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Two-dimensional lattice liquids
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Evidence is presented, based on transfer-matrix and Monte Carlo calculations, for the occurrence of a
gas-liquid phase transition in suitably constructed, two-dimensional lattice-gas models with extended hard-core
repulsion on the triangular lattice. Three different models having this property are identified. The first system
is characterized by nearest-neighbor exclusion and an interparticle attraction ranging from second- to fourth-
neighbor distance. In a further example, the hard core reaches second neighbors, while the attraction ranges
from third to fifth neighbors. Finally, in a third model, the core extends up to fourth neighbors, while the
attraction covers all distances from fifth to eighth neighbors. | discuss how to use these results in order to make
a realistic lattice simulation of the trianguldd,11) surface of a fcc solid.

PACS numbgs): 05.70.Ce, 61.20.Gy, 61.20.Ja, 64.70.Dv

I. INTRODUCTION generally found from a gaseous low-density phase to a solid

In the late 1960s, an important issue in statistical mechahggh_denSIty phase, possibly turning continuous at high tem-
|

. . . .~ perature. In this case, the problem is to reintroducditjuéd
ics was to understand the phase behavior of two-dimension hase. | note that, when conditida) is not fulfilled (i.e.

(2D) lattice gases of hard-core particled. At that time, the o jysion is limited to the central sjteit is the solid that is
development of computer architectures with enough memory,ashed out and, no matter how long is the range of attrac-
and computing power made it possible for the first time totjon, there is only one phase transition left of the gas-liquid
investigate, by the transfer-matrix method, the phase diagrar@,pe [6,2].

of rather complex 2D lattice systems. The main purpose of |n the 3D continuum, the situation is, in many respects,
these studies was to bridge the gap existing between thgimilar. In particular, the spherically symmetric square-well
phase behavior of elementary Ising-like lattice gases, whiclpotential

undergo just a single transitid2], and the behavior of con-

tinuous hard-particle systems which, in 3D, are generally +o for r<o

found in three phases, i.e., solid, liquid, and gas. After a
burst of interest that lasted a few years, this area was appar-
ently abandoned and, in the last three decades, most of the 0 for r>o+6

effort has been directed toward an understanding of the

mechanisms of 2D melting/freezing in continuous systemsis known to undergo a gas-liquid transition only provided
especially in the light of the possible existence of a hexatithat 5/c=1/3[7]. It would be useful to have a simple crite-
phas€3]. rion like this in 2D also.

The first model of a 2D homogeneous and isotropic lattice  As yet, no 2D lattice model whose behavior is reminiscent
gas with a phase diagram containing a solid, a liquid, and af, say, argon has been reported on the triangular lattice.
gas phase was given by Orbeial.[4]. In this model, which  Here, | will fill this gap by showing that, within the class of
is defined on the square lattice, hard-core exclusion extendaodels whose solid phase is of a triangular symmetry, the
up to third neighbors, while fourth- and fifth-neighbor par- three simplest lattice gases with a stable liquid phasésae
ticles experience a mutual attraction. Later, this model wagig. 1) (1) a model with nearest-neighbor exclusion and
used as a tool for investigating various issues in surfaceecond-, third-, and fourth-neighbor interparticle attraction;
physics[5]. To the best of my knowledge, no other model of (2) a model where the hard-core region covers first and sec-
this kind was found until very recently Poland, using seriesond neighbors, while patrticles that are third, fourth, or fifth
expansions and the Bethe approximation, has presented evieighbors attract each othé€8) a model where any neighbor
dence of similar phase behavior in a 2D lattice-gas systersite of a particle up to fourth neighbors is forbidden, while

V(r)={ —€ for o<r<o+6 (H)

defined on the hexagonal latti€8]. the attraction ranges from fifth- up to eighth-neighbor dis-
From all of these studies, it has become clear that théance.
standard three phases are stable on a lattice as lof@) e Finding “realistic” lattice models in 2D is certainly in-

core region encompasses, in addition to the central site, algeresting for academic or pedagogical reasons, but also with
a number of neighbor sites, aifi) the attractive interaction the view of constructing a sufficiently simple 3D lattice gas
outside the core is rather extended as well. If condifi@n whose surface may resemble that of a continuum model. In
holds but(b) does not, a single first-order phase transition isfact, there are phenomena occurring at the surface of a 3D
solid that show a delicate interplay between discrete and con-
tinuous degrees of freedom, like, for instance, the early
*Email address: prestip@sissa.it stages of surface melting. The study of such phenomena can
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occupation of sites andj is forbidden, wherea¥(]i —j|)

<0 within the range of distances where the interaction is
attractive. It is well known that a large-distance attraction
between the particles is a necessary, albeit not sufficient,
condition for having a well-defined gas-liquid phase transi-
tion.

It is my intention here to find the simplest lattice gases
with a solid, a liquid, and a gas phase on the triangular lat-
tice, under the condition that the solid phase is triangular as
well. The simplest case is when hard-core exclusion is lim-
ited to first-neighbor sites only. In this case, the closest-
packing densityp,,.x=1/3. A second case is when both first
and second neighbors of an occupied site are forbidden,
which leads to a maximum number density of 1/4. A further
possibility is to exclude up to fourth-neighbor sitesyfx
=1/9). Upon supplying each of these hard-core potentials
with a suitably long-ranged attractive tail, it should be pos-
sible to obtain a stable liquid in all of the three cases above.

