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Foundations of dissipative particle dynamics
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We derive a mesoscopic modeling and simulation technique that is very close to the technique known as
dissipative particle dynamics. The model is derived from molecular dynamics by means of a systematic
coarse-graining procedure. This procedure links the forces between the dissipative particles to a hydrodynamic
description of the underlying molecular dynamics~MD! particles. In particular, the dissipative particle forces
are given directly in terms of the viscosity emergent from MD, while the interparticle energy transfer is
similarly given by the heat conductivity derived from MD. In linking the microscopic and mesoscopic descrip-
tions we thus rely on the macroscopic or phenomenological description emergent from MD. Thus the rules
governing this form of dissipative particle dynamics reflect the underlying molecular dynamics; in particular,
all the underlying conservation laws carry over from the microscopic to the mesoscopic description. We obtain
the forces experienced by the dissipative particles together with an approximate form of the associated equi-
librium distribution. Whereas previously the dissipative particles were spheres of fixed size and mass, now they
are defined as cells on a Voronoi lattice with variable masses and sizes. This Voronoi lattice arises naturally
from the coarse-graining procedure, which may be applied iteratively and thus represents a form of
renormalization-group mapping. It enables us to select any desired local scale for the mesoscopic description
of a given problem. Indeed, the method may be used to deal with situations in which several different length
scales are simultaneously present. We compare and contrast this particulate model with existing continuum
fluid dynamics techniques, which rely on a purely macroscopic and phenomenological approach. Simulations
carried out with the present scheme show good agreement with theoretical predictions for the equilibrium
behavior.

PACS number~s!: 47.11.1j, 47.10.1g, 05.40.2a
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I. INTRODUCTION

The nonequilibrium behavior of fluids continues
present a major challenge for both theory and numer
simulation. In recent times, there has been growing inte
in the study of so-called mesoscale modeling and simula
methods, particularly for the description of the complex d
namical behavior of many kinds of soft condensed mat
whose properties have thwarted more conventional
proaches. As an example, consider the case of complex fl
with many coexisting length and time scales, for which h
drodynamic descriptions are unknown and may not even
ist. These kinds of fluids include multiphase flows, partic
late and colloidal suspensions, polymers, and amphiph
fluids, including emulsions and microemulsions. Fluctuatio
and Brownian motion are often key features controlling th
behavior.

From the standpoint of traditional fluid dynamics, a ge
eral problem in describing such fluids is the lack of adequ
continuum models. Such descriptions, which are usu
based on simple conservation laws, approach the phys
description from the macroscopic side, that is, in a ‘‘t
down’’ manner, and have certainly proved successful
simple Newtonian fluids@1#. For complex fluids, however
equivalent phenomenological representations are usually
available and instead it is necessary to base the mode
approach on a microscopic~that is, particulate! description of
the system, thus working from the bottom upward, along
general lines of the program for statistical mechanics p
neered by Boltzmann@2#. Molecular dynamics~MD! pre-
PRE 621063-651X/2000/62~2!/2140~18!/$15.00
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sents itself as the most accurate and fundamental metho@3#
but it is far too computationally intensive to provide a pra
tical option for most hydrodynamic problems involving com
plex fluids. Over the last decade several alternative ‘‘bott
up’’ strategies have therefore been introduced. Hydro
namic lattice gases@4#, which model the fluid as a discret
set of particles, represent a computationally efficient spa
and temporal discretization of the more conventional m
lecular dynamics. The lattice-Boltzmann method@5#, origi-
nally derived from the lattice-gas paradigm by invokin
Boltzmann’s Stosszahlansatz, represents an intermediat
~fluctuationless! approach between the top-down~con-
tinuum! and bottom-up~particulate! strategies, insofar as th
basic entity in such models is a single particle distributi
function; but for interacting systems even these latti
Boltzmann methods can be subdivided into bottom-up@6#
and top-down models@7#.

A recent contribution to the family of bottom-up ap
proaches is the dissipative particle dynamics~DPD! method
introduced by Hoogerbrugge and Koelman in 1992@8#. Al-
though in the original formulation of DPD time was discre
and space continuous, a more recent reinterpretation as
that this model is in fact a finite-difference approximation
the ‘‘true’’ DPD, which is defined by a set of continuou
time Langevin equations with momentum conservation
tween the dissipative particles@9#. Successful applications o
the technique have been made to colloidal suspensions@10#,
polymer solutions@11#, and binary immiscible fluids@12#.
For specific applications where comparison is possible,
algorithm is orders of magnitude faster than MD@13#. The
2140 ©2000 The American Physical Society
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PRE 62 2141FOUNDATIONS OF DISSIPATIVE PARTICLE DYNAMICS
basic elements of the DPD scheme are particles that re
sent rather ill-defined ‘‘mesoscopic’’ quantities of the und
lying molecular fluid. These dissipative particles are stip
lated to evolve in the same way that MD particles do, b
with different interparticle forces: since the DPD particl
are pictured to have internal degrees of freedom, the fo
between them have both a fluctuating and a dissipative c
ponent in addition to the conservative forces that are pre
at the MD level. Newton’s third law is still satisfied, how
ever, and consequently momentum conservation toge
with mass conservation produce hydrodynamic behavio
the macroscopic level.

Dissipative particle dynamics has been shown to prod
the correct macroscopic~continuum! theory; that is, for a
one-component DPD fluid, the Navier-Stokes equatio
emerge in the large scale limit, and the fluid viscosity can
computed@14,15#. However, even though dissipative pa
ticles have generally been viewed as clusters of molecu
no attempt has been made to link DPD to the underly
microscopic dynamics, and DPD thus remains a foundat
less algorithm, as is that of the hydrodynamic lattice gas
a fortiori the lattice-Boltzmann method. It is the princip
purpose of the present paper to provide an atomistic foun
tion for dissipative particle dynamics. Among the numero
benefits gained by achieving this, we are then able to prov
a precise definition of the term ‘‘mesoscale,’’ to relate t
hitherto purely phenomenological parameters in the al
rithm directly to the average of microscopic fluxes of t
conserved quantities. These averages may be given by
cal hydrodynamic description of the underlying molecu
system, as in the present work, or they may be derived f
the specific microscopic interactions at hand. The gen
scheme thus lays down the structure of DPD algorithms
specificphysicochemical systems, defined in terms of th
molecular constituents. The DPD that we derive is a rep
sentation of the underlying MD given by the hydrodynam
values of the fluxes. Consequently, to the extent that
approximations made are valid, the DPD and MD will ha
the same hydrodynamic descriptions, and no separate kin
theory for, say, the DPD viscosity will be needed once it
known for the MD system. Since the MD degrees of freed
will be integrated out in our approach the MD viscosity w
appear in the DPD model as a parameter that may be tu
freely.

In our approach, the ‘‘dissipative particles’’~DP’s! are
defined in terms of appropriate weight functions that sam
portions of the underlying conservative MD particles, a
the forces between the dissipative particles are obtained f
the hydrodynamic description of the MD system: the mic
scopic conservation laws carry over directly to the DPD, a
the hydrodynamic behavior of MD is thus reproduced by
DPD, albeit at a coarser scale. The mesoscopic~coarse-
grained! scale of the DPD can be precisely specified in ter
of the MD interactions. The size of the dissipative particl
as specified by the number of MD particles within the
furnishes the meaning of the term ‘‘mesoscopic’’ in t
present context. Since this size is a freely tunable param
of the model, the resulting DPD introduces a general pro
dure for simulating microscopic systems at any conven
scale of coarse graining, provided that the forces between
dissipative particles are known. When a hydrodynamic
re-
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scription of the underlying particles can be found, the
forces follow directly; in cases where this is not possible,
forces between dissipative particles must be suppleme
with the additional components of the physical descript
that enter on the mesoscopic level.

The DPD model that we derive from molecular dynam
is formally similar to conventional, albeit foundationles
DPD @14#. The interactions are pairwise and conserve m
and momentum, as well as energy@16,17#. Just as the forces
conventionally used to define DPD have conservative, di
pative, and fluctuating components, so too do the force
the present case. In the present model, the role of the
servative force is played by the pressure forces. Howe
while conventional dissipative particles possess spher
symmetry and experience interactions mediated by pu
central forces, our dissipative particles are defined as sp
filling cells on a Voronoi lattice whose forces have both ce
tral and tangential components. These features are sh
with a model studied by Espan˜ol @18#. This model links DPD
to smoothed particle hydrodynamics@19# and defines the
DPD forces by hydrodynamic considerations in a way ana
gous to earlier DPD models. Espan˜ol et al. @20# have also
carried out MD simulations with a superposed Voronoi me
in order to measure the coarse grained inter-DP forces.

While conventional DPD defines dissipative partic
masses to be constant, this feature is not preserved in
model. In our first publication on this theory@21#, we stated
that, while the dissipative particle masses fluctuate due to
motion of MD particles across their boundaries, the aver
masses should be constant. In fact, the DP masses vary
to distortions of the Voronoi cells, and this feature is no
properly incorporated in the model.

To obtain the fluctuation-dissipation relations that gi
the magnitude of the thermal forces, we make use o
Fokker-Planck equation@9#. We show that the DPD system
is described in an approximate sense by the isotherm
isobaric ensemble. Simulations confirm that, with the use
these forces, the measured DP temperature is equal to
MD temperature that is provided as input. This is an imp
tant finding in the present context as the most signific
approximations we have made underlie the derivation of
thermal forces.

In a recent publication Espan˜ol et al. have advocated a
general strategy to obtain a Langevin description of vario
physical systems@22#. Using this methodology together wit
our coarse-graining scheme@21#, Serrano and Espan˜ol @23#
have recently developed a model complementary to ours
working systematically from a ‘‘top-down’’ continuum de
scription to a mesoscopic representation, the result be
very close to ours.

