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Collective diffusion and a random energy landscape

Michael Schulz and Steffen Trimper
Fachbereich Physik, Martin-Luther-Universita¨t, Halle D-06099, Germany

~Received 24 February 2000!

Starting from a master equation in a quantum Hamiltonian form and a coupling to a heat bath, we derive an
evolution equation for a collective hopping process under the influence of a stochastic energy landscape.
Different equations result for an arbitrary occupation number per lattice site or in a system under exclusion.
Based on scaling arguments it will be demonstrated that both systems belong below the critical dimensiondc

to the same universality class, leading to anomalous diffusion in the long time limit. The dynamical exponent
z can be calculated by ane5dc2d expansion. Above the critical dimension we discuss the differences in the
diffusion constant for sufficient high temperatures. For a random potential we find a higher mobility for
systems with exclusion.

PACS number~s!: 05.70.Ln, 05.50.1q, 75.10.Hk, 82.20.Mj
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I. INTRODUCTION

Many systems behave on the phenomenological level
sentially randomly and therefore other approaches for
theoretical treatment have to be employed. The randomn
resulting from stochastic forces or intrinsic in the underlyi
microscopic theory, inevitably leads to the description
such systems in terms of probabilities and expectation va
@1,2#. The time development of probability is usually foun
using a master equation. The past years have seen an ex
new development based on the observation@3# of the close
relationship between the Markov generator of the ma
equation and a time evolution operator acting on a ma
particle Fock space@4,5#; for some recent reviews see Ref
@6,7#. The new insight has led to a series of remarkable ex
solutions for the stochastic dynamics of interacting parti
systems, for a recent overview see Ref.@8#. Despite the exac
results, the mentioned method has also been fruitful in de
ing an approximate description of other models such as
facilitated kinetic Ising system as a candidate for glassy s
tems@9–11# or in branching and annihilation random walk
@12#. Whereas Ref.@3# ~see also Ref.@13#! is concerned with
a mapping of the master equation to a representation in te
of second-quantized bosonic operators, great progress fo
actly solvable models had been achieved by mapping to s
1/2 Pauli operators@8#. This mapping to spin systems applie
to processes where each lattice site can be occupied by
a finite number of particles. Physically, this restriction m
be hardcore constraints or fast on-site annihilation proces
Obviously, such a mapping simulates the exclusion princ
for classical lattice models within cellular automata.

In the present paper the Fock-space description is app
for systems far from equilibrium which are coupled to a h
bath. In particular, we discuss the collective hopping proc
of a classical many body system, coupled to the mentio
heat bath, and under the influence of a random energy la
scape realized by a stochastic activation energy. The
ticles making random walks have to overcome spatially d
tributed energy barriers. As a consequence, the hop
process is accomplished by a competing force field wh
can give rise to anomalous diffusion. Further, the analysis
both cases, the bosonic and the exclusive one, should
PRE 621063-651X/2000/62~1!/221~6!/$15.00
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different. In the first case the particles should find more r
idly the local energy minima. However, because of that th
mobility could be reduced. As a consequence of the rand
walk where the particles have to overcome spatially distr
uted energy barriers, the resulting effective force field c
give rise to anomalous diffusion. It is well known that one
the reasons for anomalous diffusive behavior can be tra
back to the influence of a stochastic force field below a cr
cal dimension@14,15#. An alternative way of achieving self
induced anomalous diffusion had been discussed rece
@16# introducing a feedback coupling between the diffusi
particle and its local environment. Both the disorder and
memory controlled feedback may lead to a subdiffusive
havior or to localization. The analytical approach@16# could
be confirmed by simulations in one and two dimensio
where at the critical dimensiondc52 logarithmic corrections
in the mean square displacement have been found@17,18#.

