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Collective diffusion and a random energy landscape
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Starting from a master equation in a quantum Hamiltonian form and a coupling to a heat bath, we derive an
evolution equation for a collective hopping process under the influence of a stochastic energy landscape.
Different equations result for an arbitrary occupation number per lattice site or in a system under exclusion.
Based on scaling arguments it will be demonstrated that both systems belong below the critical dimignsion
to the same universality class, leading to anomalous diffusion in the long time limit. The dynamical exponent
z can be calculated by a#=d.—d expansion. Above the critical dimension we discuss the differences in the
diffusion constant for sufficient high temperatures. For a random potential we find a higher mobility for
systems with exclusion.

PACS numbgs): 05.70.Ln, 05.50tq, 75.10.Hk, 82.20.Mj

[. INTRODUCTION different. In the first case the particles should find more rap-
idly the local energy minima. However, because of that their
Many systems behave on the phenomenological level egnobility could be reduced. As a consequence of the random
sentially randomly and therefore other approaches for thavalk where the particles have to overcome spatially distrib-
theoretical treatment have to be employed. The randomnesdted energy barriers, the resulting effective force field can
resulting from stochastic forces or intrinsic in the underlyinggive rise to anomalous diffusion. It is well known that one of
microscopic theory, inevitab|y leads to the description ofthe reasons for anomalous diffusive behavior can be traced
such systems in terms of probabilities and expectation valueack to the influence of a stochastic force field below a criti-
[1,2]. The time development of probability is usually found cal dimensior{14,15. An alternative way of achieving self-
using a master equation. The past years have seen an excititigluced anomalous diffusion had been discussed recently
new development based on the observafidhof the close [16] introducing a feedback coupling between the diffusive
re|ati0nship between the Markov generator of the mastepartide and its local environment. Both the disorder and the
equation and a time evolution operator acting on a manymemory controlled feedback may lead to a subdiffusive be-
particle Fock spacf4,5]; for some recent reviews see Refs. havior or to localization. The analytical approgdt] could
[6,7]. The new insight has led to a series of remarkable exade confirmed by simulations in one and two dimensions
solutions for the stochastic dynamics of interacting particlevhere at the critical dimensiafy, =2 logarithmic corrections
systems, for a recent overview see R8l. Despite the exact in the mean square displacement have been fouAd g.
results, the mentioned method has also been fruitful in deriv- Here, we demonstrate that the Fock space approach leads
ing an approximate description of other models such as th# both cases, bosonic and under exclusion, to anomalous
facilitated kinetic Ising system as a candidate for glassy sysdiffusion. Within the long time limit and on a large spatial
tems[9—11] or in branching and annihilation random walks scale both systems belong to the same universality class.
[12]. Whereas Ref.3] (see also Ref.13]) is concerned with
a mapping of the_ master eq_uation to a representation in terms QUANTUM APPROACH TO NONEQUILIBRIUM
of second-quantized bosonic operators, great progress for ex-
actly solvable models had been achieved by mapping to spin- Before we present a more precise definition of our model
1/2 Pauli operatorg8]. This mapping to spin systems applies in terms of a master equation, let us describe the situation in
to processes where each lattice site can be occupied by onigind verbally. We consider the time evolution of particle
a finite number of particles. Physically, this restriction maydistributions on a regular lattice where each lattice site is
be hardcore constraints or fast on-site annihilation processeslated to a well defined local energy. The complete en-
Obviously, such a mapping simulates the exclusion principleergy landscape is defined by the set of randomly distributed
for classical lattice models within cellular automata. energiese; . Particles are updated asynchronously at a rate
In the present paper the Fock-space description is applied. The update corresponds to choosing a neighboring site
for systems far from equilibrium which are coupled to a heatand moving the particle to it with a probability that depends
bath. In particular, we discuss the collective hopping processn the random potential via a Boltzmann factor. To be more
of a classical many body system, coupled to the mentionedpecific, a particle hops from sifjeto a neigboring point
heat bath, and under the influence of a random energy landubject to the condition that the siteandi are characterized
scape realized by a stochastic activation energy. The paby the mentioned random energy which the hopping particle
ticles making random walks have to overcome spatially dishas to overcome. Additionally, the process is strongly influ-
tributed energy barriers. As a consequence, the hoppingnced by the occupation number of the lattice sites. Whereas
process is accomplished by a competing force field whichn the Bose case an arbitrary occupation number of each
can give rise to anomalous diffusion. Further, the analysis folattice site is allowed, all hopping attempts which would lead
both cases, the bosonic and the exclusive one, should lie a double occupancy of a site are rejected in the model with
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exclusion(hardcore repulsion As a result of the procedure, all the dynamical equations
To include both conditions, the local energy distributiongoverned by the classical problem are determined by the

as well as the occupation rules per site, our analysis is baseddructure of the evolution operatdr and the commutation

on a master equation rules of the operators.