II. COARSE-GRAINING MOLECULAR DYNAMICS:
FROM MICRO- TO MESOSCALE

The essential idea motivating our definition of meso
copic dissipative particles is to specify them as clusters
MD particles in such a way that the MD particles themselv
remain unaffected whileall being represented by the diss
pative particles. The independence of the molecular dyn
ics from the superimposed coarse-grained dissipative par
dynamics implies that the MD particles are able to mo
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2142 PRE 62FLEKKO”Y, COVENEY, AND De FABRITIIS
between the dissipative particles. The stipulation that all M
particles must be fully represented by the DP’s implies th
while the mass, momentum, and energy of a single MD p
ticle may be shared between DP’s, the sum of the sha
components must always equal the mass and momentu
the MD particle.

A. Definitions

Full representation of all the MD particles can b
achieved in a general way by introducing a sampling fu
tion

f k~x!5
s~x2r k!

(
l

s~x2r l !

, ~1!

where the positionsr k and r l define the DP centers,x is an
arbitrary position, ands(x) is some localized function. It will
prove convenient to choose it as a Gaussian,

s~x!5exp~2x2/a2!, ~2!

where the distancea sets the scale of the sampling functio
although this choice is not necessary. The mass, momen
and internal energyE of the kth DP are then defined as

Mk5(
i

f k~xi !m,

Pk5(
i

f k~xi !mvi ,

1

2
MkUk

21Ek5(
i

f k~xi !S 1

2
mv i

21
1

2 (
j Þ i

VMD~r i j ! D
~3!

[(
i

f k~xi !e i ,

wherexi andvi are the position and velocity of thei th MD
particle, which are all assumed to have identical massem,
Pk is the momentum of thekth DP, andVMD(r i j ) is the
potential energy of the MD particle pairi j , separated a dis
tancer i j . The particle energye i thus contains both the ki
netic and a potential term. The kinematic condition

ṙ k5Uk[Pk /Mk ~4!

completes the definition of our dissipative particle dynami
It is generally true that mass and momentum conserva

suffice to produce hydrodynamic behavior. However,
equations expressing these conservation laws contain
fluid pressure. In order to get the fluid pressure a thermo
namic description of the system is needed. This produce
equation of state, which closes the system of hydrodyna
equations. Any thermodynamic potential may be used to
tain the equation of state. In the present case we shall
this potential to be the internal energyEk of the dissipative
particles, and we shall obtain the equations of motion for
DP mass, momentum, and energy. Note that the interna
ergy would also have to be computed if a free energy
t,
r-
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-
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.
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been chosen for the thermodynamic description. For this
son it is not possible to complete the hydrodynamic desc
tion without taking the energy flow into account. As a b
product of this the present DPD also contains a descrip
of the heat flow and corresponds to the recently introdu
DPD with energy conservation@16,17#. Espan˜ol previously
introduced an angular momentum variable describing the
namics of extended particles@18#: this is needed when force
are noncentral in order to avoid dissipation of energy in
rigid rotation of the fluid. Angular momentum could be in
cluded on the same footing as momentum in the follow
developments. However, for reasons of both space and
ceptual economy we shall omit it in the present context, e
though it is probably important in applications where hydr
dynamic precision is important. In the following sections, w
shall use the notationr , M, P, andE with the indicesk, l, m,
andn to denote DP’s, while we shall usex, m, v, ande with
the indicesi and j to denote MD particles.

B. Equations of motion for the dissipative particles based
on a microscopic description

The fact that all the MD particles are represented at
instants in the coarse-grained scheme is guaranteed by
normalization condition(kf k(x)51. This implies directly
that

(
k

Mk5(
i

m,

(
k

Pk5(
i

mvi , ~5!

(
k

Ek
tot5(

k
S 1

2
MkUk

21EkD5(
i

e i ;

thus, with mass, momentum, and energy conserved at
MD level, these quantities are also conserved at the DP le
In order to derive the equations of motion for dissipati
particle dynamics we now take the time derivatives of E
~3!. This gives

dMk

dt
5(

i
ḟ k~xi !m, ~6!

dPk

dt
5(

i
@ ḟ k~xi !mvi1 f k~xi !Fi #, ~7!

dEk
tot

dt
5(

i
@ ḟ k~xi !e i1 f k~xi !ė i #, ~8!

whered/dt is the substantial derivative andFi5mv̇i is the
force on particlei.

The Gaussian form ofs implies that ṡ(x)52(2/
a2) ẋ•xs(x). This makes it possible to write

ḟ k~xi !5 f kl~xi !~vi8•r kl1xi8•Ukl!, ~9!
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where the overlap functionf kl is defined as f kl(x)
[(2/a2) f k(x) f l(x), r kl[(r k2r l), and Ukl[(Uk2Ul), and
we have rearranged terms so as to get them in terms o
centered variables

vi85vi2
~Uk1Ul !

2
,

~10!

xi85xi2
~r k1r l !

2
.

Before we proceed with the derivation of the equations
motion it is instructive to work out the actual forms off k(x)
and f kl(x) in the case of only two particlesk andl. Using the
Gaussian choice ofs we immediately get

f k~x!5
1

11„exp$2@x2~r k1r l !/2#•r kl /~a2!%…2
. ~11!

The overlap function similarly follows:

f kl~x!5
1

2a2
cosh22F S x2

r k1r l

2 D •S r kl

a2D G . ~12!

These two functions are shown in Fig. 1. Note that the sc
of the overlap region is nota but a2/ur k2r l u. Dissipative
particle interactions take place only where the overlap fu
tion is nonzero. This happens along the dividing line wh
is equally far from the two particles. The contours of nonze
f kl thus define a Voronoi lattice with lattice segments
length l kl . This Voronoi construction is shown in Fig. 2 i
which MD particles in the overlap region defined byf kl
.0.1 are shown, though presently not actually simulated
dynamic entities. The volume of the Voronoi cells will i
general vary under the dynamics. However, even with a

FIG. 1. The overlap region between two Voronoi cells is sho
in gray. The sampling functionf k(r ) is shown in the top graph an
the overlap functionf kl(r )5(2/a2) f k(r ) f l(r ) in the bottom graph.
The width of the overlap region isa2/ur k2r l u and its length is
denoted byl.
he

f
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trary dissipative particle motion the cell volumes will a
proach zero only exceptionally, and even then the identi
of the DP particles will be preserved so that they sub
quently reemerge.

1. Mass equation

The mass equation~6! takes the form

dMk

dt
[(

l
Ṁ kl , ~13!

where

Ṁ kl5(
i

f kl~xi !m~vi8•r kl1xi8•Ukl!. ~14!

The vi8 term will be shown to be negligible within our ap
proximations. Thexi8•Ukl term, however, describes the ge
metric effect that the Voronoi cells do not conserve th
volume: The relative motion of the DP centers causes
cell boundaries to change their orientation. We will return
give this ‘‘boundary twisting’’ term a quantitative conten
when the equations of motion are averaged—an effect
was overlooked in our first publication of this theory@21#

where it was stated that^Ṁ kl&50.

2. Momentum equation

The momentum equation~7! takes the form

dPk

dt
5(

l i
f kl~xi !mvi~vi8•r kl1xi8•Ukl!1(

l i
f k~xi !Fi .

~15!

We can write the force asFi5mg1( jFi j , where the first
term is an external force and the second term is the inte

FIG. 2. The Voronoi lattice defined by the dissipative partic
positionsr k . The gray dots that represent the underlying MD p
ticles are drawn only in the overlap region.
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force caused by all the other particles. Newton’s third l
then takes the formFi j 52Fj i . The last term in Eq.~15!
may then be rewritten as

(
i

f k~xi !Fi5Mkg1(
i j

f k~xi !Fi j , ~16!

where

(
i j

f k~xi !Fi j 52(
i j

f k~xi !Fj i

52(
i j

f k~xj1Dxi j !Fj i

'2(
i j

f k~xj !Fj i 2(
i j

@Dxi j •“ f k~xi !#Fj i

52
1

2 (
i j

@Dxi j •“ f k~xi !#Fj i

5(
l

S (
i j

1

2
f kl~xi !Fi j Dxi j D •r kl , ~17!

whereDxi j 5xi2xj , we have Taylor expandedf k(x) around
xj , and used a result similar to Eq.~9! to evaluate“ f k(x). In
passing from the third to the fourth equality in the abo
equations we have moved the first term on the right h
side to the left hand side and divided by 2. Now, if we gro
the last term above with ther kl term in Eq.~15!, make use of
Eq. ~10!, and do some rearranging of terms we get

dPk

dt
5Mkg1(

l
Ṁ kl

Uk1Ul

2
1(

l i
f kl~xi !Pi8•r kl

1(
l i

f kl~xi !mvi8xi8•Ukl , ~18!

where we have used the relationṀ k5( l Ṁ kl and defined the
general momentum-flux tensor

Pi5mvivi1
1

2 (
j

Fi j Dxi j . ~19!

This tensor is the momentum analog of the mass-flux ve
mvi . The prime indicates that the velocities on the right ha
side are those defined in Eq.~10!. The tensorPi describes
both the momentum that the particle carries around thro
its own motion and the momentum exchanged by interp
ticle forces. It may be arrived at by considering the mom
tum transport across imaginary cross sections of the volu
in which the particle is located.

3. Energy equation

In order to get the microscopic energy equation of mot
we proceed as with the mass and momentum equations
the two terms that appear on the right hand side of Eq.~8!.

Taking VMD to be a central potential and using the re
tions “VMD(r i j )5VMD8 (r i j )ei j 52Fi j and V̇MD(r i j )
5VMD8 (r i j )ei j •vi j 52Fi j •vi j , wherevi j 5vi2vj , we get the
d

or
d

h
r-
-
e

n
nd

-

time rate of change of the particle energy

ė i5mg•vi1
1

2 (
j Þ i

Fi j •~vi1vj !. ~20!

This gives the first term of Eq.~8! in the form

(
i

f k~xi !ė5Pk•g1
1

2 (
iÞ j

f k~xi !Fi j •~vi1vj !. ~21!

