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We consider thed51 nonlinear Fokker-Planck-like equation with fractional derivatives (]/]t)P(x,t)
5D(]g/]xg)@P(x,t)#n. Exact time-dependent solutions are found forn5(22g)/(11g)(2`,g<2). By
considering the long-distanceasymptoticbehavior of these solutions, a connection is established, namely,q
5(g13)/(g11)(0,g<2), with the solutions optimizing the nonextensive entropy characterized by indexq.
Interestingly enough, this relation coincides with the one already known for Le´vy-like superdiffusion~i.e., n
51 and 0,g<2). Finally, for (g,n)5(2,0) we obtainq55/3, which differs from the valueq52 corre-
sponding to theg52 solutions available in the literature (n,1 porous medium equation!, thus exhibiting
nonuniform convergence.

PACS number~s!: 05.60.2k, 05.20.2y, 05.40.2a, 66.10.Cb
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A great variety of diffusive problems in nature, name
those referred to asnormal diffusion, are satisfactorily de
scribed by the Fokker-Planck linear equation

]

]t
P~x,t !5D¹2P~x,t !, ~1!

where P(x,t) is the density of probability in thex
[$x1 ,x2 , . . . ,xd% space andD.0 is the diffusion coeffi-
cient. Such processes are currently characterized by the
that ^x2&}t, as shown by Einstein in his celebrated 19
paper on Brownian motion.

More recently, several works@1# have focused on the
same type of linear equation but withfractional derivatives.
More precisely

]

]t
P~x,t !5D¹gP~x,t ! ~2`,g<2!, ~2!

where¹g[( i 51
d (]g/]xi

g). Also, thenonlinearequation with
ordinary derivatives has been@2,3# focused on as well. More
precisely

]

]t
P~x,t !5D¹2@P~x,t !#n ~n.21! ~3!

~no solutions are known forn<21 which are integrable
@3#!.

These two generalized Fokker-Planck equations h
been used to study anomalous Le´vy-like diffusion as well as
correlated-like diffusive processes in porous media@2–17#.
The present paper addresses the unification of both equa
as follows:
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]

]t
P~x,t !5D¹g@P~x,t !#n ~2`,g<2!. ~4!

We will restrict ourselves to thed51 case. More specifi-
cally, we are interested in normalized scaled solutions of
type

P~x,t !5
1

f~ t !
FF x

f~ t !G . ~5!

Inserting this form into Eq.~4! ~and, without loss of gener
ality, settingD51) we obtain

2
ḟ~ t !

f~ t !2 F d

dz
F~z!1zF~z!G5

1

f~ t !n1g

dg

dzg
@F~z!n#, ~6!

where we have used the generic property

dd

dxd
F~ax!5ad

dd

dzd
F~z! ~dPR! ~7!

with z5ax. This basic property holds not only for the ord
nary derivative but also for all fractional operators we a
aware of. By choosing the ansatz

2
ḟ~ t !

f~ t !22n2g
5k, ~8!

wherek is an arbitrary constant, we obtain

f~ t !5
1

~k1t1k2!1/(n1g21)
, ~9!

dg

dzg
@F~z!#n5k

d

dz
@zF~z!# ~10!
2213 ©2000 The American Physical Society
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2214 PRE 62BOLOGNA, TSALLIS, AND GRIGOLINI
with k1[2(g1n21)k, k2 being another arbitrary constan
Finally making an integration we obtain

dg21

dzg21
@F~z!#n5kzF~z!1c, ~11!

wherec is another arbitrary constant.
Thus far it has not been necessary to specify the fractio

operator we refer to. Indeed, several fractional general
tions exist for the ordinary derivative, namely, the Rieman
Liouville @1# ~based on Laplace transform!, Weyl @1# ~based
on Fourier transform!, and Caputo@18# ~also based on
Laplace transform! ones. From now on we will use th
Riemann-Liouville operator, since it is for this one that it h
been possible to find new exact solutions. In this case
will work with the positive xaxis and, later on, we will use
symmetry to extend the results to the entire real axis~we are
working, in other words, with]g/]uxug). Also, we will use
the following generic result@19# ~see the Appendix!:

Dx
d@xa~a1bx!b#5ad

G@a11#

G@a112d#
xa2d~a1bx!b2d

~12!

with Dx
d[dd/dxd and d[a1b11. By defining g(x)

[xa/n(a1bx)b/n and l[a(121/n)2d, and rearranging
the indices, Eq.~12! can be rewritten as follows:

Dx
d@g~x!#n5

G@a11#

G@a112d#
adxlg~x!. ~13!