In order to keep notation as short as possible, the acronym
FIG. 1. The three lattice-gas models that are the subject of th&34 is used for ariangular lattice model where third- and
present paper. Each of them has a stable liquid ptseseSec. I\ fourth-neighbor sites are attractive, while first- and second-
In each panel, excluded sites<| and attractive sites@) are  neighbor sites of a particle are forbidden, and so forth. For

shown separately. Attraction reaches fourth neighbors in the t23thstance, the model by Orbaat al. will be referred to as the
model, fifth neighbors in the t345 model, and eighth neighbors ins45 model (“s” standing for square, whereas Poland’s
the t5678 model. In all cases, no interaction is felt beyond thismodel is here named the h23 modgh” after hexagona).
distance(black dots. For these models, the ratio between the uppern the following section, | shall provide sharp evidence of
cutoff of the potential and the core radius is smaller for larger corghree phases in the t234 model, in the t345 model, and in the
size. In particular, it isy7 for the t234 model,y/3 for the t345 5578 modekFig. 1. In each of these cases, a shorter range
model, and 4(7 for the t5678 model. of attraction between the particles seemed insufficient to sta-
bilize the liquid phase.

benefit greatly from the simulation of a lattice system with  Coming to the method, | use both transfer-matft)
three phases in a layer. | shall present below a 3D lattice gasnd grand-canonical Monte Car{®C) methods. The TM
that is aimed at reproducing the entire thermal evolution ofapproacH 10] to the statistical mechanics of a lattice system
the (111) facet of a rare-gas solid at equilibrium, including has a long tradition. If the interaction range is sufficiently
the preroughening transition of the solid-vapor interfi®e  short, the exact free energy of a system, being infinite in one
the concurrent onset of surface meltjr®d, up to roughening spatial direction and finite in the otigy, can be computed
and the growth of a thick liquid film between the solid and as the logarithm of the maximum eigenvalue oftansfey
the vapor. matrix. In 2D, the simplest case is when this matrix encodes

This paper is organized as follows. In Sec. Il, after athe interaction between a row of sites and the next row along
reconsideration of former results for the square and hexagahe infinite strip directiony. In this case, the matrix size
nal lattices, a general homogeneous and isotropic lattice-gasyuals the total number of states in a row. More generally,
model is introduced, and the method used in order to worklepending on the interaction range, the natural lattice unit
out its phase diagram is carefully outlined. Then, in Sec. lll,(NLU) can consist of just a single row, or a pair of consecu-
selected cases are analyzed, where there is sharp evidertdg rows, or a triplet of rows, etc. Upon increasing the num-
both from the transfer matrix and from Monte Carlo simula-berN, of sites in a row, phase-transition signatures gradually
tion, of a three-phase behavior. Next, in Sec. 1V, | discusemerge, thus allowing one to extract the infinite-size behav-
how to define a 3D lattice gas having three phases in a laydor by scaling arguments. The virtue of the TM method is
also. Further remarks and future perspectives are left to thkmited only by the range of the potential used and by the
Conclusions. core extension, which determine in turn what is the maxi-

mum x size that can be stored in the computer.
It was Runnels that pioneered the use of the TM technique
lI. MODEL AND METHOD in the study of 2D lattice gas€d1,12. He and his co-

| hereby consider statistical systems of indistinguishablgvorkers were the first to provide a breakthrough in the com-
“particles” existing on the\’ sites of a regular 2D lattice. Putational simplification of the problem, by showing how it
Multiple site occupancy is forbidden, so that occupationiS Possible, using symmetry arguments, to reduce the TM
numbersc; can be either 0 or 1i€1, ... N). The interac-  SiZ€ substantially without affecting the maximum eigenvalue
tion between two particles is assumed to be hard-core repult1, Which is the one controlling the grand canonical pressure
sive at short distances, while being attractive outside the cord-€-, the grand potentinbf the infinite strip:
region, at least up to a certain cutoff. As a result, (gtectly
pairwise _Ha_miltonian _of thg s_ystem ta_kes the fori pP— N\, )
==, V(li—jlecicy, with V(|i—j|)=+= if simultaneous NLu
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R ] chemical potentiaIC#:TL*Z(aS/aT)M. In particular, the
< 1s5E 3 latter two quantities are expressed in terms of grand canoni-
& F ] cal averages as follows:
& 1F =
2 A-F : AN)?
E L. 1
O —F———— g 0.2
F = kg
E 1019 Cu= 5 LBH(AH)+ (B)X(AN)?)
Q - -4 0.1
- 3005 —2BXBu((HN)—=(H)(N))], 4)
= where AN=N—(N) and AH=H—(H). Note thatC,>0,
C ] owing to the fact that the grand potential is a concave func-
0.1 F 3 tion of T.
& n . As a rule, simulation runs are carried out in sequence,
0.05 - 3 starting from the empty lattice at a very lo@u, and then
C ] increasing it progressively. After the run at a givep has
0 E 55 5 5 . been completed, the last configuration obtained is taken as
-5. - -4, -4

the starting point of the next run at a slightly largéj
Bu value. Likewise, other runs are performed on the solid side