aP(N,H)=L'P(n,t), (1) Ill. COUPLING TO A HEAT BATH

The evolution operator for a collective hopping process is

where P(ﬁ,t) is the probability that a certain configuration different for an arbitrary occupation number, denoted as the
characterized by a state veclfnt:(nl n, .ny) is real- Bose case, or a restricted occupation number, denoted as the

ized at timet. There are two special cases: either each latticé €Mi case. For the last system the operatoreads[9]

site is occupied by an arbitrary number of particles

=O_,1,2,. ..,orasin dattice. gas;=0,1. Further, the occu- Lf:MZ [drdj—(l—ni)nj], (6)
pation numbers; are considered as the eigenvalues of the (.5

particle number operator defined by creation operaﬂérer ) ) . . .
by annihilation operatord; . The problem is to formulate the wherep is the hopping rate betweer!r ad_Jacent sitemd .
dynamics in such a way that the possible realizations for thd "€ occupation number operator=d;d; is related to the
occupation numbers are taken into account explicitly. TheSPin operator by the relatio§=1—2n; and the commuta-
situation in mind can be analyzed in a seemingly compacton rule is[d;,d;]= &;;(1—2n;).

form using the master equation in a quantum Hamilton for- For the Bose case we get

malism [3,4,2,5,19,2Q) for recent reviews see Reff7,8].

The dynamics is determiqu completely by the form of. the Lb:MZ (dierj_nj)i 7
evolution operatot.’, specified below, and the commutation an

relations of the underlying operatod;-’i andd; . Within that

- T - .
approacH 3] the probability distributiorP(n,t) is related to whgred_i andd fulfill the Bose commutathn rules. A gen-
eralization to processes under the coupling to a heat bath

a sEate vectodF(t)). in Fock Space according t&(n,t) with a fixed temperatur@ is discussed in Ref9]. As dem-
=(n|F(t)). The basic vectorgn) are composed of the op- onstrated in Refs[9,23] the evolution operator has to be

eratorsdiT andd; . Using the relation replaced by
|F(t))=> P(n,t)|n) ) Lf=,u,<i§j:> [(1—didJ-T)eX[X—BH/Z)drdjexr(,BHIZ)],
n;j ’
®
in Fock space, B=T"1is the inverse temperature of the heat bath, ldrid
the Hamiltonian as a measure of energy. A further generali-
| F(t))=LI|F(t)), (3)  zation, realized by introducing different local heat baths, is

discussed in Ref22]. In the bosonic case the generalization

where the operatdr’ in Eq. (1) is mapped onto the operator 1O finite temperatures leads to
L=3|m)L/,(n| in Eq.(3). It should be emphasized that the
procedure is up to now independent of the realization of the Lp=u E [(1- 5”)exp(—ﬁH/Z)dfrdjexp(BH/Z)].
basic vectors. Originally, the method had been applied for <hi=
the Bose casg3,4,13. Recently, an extension to restricted ©
occupation number@wo discrete orientationsvas proposed
[2,5,19. Further extensions tp-fold occupation numbers
[11] as well as to models with kinetic constraif&l] and to
systems with two heat battg2] are possible.