Using this property in Eq.~11! and, for simplicity, choosing
c50, we find

a5
~22g!g

122g
, ~14!

b52
g223g12

122g
, ~15!

n5
22g

11g
. ~16!

These results allow us to write the solution in the form

P~x,t !5
A

~ uk1ut !(g11)/(g22g11) F zg(g11)

~11bz!12g2G 1/(122g)

,

~17!

A5Fk
G~b!

G~a11!G
(11g)/(122g)

, ~18!

z[
x

~ uk1ut !(g11)/(g22g11)
, ~19!

whereb is an arbitrary constant~to be taken, later on, as61
according to the specific solutions that are studied! and
where, without loss of generality, we have setk250 anda
51. Indeed, thek2 constant can be incorporated into a sh
al
a-
-

e

of the origin of time, anda can be incorporated into th
normalization constantA. We also mention the exact solutio

F~z!}zg/(n21) ~20!

that is not normalizable. Several regions will have to be c
sidered, namely,

2`,g,21, 21,g,0, 0,g,
1

2
,

1

2
,g,1, 1,g,2.

~21!

We start with the region2`,g,21 for which, again
without loss of generality, we can chooseb521. The nor-
malization condition implies

AE
21

1 F zg(g11)

~12z!12g2G 1/(122g)

dz

52A
G@~g22g11!/~122g!#G@2g~g22!/~2g21!#

G@12g#

51, ~22!

see Fig. 1. Also, as we can see from the limits of the differ
regions ~21!, we will have to consider different particula
cases, namely,g521,g50,g51/2,g51, andg52.

Let us start withg521 and arbitraryn. The correspond-
ing equation is

]

]t
P~x,t !5E

0

x

@P~y,t !#ndy. ~23!

To solve it let us go back to Eq.~10!; after derivation with
respect toz, we obtain

k
d2zF~z!

dz2
5@F~z!#n. ~24!

We are not going to treat this equation in detail; we rath
limit ourselves to remark that the valueg521 corresponds

FIG. 1. (uk1ut)(g11)/(g22g11)P(x,t) versusz[x/(uk1ut)(g11)/(g22g11)

for g<0; g502 corresponds to a distribution everywhere vanis
ing, except at the abcissa being61 where it diverges. For
g,21(21,g,0) the distribution vanishes~diverges! at z561.
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PRE 62 2215ANOMALOUS DIFFUSION ASSOCIATED WITH . . .
to n→6` in the curve~16!. In the region21,g,0 the
probability density has a compact support, on the edge
which it diverges, see Fig. 1.

Let us now address the 0,g,1/2 region~whereb51).
In the limit g50(g51/2) integrability fails at infinity~at the
origin!; no such problems exist for 0,g,1/2. Normaliza-
tion implies

A5Fk
G@~223g1g2!/~122g!#

G@~12g2!/~122g!#
G ~11g!/~122g!

5
G@~12g2!/~122g!#

2G~g!G@~g22g11!/~122g!#
~25!

It is easy to show thatP(x,t) achieves a maximum~see Fig.
2! at

z5
g

~122g!
. ~26!

Let us now address theg50 limit. It corresponds to the
equation

]

]t
P~x,t !5@P~x,t !#n ~27!

that can be resolved analytically for arbitraryn. To obtain
this solution it is convenient to go back to Eq.~10!. It fol-
lows that

F~z!5
B

z
@11cz12n#1/(12n). ~28!

Therefore, in thez→` ~or, equivalentlyx→`) limit, we
have thatF(z)}1/z if n.1 andF(z) is a constant ifn,1.
The n51 case needs specific discussion and we ob
F(z)}z(1/k)21. It is worthy reminding that theg50 solu-
tions cannot be considered as distributions of probabili
since they are not normalizable.