FIG. 2. TM results for the s45 model of Sec. Ill A. Data are Z.qu)hue Ehasevsrl]?g;i;n’tr?é?]rtrlgglj::%rg ztgerfbecgferystgl a;?cﬂgh
shown for two strip sizes, 1@otted ling and 15(continuous ling ghBu, p by p- By

and for three isotherm@e=2,2.1,2.2. From top to bottom, results
for the reduced compressibilityp/d(Bur), the average density,

and the reduced pressug are shown. Two peaks in each com-
pressibility curve give the proof of the existence of three phases in
this model.

whereT is the temperature antfy, , is the number of sites 0 0.05 0.1 0.15 0.2

in the NLU. In particular, in the square-lattice case, row B<H>/L? p C,/k,

states can be grouped into equivalence classes bringing to Or==ag T T T 18
gether states that map onto each other upon a translatior >2 [ ' - ‘ J1z2
along x and/or a reflection with respect to the strip axis. ~°*[ E A | Jdos
Then, a matrix that is a condensed form of the TM can be "¢ [ F d N304

defined, of size equal to the number of equivalence classes °®
whose maximum eigenvalue is the same as for the original ~*
TM. | refer to [11,12 for further details. It is only worth 0.2

<N>/L? ’ kgTK,

C T T 240
mentioning here that, in the triangular-lattice case, when the ;5 3 feed) 1
x and they axis are both oriented along nearest-neighbor- . E - 160
bond directions, the group of symmetry transformations in- 3 ElN 1s0
cludes, besides translations alangalso reflections with re- 005 & ER 1
spect to an axis perpendicular 9 passing through the o Ef A PRI b dig wdim b 0

. -5 -45 -4 -5 -45 -4
center of the bottom row in the NLU.

| have complemented the TM study with Metropolis MC Bu Bu

data in the grand canonical ensemiftemperatureT and FIG. 3. MC data for the s45 model of Sec. Ill A, along the
chemical potentialu being the control parametgrsTypi- isotherm Be=2. Above: density histograms for a number Bf

cally, three million MC sweeps are produced fox L lat-  values ranging from-5.2 to —4 (the lattice is 46< 40). In particu-
tices of increasing size, up to a maximum lof 60, with lar, a dashed line is used for each run of a sequence starting, at
periodic boundary conditions. | choose thand they axis ~ Bx=—4, from a perfect crystal configuration. Units along e
along two neighbor-bond directions forming an angle ofaxis are arbitrary. Below: thermodynamic quantitiexact results
120°. A MC sweep here consists of one average attempt pé?r a strip of 15 sites are also reported as a dotted.lifeo lattice

site t6 change the occupation number frorto 1—c. Occa- sizes are comparetl;=30 (A) andL =40 (LJ). Values ofu here

. . . ___are the same as those used for the histograms above. All data points
sionally also the Kawa;ak| type of moves are7(;10n5|dered, S€4te affected by an error that is smaller in magnitude than the size of
Sec. Il E below. For fixed values g8=(kgT) * and Bu,

X v ) the symbols. Full markers refer to simulation runs of the sequence
various quantities are computed) the number density  starting on the solid side of the phase diagram. While the transition
=(N)/L?, N=3;c; being the current particle numbef2)  from the gas to the liquid is very smootho singularity apparently
the average enerdy=(H); (3) the isothermal compressibil- occurs in the thermodynamic potenfiahe liquid-solid transition is

ity Ky=p~2(dp/du)7; and(4) the specific heat at constant sharply discontinuouéwith liquid undercooling and hysteregis
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method, and provide@8u is increased in small enough steps,
one makes the entrapment of the system into a metastabl
glassy configuration more unlikely to occur at moderate den-
sities. In fact, this would be a more likely outcome if, at any
B, the run were always started from the empty lattice. ]
Within the above setup, when freezing happens to be dis- o1 ~ois 0.2
continuous, undercooling of the liquid is generally observed 0
(usually, overheating of the solid is not obtained his 0
means that, in the region of liquid-solid coexistence, thermo-_g 2
dynamic quantities are sensitive to whether the run was-o.4
started from a liquidlike or a solidlike configuratighyster- -0.6
esiy. -0.8
Finally, a useful tool when studying the phase behavior of -t
a lattice-gas system is to monitor, e.g., at a givgnthe
evolution of the MC density histogram as a functiorgafin 0.2
a finite system, a roughly Gaussian peak in this histogram iso.15
the imprint of a homogeneous phase, while phase coexist
ence appears as a bimodal density distribution. Hence, inso
far as a liquid region is present in the phase diagram, it will °-9°
be possible to discriminate between smooth and first-order o
condensation just from looking at the evolution of the den-
sity histogram.