Here, we demonstrate that the Fock space approach l
in both cases, bosonic and under exclusion, to anoma
diffusion. Within the long time limit and on a large spati
scale both systems belong to the same universality class

II. QUANTUM APPROACH TO NONEQUILIBRIUM

Before we present a more precise definition of our mo
in terms of a master equation, let us describe the situatio
mind verbally. We consider the time evolution of partic
distributions on a regular lattice where each lattice site
related to a well defined local energy« i . The complete en-
ergy landscape is defined by the set of randomly distribu
energies« i . Particles are updated asynchronously at a r
m. The update corresponds to choosing a neighboring
and moving the particle to it with a probability that depen
on the random potential via a Boltzmann factor. To be m
specific, a particle hops from sitej to a neigboring pointi
subject to the condition that the sitesj andi are characterized
by the mentioned random energy which the hopping part
has to overcome. Additionally, the process is strongly infl
enced by the occupation number of the lattice sites. Whe
in the Bose case an arbitrary occupation number of e
lattice site is allowed, all hopping attempts which would le
to a double occupancy of a site are rejected in the model w
221 ©2000 The American Physical Society
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222 PRE 62MICHAEL SCHULZ AND STEFFEN TRIMPER
exclusion~hardcore repulsion!.
To include both conditions, the local energy distributi

as well as the occupation rules per site, our analysis is ba
on a master equation

] tP~nW ,t !5L8P~nW ,t !, ~1!

whereP(nW ,t) is the probability that a certain configuratio
characterized by a state vectornW 5(n1 ,n2 , . . . ,nN) is real-
ized at timet. There are two special cases: either each lat
site is occupied by an arbitrary number of particlesni
50,1,2,. . . , or as in alattice gasni50,1. Further, the occu
pation numbersni are considered as the eigenvalues of
particle number operator defined by creation operatorsdi

† or
by annihilation operatorsdi . The problem is to formulate the
dynamics in such a way that the possible realizations for
occupation numbers are taken into account explicitly. T
situation in mind can be analyzed in a seemingly comp
form using the master equation in a quantum Hamilton f
malism @3,4,2,5,19,20#; for recent reviews see Refs.@7,8#.
The dynamics is determined completely by the form of
evolution operatorL8, specified below, and the commutatio
relations of the underlying operatorsdi

† anddi . Within that

approach@3# the probability distributionP(nW ,t) is related to
a state vectoruF(t)& in Fock space according toP(nW ,t)
5^nW uF(t)&. The basic vectorsunW & are composed of the op
eratorsdi

† anddi . Using the relation

uF~ t !&5(
ni

P~nW ,t !unW & ~2!

the master Eq.~1! can be transformed into an equivalent o
in Fock space,

] tuF~ t !&5LuF~ t !&, ~3!

where the operatorL8 in Eq. ~1! is mapped onto the operato
L5(umW &Lmn8 ^nW u in Eq. ~3!. It should be emphasized that th
procedure is up to now independent of the realization of
basic vectors. Originally, the method had been applied
the Bose case@3,4,13#. Recently, an extension to restricte
occupation numbers~two discrete orientations! was proposed
@2,5,19#. Further extensions top-fold occupation numbers
@11# as well as to models with kinetic constraints@21# and to
systems with two heat baths@22# are possible.

As shown by Doi@3#, the average of an arbitrary physic
quantityB(nW ) can be calculated by the average of the cor
sponding operatorB(t),

^B~ t !&5(
ni

P~nW ,t !B~nW !5^suBuF~ t !&, ~4!

with the state function̂su5(^nW u. The evolution equation for
an operatorB(t) now reads

] t^B&5^su@B~ t !,L#uF~ t !&. ~5!
ed

e

e

e
e
ct
-

e
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r
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As a result of the procedure, all the dynamical equatio
governed by the classical problem are determined by
structure of the evolution operatorL and the commutation
rules of the operators.

III. COUPLING TO A HEAT BATH

The evolution operator for a collective hopping process
different for an arbitrary occupation number, denoted as
Bose case, or a restricted occupation number, denoted a
Fermi case. For the last system the operatorL f reads@9#

L f5m(
^ i , j &

@di
†dj2~12ni !nj #, ~6!

wherem is the hopping rate between adjacent sitesi and j.
The occupation number operatorni5di

†di is related to the
spin operator by the relationSi5122ni and the commuta-
tion rule is @di ,dj #5d i j (122ni).