The last term of this equation is odd under the exchangei↔ j
and exactly the same manipulations as in Eq.~17! may be
used to give

(
i

f k~xi !ė5Pk•g1 (
l ,iÞ j

f kl~xi !
1

4
Fi j •~vi1vj !Dxi j •r kl

5Pk•g1 (
l ,iÞ j

f kl~xi !S 1

4
Fi j •~vi81vj8!

1
1

2
Fi j •

Uk1Ul

2 DDxi j •r kl , ~22!

where for later purposes we have used Eqs.~10! to get the
last equation. The last term of Eq.~8! is easily written down
using Eq.~9!. This gives

(
i

ḟ k~xi !e i5(
l i

f kl~xi !~vi8•r kl1xi8•Ukl!e i . ~23!

As previously we write the particle velocities in terms ofvi8 .
The corresponding expression for the particle energy ise i

5e i81mvi8•(Uk1Ul)/21(1/2)m@(Uk1Ul)/2#2, where the
prime ine i8 denotes that the particle velocity isvi8 rather than
vi . Equation~23! may then be written

(
i

ḟ k~xi !e i5(
l

1

2
Ṁ klS Uk1Ul

2 D 2

1(
l i

f kl~xi !S e i8vi81mvi8vi8•
Uk1Ul

2 D •r kl

1(
l i

f kl~xi !e ixi8•Ukl . ~24!

Combining this equation with Eq.~22! we obtain

Ėk
tot5(

l i
f kl~xi !S Je i8 1Pi8•

Uk1Ul

2 D •r kl1MkUk•g

1(
l

1

2
Ṁ klS Uk1Ul

2 D 2

1(
l i

f kl~xi !

3Fe i81mvi8•S Uk1Ul

2 D Gxi8•Ukl , ~25!

where the momentum-flux tensor is defined in Eq.~19! and
we have identified the energy-flux vector associated wit
particle i,
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Je i5e ivi1
1

4 (
iÞ j

Fi j •~vi1vj !Dxi j . ~26!

Again the prime denotes that the velocities arevi8 rather than

vi . To get the internal energyĖk instead ofĖk
tot we note that

d(Pk
2/2Mk)/dt5Uk•Ṗk2(1/2)ṀkUk

2 . Using this relation, the
momentum equation Eq.~18!, as well as the substitution
(Uk1Ul)/25Uk2Ukl/2 in Eq. ~25!, followed by some rear-
rangement of theṀ kl terms, we find that

Ėk
tot5

d

dt S 1

2
MkUk

2D1(
l

1

2
Ṁ klS Ukl

2 D 2

1(
l i

f kl~xi !S Je i8 2P i8•
Ukl

2 D •r kl

1(
l i

f kl~xi !S e i82mvi8•
Ukl

2 D xi8•Ukl . ~27!

This equation has a natural physical interpretation. T
first term represents the translational kinetic energy of
DP as a whole. The remaining terms represent the inte
energyEk . This is a purely thermodynamic quantity whic
cannot depend on the overall velocity of the DP, i.e., it m
be Galilean invariant. This is easily checked as the relev
terms all depend on velocity differences only.

The Ṁ kl term represents the kinetic energy receiv
through mass exchange with neighboring DP’s. As will b
come evident when we turn to the averaged description,
term involving the momentum and energy fluxes represe
the work done on the DP by its neighbors and the heat c
ducted from them. Thee i8 term represents the energy r
ceived by the DP due to the same ‘‘boundary twisting’’ e
fect that was found in the mass equation. Upon averag
the last term proportional tovi8 will be shown to be relatively
small sincê vi8&50 in our approximations. This is true als
in the mass and momentum equations. Equations~14!, ~18!,
and~27! have the coarse-grained form that will remain in t
final DPD equations. Note, however, that they retain the
microscopic information about the MD system, and for th
reason they are time reversible. Equation~18!, for instance,
contains only terms of even order in the velocity. In the n
section terms of odd order will appear when this equation
averaged.

It can be seen that the rate of change of momentum in
~18! is given as a sum of separate pairwise contributio
from the other particles, and that these terms are all
under the exchangel↔k. Thus the particles interact in
pairwise fashion and individually fulfill Newton’s third law
in other words, momentum conservation is again explic
upheld. The same symmetries hold for the mass conserva
equation~14! and energy equation~25!.

III. DERIVATION OF DISSIPATIVE PARTICLE
DYNAMICS: AVERAGE AND FLUCTUATING FORCES

We can now investigate the average and fluctuating p
of Eqs. ~27!, ~18!, and ~14!. In so doing we shall need to
draw on a hydrodynamic description of the underlying m
lecular dynamics and construct a statistical mechanical
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scription of our dissipative particle dynamics. For concre
ness we shall take the hydrodynamic description of the M
system in question to be that of a simple Newtonian fluid@1#.
This is known to be a good description for MD fluids bas
on Lennard-Jones or hard sphere potentials, particularl
three dimensions@3#. Here we shall carry out the analysis fo
systems in two spatial dimensions; the generalization to th
dimensions is straightforward, the main difference being o
practical nature as the Voronoi construction becomes m
involved.

We shall begin by specifying a scale separation betw
the dissipative particles and the molecular dynamics parti
by assuming that

uxi2xj u!ur k2r l u, ~28!

where xi and xj denote the positions of neighboring MD
particles. Such a scale separation is in general necessa
order for the coarse-graining procedure to be physica
meaningful. Although for the most part in this paper we a
thinking of the molecular interactions as being mediated
short-range forces such as those of Lennard-Jones typ
local description of the interactions will still be valid for th
case of long-range Coulomb interactions in an electrost
cally neutral system, provided that the screening length
shorter than the width of the overlap region between
dissipative particles. Indeed, as we shall show here, the re
of doing a local averaging is that the original Newtoni
equations of motion for the MD system become a set
Langevin equations for the dissipative particle dynami
These Langevin equations admit an associated Fok
Planck equation. An associated fluctuation-dissipation re
tion relates the amplitude of the Langevin force to the te
perature and damping in the system.

It is observed that Langevin equations suffer from t
ambiguity of the Itoˆ-Stratonovitch dilemma. However, whil
this dilemma is important in principle, we will return to sho
that the difference between the Itoˆ and Stratonovitch inter-
pretations is negligible in the present context.

A. Definition of ensemble averages

With the mesoscopic variables now available, we need
define the correct average corresponding to a dynamical s
of the system. Many microstates of the MD system are c
sistent with a given value of the set$r k ,Mk ,Uk ,Ek%. Assum-
ing detailed balance on the microscopic level of the M
system we may rely on the standard hypothesis in statis
mechanics—that every microstate is equally probable@24#.
In the following we shall average over all those microsta
that have the same values of the mesocopic varia
$r k ,Mk ,Uk ,Ek%, taking the set$r k% to be given. Now, while
these microstates give rise to the same val
$r k ,Mk ,Uk ,Ek% upon spatial coarse graining, they wi
evolve differently in time. Hence, the time derivatives of t
set $r k ,Mk ,Uk ,Ek%, now considered as variables, will b
different for different microstates. In other words, the flux
of mass, momentum, and energy will have fluctuating pa

Using the averaging described above, it is possible
least in principle, to compute the average MD particle velo
ity ^v& between dissipative particle centers, give
$r k ,Mk ,Uk ,Ek%. This velocity depends in general on a
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neighboring dissipative particle velocities. However, for si
plicity we shall employ only a ‘‘nearest neighbor’’ approx
mation, which consists in assuming that^v& interpolates lin-
early between the two nearest dissipative particles. T
implies that in the overlap region between dissipative p
ticles k and l

^v8&5^v8&~x!5
x8•r kl

r kl
2

Ukl , ~29!

where the primes are defined in Eqs.~10! and r kl5ur k2r l u.
The above approximation is likely to be the most significa
one in our entire development as it neglects variations in
velocity field in the direction normal toekl . @See Sec. IV B
where it is shown that the fluctuations linked to the dissi
tion associated with the velocity gradient of Eq.~29! are
smaller than those linked to the full gradient.#

At the end of our development approximate distributio
for Uk’s andEk’s will follow from the Fokker-Planck equa
tions. These distributions refer to the larger equilibrium e
semble that contains all fluctuations in$r k ,Mk ,Uk ,Ek%, and
not only in the fluxes of these quantities.

A preliminary mathematical observation is useful in sp
ting the equations of motion into average and fluctuat
parts. Letr (x) be an arbitrary, slowly varying function o
the a2/r kl scale. Then we shall employ the approximati
corresponding to a linear interpolation between DP cen
that r (x)5(1/2)(r k1r l) wherex is a position in the overlap
region between DP’sk and l and r k and r l are values of the
function r associated with the DP centersk and l, respec-
tively. Then

(
i

f kl~xi !r ~x!'E dx dy
rk1r l

2
f kl~x!

r k1r l

2

'
l kl

2a2

rk1r l

2

r k1r l

2 E
2`

`

dx8

3cosh22~x8r kl /a
2!

5
l kl

r kl

rk1r l

2

r k1r l

2
, ~30!

where (rk1r l)/2 is the MD particle number density and w
have used the identity tanh8(x)5cosh22(x). We will also need
the first moment inx8,

(
i

f kl~xi !xi8r ~xi !'E dxdy
rk1r l

2
f kl~x!x8

r k1r l

2

'
1

2a2

rk1r l

2

r k1r l

2 E dx dy

3cosh22S xrkl

a2 D yikl

5
l kl

2r kl
Lkl

rk1r l

2

r k1r l

2
ikl , ~31!
-
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where the unit vectorsekl5r kl /r kl and ikl are shown in Fig.
3, we have used the fact that the integral ov
xekl cosh22(•••) vanishes since the integrand is odd, and
last equation follows by the substitutionx→(a2/r kl)x. In
contrast to the vectorekl the vector ikl is even under the
exchangek↔ l , as isLkl . This is a matter of definition only
as it would be equally permissible to letikl and Lkl be odd
under this exchange. However, it is important for the sy
metry properties of the fluxes thatikl andLkl have the same
symmetry underk↔ l .

