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We derive a mesoscopic modeling and simulation technique that is very close to the technique known as
dissipative particle dynamics. The model is derived from molecular dynamics by means of a systematic
coarse-graining procedure. This procedure links the forces between the dissipative particles to a hydrodynamic
description of the underlying molecular dynami®4D) particles. In particular, the dissipative particle forces
are given directly in terms of the viscosity emergent from MD, while the interparticle energy transfer is
similarly given by the heat conductivity derived from MD. In linking the microscopic and mesoscopic descrip-
tions we thus rely on the macroscopic or phenomenological description emergent from MD. Thus the rules
governing this form of dissipative particle dynamics reflect the underlying molecular dynamics; in particular,
all the underlying conservation laws carry over from the microscopic to the mesoscopic description. We obtain
the forces experienced by the dissipative particles together with an approximate form of the associated equi-
librium distribution. Whereas previously the dissipative particles were spheres of fixed size and mass, now they
are defined as cells on a Voronoi lattice with variable masses and sizes. This Voronoi lattice arises naturally
from the coarse-graining procedure, which may be applied iteratively and thus represents a form of
renormalization-group mapping. It enables us to select any desired local scale for the mesoscopic description
of a given problem. Indeed, the method may be used to deal with situations in which several different length
scales are simultaneously present. We compare and contrast this particulate model with existing continuum
fluid dynamics techniques, which rely on a purely macroscopic and phenomenological approach. Simulations
carried out with the present scheme show good agreement with theoretical predictions for the equilibrium
behavior.

PACS numbeps): 47.11+j, 47.10+¢g, 05.40-a

I. INTRODUCTION sents itself as the most accurate and fundamental mé¢#&jod
but it is far too computationally intensive to provide a prac-

The nonequilibrium behavior of fluids continues to tical option for most hydrodynamic problems involving com-
present a major challenge for both theory and numericaplex fluids. Over the last decade several alternative “bottom
simulation. In recent times, there has been growing intereaip” strategies have therefore been introduced. Hydrody-
in the study of so-called mesoscale modeling and simulatiomamic lattice gasef4], which model the fluid as a discrete
methods, particularly for the description of the complex dy-set of particles, represent a computationally efficient spatial
namical behavior of many kinds of soft condensed matterand temporal discretization of the more conventional mo-
whose properties have thwarted more conventional aplecular dynamics. The lattice-Boltzmann methi&d, origi-
proaches. As an example, consider the case of complex fluidslly derived from the lattice-gas paradigm by invoking
with many coexisting length and time scales, for which hy-Boltzmann’s Stosszahlansagtzrepresents an intermediate
drodynamic descriptions are unknown and may not even exfluctuationless approach between the top-dowfton-
ist. These kinds of fluids include multiphase flows, particu-tinuum) and bottom-ugparticulate strategies, insofar as the
late and colloidal suspensions, polymers, and amphiphilibasic entity in such models is a single particle distribution
fluids, including emulsions and microemulsions. Fluctuationdunction; but for interacting systems even these lattice-
and Brownian motion are often key features controlling theirBoltzmann methods can be subdivided into bottomfép
behavior. and top-down modelg7].

From the standpoint of traditional fluid dynamics, a gen- A recent contribution to the family of bottom-up ap-
eral problem in describing such fluids is the lack of adequatgroaches is the dissipative particle dynamio®D) method
continuum models. Such descriptions, which are usuallyntroduced by Hoogerbrugge and Koelman in 1982 Al-
based on simple conservation laws, approach the physic#though in the original formulation of DPD time was discrete
description from the macroscopic side, that is, in a “topand space continuous, a more recent reinterpretation asserts
down” manner, and have certainly proved successful forthat this model is in fact a finite-difference approximation to
simple Newtonian fluid§1]. For complex fluids, however, the “true” DPD, which is defined by a set of continuous
equivalent phenomenological representations are usually utime Langevin equations with momentum conservation be-
available and instead it is necessary to base the modelingveen the dissipative particl¢8]. Successful applications of
approach on a microscopithat is, particulatedescription of ~ the technique have been made to colloidal suspen$iiis
the system, thus working from the bottom upward, along thegolymer solutiong11], and binary immiscible fluid$12].
general lines of the program for statistical mechanics piofor specific applications where comparison is possible, this
neered by Boltzmanfi2]. Molecular dynamic§¥MD) pre-  algorithm is orders of magnitude faster than MIB]. The
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basic elements of the DPD scheme are particles that repreeription of the underlying particles can be found, these
sent rather ill-defined “mesoscopic” quantities of the under-forces follow directly; in cases where this is not possible, the
lying molecular fluid. These dissipative particles are stipu-forces between dissipative particles must be supplemented
lated to evolve in the same way that MD particles do, butwith the additional components of the physical description
with different interparticle forces: since the DPD particlesthat enter on the mesoscopic level.