For the Bose case we get

Lb5m(
^ i , j &

~di
†dj2nj !, ~7!

wheredi
† anddi fulfill the Bose commutation rules. A gen

eralization to processes under the coupling to a heat b
with a fixed temperatureT is discussed in Ref.@9#. As dem-
onstrated in Refs.@9,23# the evolution operator has to b
replaced by

L f5m(
^ i , j &

@~12didj
†!exp~2bH/2!di

†djexp~bH/2!#,

~8!

where the hopping ratem defines a microscopic time scale
b5T21 is the inverse temperature of the heat bath, andH is
the Hamiltonian as a measure of energy. A further gener
zation, realized by introducing different local heat baths,
discussed in Ref.@22#. In the bosonic case the generalizatio
to finite temperatures leads to

Lb5m (
, i , j .

@~12d i j !exp~2bH/2!di
†djexp~bH/2!#.

~9!

Here we study the case in which the HamiltonianH in Eqs.
~8!,~9! is simply given by a stochastic energy landscape
fined by the energy functional

H5(
i

« ini . ~10!

Whenever the energy is positive the empty site is energ
cally favored. Further,« is assumed to be a stochastic loc
energy the distribution of which will be introduced belo
based on the continuous representation. In this manner
model describes a collective hopping process where
jumping particles are subjected to a local random energy« i
which supports or prevents the hopping process with a pr
ability proportional to exp(6«i/2T). Taking into account the
commutation rules, we get in both cases
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PRE 62 223COLLECTIVE DIFFUSION AND A RANDOM ENERGY . . .
e2bH/2die
bH/25die

« i /2T, e2bH/28di
†ebH/25di

†e2« i /2T.
~11!

Using Eq.~5! and the algebraic properties of Pauli operato
the evolution equation for the averaged density reads

m21] t^nr&5(
j (r )

H exp@~« j2« r !/2T#^nj&2exp@~« r2« j !/2T#

3^nr&22 sinhS « j2« r

2T D ^nrnj&J ~12!

In the Bose case the evolution equation is much simpler

m21] t^nr&5(
j (r )

$exp@~« j2« r !/2T#^nj&

2exp@~« r2« j !/2T#^nr&%. ~13!

Both equations reflect the conservation of the particle nu
ber which will be more apparent in a continuum represen
tion. In the special case of a constant energy« r5« j the
conventional diffusion equation results in a discrete versi
When the energy changes from site to site the nonlinear
~12! is the first step in a whole hierarchy of evolution equ
tions. Assuming now smoothly changing energy« r and den-
sity nr a gradient expansion is appropriate up to the orderl 2,
where l is the lattice size. To make the expansion invaria
under the underlying rotational symmetry we have to use
following identity:

(
j (r )

exp@~« j2« r !/2T#^nj&

5(
j (r )

^nr&1exp~2« r /2T!(
j (r )

@exp~« j /2T!^nj&

2exp~« r /2T!^nr&#. ~14!

Such an expression reads, in a continuous representatio
cluding terms of the orderl 2,

zn~r ,t !1exp~2«~r !/2T#¹2$exp@«~r !/2T#n~r ,t !%

with the averaged densitŷnr&[n(r ,t); z is the number of
nearest neighbors. After decoupling the nonlinear term in
~12! and performing the continuous limit the densityn(r ,t)
obeys the following nonlinear diffusionlike equation:

m21l 22] tn5¹2n1n~12n!
¹2«

T
1~122n!“n•“«/T.

~15!

In a system with exclusion the density couples in a nonlin
manner to the stochastic energy field«(r ). Due to the ex-
change coupling of the evolution operatorL in Eq. ~6! the
resulting equation~15! is a conserving one where the curre
is given by

j f52“n2n~12n!
“«

T
. ~16!
,

-
-

.
q.
-

t
e

in-

q.

r

In the Bose case we find after performing the continuo
limit that the densityn(r ,t) obeys the following exact equa
tion:

m21l 22] tn5¹2n1
1

T
“@n“«#. ~17!

The conservation law is manifested in the current

jb52“n2n
“«

T
. ~18!