A I
z
\4
~
[
©
%,
t

SERNRARRNRRRRRRRAR
RN SRRNE RRRTI FRET]
LI B L

FIG. 4. MC data for the s45 model of Sec. Il A, along the
isothermBe=2.2. Above: density histograms for a numberg
Ill. RESULTS values ranging from-5.4 to —5 (the lattice is 4 40). In particu-
lar, a dashed line is used for each run of a sequence starting, at
A. Model s45 Bu=—5, from a perfect crystal configuration. Units along the

First, | reconsider the model of Rg#] since it is para- axis are arbitrary. Below: thermodynamic quantitiezact results
digmatic of the behavior of a three-phase lattice gas. This i§r a strip of 15 sites are also reported as a dotted.liiwo lattice
a square-lattice model with hard-core exclusion up to thircsizes are comparetl,=30 (A) andL=40 (T). Values ofgu here
neighbors, whereas fourth- and fifth-neighbor particles at&'e the same as for the histograms above. All data points are af-
tract each other with a strength ef= —1.2¢ and es= — e, fected by an error that is smallt_ar in magnltude than the size of the
respectively €>0). Within the TM framework, the problem ;ymbols. Full rlnarlfers refer to S|mulat.|on runs of the sequence start-
is to enumerate all the states of two consecutive strip rowdnd O the solid side of the phase diagram. Both transitions here,
After symmetry reduction, the leading eigenvalue of thegas'IIqUIIOI and liquid-solid, are very sharp.
compressed TM is computed by an iterative method that is
far more efficient than full matrix diagonalization. Density Fi
and compressibility are evaluated from the r@®R data as a
three-point numerical first- and second-order derivative, re
spectively Bu is increased by 0.01 at a timeAs a rule, the
number of iterative steps that are necessary to bring th
maximum TM eigenvalue to convergence is larger the large
is the Bu derivative of the density.

In Fig. 2, | show results foN, X strips of two sizes,
N,=10 and 15(note that the square solid of density
=1/5 fits exactly into the strip provided, is a multiple of
5). The data of Fig. 2 are relative to three distinct isotherms
Be=2, 2.1, and 2.2. FoN,=15, the two-row states are
9327 in total, while the number of equivalence classes is ju
353. From Fig. 2, it is clear that three different phases exist.
This is manifested by the existence of two steps in the den- B. Model h23
sity plot, which are the fingerprint of gas-liquid and liquid- | have TM results also for the three-phase model of Po-
solid coexistence, or equivalently by the two peaks inland[6]. This is a hexagonal-lattice model where the inter-
dpld(Bwr), a quantity that is proportional to the isothermal action range reaches third neighbors. Two different cuts of
compressibility. By the way, a peak in this derivative is notthe hexagonal lattice are considered here; hence strips of two
necessarily connected with a second-order transition. Whekinds. In one case, two sites being consecutive along the
the system is finite, a compressibility peak may also allude tanfinite, y direction of the strip are first neighbors of each
a first-order transition or it could be simply the result of other @ strip); in the other case, a nearest-neighbor pair is
crossing a disorder line. Only a scaling study of the peakKormed by any two consecutive sites alox@b strip). In an
height can definitely settle this question, allowing one to dis-a strip, couplings exist between a site of the strip and others
tinguish unambigously between the above three cges that lie two rows further along, whereas horizontal interac-

The TM results have been checked by MC simulations. In
gs. 3 and 4, | show simulation data for two isotherms,
Be=2 and 2.2. Two lattice sizes were considereds 30
and L =40. Density histograms and thermodynamic quanti-
ties show in a rather convincing way that a liquid phase
Exists in the samg@u interval as suggested by the TM study,
fhe liquid density being about 80% of the closest-packing
density. Moreover, the transition from gas to liquid is smooth
for Be=2 (Fig. 3, while it is first order forBe=2.2 (Fig. 4).
Probably no gas-liquid transition line is crossed whea
=2, sinceKy and C, show only a poor size dependence.
Finally, the phase transition to the solid is always first order
S:Emd accompanied by hysteresis.
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FIG. 5. TM results for the h23 model of Sec. IlIB. Data are  FIG. 6. TM results for the t234 model of Sec. Il C. Data are
shown for ara strip of two sizes, &dotted ling and 10(continuous  shown for two strip sizes, €&otted ling and 9(continuous ling
line), and for two isothermsBe=1.5 and 2. For the latter, data and for three isothermg@3e=0.7,0.9,1.1. From top to bottom, re-
points forb strips are also reported\N(=8, dashed lineN,= 10, sults for the reduced compressibility, the average density, and the
dot-dashed line From top to bottom, results for the reduced com- reduced pressure are shown. The overall structure of the reduced
pressibility, the average density, and the reduced pressure ammmpressibility is suggestive of the existence of a liquid phase
shown. The TM evidence for the liquid is less obvious in this casespreading over a rather wide density interval.

than in the s45 modé€Fig. 2. In any case, this evidence is stronger )
for a strips than forb strips. the h23 model, which, however, was not attempted here.

Nonetheless, | checked at least in a number of cases by MC

tions are nearest neighbor only; it is the other way around ir%hat the TM calculations were done correctly.

the case of & strip, where a row is coupled only with the

next row alongy and next-nearest-neighbwinteractions are C. Model 1234

present. In both cases, the NLU is made of two rows ldpd After having checked my computer programs successfully
is even. Symmetry transformations of the strip ateansla-  against known cases, | move to the triangular lattice. First, |
tions of an even number of sites and parity-conserving reeonsider t2 ... models. By a series of trial calculations, |

flections, i.e., {,j)—(Ny+2—i,j), (i,j) being the integer convinced myself that no liquid is present in the t2 model,
coordinates of the generic site. Fbk=10, which is our nor in the t23 model. In fact, | was never able to observe, at
maximum strip size, the number of states is originally 15127east within the maximum strip size that | could handle nu-
for an a-strip, while the number of equivalence classes ismerically, two distinct peaks in the reduced compressibility
only 1543 (for a b-strip, the same numbers are 10508 andas a function of8u. Therefore, | jump directly to the t234
1220, respectively model.