As shown by Dol 3], the average of an arbitrary physical

quantityB(n) can be calculated by the average of the corre- H= Z gin;. (10)
sponding operatoB(t),

Here we study the case in which the Hamiltonkrin Egs.
(8),(9) is simply given by a stochastic energy landscape de-
fined by the energy functional

Whenever the energy is positive the empty site is energeti-
- > cally favored. Furtherg is assumed to be a stochastic local
<B(t)>:; P(n,t)B(n)=(s[B[F (1)), 4 energy the distribution of which will be introduced below
' based on the continuous representation. In this manner, the
_ ) - ) ) model describes a collective hopping process where the
with the state functiods| ==(n|. The evolution equation for jumping particles are subjected to a local random energy
an operatoB(t) now reads which supports or prevents the hopping process with a prob-
ability proportional to expte;/2T). Taking into account the
d¢(B)Y=(s|[B(t),L]|F(t)). (55  commutation rules, we get in both cases



PRE 62 COLLECTIVE DIFFUSION AND A RANDOM ENERGY ... 223

e BHI24 @BHI2_ 4 @eil2T o= BHI2' gt aBH2— qTa—ei/2T In the Bose case we find after performing the continuous
' ' ' ' ' (11  limit that the densityn(r,t) obeys the following exact equa-
tion:

Using Eq.(5) and the algebraic properties of Pauli operators, 1
the evolution equation for the averaged density reads w U 26,n=V2n+ ?V[nVs]. (17)
,ufl&t(n,>=' | (exp[(sj—sr)/ZT]<nj>—exp{(a,—s,-)/ZT] The conservation law is manifested in the current

j(r

8j—¢ = —Vn—n<t (18
. i &r =-Vn-n—.
x(n,)—2 sm?‘( JZT )(nrnj)} (12 Ib T

The resulting equation is no more than the conventional dif-

fusion equation under an additional drift term where the Ein-

stein relation is automatically fulfilled. Notice that one can

,U#ilat<nr>:2 {exd (g;—¢&,)/2T(n;) derive a similar equation when the system is coupled to two
i) heat baths with different temperatures. In that case one has to

replaces(r)/T by v/T(r), wherew is the chemical potential

—ex —&)I2T(n,)}. 13 :

H(er=e)/2T)(n)} (13 andT(r) is the local temperature, see also He2]. In the

Both equations reflect the conservation of the particle numB0se c_asequ.tE) de||3endks on thehdensr:ty ('jn a I_mear man-

ber which will be more apparent in a continuum represental®'- !t is of Fokker-Planck type when the densitfr,t) is

tion. In the special case of a constant energy=s; the considered as the single probability distribution to find a par-

. ] . . . . . -
conventional diffusion equation results in a discrete versionliCl® at siter at timet. Such an interpretation is always pos-

When the energy changes from site to site the nonlinear E ’ibIe because we have not taken_ into account any interac-
(12) is the first step in a whole hierarchy of evolution equa- lons. Therefore, the particles are independent of each other

tions. Assuming now smoothly changing energyand den- and the concentration field behaves as the probability distri-

sity n, a gradient expansion is appropriate up to the otder bution of a single particle of this syster.n..ln contrast to the
wherel is the lattice size. To make the expansion invariant@S€ of an arbitrary occupation, the currgrinicludes a term

under the underlying rotational symmetry we have to use th@(1—n) which is characteristic of systems with exclusion.
following identity: Due to the exclusion principle, the systems reveal a kind of

correlation which leads even in the mean field limit to a

nonlinear current. Following the discussion for the Bose case
2 exd (e;—&)/2T](n;) Eqg. (15 can be interpreted as a nonlinear Fokker-Planck
10 equation for a single particle. The nonlinearity reflects the
feedback of a particle to itself due to the excluded volume

In the Bose case the evolution equation is much simpler:

= (n,)+exp—&,/2T) Y, [expe;/2T)(n;) effect.
1) 1 It seems to be more appropriate to introduce the force
—exp(e,/2T){(n,)]. (14) vector f(r)=—Ve(r). The evolution equation in the Bose

case now reads
Such an expression reads, in a continuous representation in- 1 1
cluding terms of the orddr, U 2gn(r,t)=V2n— —f-Vn- 2V fn. (19

zn(r,t)+exp —e(r)/2T|V¥exd e(r)/2TIn(r,t)}
In the Fermi case the corresponding equation is
with the averaged densitn,)=n(r,t); z is the number of 1 1
nearest neighbors. After decoupling the nonlinear term in Eq.  —11-25r t)=v2n— —f.Vn(1-2n)— —=n(1—nV.f
(12) and performing the continuous limit the densitgr,t) H n(r.t) "7 n( n) Tn( mv-f.

obeys the following nonlinear diffusionlike equation: (20
V2 When the force field(r) is a stochastic one the system of-
w1 729n=V2n+n(1- n)——+(1-2n)Vn-Ve/T. fers anomalous diffusive behavipt4,15.
(19
IV. SCALING

