one grid point in thex andy directions. Itsymin
well. The contours of the stream function on both grids arevalue is even closer to the results obtained from the conven-
shown in Fig. 6b). The contour lines exhibit a smooth tran- tional methods. The same feature is observed in the lower

sition along the intergrid boundary, indicating that no un-Tight vortex. We further use Eq. 8 to estimate the average

physical solution occurs there. In addition, the contours o’fror associated with these three fine grids, and mark it in

both grids almost overlap each other except in the vicinity of 'J: 3 The order of magnitude of the error is in good agree-
. : . ment with other fine grid solutions.

two lower corner vortices, where velocity magnitudes are

relatively small.

Figure 7 displays the normalizady) andv(x) velocity
profiles along the centerlines on both grids together with the Another interesting feature is the CPU time measured by
numerical solutions of Ghiat al.[20] and theu’RANS code.  the functionpTIME for casesa, b, andc. They are 1029,
Clearly, these data are in excellent agreement. Given that tht30.9, and 309.3 CPU seconds, respectively. Note that for
horizontal centerline ay/L;;q=0.5 on theG2 grid is only  cased andc, the timet3 (refer to Fig. 4, immediately after
slightly below the upper boundary of ti&2 grid, the inter- initiating the fine grid solution procedure, is 160 000. It is

B. Four-grid system

A. Two-grid system

C. CPU time

(@) (b)

250 T
64 G1
200 |
150 F FIG. 8. Mesh and solution for
i casec (refer to Table ). (a) Grid
> i layout; only every eighth grid line
100 | is displayed.(b) Contours of the
I G§ stream function on all of the grids.
50 F
0 N I Y O PO I O R
0 50 100 150 200 250

X
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90 e for casea are also displayed in the same figure for compari-
son. Figure 9 shows that the oscillation at the upper left
corner is removed by the composite grid method.

VI. CONCLUSION

60 In this paper, we have presented a composite lattice Bolt-
zmann method, which allows local grid refinement on the
framework of a regular lattice. This method is based on the
observation that discrete particle distribution functions are
interchangeable among grids of different length and time
scales at the post-streaming stage, if the ratio of length and
time scales in these grids is kept constant. The accuracy of
the discrete distribution function on the base grid level seems
to have little effect on the fine grid solution.

We first examine the overall order of accuracy of the
scheme and the discretization errors on grids of different
length and time scales. The results show that the LBE
method has an order of accuracy of 1.4 for the lid-driven
cavity studied. A comparison of CPU time required for each

FIG. 9. Contours of the stream function. Cabesolid line, G1 case Shows that a con_siderable Sa"if‘g in CPU time can be
46X 46; dashed line(:G2 43x 37. Casea: dot-dashed line, fine grid achieved if coarser grids ar(.a used in regions where flow
255x 255, structures are smooth or not important.

The strategy of the proposed method is, first, to carry out
a simulation on a coarse base grid. This allows a rapid propa-

_?_ﬂ?slvz)l(%rgi;z 8\/8;;/02 Eg;i[;ggfamgﬁts:\ingno:‘h;i1C|%Tjd.timegation of information on boundaries throughout the entire

can be achieved. Cabds about eight times faster than case simulation domain, and captures large-scale eddy structures

a, with the same accurate solutions at designated areas Whi?ffec.tlvely..Then thg solution is mapped to the fine grid us-
c:asec is about three times faster. CaseonsUMes mo’re |ﬁg linear |nterpolat|on.. Subsequently, the de.pendent.varl—
CPU time than casd because rﬁore interpolation is in- a_lbles on the base and fln_e_ grids are_advanced in time with f[he
volved fine gnd boundar_y con_dltlons ol_Jtamed from the base grid

' solution through linear interpolation.

We have demonstrated that the proposed method can pro-
duce more accurate solutions at designated regions nested by
At high Reynolds numbers or with coarse grids, oscilla-the fine grids at a much lower computational cost, and that

tory solutions may develop at the upper left corner of thethe composite fine grid can remove oscillatory solutions
cavity [17]. The objective of this section is to investigate caused by insufficient grid points.

whether the proposed composite grid method is able to alle-
viate this problem. We simulate the same flow using a very
coarse gridG1, 46x46, which is referred to as caskin We thank Professor Shiyi Chen at Johns Hopkins Univer-
Table I. In this case, a fine gri@2 is nested at the upper left sity for providing a two-dimensional LBE code. This work
corner. The contours of stream function for b@h andG2  was supported by the Carver Scientific Research Initiative
grids are depicted in Fig. 9. The contours of stream functiorGrants Program at the University of lowa.
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D. Removal of the oscillatory solution
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