| use the same parameters as in RE5], i.e., e For e,= —1.5¢, e3=—1.2¢, ande,= — ¢, | plot in Fig. 6
= —5¢€/9 ande;= — €. From Poland’s study, the triple point TM results for two strip sizesN,=6 and 9) and for three
is expected aBe=2.57 andBu=—4.28. However, if we isotherms Be=0.7,0.9, and 1.1 N, must be a multiple of
stay too close to the triple point and the strip width is small,3 in order that the triangular solitbf density p=1/3) fits
condensation and solidification cannot be disentangled andexactly into the strip. Given the long potential range, three-
single density jump will be observed. Hence, valuesBef  row states must be counted in this case. IR« 9, the origi-
that are far enough from 2.57 must be consideimat too  nal TM size is 23 131, after collecting states into equivalence
small, howevex. In Fig. 5, results are shown for anstrip at  classes, this number eventually becomes 1392. The charac-
Be=1.5 and 2. ForBe=2, | show also data fob strips. teristic two compressibility peaks of a three-phase system are
When Be=1.5, the Bu derivative of the density has two observed for anyBe in the interval 0.5—1.1. Surprisingly,
maxima: this gives us the clue that the liquid is indeedcondensation appears to be sharper than solidification. As
present. However, at this temperature, the gas-liquid “trantemperature goes down, the condensation line moves slowly
sition” associated with the higher peak could just be thetoward the solidification line until, at the triple point, the two
crossing of a disorder line. F@@e=2, the liquid-solid peak lines merge together into a single gas-solid transition line.
becomes the hump of the other peak, while even this feature | also ran a MC program of this model f@e=0.9. After
is missing in the curves relative to strips. Clearly, more equilibration, two million MC sweeps were produced for two
information can be obtained from a systematic MC study ofsizes,L =24 andL =36 (see Fig. 7. Density histograms and
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-45 -4 -35 -3 -25 -2 -45 -4 -35 -3 -25 -2 FIG. 8. TM results for the t345 model of Sec. Il D. Data for two
B Bu strip sizes are reported, Y8ashed lingand 12(continuous ling

and for three isotherm@e=0.9,1,1.1. From top to bottom, results

FIG. 7. MC data for the t234 model of Sec. IlIC, along the for the reduced compressibility, the average density, and the re-
isothermBe=0.9. Above: density histograms for a numbergt duced pressure are shown. Once more, the two-peaked compress-
values ranging from-4.6 to — 2 (the lattice is 3& 36). In particu- ibility is informative of the existence of a liquid phagtis phase
lar, a dashed line is used for each run of a sequence starting, atirvives up toBe=1.1).
Bu=—2, from a perfect crystal configuration. Units along the
axis are arbitrary. Below: thermodynamic quantitiesact results equivalence classes, this number is reduced eventually to
for a strip of 9 sites are also reported as a dotted liliwo lattice ~ 2840. The two compressibility peaks of a finite three-phase
sizes are comparetl=24 (A) and 36 (J). Values ofBu here are  system are found for ajBe in the interval 0.5—1. Moreover,
the same as for the histograms above. All data points are affectethe gas-liquid line moves rapidly toward the liquid-solid line
by an error that is smaller in magnitude than the size of the symgs temperature goes down, until they merge together into a
bols. Full markers refer to simulation runs of the sequence startingingle gas-solid transition line @e~1.2 andBu~—5.2.
on the solid side of the phase diagram. While the gas-liquid transiThe |atter values thus provide rough estimates of the triple-
tion is very sharp, the liquid-solid transition is at most weakly first point coordinates.
order. In order to obtain further, independent evidence of the

thermodynamic averages both indicate that condensation f’stablmy of the liquid phase, and also more detailed informa-

strongly discontinuous aBu~—4.5. Moreover, a rather jon about its structure, | ran a MC program of the model for

weak first-order(if not even continuousliquid-solid transi- two values offze, namely, 1 and 1.1. Numerical data are
S ousiig . shown in Figs. 9 and 10 for two lattice sizés+=36 andL
tion is present aBu=—2.5. The liquid density is within

; . . =48. In Fig. 9, the density histograms and various thermo-
70% and 85% of the perfect solid density, while the energydynamic qgantities are plo%ted f¢?€: 1. From this picture
per liquid particle varies between4.4e and — 3.9¢. : '

we see that the gas-liquid transition is very smooth. It is hard
to say whether a real singularitygsecond-order transition
D. Model 1345 occurs in the thermodynamic limit, since no strong size de-

When the core region embraces second neighbors alspendence oK andC,, is observed close t@u=—4.55.
attraction must reach fourth neighbors at least for the liquidon the other hand, wheBe=1.1, condensation is sharply
to be stable. In fact, the case of a t3 model was alreadgiscontinuous aBu=—4.93, as proved in Fig. 10. Actually,
studied in Ref.[13]; there, it was proved that only two Be=1.1 appears to be very close to the triple-point tempera-
phases exist, gas and solid. Moreover, | checked by a seri¢ggre. The liquid density is roughly 70—75% of the perfect
of trial calculations that the liquid is probably absent also insolid density, while the energy per liquid particle is between
the t34 model for any;< — e=¢,. In particular, | was never —3.7¢ and — 3.8e.
able to observe, either by the TM or by MC simulation, a Perhaps it is worth noting that, in a smaller224 lattice,
two-peaked reduced compressibility as a functiongaf.  evidence of a satellite peak pt=0.2 is found in the density
Therefore, | promptly move to the t345 model. histogram forBe=1 (see Fig. 11 which, however, is prob-