The g51/2 limiting case corresponds to the followin
linear equation:

FIG. 2. (uk1ut)(g11)/(g22g11)P(x,t) versusz[x/(uk1ut)(g11)/(g22g11)

for 0<g,2; g501 corresponds to a distribution which vanish
everywhere. For 0,g<1/2 the distributions are defined in the e
tire real abcissa axis. For 1/2,g,1 the distributions vanish within
the (21,1) abcissa interval; forg>1, a divergence exists at th
abcissa61 ~vertical dashed asymptotes!.
of

in

s

]

]t
P~x,t !5

]1/2

]x1/2
P~x,t !. ~29!

This equation can be solved by using the Laplace transf
on botht andx. It can also be solved by taking the limitg
→1/2. We have followed this procedure and, after tedio
though straightforward calculations, we obtaink; 8

3 (1
22g) andA;@(8p/3)(122g)#21/2/2, which, replaced into
Eq. ~17!, yield

P1/2~x,t ![ lim
g→1/2

Pg~x,t !5
1

4Apt2

exp~2t2/4x!

~x/t2!3/2
, ~30!

which is a distribution of the Poisson type. Let us stress t
the above distribution can indistinctively be obtained
solving the fractional differential equation forg51/2, or by
taking theg.1/2 and theg,1/2 solutions and then consid
ering theg→1/2 limit.

Let us now focus on the 1/2,g,2 region ~where b5
21). The solutions strictly vanish inside an interval whic
contains the origin. Outside this interval, the solutions
everywhere finite if 1/2,g,1, whereas they diverge if 1
,g,2 ~see Fig. 2!.

The solutions corresponding to the 1/2,g,1 region are
as follows:

P~x,t !5
A

~kt!(g11)/(g22g11) F zg(g11)

~211z!12g2G 1/(122g)

.

~31!

Normalization implies

2AE
1

`F zg(g11)

~211z!12g2G 1/(122g)

dz

52A
G@g#G@2g~g22!/~2g21!#

G@g~g11!/~2g21!#
51 ~32!

from which A is uniquely determined; finally,k is obtained
from A by using Eq.~18!, see Fig. 2.

Let us now focus the special caseg51. In this case the
equation becomes

]

]t
P~x,t !5

]

]x
P~x,t !n. ~33!

Its generic solution of the form indicated in Eq.~5! is

@F~z!#n5kzF~x,t !1c, ~34!

which implicitly determinesF(z). The solution correspond
ing to c50 is

F~z!}z1/(n21). ~35!

In the region 1,g,2 we have the same analytic solutio
that we had in the region 1/2,g,1 @i.e., Eq. ~31!#; how-
ever, at the pointz51, a divergence is now present~see Fig.
2!. It is clear that this solution cannot be used without app
priate asymptotic considerations forg52, since forg→2,
n→0.
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2216 PRE 62BOLOGNA, TSALLIS, AND GRIGOLINI
Let us now specifically focus on the possiblex→` tail of
P(x,t) for arbitrary t. For 2`,g,0 the support is com-
pact, hence there is no tail. For 0,g,2, we obtain, using
either Eq. ~17! ~for 0,g,1/2) or Eq. ~31! ~for 1/2,g
,2), the following asymptotic behavior:

P~x,t !;
1

t (g11)/(g22g11)
z[g(g11)1g221]/(122g)

;
tg(g11)/(g22g11)

x11g
. ~36!

We can easily verify that the exponent@g(g11)#/@g2

2g11# monotonically increases from zero to 2/A311
when g increases from zero to (11A3)/2. Also, we verify
that, for 0,g,1, both ^uxu& and ^x2& diverge; for 1,g
,2, only the latter does. Forg,0, all momenta are finite
since the support is compact. Finally, in all cases,^x& van-
ishes because of symmetry.

Let us now address the solutions forn51 and arbitraryg.
The equation to be solved becomes

]

]t
P~x,t !5

]g

]xg
P~x,t !. ~37!

This equation can be solved using Laplace transform and
solutions are discussed in Ref.@20#. Moreover, we can see
~in Fig. 3!, that the point (g,n)5(1/2,1) is at the crossing o
two solvable lines. Since solution~30! has been found as th
limit of either one of these lines, it seems reasonable to c
jecture that the same solution is found as a limit along a
curve through that point.