The resulting equation is no more than the conventional
fusion equation under an additional drift term where the E
stein relation is automatically fulfilled. Notice that one ca
derive a similar equation when the system is coupled to
heat baths with different temperatures. In that case one ha
replace«(r )/T by n/T(r ), wheren is the chemical potentia
andT(r ) is the local temperature, see also Ref.@22#. In the
Bose case Eq.~17! depends on the density in a linear ma
ner. It is of Fokker-Planck type when the densityn(r ,t) is
considered as the single probability distribution to find a p
ticle at siter at time t. Such an interpretation is always po
sible because we have not taken into account any inte
tions. Therefore, the particles are independent of each o
and the concentration field behaves as the probability dis
bution of a single particle of this system. In contrast to t
case of an arbitrary occupation, the currentj f includes a term
n(12n) which is characteristic of systems with exclusio
Due to the exclusion principle, the systems reveal a kind
correlation which leads even in the mean field limit to
nonlinear current. Following the discussion for the Bose c
Eq. ~15! can be interpreted as a nonlinear Fokker-Plan
equation for a single particle. The nonlinearity reflects t
feedback of a particle to itself due to the excluded volu
effect.

It seems to be more appropriate to introduce the fo
vector f(r )52¹«(r ). The evolution equation in the Bos
case now reads

m21l 22]n~r ,t !5¹2n2
1

T
f•“n2

1

T
“•fn. ~19!

In the Fermi case the corresponding equation is

m21l 22]n~r ,t !5¹2n2
1

T
f•“n~122n!2

1

T
n~12n!“•f.

~20!

When the force fieldf(r ) is a stochastic one the system o
fers anomalous diffusive behavior@14,15#.

IV. SCALING

Now let us discuss both equations when the force field
a stochastic pure spatial-dependent field, the correlato
which is given by

f a~r ! f ~r 8!5fag~r2r 8!, f a~r !50. ~21!

After averaging over the distribution function of the forc
field the system is homogeneous, depending only on the
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224 PRE 62MICHAEL SCHULZ AND STEFFEN TRIMPER
ference between the spatial coordinates. The most gen
form of the functionfag is given in a Fourier representatio
by

fag5A~qW !~dag2nang!1B~qW !nang with na5
qa

q
.

~22!

Introducing dimensionless variablesx→xL21, t→tL2z,
where z is the dynamical critical exponent and, further,n
→nLd and, according to Eq.~22!, for constantA and B f
→fLd/2, we find the critical dimensionalitydc52. For
d<2 the term proportional to¹(fn) is relevant, whereas th
additional term in the case of exclusive motion}nf ¹n is
only relevant ford,2/3. That means for the physical dime
siond>1 both models belong to the same universality cla
where onlyd<2 the disorder is relevant. Physically the r
sult is obvious because in the long time limit and for a lar
spatial scale the Fermi system can be considered to cons
blocks of increasing size. The larger such a block is the m
irrelevant it is to distinguish both cases, arbitrary occupat
and restricted occupation. In the case whered<2, the sys-
tem reveals anomalous diffusive behavior as has been d
onstrated for a similar model, not for the densityn(r ,t) but
for the probabilityP of finding a particle at timet at pointr .
Making the same calculation we end up with the flow eq
tions for the dimensionless coupling parametersD5m l 2, a
5(A/D2T2)Kd , b5(B/D2T2)Kd , with Kd(2p)d: the vol-
ume of the d-dimensional unit sphere ande522d, j
5 ln(L0 /L),

]D

]j
5DFz221

a~d21!

d
2

b

dG ,
]a

]j
5aFe2a1

b~d21!

d G ,
]b

]j
5bFe2

a

dG . ~23!

In the same manner one can derive an equation for the m
square displacementR5L2s(D,a,b) with s5^r2&. The flow
equation can be written as

2s5
]s

]D
]jD1

]s

]a
]ja1

]s

]b
]jb. ~24!

That equation leads to a scaling behavior of the mean sq
displacement in the vicinity of the fixed points of Eqs.~23!.
In order to keep the diffusivityD fixed at its bare value, the
effective dynamical exponentz(j) satisfies z(j)52
1b(j)/d1a(j)(12d)/d. When the disorder is irrelevan
the fixed points area!5b!50 and the exponent isz52. For
the fixed pointa!5«d, b!50, z522« results and fora!