B. The mass conservation equation

Taking the average of Eq.~14!, we observe that the firs
term vanishes if Eq.~29! is used, and the second term fo
lows directly from Eq.~31!. We thus obtain

Ṁk5(
l

~^Ṁ kl&1 Ṁ̃ kl!, ~32!

where

^Ṁ kl&5(
l i

f klm~xi !^xi8&•Ukl5
l kl

2r kl
Lkl

rk1r l

2
ikl•Ukl ,

~33!

and Ṁ̃ kl5Ṁ kl2^Ṁ kl&. The finite value of̂ Ṁ kl& is caused
by the relative DP motionperpendicularto ekl . This is a
geometric effect intrinsic to the Voronoi lattice. When pa
ticles move the Voronoi boundaries change their orientati
and this boundary twisting causes mass to be transferred
tween DP’s. This mass variation will be visible both in th
energy flux and in the momentum flux. It will later be show
that the effect of mass fluctuations in the momentum a
energy equations may be absorbed in the force and heat
fluctuations.

In the following we shall neglect the fluctuations in th
updating of the DP masses, while we shall keep the effec
mass fluctuations in the energy and momentum equati
This means that the forces and energy fluxes will still
correctly captured, but that we will rely on theaveraged

FIG. 3. Two interacting Voronoi cells. The length of the inte
section between DP’sk and l is l kl , the shift from the center of the
intersection betweenr kl andl kl is Lkl (Lkl50 whenr kl intersectsl kl

in the middle!, and the unit vectorikl is normal toekl . The coordi-
nate systemx-y used for the integration has its origin on the inte
section.
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variations in the mass only. This is an approximation as
microscopic velocities will cause mass fluctuations. Ho
ever, since the DP volumes are evolved according to$r k%,
which are determined by thePk’s, the DP volumes fluctuate
as they should and we are neglecting only fluctuations in
mass density. Since the variance of these fluctuations co
sponds directly to the variance in the local pressure~see Sec.
IV A !, they are limited and vary as 1/Nk , whereNk is the
number of MD particles inside a given DPk .

C. The momentum conservation equation

Using Eq. ~33! we may split Eq.~18! into average and
fluctuating parts to get

dPk

dt
5Mkg1(

l
^Ṁkl&

Uk1Ul

2
1(

l i
f kl~xi !^Pi&•r kl

1(
i

f kl~xi !m^vi8xi8&•Ukl1(
l

F̃kl , ~34!

where the fluctuating force or, equivalently, the moment
flux is

F̃kl5(
i

f kl~xi !@~Pi2^Pi&!•r kl1m~vi8xi82^vi8xi8&!•Ukl#

1 Ṁ̃ kl

Uk1Ul

2
. ~35!

Note that by definitionF̃lk52F̃kl . The fact that we have
absorbed mass fluctuations with the fluctuations inF̃kl de-
serves a comment. In general, force fluctuations will ca
mass fluctuations, which in turn will couple back to cau
momentum fluctuations. The time scale over which this w
happen is the viscous diffusion timeth5r kl

2 /h, whereh is
the dynamic viscosity of the MD system. This is the time
takes for a velocity perturbation to decay over a distance
r kl . Perturbations mediated by the pressure, i.e., so
waves, will have a shorter time. In the following we sh
need to make the assumption that the forces are Markov
and it is clear that this assumption may only be valid on ti
scales larger thanth . Since the time scale of a hydrodynam
perturbation of sizel, say, is also given as a viscous diffusio
time, but with the length scalel, l 2/h this restriction implies
the scale separation requirementr kl

2 ! l 2, consistent with the
scaler kl being mesoscopic.

Since^Pi& is in general dissipative in nature, Eq.~34! and
its mass and energy analogs will be referred to as DPD1.
at the point of taking the average in Eq.~34! that time re-
versibility is lost. Note, however, that we do not claim
treat the introduction of irreversibility into the problem in
mathematically rigorous way. This is a very difficult proble
in general, which so far has been realized by rigorous m
ods only in the case of some very simple dynamical syste
with well-defined ergodic properties@25–27#. We shall in-
stead use the constitutive relation for a Newtonian fl
which, as noted earlier, is an emergent property of Lenna
Jones and hard sphere MD systems, to give Eq.~34! a con-
crete content. The momentum-flux tensor then has the
lowing simple form:
e
-

e
re-

e
e
l

t
f
d

n,
e
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h-
s

d-

l-

r^Pi&5mrvv1Ip2h„“v1~“v!T
…, ~36!

wherep is the pressure andv the average velocity of the MD
fluid, T denotes the transpose, andI is the identity tensor@1#.
In the above equation we have for simplicity assumed t
the bulk viscosityz5(2/d)h whered is the space dimension
2. The modifications to include an independentz are com-
pletely straightforward.

Using the assumption of linear interpolation@Eq. ~29!#,
the advective termrvv vanishes in the frame of reference
the overlap region since therev8'0. The velocity gradients
in Eq. ~36! may be evaluated using Eq.~29!; the result is

“v1~“v!T5
1

r kl
~eklUkl1Uklekl!. ~37!

Note further that( l l kl is in fact a surface integral over th
DP surface. Consequently,

(
l

l kleklgk50 ~38!

for any functiongk that does not depend onl. In particular,
we have( l l klekl(pk1pl)/252( l l kleklpkl/2, wherepkl5pk
2pl . Combining Eqs.~36!, ~30!, and ~37!, Eq. ~34! then
takes the form

dPk

dt
5Mkg1(

l
^Ṁ kl&

Uk1Ul

2
2(

l
l klS pkl

2
ekl

1
h

r kl
@Ukl1~Ukl•ekl!ekl# D1(

l
F̃kl , ~39!

where we have assumed that the pressurep, as well as the
average velocity, interpolates linearly between DP cent
and we have omitted thêvi8xi8&'0 term. Note that all terms
except the gravity term on the right hand side of Eq.~39! are
odd whenk↔ l . This shows that Newton’s third law is un
affected by the approximations made and that momen
conservation holds exactly. The same statements can
made for the mass equation and the energy equation.
pressure will eventually follow from an equation of state
the formpk5p(Ek ,Vk ,Mk), whereVk is the volume andMk
is the mass of DPk.

D. The energy conservation equation

Splitting Eq. ~27! into an average and a fluctuating pa
gives

Ėk5(
l i

f kl~xi !S ^Je i8 &2^Pi8&•
Ukl

2 D •r kl1(
l i

f kl~xi !

3^e i8xi8&•Ukl1(
l

1

2
^Ṁ kl&S Ukl

2 D 2

2(
l

F̃kl•
Ukl

2
1q̃kl ,

~40!

where we have defined
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q̃kl5(
i

f kl~xi !~Je i8 2^Je i8 &!•r kl1
Ṁ̃ kl

2 S Ukl

2 D 2

1(
i

f kl~xi !

3F ~e i8xi82^e i8xi8&!2m
Ukl

2
•vi8xi8G•Ukl , ~41!

i.e., the fluctuations in the heat flux also contains the ene
fluctuations caused by mass fluctuations. This is like the m
mentum case.

Note that in taking the average in Eq.~40! the P•Ukl
product presents no problem asUkl is kept fixed under this
average. If we had averaged over different values ofUkl the
product of velocities inP•Ukl would have caused difficul
ties. Equation~40! is the third component in the descriptio
at the DPD1 level.

The average of the energy flux vectorJe is taken to have
the general form@1#

r^Je&5ev1s•v2l“T ~42!

wheres5P2rvv is the stress tensor,l the thermal conduc-
tivity, andT the local temperature. Note that in Eq.~27! only
Je8 appears. Sincev8'0 we have^Je8&52l“T. Averaging
of Eq. ~40! gives

Ėk52(
l

l lkl
Tkl

r kl
2(

l
l lkS pk1pl

2
ekl2

h

r kl

3@Ukl1~Ukl•ekl!ekl# D • Ukl

2
1(

l

1

2
^Ṁ kl&S Ukl

2 D 2

1
l kl

4r kl
Lklikl•UklS Ek

Vk
1

El

Vl
D2(

l
F̃kl•

Ukl

2
1q̃kl ,

~43!

where Tkl5Tk2Tl is the temperature difference betwe
DP’s k and l, and we have used linear interpolation to wr
^e18&5(1/2)(Ek /Vk1El /Vl). The first term above describe
the heat flux according to Fourier’s law. The next nonfluc
ating terms, which are multiplied byUkl/2, represent the~rate
of! work done by the interparticle forces, and theF̃kl term
represents the work done by the fluctuating force.

As has been pointed out by Avalos and Mackie and
Español @16,17#, the work done byF̃kl has the effect that it
increases the thermal motion of the DP’s at the expense
reduction inEk . This is the case here as well since the abo
F̃kl•Ukl term always has a positive average due to the p
tive correlation between the force and the velocity inc
ments.

Equation~43! is identical in form to the energy equatio
postulated by Avalos and Mackie@16#, save for the fact tha
here the conservative force@(pk1pl)/2#ekl•Ukl/2 ~which
sums to zero under(k) is present. The pressure forces in t
present case correspond to the conservative forces in con
tional DPD—it will be observed that they are both deriv
from a potential. However, while the conservative force
conventional DPD must be thought to be carried by so
field external to the particles, the pressure force in our mo
has its origin within the particles themselves. There is als
small difference between the present form of Fourier’s l
y
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y

f a
e
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and the description of thermal conduction employed by A
los and Mackie. While the heat flux here is taken to be lin
in differences inT, Avalos and Mackie use a flux linear i
differences in (1/T). As both transport laws are approxima
tions valid to lowest order in differences inT, they should be
considered equivalent.