are pictured to have internal degrees of freedom, the forces The DPD model that we derive from molecular dynamics
between them have both a fluctuating and a dissipative cont$ _formally similar to conventional, albeit foundationless,
ponent in addition to the conservative forces that are presefP’D [14]. The interactions are pairwise and conserve mass
at the MD level. Newton's third law is still satisfied, how- @nd momentum, as well as eneifd,17. Just as the forces

ever, and consequently momentum conservation togeth&onventionally used to define DPD have conservative, dissi-

with mass conservation produce hydrodynamic behavior ative, and fluctuating components, so too do the forces in
the macroscopic level e present case. In the present model, the role of the con-

Dissipative particle dynamics has been shown to producéer.v‘"‘t've forcg IS playec_i bY the pressure forces. Howe\_/er,
the correct macroscopitcontinuum theory: that is, for a while conventional dissipative particles possess spherical

one-component DPD fluid, the Navier-Stokes equationéymmetry and expe_rie_nce_ interaqtions mediaf[ed by purely
emerge in the large scale limit, and the fluid viscosity can b _e_ntral forces, our dlss!patl\_/e particles are defined as space-
computed[14,15. However e’ven though dissipative par- illing cells on a Voronoi lattice whose forces have both cen-
ticles have generally been viewed as clusters of moleculeéfal and tangential components. These features are shared

no attempt has been made to link DPD to the underlyin ith @ model studied by Espah[18]. This model links DPD

microscopic dynamics, and DPD thus remains a foundation= smoothed particle hydrodynami¢s9] and defines the

: ; ; ; PD forces by hydrodynamic considerations in a way analo-
less algorithm, as is that of the hydrodynamic lattice gas ang) . ~
a fortiori the lattice-Boltzmann method. It is the principal gous to earlier DPD models. Esmiret al. [20] have also

purpose of the present paper to provide an atomistic foundac—"“med out MD simulations with a sgperp_osed Voronoi mesh
In order to measure the coarse grained inter-DP forces.

ion for dissipati icl ics. A h ; . ; o .
tion for dissipative particle dynamics. Among the numerous While conventional DPD defines dissipative particle

benefits gained by achieving this, we are then able to provide o b tant. this feat i i qi
a precise definition of the term “mesoscale,” to relate theMasses 10 be constant, this feature 1S not preserved in our

hitherto purely phenomenological parameters in the algom()del‘ I_n our f'r.St pub_hcatlon_on this theof1], we stated
rithm directly to the average of microscopic fluxes of thethat, while the dissipative particle masses fluctuate due to the

conserved quantities. These averages may be given by a |grotion of MD particles across their boundaries, the average

cal hydrodynamic description of the underlying molecular nasses should be constant. In fact, the DP masses vary due

system, as in the present work, or they may be derived frorﬁo distortions of the Voronoi cells, and this feature is now

the specific microscopic interactions at hand. The generaﬁmperly incorporated in the model.

scheme thus lays down the structure of DPD algorithms for To obtgin the fluctuation-dissipation relations that give
specificphysicochemical systems, defined in terms of their'::hekkm""%'?'tUdlia of tr'[\.e the\r;]al rf]orce;], ;Nti mDaIP% uset of a
molecular constituents. The DPD that we derive is a reprei-s0 dei,rc;ribag(]jc ineiuna ;cy)afggbxirﬁa?eozvensz bye the is?':ﬁeermal-
sentation of the underlying MD given by the hydrodynamic, obaric ensemble. Simulations confirm that, with the use of

values of the fluxes. Consequently, to the extent that th f th d DP t ¢ : | to th

approximations made are valid, the DPD and MD will have eDs;a orcest, ethm;a{:lsure ded e”.‘pe"’;‘ lfl_rﬁ IS equal to the

the same hydrodynamic descriptions, and no separate kinet| emperaturé that IS provided as input. This IS-an impor-
ant finding in the present context as the most significant

theory for, say, the DPD viscosity will be needed once it is Y . >
known for the MD system. Since the MD degrees of freedo pproximations we have made underlie the derivation of the
: hermal forces.

will be integrated out in our approach the MD viscosity will L ~
9 bp y In a recent publication Espahet al. have advocated a

appear in the DPD model as a parameter that may be tuned . ) L )
frZZIy P y general strategy to obtain a Langevin description of various