In a system with exclusion the density couples in a nonlinear
manner to the stochastic energy fiel@r). Due to the ex-
change coupling of the evolution operatorin Eq. (6) the
resulting equatiorfl5) is a conserving one where the current

is given by o (NF(r' )= (r—r"), f,(r)=0. (21)

Now let us discuss both equations when the force field is
a stochastic pure spatial-dependent field, the correlator of
which is given by

After averaging over the distribution function of the force

) Ve
Ji==Vn=n(l=n) = (18 field the system is homogeneous, depending only on the dif-
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ference between the spatial coordinates. The most generdking Egs.(23),(24) we can fix the scaling parametérac-
form of the functioné,,, is given in a Fourier representation cording to Eq.(25) to be

by

¢ T A I P
A - T 2 2T 2 )
bay=A(Q)(84,—N,N,)+B(q)N,N, with na—a. 0 0

(22)  whereay is the initial value for the parametex From Eq.
(24) we find the following behavior for the mean square

. - - . 71 -7
Introducing dimensionless variables—xA ™", t—tA™? displacement:

where z is the dynamical critical exponent and, further,
—nAY and, according to Eq(22), for constantA and B f t t [t
—fAY%2 we find the critical dimensionalityd,=2. For <r2>=clt—+czt—ln(t— ,
d<2 the term proportional t& (fn) is relevant, whereas the 0 0o
additional term in the case of exclusive motiemfVn is

only relevant ford<2/3. That means for the physical dimen-
siond=1 both models belong to the same universality classg itical dimension.

where onlyd<2 the disorder is relevant. Physically the re- 5o should note that due to considering a short range

sult is obvious because in the long time limit and for & largeso e force correlation function defined by E82), the criti-
spatial scale the Fermi system can be considered to consist 9& dimension is 2 as has been discussed above. In the case

blocks of increasing size. The larger such a block is the morg¢ 5 ghort range energy-energy correlation function the criti-
irrelevant it is to distinguish both cases, arbitrary occupation.,| qimension is shifted td.=0 because of ~qe
. .

and restricted occupation. In the case whare2, the sys-

tem reveals anomalous diffusive behavior as has been dem-
onstrated for a similar model, not for the dengitfr,t) but

for the probabilityP of finding a particle at time at pointr. The thermalized version of the Fock-space representation
Making the same calculation we end up with the flow equa{see Eqs(8),(9)], leads in the limitT— to conventional
tions for the dimensionless coupling parame®rs ul?, a diffusion. In the high temperature limit the particles are able
=(AID?*T?)Kq, b=(B/D*T?)Kg4, with Kq(27)% the vol- o overcome each barrier and as a consequence of the sto-
ume of the d-dimensional unit sphere and=2-d, { chastic hopping process one finds diffusive behavior in the
=In(Ag/A), long time limit independently of the underlying statistics.
When the temperature is finite there appears a competition

(26)

where ¢; and c, are two nonuniversal constants. As ex-
pected, the system reveals logarithmic corrections at the

V. BEHAVIOR ABOVE THE CRITICAL DIMENSION

£:D 72—+ a(d—-1 _ E} between two processes resulting in a different behavior for
23 d dj’ both systems. Bose particles can easily find a minimum
within the energy landscape defined by the stochastic force.

Ja b(d—1) Particles with exclusion have to search for a longer time and
3_§_a e-at d ' on a larger scale to reach an appropriate potential minimum.
From here one would conclude an enhanced diffusivity. On

ab a the other hand, the mobility of bosons is eventually reduced

€ =b| e~ al (23) because they find a stable minimum more rapidly. Due to the

established universality for low dimensions, a variation in
In the same manner one can derive an equation for the medhe behavior should be observed only above the critical di-
square displacemeR= A2s(D,a,b) with s=(r?). The flow = mension. In this regime conventional perturbation theory

equation can be written as should be applicable. Let us therefore present lowest order
corrections to the the diffusion parameter The effective
Js s as diffusivity is defined by
g, o)
That equation leads to a scaling behavior of the mean square Der= -5 . 27
displacement in the vicinity of the fixed points of Eq423). 99 q=0,0=0