With the internal energy variable at hand it is possible
update the pressure and temperatureT of the DP’s provided
an equation of state for the underlying MD system is
sumed, and written in the formP5P(E,V,N) and T
5T(E,V,N). For an ideal gas these are the well-known
lationsPV5(2/d)E andkBT5(2/d)(E/N).

Note that we need only the average evolution of the pr
sure and temperature. The fluctuations ofp are already con-

tained in F̃kl and the effect of temperature fluctuations

contained withinq̃kl .
At this point we may compare the forces arising in t

present model to those used in conventional DPD. In c
ventional DPD the forces are pairwise and act in a direct
parallel toekl , with a conservative part that depends only
r kl and a dissipative part proportional to (Ukl•ekl)ekl
@8,9,28#. The forces in our version of DPD are pairwise to
The analog of the conservative force,l kl(pkl/2)ekl , is central
and itsr dependence is given by the Voronoi lattice. Wh
there is no overlapl kl between dissipative particles the
forces vanish.~A cutoff distance, beyond which no physica
interactions are permitted, was also present in the earlier
sions of DPD—see, for example, Ref.@8#—where it was
introduced to simplify the numerical treatment.! Due to the
existence of an overlap region in our model, the dissipat
force has both a component parallel toekl and a componen
parallel to the relative velocityUkl . However, due to the
linear nature of the stress-strain relation in the Newton
MD fluid studied here, this force has the same simple lin
velocity dependence that has been postulated in the lit
ture.

The friction coefficient is simply the viscosityh of the
underlying fluid times the geometric ratiol kl /r kl . As has
been pointed out both in the context of DPD@14# and else-
where, the viscosity is generallynot proportional to a friction
coefficient between the particles. After all, conservative s
tems like MD are also described by a viscosity. Generally
viscosity will be caused by the combined effect of partic
interaction~dissipation, if any! and the momentum transfe
caused by particle motion. The latter contribution is prop
tional to the mean free path. The fact that the MD viscos
h, the DPD viscosity, and the friction coefficient are one a
the same therefore implies that the mean free path effecti
vanishes. This is consistent with the space-filling nature
the particles. See Sec. VI B for a further discussion of
zero viscosity limit.

Note that constitutive relations like Eqs.~36! and~42! are
usually regarded as components of a top-down or ma
scopic description of a fluid. However, any bottom-up me
scopic description necessarily relies on the use of some
of averaging procedure; in the present context, these r
tions represent a natural and convenient although by
means a necessary choice of average. The derivation
emergent constitutive relations is itself part of the program
nonequilibrium statistical mechanics~kinetic theory!, which
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provides a link between the microscopic and macrosco
levels. However, as noted above, no general and rigor
procedure for deriving such relations has hitherto been r
ized; in the present theoretical treatment, such assumed
stitutive relations are therefore a necessary input in the l
ing of the microscopic and mesoscopic levels.

IV. STATISTICAL MECHANICS OF DISSIPATIVE
PARTICLE DYNAMICS

In this section we discuss the statistical properties of
DP’s with the particular aim of obtaining the magnitudes
F̃kl and q̃kl . The discussion is based on the conventio
Fokker-Planck description of DPD@16#.

It is not straightforward to obtain a general statistical m
chanical description of the DP system. The reason is that
DP’s, which exchange mass, momentum, energy, and
ume, are not captured by any standard statistical ensem
For the grand canonical ensemble, the system in questio
defined as the matter within a fixed volume, and in the c
of the isobaric ensemble the particle number is fixed. Neit
of these requirements holds for a dissipative particle in g
eral.

A system that exchanges mass, momentum, energy,
volume without any further restrictions will generally be
defined as it will lose its identity in the course of time. Th
DP’s, of course, remain well defined by virtue of the co
pling between the momentum and volume variables: The
volumes are defined by the positions of the DP centers
the DP momenta govern the motion of the DP centers. He
the quantities that are exchanged with the surroundings
not independent and the ensemble must be constructed
cordingly.

However, for present purposes we shall leave aside
interesting challenge of designing the statistical mechan
properties of such an ensemble, and derive the magnitud
F̃kl and q̃kl from an approximation. This approximation
justifiable from the assumption thatF̃kl and q̃kl have a neg-
ligible correlation time. It follows that their properties ma
be obtained from the DP behavior on such short time sc
that the DP centers may be assumed fixed in space. A
result, we may take either the DP volume or the system
MD particles as fixed for the relevant duration of tim
Hence, for the purpose of obtainingF̃kl andq̃kl , we may use
either the isobaric ensemble applied to the DP system, or
grand canonical ensemble applied to the MD system.
analysis of the DP system using the isobaric ensemble
lows the standard procedure using the Fokker-Planck e
tion, and the result for the equilibrium distribution is val
only in the short time limit. The analysis of the MD syste
corresponding to the grand canonical ensemble could be
ducted along similar lines.

The Langevin equations that have been discussed in
literature have all been given the Itoˆ interpretation
@14,16,17,29#. The present equations are derived on the c
ceptual basis of molecules, and it is clear that the fluctua
forces cannot be strictlyd correlated. On the contrary, the
must have smooth correlation functions, and conseque
the Stratonovitch interpretation is the appropriate one@29#.
We shall later show that on the level of the Fokker-Plan
ic
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equations there is no significant contradiction between
two interpretations. For that reason and in order to conn
with the existing analyses@14,16,17# we will apply the Itô
interpretation in what follows.

A. The thermal forces

We consider the system ofNk@1 MD particles inside a
given DPk at a given time, say, all the MD particles wit
positions that satisfyf k(xi).1/2 at timet0. At later times it
will be possible to associate a certain volume per part
with these particles, and by definition the system they fo
will exchange volume and energy but not mass. We cons
all the remaining DP’s as a thermodynamic bath with wh
DPk is in equilibrium. The system defined in this way will b
described by the Gibbs free energy and the isobaric
semble. Due to the diffusive spreading of MD particles, t
system will only initially coincide with the DP; during this
transient time interval, however, we may treat the DP’s
systems of fixed mass and describe them by the approx
tion ^Ṁ kl&50. In fact, thê Ṁ kl&50 approximation may rep-
resent a practical numerical strategy for which the followi
analysis will be exact.

The magnitudes ofq̃ and F̃ follow in the form of
fluctuation-dissipation relations from the Fokker-Plan
equivalent of our Langevin equations. The mathematics
volved in obtaining fluctuation-dissipation relations is ess
tially well known from the literature@9#, and our analysis
parallels that of Avalos and Mackie@16#. However, the fact
that the conservative part of the conventional DP forces
here replaced by the pressure and that the present DP’s
a variable volume makes a separate treatment enlighten

The probabilityr(Vk ,Pk ,Ek) of finding DPk with a vol-
umeVk , momentumPk , and internal energyEk is then pro-
portional to exp(ST /kB) whereST is the entropy of all DP’s
given that the values (Vk ,Pk ,Ek) are known for DPk @30#. If
S8 denotes the entropy of the bath we can writeST as

ST5S8S VT2Vk ,PT2Pk ,ET2
Pk

2

2Mk
2EkD 1Sk

'S8~VT ,PT ,ET!2
]S8

]E S Ek1
Pk

2

2Mk
D 2

]S8

]V
Vk

2
]S8

]P
Pk1Sk , ~44!

where the derivatives are evaluated at (VT ,PT ,ET) and thus
characterize the bath only. Assuming thatPT vanishes there
is nothing in the system to give the vector]S8/]P a direc-
tion, and it must therefore vanish as well@24#. The other
derivatives give the pressurep0 and temperatureT0 of the
bath, and we obtain

ST5S8~VT ,PT ,ET!2
1

T0
S Gk1

Pk
2

2Mk
D , ~45!

where the Gibbs free energy has the standard formGk5Ek
1p0Vk2T0Sk . Since there is nothing special about DPk it
immediately follows that the the full equilibrium distributio
has the form
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req5Z21~T0 ,p0!expS 2b0(
k

Pk
2

2Mk
1GkD , ~46!

whereb051/(kBT0).
The distribution given in Eq.~46! implies that the total

energy and momentum will fluctuate. These quantities
conserved, however, and the system of all DP’s thus
three degrees of freedom fewer than Eq.~46! suggests. This
is potentially important in the case of only a few DP’s. In t
thermodynamic limit, i.e., when the difference between
thermodynamic reservoir represented by a finite and infi
number of DP’s is negligible, Eq.~46! is a good approxima-
tion for the computation of single DP quantities.

The temperatureTk5(]Sk /]Ek)
21 and pressurepk

5Tk(]Sk /]Vk) will fluctuate around the equilibrium value
T0 andp0. The above distribution is analyzed by Landau a
Lifshitz @24#, who show that the fluctuations have the ma
nitude

^DPk
2&5

kBT0

VkkS
, ^DTk

2&5
kBT0

2

Vcv
, ~47!

where the isentropic compressibilitykS52(1/V)(]V/]P)S
and the specific heat capacitycv are both intensive quanti
ties. Comparing our expression with the distribution pos
lated by Avalos and Mackie, we have replaced the He
holtz by the Gibbs free energy in Eq.~46!. This is due to the
fact that our DP’s exchange volume as well as energy.

We write the fluctuating force as

F̃kl5vkliWkli1vkl'Wkl' , ~48!

where, for reasons soon to become apparent, we have ch
to decomposeF̃kl into components parallel and perpendicu
to ekl . The W’s are defined as Gaussian random variab
with the correlation function

^Wkla~ t !Wnmb~ t8!&5dabd~ t2t8!~dknd lm1dkmd ln!,
~49!

wherea andb denote either' or i . The product ofd factors
ensures that only equal vectorial components of the for
between a pair of DP’s are correlated, while Newton’s th
law guarantees thatvkl52vlk . Likewise, the fluctuating
heat flux takes the form

q̃kl5LklWkl ~50!

whereWkl satisfies Eq.~49! without thedab factor and en-
ergy conservation impliesLkl52L lk .

The force correlation function then takes the form

^F̃kn~ t !F̃lm~ t8!&5~vkn'vlm'1vknivlmi!