In our approach, the “dissipative particleSDP’s) are physical systemp22]. Using this methodology together with

defined in terms of appropriate weight functions that sampl%ur coarse-graining schenj2l], Serrano and Espah[23]
portions of the underlying conservative MD patrticles, and ave recently dev_eloped a moc‘i‘el comple’r,nenta_ry to ours by
the forces between the dissipative particles are obtained froﬁﬁo.rk'.ng systematically frqm a t0p'down continuum de-_
the hydrodynamic description of the MD system: the micro_scnptlon to a mesoscopic representation, the result being
scopic conservation laws carry over directly to the DPD, and’®"Y close to ours.

the hydrodynamic behavior of MD is thus reproduced by the

DPD, albeit at a coarser scale. The mesoscdpiarse- Il. COARSE-GRAINING MOLECULAR DYNAMICS:

grained scgle of th_e DPD can.be premsely spec]fled in terms FROM MICRO- TO MESOSCALE

of the MD interactions. The size of the dissipative particles,

as specified by the number of MD particles within them, The essential idea motivating our definition of mesos-
furnishes the meaning of the term “mesoscopic” in the copic dissipative particles is to specify them as clusters of
present context. Since this size is a freely tunable paramet®iD particles in such a way that the MD particles themselves
of the model, the resulting DPD introduces a general proceremain unaffected whil@ll being represented by the dissi-
dure for simulating microscopic systems at any convenienpative particles. The independence of the molecular dynam-
scale of coarse graining, provided that the forces between thes from the superimposed coarse-grained dissipative particle
dissipative particles are known. When a hydrodynamic dedynamics implies that the MD particles are able to move
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between the dissipative particles. The stipulation that all MDbeen chosen for the thermodynamic description. For this rea-
particles must be fully represented by the DP’s implies thatson it is not possible to complete the hydrodynamic descrip-
while the mass, momentum, and energy of a single MD partion without taking the energy flow into account. As a by-
ticle may be shared between DP’s, the sum of the shareproduct of this the present DPD also contains a description
components must always equal the mass and momentum of the heat flow and corresponds to the recently introduced
the MD particle. DPD with energy conservatiofil6,17). Espaiol previously
introduced an angular momentum variable describing the dy-
A. Definitions namics of extended particlgs8]: this is needed when forces
are noncentral in order to avoid dissipation of energy in a
rigid rotation of the fluid. Angular momentum could be in-
‘cluded on the same footing as momentum in the following

Full representation of all the MD particles can be
achieved in a general way by introducing a sampling func

tion developments. However, for reasons of both space and con-
S(X—1}) ceptual economy we shall omit it in the present context, even

f(X)= ——, (1)  though it is probably important in applications where hydro-

> s(x—r)) dynamic precision is important. In the following sections, we

shall use the notation, M, P, andE with the indices, |, m,

- ] ] andn to denote DP’s, while we shall use m, v, ande with
where the positions, andr, define the DP centers,is an  the indices andj to denote MD particles.

arbitrary position, ang(x) is some localized function. It will

rove convenient to choose it as a Gaussian, . _ o .
P B. Equations of motion for the dissipative particles based

s(X) = exp(— x2/a2), 2) on a microscopic description

. _ . The fact that all the MD particles are represented at all
where the distanca sets the scale of the sampling function, jnsiants in the coarse-grained scheme is guaranteed by the
althqugh this choice is not necessary. The mass, momentuy majization conditionz, f, (x)=1. This implies directly

and internal energ¥ of the kth DP are then defined as that

M= fi(x)m, S M= m,
: 3 i

Pk:Ei fr(xpmv;, S p=> my, (5)
X i v

1 1 1
SMUZHE= 2 fi(x)| 5mu?+ 5 2 Vio(rij)
2 ' 2 2% 22 €,

1
}k) Etk"‘=2k (EMkU§+ Ex

)

Ezi f(xi)€i, thus, with mass, momentum, and energy conserved at the
MD level, these quantities are also conserved at the DP level.
wherex; andv; are the position and velocity of ti¢h MD  In order to derive the equations of motion for dissipative
particle, which are all assumed to have identical masses Particle dynamics we now take the time derivatives of Egs.
Py is the momentum of th&th DP, andVyp(r;;) is the (3). This gives
potential energy of the MD particle paiy, separated a dis-

tancer;; . The particle energy; thus contains both the ki- %_E ; 6
netic and a potential term. The kinematic condition dt 4 <Oa)m, ©)
rk:UkEPk/Mk (4) de i
- o _ . =2 [FOomyi+ f(x)Fl, )
completes the definition of our dissipative particle dynamics. dt i
It is generally true that mass and momentum conservation
suffice to produce hydrodynamic behavior. However, the dEX . _
equations expressing these conservation laws contain the TZZ [T(Xi) €+ Fr(X)e€il, (8)
|

fluid pressure. In order to get the fluid pressure a thermody-

namic description of the system is needed. This produces an _
equation of state, which closes the system of hydrodynamiwhered/dt is the substantial derivative arfj=myv; is the
equations. Any thermodynamic potential may be used to obforce on particle.