Fore;=—1.5¢, e,=—1.2¢, andes= —¢, | plot in Fig. 8  ably not related to the jamming of the system into a glassy
TM results for two strip sizedN,=10 and 12N, must be  state(this peak is too broad to represent a frozen gt#tkso,
even in order that the triangular solid, whose density is a regular structure where the closest particles occupy fourth-
=1/4, fits exactly into the strip. As before, all the states ofneighbor lattice sitegshence of density 1/7) can be safely
three consecutive rows are to be counted. Nge=12, the  excluded. Therefore, the only solution | see is that of a more
original TM size is 62996. After collecting states into complex phase behavior in the intermediate-density regime
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FIG. 10. MC data for the t345 model of Sec. IlI D, along the
FIG. 9. MC data for the t345 model of Sec. Il D, along the . - ) . .
isotherm Be=1. Above: density histograms for a number @fs isothermBe=1.1. Above: density histograms for a numberg

values ranging from-4.6 to —4.2 (the lattice is 4848). In par- values ranging from—4.96 to —4.86 (the lattice is 4&48). In

ticular, a dashed line is used for each run of a sequence starting gfrticular, a dashed line is used for each run of a sequence starting,
Bu=—4.2, from a perfect crystal configuration. Units along she Bu=—4.86, from a perfect crystal configuration. Units along the

. . . . axis are arbitrary. Below: thermodynamic quantitiegact results
axis are arbitrary. Below: thermodynamic quantitiegact results y y y d b

. . : for a strip of 12 sites are also reported as a dotted.liheo lattice
for a strip of 12 sites are also reported as a dotted.lifeo lattice sizes are compared,=36 (A) and 48 (1). Values of B are the
sizes are comparetl,=36 (A) and 48 (J). Values of Bu are the P ' ) ®

same as for the histograms above. All data points are affected by alsname as for the histograms above. All data points are affected by an

) - - . prror that is smaller in magnitude than the size of the symbols. Full
error that is smaller in magnitude than the size of the symbols. Ful ) . -
markers refer to simulation runs of the sequence starting on the

markers refer to simulation runs of the sequence starting on the ., . . e S
solid side of the phase diagram. A smooth transition from the gas tSOIIOI side of the phase diagram. Both the gas-liquid and the liquid

. - . o lid transitions are n iscontin .
the liquid is found a{Bu=—4.53, while the liquid-solid transition Sold ransitions are now discontinuous

is first order. gated in they direction, having 12 and 15 sites in the short
direction. Comparison between the two sets of data is good,
with the only exception being the solid region where MC
sampling is poor. Hysteresis is particularly evident here, as
different density and compressibility values are found along
the liquidlike and solidlike trajectories.

After a careful investigation of several trial cases, | even-  Surprisingly, the difference in thermodynamic behavior
tually reached the conclusion that none of the models t5, tSGetweenN,=12 and 15 is enormous, considering that the
t567, and t678 has a liquid phase. Finally, | found threewidth of the former is only three sites less than the latter. In
phases in the t5678 model for a particular choice of paramparticular, the strip of 15 sites is much more reminiscent of
eters, i.e.,es=—1.1%, eg=—1.1¢, e,=—1.05%, and €5 the infinite-size behavior. This is particularly transparent in
= —e. Within the TM framework, states of four rows must the TM equation of state, which is plotted in Fig. 13. Here, a
be enumerated nowN, is a multiple of 3 in order that the pair of distinct plateaus is present in each curve, correspond-
triangular solid p=1/9) fits exactly into the strip. Strips of ing to gas-liquid and liquid-solid coexistence, respectively.
two sizes are considerel,=12 andN,=15. For the latter From Figs. 12 and 13, triple-point coordinates are estimated
case, the number of states is originally 73131 but, afteto be Be~2.3 andBu~ —38.
proper symmetry contraction, it goes down to 2603. To have A glance at Fig. 14 allows one to appreciate the liquid
a taste of the rate at which the TM size increases Wifh  structure in the t5678 model. This snapshot is taken from a
consider that, forN,=12, the two numbers above are MC run performed aBu=—>5 for a 36x 36 lattice(periodic
“only” 7768 and 385, respectively. boundary conditions are impligdt is clear from this picture

The evidence of a liquid is very sharp for the t5678that the liquid is an essentially irregular, albeit homoge-
model; see Fig. 12. Here, TM data are plotted for a numbeneous, assemblage of particles containing no crystalline re-
of isotherms in the rangBe=1.4—1.7. Two clear-cut steps gion and, only occasionally, holes large enough to admit
in the density vs chemical potential profile are conclusiveanother particle. Furthermore, as Fig. 14 well shows, the
evidence for a liquid in this model. Dots superimposed onmain difference between the liquid and the solid is not a
TM data are MC points for lattices that are very much elon-matter of density, which is pretty much the same for both,

of the t345 model for small system sizes, which intriguingly
recalls the hexatic-phase scendi®d.