3~dkldnm1dkmd ln!d~ t2t8!

[vklnm~dkldnm1dkmd ln!d~ t2t8!,

~51!

where we have introduced the second order tensorvknlm .
re
s

e
e

d
-

-
-

sen
r
s

s

It is a standard result in nonequilibrium statistical m
chanics that a Langevin description of a dynamical varia
y,

ẏ5a~y!1G̃~y!, ~52!

where G̃(y)5v(y)W(t), is a d correlated force so tha
^W(t)W(0)&5d(t). Equation~52! has a probabilistic repre
sentation in terms of the Fokker-Planck equation

]r~y,t !

]t
52“•@a~y!r~y!#1

1

2
““:@A~y!r~y!#, ~53!

where“ denote derivatives with respect toy and r(y,t) is
the probability distribution for the variabley at time t,

^G̃(y,t)G̃(y,t8)&5Ad(t2t8), and A is a symmetric tensor
of rank 2@31#. Equation~53! corresponds to the Itoˆ interpre-
tation @29# of our Langevin equations. In Sec. IV C and th
Appendix we will return to show that the different interpr
tations are equivalent at the relevant order of approxim
tions.

In the preceding paragraph,G denotes all the fluctuating
terms in Eqs.~39! and~43!. Using the above definitions it is
a standard matter@9# to obtain the Fokker-Planck equation

]r

]t
5~L01LDIS1LDIF!,r ~54!

where

L052(
k

]

]r k
•Uk1(

kÞ l
l klS ]

]Pk
•ekl

pkl

2

1
]

]Ek
ekl•Ukl

pk1pl

4 D ,

LDIS5(
kÞ l

l klF ]

]Pk
•Fkl

D 2
]

]Ek
S Ukl

2
•Fkl

D 2l
Tkl

r kl
D G ,

LDIF5
1

2 (
kÞ l

H vklkl•
]

]Pk
•Lkl2

]

]Ek
Fvklkl•

Ukl

2
•Lkl

2Lkl
2 S ]

]Ek
2

]

]El
D G J , ~55!

Fkl
D 5(h/r kl)@Ukl1(Ukl•ekl)ekl#, and the sum(kÞ l runs over

both k and l. The operatorLkl is defined as in Ref.@16#:

Lkl5S ]

]Pk
2

]

]Pl
D2

Ukl

2 S ]

]Ek
2

]

]El
D . ~56!

The steady-state solution of Eq.~54! is already given by Eq.
~46!; following conventional procedures we can obtain t
fluctuation-dissipation relations forv andL by insertingreq

in Eq. ~54!.
Apart from the tensorial nature ofvklkl the operatorsLDIS

andLDIF are essentially identical to those published earlier
conventional DPD@16,17#. However, the ‘‘Liouville’’ opera-
tor L0 plays a somewhat different role as it contains t
]/]Ek term, corresponding to the fact that the pressure for
do work on the DP’s to change their internal energy.
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While L0req conventionally vanishes exactly by constru
tion of the inter-DP forces, here it vanishes only to ord
1/Nk . In order to evaluateL0req we need the relationship

]

]r k
5

1

2 (
kÞ l

l kleklS ]

]Vl
2

]

]Vk
D , ~57!

which is derived by direct geometrical consideration of t
Voronoi construction. By repeated use of Eq.~38! it is then a
straightforward algebraic task to obtain

L0req5
req

4 (
kÞ l

l klekl•UkF ]pl

]El
2

pklTkl

kBTkTl
G , ~58!

which does not vanish identically. However, note that if w
estimateEl'NlkBT we obtain ]pl /]El'(1/Nk)(pl /kBT).
Similarly, we may estimatepkl and Tkl from Eq. ~47! to
obtain

pklTkl

kBTkTl
'

ADP2DT2

kBTkTl
5

1

Nk
ANk /Vk

kScvT0
2
. ~59!

The last square root term is an intensive quantity of the or
p0 /(kBT0), as may be easily demonstrated for the case o
ideal gas. Since each separate quantity that is containe
the differences in the square brackets of Eq.~58! is of the
order p0 /T0 we have shown that they cancel up to relati
order 1/Nk!1. In fact, it is not surprising that Langevi
equations which approximate local gradients to first or
only in the corresponding differences, likeTkl , give rise to a
Fokker-Planck description that contains higher order corr
tion terms.

Having shown thatL0req vanishes to a good approxima
tion we may proceed to obtain the fluctuation-dissipation
lations from the equation (LDIS1LDIF)req50. It may be
noted from Eq.~55! that this equation is satisfied if

S l klFkl
D 1

1

2
vklklLklD req50,

~60!

F l kll
Tkl

r kl
1

1

2
Lkl

2 S ]

]Ek
2

]

]El
D Greq50.

Using the identity

eklekl1 iklikl5I , ~61!

where ikl is a vector normal toekl , we may show that Eq
~60! implies that

vkli
2 52vkl'

2 54hkBQkl

l kl

r kl
,

~62!

Lkl
2 52kBTkTll

l kl

r kl
,

whereQkl
215(1/2)(Tk

211Tl
21).
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B. The Itô-Stratonovitch dilemma
and the final equations of motion

Consider the integration of the momentum equation~39!

Pk→Pk1F̃kdt plus the hydrodynamic terms. Observin

from Eq. ~62! that F̃k depends on time through the depe
dence on the position and temperature, we need to de

whether to evaluateF̃k at time t or t1dt or some time in
between. This is the well-known Itoˆ-Stratonovitch dilemma.
It is possible to show@29# that when the time correlation

function of F̃k is not strictly d correlated, the Stratonovitch

interpretation, whereF̃k is evaluated at time (t1dt) /2, is
appropriate. In fact, with nonsingular correlation functio
there is no dilemma, and the only reason for using theˆ
interpretation is mathematical convenience.

With this convenience in mind we have applied thê
interpretation in writing the Fokker-Planck equations. In t
Appendix we derive the additional terms that enter t
Fokker-Planck equation when we switch to the correct S
tonovitch interpretation. There we show that the correct
terms are all of order (1/ANk) or smaller. What importance
can these terms have? To answer this question we note
Langevin descriptions always include some sort of hydro
namic or macroscopic description that holds for the aver
behavior of the system. This necessarily implies thatNk@1.
A hydrodynamic description would be meaningless if it we
sensitive to the removal or addition of single particles. T
idea of keeping terms of relative order 1/Nk is thus inconsis-
tent with the level of coarse graining used in the descripti
We have therefore discarded terms of this order through
It follows from this that Eqs.~62! remain correct.

In the Appendix it is shown that in passing between t
Itô and Stratonovitch interpretations there is no modificat
of the Fokker-Planck equation due to ther k dependence in
Eq. ~62!. Likewise, the modification due to the temperatu
dependence invkl is of relative order 1/Nk only. The corre-
sponding terms in the Langevin equations, the so-called s
rious drift terms, are therefore safely negligible as well.

However, the situation is not so clear for the correctio

due to theF̃•Ukl/2 term in the Langevin energy equatio
and so we discuss this issue here. In the Fokker-Planck e
tion only the]/]Ek part of theLDIS term is modified by the

F̃•Ukl/2 term. Hence, only the magnitude of the heat-fl
fluctuationsLkl is affected, and not the momentum fluctu
tions. The Fokker-Planck equation decomposes into a
mentum part and an energy part, and within the energy
Lkl receives a correction of relative order 1/ANk which is
discarded. In the Langevin equation~43!, on the other hand

the F̃•Ukl/2 term also needs to be compared with terms l
hUkl

2 . From the statistical mechanical relation Eq.~47! it
may be seen thatTkl;1/ANk, while the equipartition prin-
ciple givesUkl

2 5kBT/Mk;1/Nk . This means that the work
terms in Eq.~43! are smaller than the heat conduction term
by a factor 1/ANk. Consequently, while theF̃•Ukl/2 term can
be discarded in the Fokker-Planck equation it should be k
in the Langevin equation. The result of doing this is t
energy equation
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Ėk52(
l

l lkl
Tkl

r kl
2(

l
l lkS pk1pl

2
ekl2

h

r kl

3@Ukl1~Ukl•ekl!ekl# D •Ukl

2
1(

l

1

2
^Ṁkl&S Ukl

2 D 2

1
l kl

4r kl
Lklikl•UklS Ek

Vk
1

El

Vl
D2(

l
F̃8kl•

Ukl

2

2
3

2

l kl

r kl
hkBQklS 1

Ml
1

1

Mk
D1q̃kl , ~63!

where we have writtenF̃8kl with a prime to denote that it is
uncorrelated withUkl . In a numerical implementation thi
implies thatF̃8kl must be generated from a different rando
variable thanF̃kl which is used to updateUkl . In other
words, while Eq.~43! is to be subjected to the Stratonovitc
interpretation the equivalent Eq.~70! is to be interpreted ac
cording to Itô, as may Eq.~39!.

What is the physical significance of the different mag
tude of the terms in the energy equation? If one tries to h
a pot, rubbing it is generally a less efficient means than
conduction from a hotplate. We have observed that the s
is true when the heat conduction and work are due to sp
taneous fluctuations. In Eq.~70! we could consistently have
discarded all work terms, since they are order 1/AN com-
pared to the conduction terms. However, we keep them b
for comparison with existing work@16,17# and for the~rather
unrealistic! event that the thermal conductivityl vanishes, or
becomes very small, whileh does not. In this case the orde
1/AN correction toL, which is derived in the Appendix
must be retained.

Equations~32!, ~39!, and~70! together with Eq.~62! com-
plete the derivation of our Voronoi based dissipative parti
dynamics.

V. SIMULATIONS

While the present paper primarily deals with theoreti
developments, we have carried out simulations to test
equilibrium behavior of the model in the isothermal ca
This is a crucial test as the derivation of the fluctuati
forces relies on the most significant approximations. T
simulations are carried out using a periodic Voronoi tess
lation described in detail elsewhere@32#.