In order to keep the diffusivityp fixed at its bare value, the

effective dynamical exponentz(¢) satisfies z(¢§)=2  The Bose and the Fermi systems lead in second order, pro-
+b(&)/d+a(£)(1—d)/d. When the disorder is irrelevant, portional to 172, to nontrivial corrections which are also
the fixed points ar@*=b*=0 and the exponent is==2. For ~ manifested in the averaged densityr,t) or the averaged
the fixed pointa*=ed, b*=0, z=2—¢ results and foa* correlation functionn(r,t)n(r’,t"). Indeed, the Fermi sys-
=b*=ed we find z=2+0(€?). These values are well tem offers additional terms for the density or the correlation
known [14,15. At the critical dimensiord.=2 we proceed function compared with the Bose case. However, those terms
in the following manner. The observation tirhés related to  do not contribute at zero wave vector and hence there are

an initial timet, by relevant corrections to the divergent part®f; for d<d..
Above d; the behavior of the effective diffusion coefficient
t=t0ex;{f z(g’)dg’). (25) can be estimated u.smg a pertur_batlve approach around the
0 homogeneous solution denoted bhyWe get
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. 2
(1-n)n &)
D= Dyt o1z | ef(r)=—7"
with Differently, from the Bose case, the effective stochastic po-

tentiale;, Eq.(31), is always positive definite, which means
d that all the deep negative minima of the original stochastic
I=—1h[B-AWd-1)] (28)  potential become maxima and therefore they are not more
available in the case of the Fermi system. Obviously, they
I, can be expressed by a momentum integral which is alwayare already occupied and hence they are not accessible for
positive in the mesoscopic regime>|. For B—A(d—1)  particles.

>0, realized for a pure potential fie[B is the relevant It should be noted that our approach includes only a single

variable, see Eq22)], Eq. (28) leads to approximation, namely, the decoupling of the nonlinear term
in Eq. (12). Whenever the nonlinear term is irrelevajais

Dfaﬁ> Dgﬁ. (29 demonstrated in Sec. IV using renormalization group argu-

mentg the approximation is reasonable. The mentioned non-
We remark that the correction to the bare diffusion coeffi-linear term becomes relevant far>d, which is, for in-
cientD is of the order (1-2n)2, which means for the half- stance, manifested in calculating the stationary solution
filled case there are no corrections. That reasonable resut(r). Obviously, the higher the dimension is, the more ac-
should also be valid in a more refined approach. curate the approximation will be. For dimensions low but
Because the homogeneous solution is not necessarily lightly aboved. we expect further corrections due to the
stable one we can also estimate the behavior using linedact that the nonlinear term considers percolation effects of
stability analysis around the stationary solution denoted asccupied sites. In the case of a short range force-force cor-
ng(r). Let us introducen(r,t)=ng(r)+y(r,t) then the cor- relation the main conclusion, E9), holds for all dimen-
rectiony(r,t) fulfills, in the Bose case, the equation siond>d.=2. The situation for low dimensions is changed
in the case of a short range energy-energy correlatin (
=0). In particular, the decoupling of higher order terms is
no longer justified. Especially, the case=1 remains an
(300  open problem.

D
ay=DV2y+ =V(yVey) with f(r)=—Vap(r).

Here ey(r)=e¢(r)—v is the true stochastic potential intro-
duced by Eq(10) andv plays the role of the chemical po- VI- CONCLUSIONS
tential which regulates the occupation number. In the case of In the present paper the collective hopping process on a
the exclusion model the deviation from the stationary soludattice is studied systematically when the particles are sub-
tion y(r,t) satisfies the same equation, however, one has tfected to a random energetic landscape manifested by a sto-
replace the potential in the Bose case, given in B6), by  chastic energy profile. In particular, we have taken into ac-
another effective potential count both cases, each lattice site being occupied by only one
particle or each site absorbing an arbitrary number of par-
cosH[e(r)—v]/2T} ticles. Physically, one expects a different behavior. Whereas
coshuv/2T) - (3D in the situation under exclusion a particle should spend more
time searching for an appropriate energy minimum within
We have gauged the potentials so that $(r)=0 also the stochastic energy, the bosons tend to reduce their mobil-
e(r)=0. The hopping particles under exclusion are subdty because they remain for a longer time in the local
jected to the modified stochastic energy landscape given byinima. A further influence on the motion of the particles is
e¢. Expandinge¢ in terms ofe we find the relation given by the coupling to a heat bath, which supports the
tendency of the system to equilibrate. Starting on a master