tain the equation of state. In the present case we shall take The Gaussian form ofs implies that s(x)=—(2/
this potential to be the internal ener@y, of the dissipative 20 ; ; ; :

particles, and we shall obtain the equations of motion for thea )X-xs(x). This makes it possible to write
DP mass, momentum, and energy. Note that the internal en- .

ergy would also have to be computed if a free energy had fe(Xi) = Fa(X) (Vi - g+ %7 - Ugg), 9)
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FIG. 1. The overlap region between two Voronoi cells is shown
in gray. The sampling functiof,(r) is shown in the top graph and
the overlap functiorf,,(r)=(2/a?)f.(r)f,(r) in the bottom graph.
The width of the overlap region ia?/|r,—r,| and its length is
denoted byl.

FIG. 2. The Voronoi lattice defined by the dissipative particle
positionsry . The gray dots that represent the underlying MD par-
ticles are drawn only in the overlap region.

trary dissipative particle motion the cell volumes will ap-
proach zero only exceptionally, and even then the identities
of the DP particles will be preserved so that they subse-
h%uently reemerge.

where the overlap functionf,, is defined as f(x)
= (2% F () (%), Ta=(rc—r)), and Uy=(Uy—U)), and
we have rearranged terms so as to get them in terms of t

centered variables .
1. Mass equatlon

V= (Ut U)) The mass equatiof6) takes the form
i=Vi— T,
2
(10) dM, _ )
e 3 w9
i A 2 .
where

Before we proceed with the derivation of the equations of
motion it is instructive to work out the actual forms f{(x) .
andf(x) in the case of only two particldsandl|. Using the M= 2 fa(x)m(V - 1q+x - Uy). (14)
Gaussian choice of we immediately get !

1 Thev{ term will be shown to be negligible within our ap-
fl(x)= >—- (11)  proximations. The/ - Uy, term, however, describes the geo-
1+ (exp2[x—(ritr)/2]-r/(@%)}) metric effect that the Voronoi cells do not conserve their

volume: The relative motion of the DP centers causes the

cell boundaries to change their orientation. We will return to

give this “boundary twisting” term a quantitative content

(M) (12) when the equations of motion are averaged—an effect that

a? was overlooked in our first publication of this thedr@1]
where it was stated th&M,)=0.

These two functions are shown in Fig. 1. Note that the scale

of the overlap region is noa but a/|r,—r,|. Dissipative 2. Momentum equation

particle interactions take place only where the overlap func-

tion is nonzero. This happens along the dividing line which

is equally far from the two particles. The contours of nonzero

fi thus define a Voronoi lattice with lattice segments of de_E f ot x! U +2 f =
=2 k(XD MV; (Vi - g+ X - Ugg) 2 k(Xi)Fi .

The overlap function similarly follows:

re+r
X—T

fru(x) ! h 2
X)=— Cc0s
K oo

The momentum equatiofY) takes the form

lengthl,. This Voronoi construction is shown in Fig. 2 in dt

which MD particles in the overlap region defined by, (15
>0.1 are shown, though presently not actually simulated as

dynamic entities. The volume of the Voronoi cells will in We can write the force ab;=mg+Z;F;;, where the first
general vary under the dynamics. However, even with arbiterm is an external force and the second term is the internal
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force caused by all the other particles. Newton’s third lawtime rate of change of the particle energy
then takes the fornt;=—F;; . The last term in Eq(15)

may then be rewritten as 1
E|:mg'Vi+§jE#i Fij'(Vi+Vj)- (20)

> FOOF=Mg+ > fr(X)Fij, (16) o , ,
i ij This gives the first term of Eq8) in the form

where ) 1
2 Oge=Pegt 5 2 fOOFy-(vity). (2
Z fk(xi)Fij:_Z fr(X)F;i
. . The last term of this equation is odd under the exchargg
and exactly the same manipulations as in Edg) may be

= —%: fir(X;+AXi))F;i used to give
. 1
~—E f(X;)F E [Axij- VE(x)]F; Z fk(Xi)E:Pk'gJF“Zj ka(Xi)ZFij'(Vi+Vj)AXij'rk
:—%Z [Axij'ka(Xi)]Fji =Pk-g+|2] fkl(x)( F|] (V +V)
ij i
1 1 Uk+U|
=> E fra(X)Fij AXij | Ty 17 + R 5 |AXijTu,s (22

| ij

whereAx;; =X, —X; , we have Taylor expandefg(x) around ~ Where for later purposes we have used Hg$) to get the
x;, and used a result similar to E@) to evaluateV f,(x). In  last equation. The last term of E@) is easily written down
passing from the third to the fourth equality in the aboveusing Eq.(9). This gives
equations we have moved the first term on the right hand
side to the left hand side and divided by 2. Now, if we grou
the last term above with thg, term in Eq.(15), make usegof P E filxi)ei= 2 B (v T+ Uia) € (23
Eg. (10), and do some rearranging of terms we get
4P Uyt As previously we write the particle velocities in termswf.
_k:ng z My — +2 i ()T - The corresponding expression for the particle energy; is
d =€/ +mv/ - (U +U)) /24 (112)m[ (U+U))/2]?, where the
prime ine/ denotes that the particle velocity\vs rather than
+|E' fl(x)mv/x’ - Uy, (18)  Vv;. Equation(23) may then be written
I