5b!5ed we find z521O(e2). These values are we
known @14,15#. At the critical dimensiondc52 we proceed
in the following manner. The observation timet is related to
an initial time t0 by

t5t0expS E
0

j

z~j8!dj8D . ~25!
ral

s,

e
t of
re
n

m-
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Using Eqs.~23!,~24! we can fix the scaling parameterj ac-
cording to Eq.~25! to be

j.
1

2
lnS t

t0
D1

1

2
lnS 11

a0

2

t

t0
D ,

wherea0 is the initial value for the parametera. From Eq.
~24! we find the following behavior for the mean squa
displacement:

^r2&5c1

t

t0
1c2

t

t0
lnS t

t0
D , ~26!

where c1 and c2 are two nonuniversal constants. As e
pected, the system reveals logarithmic corrections at
critical dimension.

One should note that due to considering a short ra
force-force correlation function defined by Eq.~22!, the criti-
cal dimension is 2 as has been discussed above. In the
of a short range energy-energy correlation function the c
cal dimension is shifted todc50 because off ;q«.

V. BEHAVIOR ABOVE THE CRITICAL DIMENSION

The thermalized version of the Fock-space representa
@see Eqs.~8!,~9!#, leads in the limitT→` to conventional
diffusion. In the high temperature limit the particles are ab
to overcome each barrier and as a consequence of the
chastic hopping process one finds diffusive behavior in
long time limit independently of the underlying statistic
When the temperature is finite there appears a compet
between two processes resulting in a different behavior
both systems. Bose particles can easily find a minim
within the energy landscape defined by the stochastic fo
Particles with exclusion have to search for a longer time a
on a larger scale to reach an appropriate potential minim
From here one would conclude an enhanced diffusivity.
the other hand, the mobility of bosons is eventually reduc
because they find a stable minimum more rapidly. Due to
established universality for low dimensions, a variation
the behavior should be observed only above the critical
mension. In this regime conventional perturbation theo
should be applicable. Let us therefore present lowest o
corrections to the the diffusion parameterD. The effective
diffusivity is defined by

Deff5U]n21~qW ,v!

]q2 U
q50,v50

. ~27!

The Bose and the Fermi systems lead in second order,
portional to 1/T2, to nontrivial corrections which are als
manifested in the averaged densityn(r ,t) or the averaged
correlation functionn(r ,t)n(r 8,t8). Indeed, the Fermi sys
tem offers additional terms for the density or the correlat
function compared with the Bose case. However, those te
do not contribute at zero wave vector and hence there
relevant corrections to the divergent part ofDeff for d<dc .
Above dc the behavior of the effective diffusion coefficien
can be estimated using a perturbative approach around
homogeneous solution denoted byn̄. We get



a

ffi

s

ily
e
a

-
-
e
lu
s

b

i
Th
t

t

po-
s
tic
ore
ey

e for

gle
rm

gu-
on-

ion
c-
ut
e
of

cor-

d
(
is

n a
ub-
sto-

ac-
one
ar-
eas
ore
in

obil-
al
is
the
ster
asily
ra-
ads
om

gy,
to

end
l-

oint
p
ili-

the
t is

ergy

PRE 62 225COLLECTIVE DIFFUSION AND A RANDOM ENERGY . . .
Deff
f 5Deff

b 1
~12n̄!n̄

DT2
I

with

I 5
4Kd

d
I 1@B2A~d21!#. ~28!

I 1 can be expressed by a momentum integral which is alw
positive in the mesoscopic regimeL. l . For B2A(d21)
.0, realized for a pure potential field@B is the relevant
variable, see Eq.~22!#, Eq. ~28! leads to

Deff
f .Deff

b . ~29!

We remark that the correction to the bare diffusion coe
cient D is of the order (122n̄)2, which means for the half-
filled case there are no corrections. That reasonable re
should also be valid in a more refined approach.

Because the homogeneous solution is not necessar
stable one we can also estimate the behavior using lin
stability analysis around the stationary solution denoted
ns(r ). Let us introducen(r ,t)5ns(r )1y(r ,t) then the cor-
rectiony(r ,t) fulfills, in the Bose case, the equation

] ty5D“

2y1
D

T
“~y“«b! with f~r !52¹«b~r !.

~30!

Here «b(r )5«(r )2v is the true stochastic potential intro
duced by Eq.~10! andv plays the role of the chemical po
tential which regulates the occupation number. In the cas
the exclusion model the deviation from the stationary so
tion y(r ,t) satisfies the same equation, however, one ha
replace the potential in the Bose case, given in Eq.~30!, by
another effective potential

«b~r !→« f~r !52T lnFcosh$@«~r !2v#/2T%

cosh~v/2T! G . ~31!