Figure 4 shows the relaxation process toward equilibri
of an initially motionless system. The DP temperature
measured aŝPk

2/(2Mk)& for a system of DP’s with interna
energy equal to unity. The simulations were run for 40
iterations of 4000 dissipative particles with a time stepdt
50.0005 using the molecular mass, density, and viscosit
water at 300 K. The Reynolds number~see Sec. VI B! is
Re50.38. It can be seen that the convergence of the
system toward the MD temperature is good, a result t
provides strong support for the fluctuation-dissipation re
tions of Eq.~62!.

VI. POSSIBLE APPLICATIONS

A. Multiscale phenomena

For most practical applications involving complex fluid
additional interactions and boundary conditions need to
-
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specified. These too must be deduced from the microsc
dynamics, just as we have done for the interparticle forc
This may be achieved by considering a particulate desc
tion of the boundary itself and including molecular intera
tions between the fluid MD particles and other objects, su
as particles or walls. Appropriate modifications can then
made on the basis of the momentum-flux tensor of Eq.~19!,
which is generally valid.

Consider, for example, the case of a colloidal suspens
which is shown in Fig. 5. Beginning with the hydrodynam

FIG. 4. The DPD temperature, averaged over 4000 dissipa
particles, as a function of time~iteration number in the integration
scheme!, showing good convergence to the underlying equilibriu
molecular dynamics temperature, which was fixed at 300 K. T
simulation provides strong support for the approximations used
derive the fluctuation-dissipation relations in our DPD model fro
molecular dynamics.

FIG. 5. Multiscale modeling of colloidal fluids. As usual, th
dissipative particles are defined as cells in the Voronoi lattice. N
that there are four relevant length scales in this problem: the s
of the large, gray colloid particles, the two distinct scales of
dissipative particles in between and away from the colloids, a
finally the molecular scale of the MD particles. These mediate
mesoscopic interactions and are shown as dots on the bound
between dissipative and colloidal particles.
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momentum-flux tensor Eq.~19! and Eq.~39!, it is evident
that we also need to define an interaction region where
DP-colloid forces act: the DP-colloid interaction may be o
tained in the same form as the DP-DP interaction of Eq.~39!
by making the replacementl kl→LkI , whereLkI is the length
@or area in three dimensions~3D!# of the arc segment wher
the dissipative particle meets the colloid~see Fig. 6! and the
velocity gradientr kl

21@(Ukl•ekl)ekl1Ukl# is that between the
dissipative particle and the colloid surface. The latter may
computed usingUk and the velocity of the colloid surfac
together with a no-slip boundary condition on this surface
Eq. ~62! the replacementl kl→LkI must also be made.

Although previous DPD simulations of colloidal fluid
have proved rather successful@10# at low to intermediate
solid volume fractions, they break down for dense syste
whose solid volume fraction exceeds a value of about 40
because the existing method is unable to handle mult
length scale phenomena. However, our version of the a
rithm provides the freedom to define dissipative parti
sizes according to the local resolution requirements as il
trated in Fig. 6. In order to increase the spatial resolut
where colloidal particles are within close proximity, it is ne
essary and perfectly admissible to introduce a higher den
of dissipative particles there; this ensures that fluid lubri
tion and hydrodynamic effects are properly maintained.
ter these dissipative particles have moved it may be ne
sary to retile the DP system; this is easily achieved
distributing the mass and momentum of the old dissipa
particles on the new ones according to their area~or volume
in 3D!. Considerations of space prevent us from discuss
this problem further in the present paper, but we plan
report in detail on such dense colloidal particle simulatio
using our method in future publications. We note in pass
that a wide variety of other complex systems exist wh
modeling and simulation are challenged by the presenc
several simultaneous length scales, for example, in p
meric and amphiphilic fluids, particularly in confined geom
etries such as porous media@33#.

B. The low viscosity limit and high Reynolds numbers

In the kinetic theory derived by Marsh, Backx, and Ern
@15# the viscosity is explicitly shown to have a kinetic co
tribution hK5rD/2 whereD is the DP self-diffusion coeffi-
cient andr the mass density. The kinetic contribution to t
viscosity was measured by Masters and Warren@34# within
the context of an improved theory. How then can the visc
ity h used in our model be decreased to zero while kine
theory puts the lower limithK to it?

To answer this question we must define a physical way
decreasing the MD viscosity while keeping other quantit
fixed, or, alternatively rescale the system in a way that
the equivalent effect. The latter method is preferable a
allows the underlying microscopic system to remain fixed.
order to do this we nondimensionalize the DP moment
equation Eq.~39!.

For this purpose we introduce the characteristic equi
rium velocity U05AkBT/M , and the characteristic distanc
r 0 as the typical DP size. Then the characteristic timet8
5r 0 /U0 follows.
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Neglecting gravity for the time being, Eq.~39! takes the
form

dPk8

dt8
52(

l
l kl8 S pkl8

2
ekl1

1

Re
@Ukl8 1~Ukl8 •ekl!ekl# D

1(
l

l kl8 Lkl8

2r kl8

rk81r l8

2
ikl•Ukl8

Uk81Ul8

2
1(

l
F̃kl8 ,

~64!

wherePk85Pk /(MU0), pkl8 5pklr 0
2/(MU0

2), M5rr 0
2 in 2D,

the Reynolds number Re5U0r 0r/h, and F̃kl8

5(r 0 /MU0
2)F̃kl andF̃kl given by Eqs.~48! and~62!. A small

calculation then shows that ifF̃kl8 is related tovkl8 and t8 as

F̃kl is related tovkl and t, then

vkl8
2'

1

Re

kBT

MU0
2
'

1

Re
, ~65!

where we have neglected dimensionless geometric prefac
like l kl /r kl and used the fact that the ratio of the thermal
kinetic energy by definition ofU0 is 1.

The above results imply that when the DPD system
measured in nondimensionalized units everything is de
mined by the value of the mesoscopic Reynolds number
There is thus no observable difference in this system
tween increasingr 0 and decreasingh.

Returning to dimensional units again, the DP diffusivi
may be obtained from the Stokes-Einstein relation@35# as

D5
kBT

ar0h
, ~66!

wherea is some geometric factor (a56p for a sphere! and
all quantities on the right hand side exceptr 0 refer directly to
the underlying MD. As we are keeping the MD system fix
and increasing Re by increasingr 0, it is seen thatD and
hencehK vanish in the process.

We note in passing that ifD is written in terms of the
mean free pathl, D5lAkBT/(rr 0

2), and this result is com-
pared with Eq.~73!, we getl85l/r 0;1/r 0 in 2D, i.e., the
mean free path measured in units of the particle size
creases as the inverse particle size. This is consistent with
decay ofhK . The above argument shows that decreasingh
is equivalent to keeping the microscopic MD system fix
while increasing the DP size, in which case the mean f
path effect on viscosity is decreased to zero as the DP siz
increased to infinity. It is in this limit that high Re value
may be achieved.

Note that in this limit the thermal forcesF̃kl;Re21/2 will
vanish, and we are effectively left with a macroscopic, flu
tuationless description. This is no problem when using
present Voronoi construction. However, the effective
spherical particles of conventional DPD will freeze into
colloidal crystal, i.e., into a lattice configuration@8,9#, in this
limit. Also, while conventional DPD has usually require
calibration simulations to determine the viscosity, due to d
crepancies between theory and measurements, the visc
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in our form of DPD is simply an input parameter. Howeve
there may still be discrepancies due to the approximati
made in going from MD to DPD. These approximations
clude the linearization of the inter-DP velocity fields, th
Markovian assumption in the force correlations, and the
glect of a DP angular momentum variable.

None of the conclusions from the above arguments wo
change if we had worked in three dimensions instead of t

VII. CONCLUSIONS

We have introduced a systematic procedure for deriv
the mesoscopic modeling and simulation method known
dissipative particle dynamics from the underlying descript
in terms of molecular dynamics. Figure 6 illustrates t
structure of the theoretical development of DPD equati
from MD as presented in this paper. The initial coarse gra
ing leads to equations of essentially the same structure a
final DPD equations. However, they are still invariant und
time reversal. The label DPD1 refers to Eqs.~32!, ~34!, and
~40!, whereas the DPD2 equations have been suppleme
with specific constitutive relations for both the nonequili
rium fluxes ~momentum and heat! and an equilibrium de-
scription of the thermodynamics. These equations are E
~39! and~43! or ~70! along with Eqs.~62!. The development
we have made that is shown in Fig. 6 does not claim
derive the irreversible DPD equations from the reversi
ones of molecular dynamics in a rigorous manner, altho
it does illustrate where the transition takes place with
introduction of molecular averages. The kinetic equations
this DPD satisfy anH theorem, guaranteeing an irreversib
approach to the equilibrium state. Note that in passing to
time-asymmetric description by the introduction of the av
aged description of Eq.~36!, a time-asymmetric nonequilib
rium ensemble is required@26#.

This is the first time to our knowledge that any of th

FIG. 6. Outline of the derivation of dissipative particle dynam
ics from molecular dynamics as presented in the present paper
MD viscosity is denoted byh andv is the amplitude of the fluc-

tuating forceF̃ as defined in Eq.~48!.
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various existing mesoscale methods have been put o
bottom-up theoretical foundation. To be precise, we ha
placed the present version of DPD on a molecular basi
the sense that~i! the DP’s have a consistent conceptual
terpretation as collections of molecules;~ii ! the forces be-
tween the DP’s are averages of explicit microscopic part
fluxes ~DPD1!; and ~iii ! the conservation laws of our DPD
derive explicitly and directly from the underlying conserv
tion laws of the molecular system. We have applied t
particle interpretation to resolve the Itoˆ-Stratonovich di-
lemma as anO(1/N) effect, whereN is the number of mol-
ecules in a dissipative particle. We have further used
particle interpretation as a natural basis for the statistical
chanical discussion of the fluctuating fluxesF̃ and q̃, for
example, to identify the DPD and MD temperatures. On
other hand, the method still relies on some phenomenol
cal input parameters. Thus, neither the equation of state
the fluid viscosity have been obtained from molecular pot
tials ~or Green-Kubo formulas related explicitly to micro
scopic properties!. Moreover, we have not claimed to intro
duce time irreversibility in a rigorous way. Finally, n
attempt has been made to include any quantum mecha
effects in the present paper.