_ _ . 1.
where we have used the relativh = =,M,, and defined the Z fk(Xi)fi:EI M
general momentum-flux tensor

U+U; )2
2

1 +2f()(”+ gy 2t
4 kI(X)| € Vi T mv;V; - Tk
Hi:mViVi+ E ; FijAXij . (19) li I t H 2
This tensor is the momentum analog of the mass-flux vector +; Fia(xi) € - Uy - (24)
mv; . The prime indicates that the velocities on the right hand
side are those defined in E@LO). The tensodl; describes Combining this equation with Eq22) we obtain
both the momentum that the particle carries around through
its own motion and the momentum exchanged by interpar- . U+,
ticle forces. It may be arrived at by considering the momen- E‘O‘:Z fla(x)| I5+11 - ) “T+MUe-g
tum transport across imaginary cross sections of the volume I
in which the particle is located. 2
1 U+ U,
_ +E 5 +2 fra(Xi)
3. Energy equation I I

In order to get the microscopic energy equation of motion , L (Ut U |

we proceed as with the mass and momentum equations and Xlgtmyvi-{—5 Xi - U, (25

the two terms that appear on the right hand side of(Bg.

Taking Vyp to be a central potentlal and usmg the rela- where the momentum-flux tensor is defined in E) and
tions  VVypo(rij)=Vuo(rij)aj=—F; and Vyp(rj)  we have identified the energy-flux vector associated with a
=Vup(rij)ea;-vij=—Fij-vij, wherev,, Vi—Vj, we getthe particlei,
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1 scription of our dissipative particle dynamics. For concrete-
Jai=evit 7 > Fi (Vi) AX; . (260 ness we shall take the hydrodynamic description of the MD

17 system in question to be that of a simple Newtonian flaid
Again the prime denotes that the velocities @feather than 1S IS known to be a good description for MD fluids based

. o ot on Lennard-Jones or hard sphere potentials, particularly in
vi - To get the internal enerdyy instead off,” we note that .0 gimensiongs]. Here we shall carry out the analysis for

d(Pg/2My)/dt= Uy P~ (1/2)M U . Using this relation, the  systems in two spatial dimensions; the generalization to three
momentum equation Eq18), as well as the substitution dimensions is straightforward, the main difference being of a
(U +U)/2=U—U/2 in Eq. (25), followed by some rear- practical nature as the Voronoi construction becomes more

rangement of théVl,, terms, we find that involved.
We shall begin by specifying a scale separation between
o d (1 2 1. (Ug\? the dissipative particles and the molecular dynamics particles
Ex ~dt 2 MUk +2| M| by assuming that

U Xi—X: | <|re—rl, (28
+2 fkl(xi)(‘];i_ni"%)'rkl | <! |
I where x; and x; denote the positions of neighboring MD
particles. Such a scale separation is in general necessary in
X{ - Uy - (27 order for the coarse-graining procedure to be physically
meaningful. Although for the most part in this paper we are
éhinking of the molecular interactions as being mediated by
first term represents the translational kinetic energy of th hort—rangg f_orces suc_h as th_ose Of_ Ler_mard-Jo_nes type, a
?cal description of the interactions will still be valid for the

DP as a whole. The remaining terms represent the intern . : . .
energyE, . This is a purely thermodynamic quantity which case of long-range Coulomb interactions in an electrosta'q-
ke cally neutral system, provided that the screening length is

cannot depend on the overall velocity of the DP, i.e., it must horter than the width of the overlap redion between the
be Galilean invariant. This is easily checked as the relevan issipative particles. Indeed. as we shgll sr?ow here. the result
terms all depend on velocity differences only. P P ' ' '

’ ’ Uk|
€ —mVI 7

+¥ fra(x)