E. Model t5678
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FIG. 13. TM results for the t5678 model of Sec. Il E. The strip

_ FIG. 11. MC data _for t_he t345 model of Sec. IlID, along the 5 15% % here. The exact equation of stéte., pressure vs density
|§otherrr_1ﬁe=l. Density hlstograms are pIotteC_i _for axa4 lat- g plotted for a number of isotherm@e=1.4,1.5,1.6,1.7,1.8,1.9.
tice. Units along they axis are arbitrary. Two million MC sweeps  gach plateau here corresponds to a region of two-phase coexistence.
are produced at equilibrium for ea@y. Runs are performed in |y harticular, note how small is the density interval pertaining to the
sequence, starting from an empty latticeBat= —4.6. A double- liquid phase, which is centered aroupe:0.08.
peaked histogram at intermediate densities is indicative of the exis-
tence of a more complex liquid structure than in larger system sizes.

but rather of symmetry: While the solid predominantly occu-

0.6 Py T T pies one out of nine equivalent triangular sublattices, a liquid
3 o4 _ system is equally distributed among all of them. Finally, |
&~ want to stress that, owing to the relatively large core extent
N in the t5678 model, the structure of the lattice liquid re-
& 0.2 - sembles very closely that of a continuous liquid.

) Turning to MC simulation, | plot in Fig. 15 a number of
0 L R 7 0.1 density histograms relative {6e= 1.4, for two lattice sizes,
L 4= L=48 andL=60. The gas-liquid transition is clearly first
C - 0.08 order here, with a liquid peak that, in the X660 lattice, is
Q C - 0.08 centered at about 70% of the maximum density. Upon in-
C - 0-04 creasingBu further, a spurious transition to a glassy state
N - 0.02 finally occurs. This can be seen from the drop of the MC
0.1 — : — : - 0 acceptance ratio close t8u=—4.8, which is the point
C / 7 where the system density jumps from one peak to the other.
0.08 - — . . . .
- . This “glass transition” can be delayed substantiallyginif
%_ 0.06 I~ ] the latter is made to increase in small enough steps.
0.04 - 7] For L=48, only one peak is present in the histogram,
0.02 - — whose likely character is that of a gla$sis is because of the
oL = el TR IR B small peak width, which is indicative of a frozen strucure
-6 -55 -5 -45 -4 -35 The absence of the liquid peak might well be due to the
B proximity of the liquid density to the random-sequential-

addition threshold for the samig i.e., to the existence in
FIG. 12. TM result.s fqr the t5678 mgdel of Sec. Il E Here, | phase space of a huge number of glass configurations in the
show data for two strip sizes, 1@otted ling and 15(continuous close neighborhood of the liquid basin. Anyway, this is a

line), and for the isotherms 3Be=1.4,15,16,1.7. From t0p 10 o qagic finite-size peculiarity that is already absent in a 60
bottom, results for the reduced compressibility, the average densﬂ;g,< 60 system and, probably, also in larger lattices

and the reduced pressure are shown. Symbols are MC dafzefor In Fig. 16, | plot thermodynamic averages for the same

=1.4, relative to lattices that are very much elongated in ythe . L . .
y J % two sizes. FolL =60, the energy per liquid particle is about

direction (L,=20L,), having 12 and 15 sites in the short direction. o ! . .
These data compare well with TM data. Open squares are for a S-1€: The pseudotransition to the glass is now fairly evi-

15x 300 lattice; they were obtained by performing runs in se-dent it is marked by a small jump in all thermodynamic
quence, starting from a perfect crystal@t=—3.7. All the other ~ quantities atBu=—4.8. | also notice that, upon reducing
points were obtained from simulation runs that were performed in84 t0 —4.3, the solid jumps to a disordered state which is
sequence, starting from the empty latticegat= —5.1. The exis-  glassy, not liquid.

tence of two distinct first-order transitions as a functionggf is Finally, | have checked whether the absence of a genuine
well established in this model. liquid in the 48< 48 system should perhaps be ascribed to the
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stronger that the equilibrium liquid state is really suppressed
in a 48x48 lattice.

IV. DISCUSSION

As well as their intrinsic value, the above results also
provide a way to build up a 3D lattice-gas system with a
realistic surface. As discussed in the Introduction, a simpli-
fied lattice model of a 3D system with both solidlikdis-
crete and liquidlike (continuous features can be useful for a
deeper understanding of many surface phenomena.

For instance, as temperature goes up,(iid) surface of

FIG. 14. MC snapshot of a liquid configuration in the t5678 @n argon crystal first undergoes a prerougherfig) tran-
model of Sec. IIlE, forBe=1.4 andBu=—5 (the lattice is 36  Sition at approximately 85% of the melting temperature.
% 36). The average density at thiu is 0.0737. The fine grid on There are solid-on-solidSOS lattice models that deal with
the background is the triangular latti¢periodic boundary condi- this phenomenon rather accurat¢iy4,8]. For temperatures
tions are impliedd Due to the relatively small ratio between the above the PR transition and below roughening, the topmost
lattice constant and the particle diameter, the discreteness of th&urface layer is roughly half occupied. Hence, liquidlike dif-
host space is hardly appreciated from looking only at the particlesfusion has a chance to grow substantially in the surface layer.