Our development brings with it some insights as well
practical advantages. One of the main virtues of this pro
dure is the capability it provides to choose one or mo
coarse-graining length scales to suit the particular mode
problem at hand. The relative scale between molecular
namics and the chosen dissipative particle dynamics, wh
may be defined as the ratio of their number densit
rDPD/rMD , is a free parameter within the theory. Indeed, th
rescaling may be viewed as a renormalization-group pro
dure under which the fluid viscosity remains constant: sin
the conservation laws hold exactly at every level of coa
graining, the result of doing two rescalings, say, from MD
DPDa and from DPDa to DPDb, is the same as doing
just one with a larger ratio, i.e.,rDPDb /rMD5(rDPDb /
rDPDa)(rDPDa /rMD).

The present coarse-graining scheme is not limited to
drodynamics. It could in principle be used to rescale the lo
description of any quantity of interest. However, only f
locally conserved quantities will the DP particle interactio
take the form of surface terms as here, and so it is unlik
that the scheme will produce a useful description of nonc
served quantities.

In this context, we note that the bottom-up approach
fluid mechanics presented here may throw light on aspect
the problem of homogeneous and inhomogeneous tu
lence. Top-down multiscale methods and, to a more limi
extent, ideas taken from renormalization-group theory h
been applied quite widely in recent years to provide insi
into the nature of turbulence@36,37#; one might expect an
alternative perspective to emerge from a fluid dynami
theory originating at the microscopic level, in which the ce
tral relationship between conservative and dissipative p
cesses is specified in a more fundamental manner. Fro
practical point of view it is noted that, since the DPD visco
ity is the same as the viscosity emergent from the underly
MD level, it may be treated as a free parameter in the D
model, and thus high Reynolds numbers may be reached
theh→0 limit the model thus represents a potential tool f
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hydrodynamic simulations of turbulence. However, we ha
not investigated the potential numerical complications of t
limit.

The dissipative particle dynamics that we have derived
formally similar to the conventional version, incorporating
it does conservative, dissipative, and fluctuating forces.
interactions are pairwise, and conserve mass and mome
as well as energy. However, now all these forces have b
derived from the underlying molecular dynamics. The co
servative and dissipative forces arise directly from the hyd
dynamic description of the molecular dynamics and
properties of the fluctuating forces are determined via
fluctuation-dissipation relation. This relation was derived
ing the approximate isobaric ensemble. An exact ensem
that describes the full interaction between DP’s exists, ho
ever, and work is in progress to understand it.

The simple hydrodynamic description of the molecu
chosen here is not a necessary requirement. Other choice
the average of the general momentum- and energy-flux
sors Eqs.~26! and~19! may be made, and we hope these w
be explored in future work. More significant is the fact th
our analysis permits the introduction of specific physic
chemical interactions at the mesoscopic level, together wi
well-defined scale for this mesoscopic description.

While the Gaussian basis we used for the sampling fu
tions is an arbitrary albeit convenient choice, the Voron
geometry itself emerged naturally from the requirement t
all the MD particles be fully accounted for. Well-define
procedures already exist in the literature for the computa
of Voronoi tessellations@38# and so algorithms based on o
model are not computationally difficult to implement. Ne
ertheless, it should be appreciated that the Voronoi const
tion represents a significant computational overhead@32#.

Finally, we note the formal similarity of the present pa
ticulate description to existing continuum fluid dynami
methods incorporating adaptive meshes, which start out f
a top-down or macroscopic description. These top-down
proaches include in particular smoothed particle hydro
namics@19# and finite-element simulations. In these descr
tions too the computational method is based on tracing
motion of elements of the fluid on the basis of the forc
acting between them@39#. However, while such top-down
computational strategies lack macroscopic and purely p
nomenological fluid descriptions, the present approach r
on amolecularbasis.
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APPENDIX: THE ITOˆ -STRATONOVITCH DILEMMA

The Fokker-Planck equation~54! corresponds to the Itoˆ
interpretation of Eq.~52!. This is inconsistent with the ob
e
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servation that our fluctuating forces have smooth correla
functions, and that the corresponding Langevin equati
consequently should be treated according to the Strato
vitch interpretation@29#.

In this appendix we compute the extra terms in t
Fokker-Planck equation~54! that enter with the correct Stra
tonovitch interpretation. We show that these terms are
relative order 1/AN or smaller, and are thus negligible.

Following the discussion in Ref.@29# we note that the
extra terms that enter the Fokker-Planck equation with
Stratonovitch interpretation may be obtained by first modi
ing the drift term in the Langevin equation and then applyi
the Itô interpretation. This extra term appears directly if o
integrates Eq.~52! over an intervalDt, keeping the correct
orders ofdt:

Dy~ t1Dt !5E
t

t1Dt

dt8ẏ~ t8!

5a~y!Dt1E dt8Dy~ t8!•“G̃„y~ t !…, ~A1!

which upon averaging and use of Eq.~52! again takes the
form @29#

^Dy&5S a~y!1E
t

t8
dt9^G̃~ t9!•“G̃~ t !& DDt, ~A2!

where the last integral contains ad function that must be
treated as a peaked but regular function so that*0

`dtd(t)
51/2. The last term in the above equation is the correct
term, sometimes referred to as the ‘‘spurious drift term
that distinguishes the two interpretations.

Now we apply the above formalism to evaluate the sp
rious drift term that arises from theF̃kl•Ukl/2 term in Eq.
~43!, and then again to estimate the remaining spurious d
terms that arise from theTk andr k dependence inv andL.

In order to compute the spurious drift term correspond
to the work done byF̃kl , we define Ẽk52( l F̃kl•Ukl/2.
Now, Eq. ~A2! takes the form

^Ẽk&5K ]Ẽk~ t !

]Pk8

•DPk8~ t8!L
5K ]Ẽk~ t !

]Pk8

•E
t

t8
dt9(

l 8
F̃kl~ t9!L . ~A3!

Using the fact that]Ẽk(t)/]Pk852F̃kl(dkk82d lk8)/(2Mk8)
and then Eqs.~49! and ~62!, we obtain the correction term

^Ẽk&52
3

2 (
l

l kl

r kl
S 1

Mk
1

1

Mk
DhkBQkl , ~A4!

which is the term cited in Eq.~70!.
This correction term gives rise to the following modific

tion of the Fokker-Planck equation~54!:

LDIS→LDIS2(
k

]

]Ek
^Ẽk&, ~A5!



e

q
-
a

s

,

-
e

w
n
ri

in

e

ll
,

-
t

-

the

he
in-

2156 PRE 62FLEKKO”Y, COVENEY, AND De FABRITIIS
which amounts to the replacement

2l
Tkl

r kl
→2l

Tkl

r kl
F12

3

2lTkl
S 1

Mk
1

1

Ml
DhkBQklG .

~A6!

We shall estimate the additional term as

Dkl5
1

Mk

Qkl

Tkl
kB .

h

l
~A7!

To do this we introduce the viscous and thermal decay tim

tl5
kBr l 2

ml
,

~A8!
th5r l 2/h,

wherem is the molecular mass andl the length over which
the temperature and velocity vary. We also recall from E
~47! that whenTkl is taken to have the value of the equilib
rium fluctuation and the heat capacity of a DP is estimated
Vcv5NkkB , thenQkl /Tkl'1/ANk. Combining these result
and usingMk5mNk we get that

Dkl5
1

ANk

tl

th
. ~A9!

Now, for most normal fluidstl /th;1. For water, air, and
glycerol at room temperaturetl /th is approximately 0.001
0.1, and 1.0, respectively. More importantly,tl /th is an in-
tensive quantity so thatDkl depends onNk through the
square root only. Hence theD term that estimates the differ
ence between the Itoˆ and Stratonovitch versions of th
Fokker-Planck equations is safely negligible.

The same is true for all other spurious drift terms, as
now proceed to show. In order to simplify the developme
we suppress both the vectorial and particle indices and w
Eq. ~39! in the form

Ṗ5B~M ,P,E!1F̃, ~A10!
et

an
s

.

s

e
t
te

where the drift component in the force has been written
shorthand notation asB and the fluctuations asF̃
;v(r ,T)W(t) whereW(t) is d correlated and the amplitud
depends on position and temperature as shown in Eq.~62!.

Equation~A2! now takes the form

^DP&5BDt1E dt8^Dr ~ t8!W~ t8!&
]v

]r

1
]v

]T
^DT~ t8!W~ t8!&. ~A11!

In this equation it is easily observed that sinceDr;*Udt

;**dt8dt9F̃ contains a double integral over time, it wi
only give a contribution of orderDt2. The temperature term
however, will give an orderDt contribution. Introducing the
heat capacity per particlecv8 ~which is justkB for an ideal
gas!, we may writeDT5DE/(Ncv8) and thus

^DP&'BDt1
1

cv8N
E dt8

]v

]T
^DE~ t8!W~ t8!&. ~A12!

Now, the only part ofE that is correlated with the momen
tum fluctuation functionW(t) is Ẽ, and by a derivation tha
is completely similar to that which led to Eq.~A4! we obtain

E ^DE~ t8!W~ t8!&dt85v2U;hkBTU. ~A13!

Using the fact thatB;hU we may combine the above re
sults to get

^DP&;hUS 11
kB

cv8N
D ;S 11

1

ND . ~A14!

This completes the demonstration that the terms in
Fokker-Planck equation that distinguish the Itoˆ and Stratano-
vitch interpretations are negligible. It also shows that t
Langevin equations for the momentum evolution may be
terpreted in either way without affecting the results.
ol.
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