This equation has a natural physical interpretation. Th

: N . of doing a local averaging is that the original Newtonian
The My, term represents the kinetic energy rec_e'Vedequations of motion for the MD system become a set of
through mass exchange with neighboring DP’s. As will be-| 5ngevin equations for the dissipative particle dynamics.
come ewde_nt when we turn to the averaged description, th@age Langevin equations admit an associated Fokker-
term involving the momentum and energy fluxes representpianck equation. An associated fluctuation-dissipation rela-
the work done on the DP by its neighbors and the heat conyjon, relates the amplitude of the Langevin force to the tem-
ducted from them. The term represents the energy re- perature and damping in the system.
ceived by the DP due to the same “boundary twisting” ef- " |t js observed that Langevin equations suffer from the
fect that was found in the mass equation. Upon averagingampiguity of the IfeStratonovitch dilemma. However, while
the last term proportional t¢ will be shown to be relatively  this dilemma is important in principle, we will return to show
small since(v{)=0 in our approximations. This is true also that the difference between the lemd Stratonovitch inter-
in the mass and momentum equations. Equatidds (18), pretations is negligible in the present context.
and(27) have the coarse-grained form that will remain in the
final DPD equations. Note, however, that they retain the full
microscopic information about the MD system, and for that ) ) ) .
reason they are time reversible. Equatid®), for instance, With the mesoscopic variables now available, we need to
contains only terms of even order in the velocity. In the nextdefine the correct average corresponding to a dynamical state
section terms of odd order will appear when this equation i®f the system. Many microstates of the MD system are con-
averaged. sistent W.Ith a given value of the sm M ,.Uk ,Ei}. Assum-

It can be seen that the rate of change of momentum in EN9 detailed balance on the microscopic level of the MD
(18) is given as a sum of separate pairwise contributionSystém we may rely on the standard hypothesis in statistical
from the other particles, and that these terms are all odgechanics—that every microstate is equally prob4BH.
under the exchangk—k. Thus the particles interact in a In the following we shall average over all those mlcros_tates
pairwise fashion and individually fulfill Newton’s third law; that have the same values of the mesocopic variables
in other words, momentum conservation is again explicitlyl"k-Mk.Ux,Ex}, taking the sefr,} to be given. Now, while
upheld. The same symmetries hold for the mass conservatidh®seé ~microstates give rise to the same values
equation(14) and energy equatiof®5). {ri.My,Uy.Ei} upon spatial coarse graining, they will
evolve differently in time. Hence, the time derivatives of the
set{r,,M,,Uy,Ey}, now considered as variables, will be
different for different microstates. In other words, the fluxes
of mass, momentum, and energy will have fluctuating parts.

We can now investigate the average and fluctuating parts Using the averaging described above, it is possible, at
of Egs. (27), (18), and (14). In so doing we shall need to least in principle, to compute the average MD patrticle veloc-
draw on a hydrodynamic description of the underlying mo-ity (v) between dissipative particle centers, given
lecular dynamics and construct a statistical mechanical defr,M,,U,,E,}. This velocity depends in general on all

A. Definition of ensemble averages

Ill. DERIVATION OF DISSIPATIVE PARTICLE
DYNAMICS: AVERAGE AND FLUCTUATING FORCES
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neighboring dissipative particle velocities. However, for sim-
plicity we shall employ only a “nearest neighbor” approxi- \/
mation, which consists in assuming ti{&) interpolates lin-
early between the two nearest dissipative particles. This Ly
implies that in the overlap region between dissipative par- g
ticlesk and| Tikl “}}‘\
“o -
X' - Ml .:j:::-—kL-----—P"--:::_{"
(V)y=(v)(x)= = Uy, (29 1 | 7k
ki ~ -

where the primes are defined in E¢$0) andr,=|r,—r|.
The above approximation is likely to be the most significant
one in our entire development as it neglects variations in the
velocity field in the direction normal te,,. [See Sec. IV B FIG. 3. Two interacting Voronoi cells. The length of the inter-
where it is shown that the fluctuations linked to the dissipa-section between DPkandl is |, the shift from the center of the
tion associated with the velocity gradient of E@9) are  intersection between andl is Ly (L =0 whenr, intersectd,
smaller than those linked to the full gradignt. in the middlg, and the unit vector,, is hormal tog,, . The coordi-

At the end of our development approximate distributionsnate_ systenx-y used for the integration has its origin on the inter-
for U's andE,’s will follow from the Fokker-Planck equa- Section.
tions. These distributions refer to the larger equilibrium en- ) ) o
semble that contains all fluctuations{in,,M,,U,,E,}, and where the unit vectorg=ry,/ry andiy are shown in Fig.
not only in the fluxes of these quantities. 3, we gave used the fact that the integral over