ep(r)—ef(r)=2TIn

v equation in a second quantized form, both cases can be easily

er(r)= —tank(ﬁ>s(r). (32 realized in terms of Bose operators or spin-1/2 Pauli opera-

tors. The annihilation and creation process of particles leads

From here we find in both cases to a density gradient characteristic of a random

walk. Due to the additional coupling to stochastic energy,
v ———— each particle cannot follow that gradient simply but has to
ﬁ) zp(r)ep(0). (33 overcome an energy barrier at its starting point and at its end

point. A conflicting situation appears where a particle fol-
The effective correlator of the disorder in the Fermi system idows the density gradient but the energy at the starting point
drastically decreased in comparison to the Bose case. This higher than at the end point. In this manner it will jump
result is compatible with the previous discussion leading tdrom an occupied to an empty site, however, under mobili-
Egs. (28),(29. In particular in the vicinity of half filing zation of a higher amount of ener@pwer temperatune The
(where the chemical potentialis zerg the influence of the other situation consists of the fact that a particle follows the
disorder is very weak. This special case corresponds to théensity gradient and the energy barrier at the starting point is
vanishing linear term, expanding E®1) according to pow- lower than at the end poitthigh-temperature regimeln this
ers ofe. To leading order we obtain case the hopping process is highly supported by the energy

8f(r)sf(0)ztani’?
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landscape whereas in the previous one the process is ran increasing number of particles. Thus, the cases of re-
stricted. As a consequence, the anomalous diffusive behaviatricted and unrestricted occupation number per lattice site
should be realized below the critical dimension. should be irrelevant. Despite the universality the density and

In this paper we have demonstrated that the Boséhe correlation function of both systems are different, in par-
system—as well as the Fermi system—belongs below th&cular for an intermediate interval. In particular, we have
critical dimension, to the same universality class within thediscussed the situation above the critical dimension where
long time limit and on a large spatial scale. For an increasinghe diffusion constant can offer different behaviors in both
scale the system can be considered to consist of blocks wittases.

[1] N.G. van KampenStochastic Processes in Physics and Chem-{11] M. Schulz and S. Trimper, J. Stat. Phggl, 173(1999.

istry (North-Holland, Amsterdam, 1981 [12] J. Cardy and U. Tiber, J. Stat. Phy€0, 3 (1998.

[2] H. Spohn, Large Scale Dynamics of Interacting Particles [13] L. Peliti, J. Phys(France 46, 1469(1985.
(Springer, New York , 1991 [14] D.S. Fisheret al, Phys. Rev. A31, 3841(1985.

[3] J. Doi M, J. Phys. A9, 1465(1976); 9, 1479(1976. [15] V.E. Kravtsov and I.V. Lerner, J. Phys. 28, L703 (1985.

[4] P. Grassberger and M. Scheunert, Fortschr. PB@#s.547 [16] M. Schulz and S. Stepanow Phys. Rev58 13 528(1999.
(1980. [17] B. Schulz and S. Trimper, Phys. Lett. 266, 266 (1999.

[5] S. Sandow and S. Trimper, Europhys. L&, 799(1993. [18] B.M. Schulz, S. Trimper, and M. Schulz, Eur. Phys. J18

[6] R.B. Stinchcombe, Physica 224, 248 (1996. 499 (2000.

[7] D.C. Mattis and M.L. Glasser, Rev. Mod. Phyg0, 979 [19] F.C. Alcaraz, M. Droz, M. Henkel, and V. Rittenberg, Ann.
(1998. Phys.(N.Y.) 230, 250(1994).

[8] G.M. Schiiz, in Phase Transitions and Critical Phenomena [20] M. Schulz and S. Trimper, Phys. Lett. 216, 235 (1996.
edited by C. Domb and J. LebowitAcademic Press, London, [21] M. Schulz and S. Trimper, Int. J. Mod. Phys. B, 2927
2000. (1997.

[9] M. Schulz and S. Trimper, Phys. Rev.53, 8421(1996. [22] S. Trimper and S. Artz, Int. J. Mod. Phys. B, 375(1999

[10] M. Schulz and S. Trimper, Phys. Rev.57, 6398(1998. [23] M. Schulz and S. Trimper, Phys. Lett. 227, 172 (1997.