Let us summarize the present work. We have address
generic Fokker-Planck-like diffusive equation, namely t

FIG. 3. Curves in the (g,n) space on which exact solutions a
now available:n51 @1,20#, g51 ~present work!, g52@3#, n
5(22g)/(11g) ~present work!. The horizontal dashed line corre
sponds to theg→2` asymptote; the vertical dashed line corr
sponds to then→6` asymptote.
he

n-
y

a

one-dimensional case of Eq.~3!, and have looked for exac
scaled solutions of the type in Eq.~5!. In the (g,n) param-
eter space, the solutions corresponding tog52 andn.21
~porous medium equation! as well as to 0,g,2 andn51
are available in the literature, as already mentioned. We
now exhibiting exact solutions along two new lines, name
the line g51 and arbitraryn, and the line indicated in Eq
~16! @i.e., n5(22g)/(11g) with 2`,g,2#. For the lat-
ter, we observe on Eq.~36! that the spatial asymptotic be
havior is characterized by the exponent 11g, which exactly
coincides with that corresponding to Le´vy superdiffusion.
This is a remarkable result, since the present solutions c
cern a nonlinear Riemann-Liouville-fractional differenti
equation, andnot the usual linear Fourier-fractional one
whose solutions are known to essentially be Le´vy distribu-
tions. It would no doubt be interesting to know whether t
same behavior is obtained no matter the value ofn(0,g
,2).

Let us finally mention a connection between the pres
problem and the solutions obtained from the optimizatio
under appropriate constraints~normalization and finite
q-expectation value ofx2 in the interval (2`,`)), of the
nonextensive entropy@21,22# Sq[@12*dx p(x)q#/@q21#.
It has been shown that these optimizing distributionspre-
cisely coincidewith the solutions of the present diffusiv
problem forg52. It comes out thatq522n(n.21) @3#.
Along the line indicated in Eq.~16!, the exact solutions of
the entropic optimization problem and the present diffus
onedo not coincidefor arbitrary value ofx. However, com-
parison of thex→` asymptotic behaviors is possible@23#.
Indeed, by identifying the behavior exhibited in Eq.~36!
with the behavior 1/uxu2/(q21) obtained@2,3# for the entropic
problem, we obtain

q5
g13

g11
~0,g,2!, ~38!

which, as commented above, precisely reproduces the
nection established for Le´vy distributions@7#. By using Eq.
~16!, this relation can be rewritten as follows:

q5
512n

3
~0,n,2!. ~39!

~We remind the reader that the distributions forn.2 andn
,21, i.e., g,0, have compact support.! The present non-
trivial solution provides, for (g,n)5(2,0), q55/3, whereas
the porous medium equation solutionq522n providesq
52. This discrepancy exhibits that the point (g,n)5(2,0) is
a singular one, at least within the fractional derivative th
we have adopted in this work.

Another point worth to be mentioned is that we have co
pared the present solutions with those optimizingSq defined
in the interval (2`,`) and using finiteq expectation forx2

~whereas theq-expectation value ofx vanishes!. This is ap-
propriate since, through symmetry, we have extended
solutions that we have found in the interval (0,`) to the
entire real axis. Another possibility would of course be
compare the present results in the positive real semiaxis
those optimizing the entropySq defined in the same semiax
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PRE 62 2217ANOMALOUS DIFFUSION ASSOCIATED WITH . . .
and using finiteq-expectation value ofx. If we did so, rela-
tion ~39! would be replaced byq5(g12)/(g11) ~see also
Refs.@9,24#!.