A preliminary mathematical observation is useful in split- X8 €osh “(---) vanishes since the integrand 'S odd, and the
ting the equations of motion into average and fluctuating@St equation follows by the substitution—(a/ry)x. In
parts. Letr(x) be an arbitrary, slowly varying function on contrast to the vectog, the vectoriy is even under the
the a%r,, scale. Then we shall employ the approximationeXQhangd(Hl’ as isLy. Th|§ is a mattr—;r of definition only
corresponding to a linear interpolation between DP centerdS It WOl_J|d be equally permISSIb'Ie'tol lgt andL,, be odd
thatr (x) = (1/2)(r .+ ;) wherex is a position in the overlap under this exghange. However,.lt is important for the sym-
region between DP’& and| andr andr, are values of the Metry properties of the fluxes thaj andL have the same
function r associated with the DP centeksand |, respec-  Symmetry undek«.

tively. Then
B. The mass conservation equation
Pkt P retr Taking the average of Eq14), we observe that the first
Z fk|(Xi)f(X)*f dx dy=—5—fu(x)— term vanishes if Eq(29) is used, and the second term fol-

lows directly from Eq.(31). We thus obtain

mlipk"'Pl r|<+r|f°c dx’ . . .
282 2 2 J.. Mk=§|: (M) +My), (32
—2(\y! 2
X cosh “(X'ry /a%) where
I prtpr Tt
- , (30) : , la  petpr
Ma 2 2 (Mg)y=2 Flam(i)(xi) - V=5 ~Liu—5 T Ua,
T ki
(33

where (p, .+ p;)/2 is the MD particle number density and we
have_ used the ide_nti/ty tahx)=cosh %(x). We will also need and M o= Mkl_<MkI>- The finite value 0f<Mk|) is caused
the first moment in<’, by the relative DP motiorperpendicularto &,. This is a
geometric effect intrinsic to the Voronoi lattice. When par-
, Pkt pi retr ticles move the Voronoi boundaries change their orientation,
Ei: fra (X)X f(Xi)*f dxdy——fu()Xx'—— and this boundary twisting causes mass to be transferred be-
tween DP’s. This mass variation will be visible both in the
1 pe+p) rk+r'f . energy flux and in the momentum flux. It will later be shown
xay

~; > > that the effect of mass fluctuations in the momentum and
a

energy equations may be absorbed in the force and heat-flux
fluctuations.
xcosh‘z(i:') Vi In t'he following we shall neglect the fluctuations in the
updating of the DP masses, while we shall keep the effect of
mass fluctuations in the energy and momentum equations.
_ha ekt nctr 37  This means that the forces and energy fluxes will still be
) 2 kb (31) correctly captured, but that we will rely on theveraged
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variations in the mass only. This is an approximation as the p(IL))=mpw+Ip— 7(Vv+(Vv)7), (36)
microscopic velocities will cause mass fluctuations. How-
ever, since the DP volumes are evolved accordingrih,  \yherep is the pressure andthe average velocity of the MD
which are determined by tf’s, the DP volumes fluctuate f,iq T denotes the transpose, anis the identity tensof1].
as they should and we are neglecting only fluctuations in th¢, ihe above equation we have for simplicity assumed that
mass density. Since the variance of these fluctuations correr, b1k viscosity? = (2/d) » whered is the space dimension
sponds directly to the variance in the local presgse Sec. 2. The modifications to include an independénare com-
IV A), they are limited and vary asNy, whereN, is the pletely straightforward.
number of MD particles inside a given P Using the assumption of linear interpolatipBq. (29)],
_ _ the advective termpvv vanishes in the frame of reference of
C. The momentum conservation equation the overlap region since thewd~0. The velocity gradients
Using Eq(33) we may Sp“t Eq(18) into average and in Eq (36) may be evaluated USing qug), the result is

fluctuating parts to get

1
dP, .Uty VV+(VV)T=—(eqU+ Ugeq)- (37
W=ng+2| (M) > +% fra () (L) -1y Fui
5 Note further that¥,l,, is in fact a surface integral over the
+ ) Fa(x)M(v/x')- U+ >, Fu,s (34  DP surface. Consequently,
i |
where the fluctuating force or, equivalently, the momentum Z 18 Tk=0 (39)

flux is

= _ _ N, for any functiong, that does not depend dnin particular,

Fru=2, fia(X)[(IL—{IL)) - r+m(v/ X/ {x'))-U k
! Z aCOLE = (L)) - MOV = (Vi) - U] we haves |8, (px+ Pr)/2= — =1 8qPi/2, wherep=py
—p;. Combining Egs.(36), (30), and (37), Eqg. (34) then