We have gauged the potentials so that for« f(r )50 also
«(r )50. The hopping particles under exclusion are su
jected to the modified stochastic energy landscape given
« f . Expanding« f in terms of« we find the relation

« f~r !.2tanhS v
2TD «~r !. ~32!

From here we find

« f~r !« f~0!.tanh2S v
2TD «b~r !«b~0!. ~33!

The effective correlator of the disorder in the Fermi system
drastically decreased in comparison to the Bose case.
result is compatible with the previous discussion leading
Eqs. ~28!,~29!. In particular in the vicinity of half filling
~where the chemical potentialv is zero! the influence of the
disorder is very weak. This special case corresponds to
vanishing linear term, expanding Eq.~31! according to pow-
ers of«. To leading order we obtain
ys

-

ult

a
ar
s

of
-
to

-
by

s
is

o

he

« f~r !.
«2~r !

4T
.

Differently, from the Bose case, the effective stochastic
tential« f , Eq. ~31!, is always positive definite, which mean
that all the deep negative minima of the original stochas
potential become maxima and therefore they are not m
available in the case of the Fermi system. Obviously, th
are already occupied and hence they are not accessibl
particles.

It should be noted that our approach includes only a sin
approximation, namely, the decoupling of the nonlinear te
in Eq. ~12!. Whenever the nonlinear term is irrelevant~as
demonstrated in Sec. IV using renormalization group ar
ments! the approximation is reasonable. The mentioned n
linear term becomes relevant ford.dc which is, for in-
stance, manifested in calculating the stationary solut
ns(r ). Obviously, the higher the dimension is, the more a
curate the approximation will be. For dimensions low b
slightly abovedc we expect further corrections due to th
fact that the nonlinear term considers percolation effects
occupied sites. In the case of a short range force-force
relation the main conclusion, Eq.~29!, holds for all dimen-
sion d.dc52. The situation for low dimensions is change
in the case of a short range energy-energy correlationdc
50). In particular, the decoupling of higher order terms
no longer justified. Especially, the cased51 remains an
open problem.

VI. CONCLUSIONS

In the present paper the collective hopping process o
lattice is studied systematically when the particles are s
jected to a random energetic landscape manifested by a
chastic energy profile. In particular, we have taken into
count both cases, each lattice site being occupied by only
particle or each site absorbing an arbitrary number of p
ticles. Physically, one expects a different behavior. Wher
in the situation under exclusion a particle should spend m
time searching for an appropriate energy minimum with
the stochastic energy, the bosons tend to reduce their m
ity because they remain for a longer time in the loc
minima. A further influence on the motion of the particles
given by the coupling to a heat bath, which supports
tendency of the system to equilibrate. Starting on a ma
equation in a second quantized form, both cases can be e
realized in terms of Bose operators or spin-1/2 Pauli ope
tors. The annihilation and creation process of particles le
in both cases to a density gradient characteristic of a rand
walk. Due to the additional coupling to stochastic ener
each particle cannot follow that gradient simply but has
overcome an energy barrier at its starting point and at its
point. A conflicting situation appears where a particle fo
lows the density gradient but the energy at the starting p
is higher than at the end point. In this manner it will jum
from an occupied to an empty site, however, under mob
zation of a higher amount of energy~lower temperature!. The
other situation consists of the fact that a particle follows
density gradient and the energy barrier at the starting poin
lower than at the end point~high-temperature regime!. In this
case the hopping process is highly supported by the en
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landscape whereas in the previous one the process is
stricted. As a consequence, the anomalous diffusive beha
should be realized below the critical dimension.

In this paper we have demonstrated that the B
system—as well as the Fermi system—belongs below
critical dimension, to the same universality class within t
long time limit and on a large spatial scale. For an increas
scale the system can be considered to consist of blocks
m

s

a
,

re-
ior

e
e

e
g
ith

an increasing number of particles. Thus, the cases of
stricted and unrestricted occupation number per lattice
should be irrelevant. Despite the universality the density a
the correlation function of both systems are different, in p
ticular for an intermediate interval. In particular, we ha
discussed the situation above the critical dimension wh
the diffusion constant can offer different behaviors in bo
cases.
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