It is believed that the onset of surface melting is in fact
MC algorithm being used. With this aim, | ran a modified ass_ociated with a strong enhancem_ent of diffusive processes
MC program that, in addition to grand canonical moves, alsg/Nich, however, cannot be treated in terms of a SOS model.
allows for “canonical” moves, i.e., attempts for a particle to Therefore, in order to understand the relevance of PR to the

diffuse toward a nearest-neighbor site in the triangular latP€ginning of surface melting, a description in terms of a
tice. As a matter of fact, the new data points are indistin-mOdel that embodies both discrete and continuous features is

guishable from the previous ones. This makes the impressiof Order. To this end, a 3D Potts model has recently been
proposed9]. In view of the results of Sec. Ill, a more real-
istic description of the same phenomenon, still in terms of a
lattice model, can now be advanced.

Take, as an example, the t345 model of Sec. IlID. The
nearest-neighbor distance in the perfect solid & 2e.,
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FIG. 15. MC data for the t5678 model of Sec. Ill E, along the 0 5 -45 -4 -35 _5 -45 -4 _3,2
isothermBe=1.4. Density histograms for two lattices are plotted B B
for a number ofBu values in the range between5.25 and—3.7
(these values are 5.25-5.2,-5.14-5.12~-5.1-5,-4.9-4.8, FIG. 16. MC data for the t5678 model of Sec. Il E, along the
—47~46~-4.3-4.1-3.9-3.7). In particular, | have used a isothermBe=1.4. Thermodynamic quantities for two lattices,
dashed line for any run of a sequence startingat= —3.6 froma =48 (A) and 60 (), are compared, along with exact results for a

perfect crystal and ending #tw=—4.4 in a glassy statésee also  strip of 15 sites, here reported as a dotted line. All data points are
Fig. 16. Units along they axis are arbitrary. After condensation, affected by an error that is smaller in magnitude than the size of the
the 48<48 lattice immediately gets trapped into a glassy statesymbols. Full markers refer to simulation runs of the sequence start-
while, on the other hand, the 8G0 lattice shows a genuine liquid ing on the solid side of the phase diagram. Both the gas-liquid and
structure aroung@Bu=—5 (p=0.078; it then also becomes glassy the liquid-solid transition are strongly first order. A pseudotransi-
at p=0.089). tion from the liquid to a glass is also present in the larger lattice.
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Sec. llID. One possibility is to take an attractive potential
that is a linear function of the square distance in the range
between (2)? and (3a)?, such that the strength of attraction
between fourth neighbors is 50% larger than that between
ninth neighbors, equal in turn te. Moreover, an infinite
repulsion is assumed for distances beloay and no interac-
tion at all beyond &. The occurrence of a liquid in this
model can be guessed from the criterion that was mentioned
in the Introduction(in fact, the width of the attractive well is
equal to the particle radius, that is to say, larger than one-
third of the diameter If the liquid were altogether absent,
one could anyway supply the t345 model with a longer at-
tractive tail(which makes the liquid phase more rohusttil
a stable liquid was obtained also in 3D. The resulting lattice
model would provide a natural tool for studying the interplay
between PR and surface melting, thus competing in accuracy
with a system of Lennard-Jones partic[é$]. In particular,
at variance with a continuous system, a lattice system would
permit a neater description of PRe., beyond the SOS ap-
proximation and a better investigation of the correlation ex-
FIG. 17. The 3D lattice shown here is made of a stack of trian-isting between PR and the process of sublattice disordering
gular planes, each obtained from the plane below by application o the surface layer.
a suitablev translation. This lattice can host close-packed fcc con-
figurations of particles of either sizea2(one lattice plane being V. CONCLUSIONS
occupied in every twpor 3a (one occupied plane in every thiee

In the present paper, conclusive evidence has been pro-
vided of the existence of an isostructural, gas-liquid phase
twice the triangular-lattice parameter. Now suppose a stackansition in three different models of a homogeneous and
of triangular lattices is piled up together, in such a way thafisotropic 2D lattice gas on the triangular lattice. In all cases,
each plane is displaced by=(1/2,J/3/6,/6/3)a from the the solid structure is triangular as well. From this study, |
one below(see Fig. 1Y. Then, a perfect fcc crystal oriented draw the conclusion that, whatever the extent of the hard-
along[111] is obtained by filling one lattice plane of every core region, there is room for a liquid in a lattice system
two with spherical particles of diameten2thus giving rise  provided that the attractive tail of the potential is sufficiently
to a system with an overall density 1/8 of occupied sites. longer than the core length, the more so the smaller the core

Each site in this 3D lattice has twelve first neighbors(see Fig. 1, caption
around it. More generally, any of the sites has neighbors at Next, | have presented a 3D lattice-gas model which |
all integer square distances. In particular third, fourth, ancpropose to be a natural candidate for simulating problems in
fifth in-plane neighbors will correspond to fourth, seventh,surface physics where both discrete and continuous degrees
and ninth 3D neighbors, respective{siote, however, that of freedom are expected to play a role. In the near future, |
there are also out-of-plane seventh and ninth neighbors  plan to use such a model with the view of gaining a better

It is now easy to construct a 3D potential which, when(i.e., microscopit understanding of the onset of surface
projected on 2D, gives back the same t345 parameters ofielting in a rare-ga$l11) solid surface.
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