Finally, last but not least, now that we have finished
presentation of the various exact solutions that emer
within the present work, it is worthy to mention that it wou
be very welcome the discussion of thestability of such so-
lutions. More precisely, if we start att50 with an arbitrary
distribution P(x,0) and make it evolve through the prese
differential equation, what would be thet→` asymptotic
distributionPa(x,t)? (a stands forattractor, in the space of
the distributions!. For instance, if the evolution is determine
through the convolution product~i.e., a linear fractional-
derivative Fokker-Planck equation, using a Fourier-ba
definition of fractional derivative!, then the standard and th
Lévy-Gnedenko central limit theorems apply, and con
quently the attractorPa(x,t) is either a Gaussian or a Le´vy
distribution~respectively, when the second cumulant is fin
or infinite!. If the evolution is instead determined through
nonlinear integer-derivative Fokker-Planck equation such
the one considered in Ref.@3#, then Pa(x,t) is given ~as
numerical verifications have shown! by the distributions
which optimize the nonextensive entropy, wherex scales
with a simple function oft. If the time evolution is obtained
as sometimes done, through recursive use of maps@25#,
Pa(x,t) can present a variety of shapes depending on
specific map which is used. Finally, in our present case~non-
linear fractional-derivative Fokker-Planck equation using
Laplace-based definition of fractional derivative!, the solu-
tions we have found might well bePa(x,t). This point, how-
ever, deserves analysis on its own.

One of the authors~C. T.! acknowledges Seth Lloyd fo
warm hospitality at the Massachusetts Institute of Techn
ogy, where this work was concluded.

APPENDIX

We give a short review of the property of the fraction
operator used to solve the nonlinear equation~4!. The
Riemann-Liouville operator is used in many applications
fractional calculus. The usual integral representation for
operator is

Dx
a f ~x!5

1

G~n2a!

dn

dxnE0

x dt f~ t !

~x2t !a11
~n21,a,n!.

~A1!

For the calculations in this paper we have instead used
following equivalent form:

Dx
axr5

G~r11!

G~r112a!
xr2a. ~A2!

We have also used the generalized Leibnitz formula for
kind of fractional derivative, namely,

Dx
a@ f ~x!g~x!#5 (

n50

` S a
n DDx

a2n@ f ~x!#Dx
n@g~x!#. ~A3!

Let us also mention that, for this operator, the followi
property holds under Laplace transform
e
d

t

d

-

s

e

a

l-

l

f
is

he

is

L@Dx
a f ~x!#5saF~s!2 f (a21)~0! ~A4!

for a<1 and wheref (a21)(0) means fractional derivative
calculated inx50.

Let us now show how formula~A3! leads to Eq.~12!, that
is used in the text. By assuming no restrictions on the par
etersa,b andg and applying the generalized Leibnitz ru
to the functionxa(a1bx)b we obtain

Dx
d@xa~a1bx!b#5 (

n50

` S d
nDDx

d2n@xa#Dx
n@~a1bx!b#.

~A5!

After some algebra we obtain

Dx
d@xa~a1bx!b#5 (

n50

` S d
nD G~a11!

G~a112d1n!
xa2d1n

3
G~b11!

G~b112n!
~21!nbn~a1bx!b2n.

~A6!

A closed form for this series can be achieved ifa1b11
5d. Indeed, by using the Gamma function prope
G(z)G(12z)5p/sinpz we obtain

Dx
d@xa~a1bx!b#5ad

G~a11!

G~a112d!
xa2d~a1bx!b2d,

~A7!

which is essentially Eq.~12!.
For completeness, it is worthy to briefly mention here

recent variation of Riemann-Liouville operator that we ha
mentioned in the text, namely, the Caputo derivative.
definition is

CDx
a f ~x![

1

G~m2a!
E

0

x dt f (m)~ t !

~x2t !a112m
~A8!

(C stands for Caputo!. The main advantage with respect
the Riemann-Liouville operator is that Caputo derivative o
constant is zero, which is not the case of the Riema
Liouville one. Substantially, this kind of fractional derivativ
is a formal generalization of the integer derivative und
Laplace transform. As disadvantage, it exhibits the fact th
whenever the derivation index is an integer number, it rec
ers the usual derivativeexceptingfor an additive constant
whereas the Riemann-Liouville operator has no such disa
able property.

Finally, let us also mention the definition of Weyl frac
tional derivative. It is based on the properties of Four
transform, and it is defined as follows:

WDx
a f ~x!5 (

k52`

1`

~2ık!ack exp~2ıkx!, ~A9!

its continuum version being

WDx
a f ~x!5

1

2pE2`

1`

dv~2ıv!a f̂ ~v!exp~2ıvx!.

~A10!

(W stands for Weyl.!
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