. Uty
+M —. (35) takes the form
- - dPy - Uty P
Note that by definitionF,,= —F,,. The fact that we have TS :ng+2| M) —5— —EI ha 5@

absorbed mass fluctuations with the fluctuationd=jn de-
serves a comment. In general, force fluctuations will cause n

mass fluctuations, which in turn will couple back to cause +r—H[Uk|+(Uer<|)Q<|]
momentum fluctuations. The time scale over which this will
happen is the viscous diffusion timg=rﬁ|/n, where 7 is
the dynamic viscosity of the MD system. This is the time it
takes for a velocity perturbation to decay over a distance o

ry. Perturbations mediated by the pressure, i.e., soun . . .
. : . except the gravity term on the right hand side of B29) are
waves, will have a shorter time. In the following we shall dd whenke!. This shows that Newtor's third law is un-

need to make the assumption that the forces are MarkOViaa‘ffected bv the approximations made and that momentum
and it is clear that this assumption may only be valid on time y PP

scales larger than, . Since the time scale of a hydrodynamic (r:nogdseerf\gart?hne ?:;iss 2X3(;tt|iyo‘n ghn% ?ﬁ?inzt?temeesziocr?nTﬁg
perturbation of sizé, say, is also given as a viscous diffusion q 9y €q '

time, but with the length scale 12/ » this restriction implies pressure will eventually follow from an equation of state of

the scale separation requiremefi<|?, consistent with the the formpy=p(Ey, Vi, M), whereVyis the volume andi

. : is the mass of DR.

scaler, being mesoscopic.

Since(IT;) is in general dissipative in nature, E§4) and
its mass and energy analogs will be referred to as DPDL. Itis D. The energy conservation equation
at the point of taking the average in E@4) that time re- Splitting Eg. (27) into an average and a fluctuating part
versibility is lost. Note, however, that we do not claim to gjyes
treat the introduction of irreversibility into the problem in a
mathematically rigorous way. This is a very difficult problem . , o Ui
in general, which so far has been realized by rigorous methEk:%: ka(Xi)(<‘]ei>_<Hi ) 7) 'rk|+%: fra(x)
ods only in the case of some very simple dynamical systems
with well-defined ergodic propertid25-27. We shall in- 1. Ui 2 ~ Uy -
stead use the constitutive relation for a Newtonian fluid ><<fi'Xi'>'Uk|+zl §<Mk|>(7> —El Fir -+,
which, as noted earlier, is an emergent property of Lennard-
Jones and hard sphere MD systems, to give(B4). a con- (40)
crete content. The momentum-flux tensor then has the fol-
lowing simple form: where we have defined

+ Zl Fu, (39

where we have assumed that the presgyras well as the
?verage velocity, interpolates linearly between DP centers,
8nd we have omitted th/{ x{ )~0 term. Note that all terms
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Mo [ Ui\ 2 and the description of thermal conduction employed by Ava-
=2 Fa(x) (=30 T+ _k'(i +> fu(x)  losand Mackie. While the heat flux here is taken to be linear
i 212 [ in differences inT, Avalos and Mackie use a flux linear in

differences in (IT). As both transport laws are approxima-
-Uy, (41  tions valid to lowest order in differences T they should be
considered equivalent.

i.e., the fluctuations in the heat flux also contains the energy With the internal energy variable at hand it is possible to
fluctuations caused by mass fluctuations. This is like the mouPdate the pressure and temperaflief the DP’s provided
mentum case. an equation of state for the underlying MD system is as-

Note that in taking the average in E0) the IT-U,,  sumed, and written in the fornP=P(E,V,N) and T
product presents no problem B, is kept fixed under this =T(E,V,N). For an ideal gas these are the well-known re-
average. If we had averaged over different valuebgfthe  lationsPV=(2/d)E andkgT=(2/d)(E/N).

vl Ua .,
X| (€ X —<4sixi>)—m7~vixi

product of velocities inll- U, would have caused difficul- Note that we need only the average evolution of the pres-
ties. Equation(40) is the third component in the description sure and temperature. The fluctuationgpare already con-
at the DPD1 level. tained inFy, and the effect of temperature fluctuations is

The average of the energy flux vectyris taken to have

the general fornid] contained withing, .

At this point we may compare the forces arising in the
p(Iy=ev+a-v—AVT (42)  present model to those used in conventional DPD. In con-
ventional DPD the forces are pairwise and act in a direction
whereo=II—-pvv is the stress tensax, the thermal conduc-  parallel tog,;, with a conservative part that depends only on
tivity, and T the local temperature. Note thatin Eg7) only  r,, and a dissipative part proportional toUy-e,)ey
J. appears. Since’~0 we have(J,)=—\VT. Averaging [8,9,28. The forces in our version of DPD are pairwise too.
of Eq. (40) gives The analog of the conservative forég(py/2)e, is central
and itsr dependence is given by the Voronoi lattice. When

Ek:_z ||k7\E—E I Pkt Py Qq—i there is no overlad,, between dissipative particles their
[ Na 49 2 Ml forces vanish(A cutoff distance, beyond which no physical
U 1 e interactions are permitted, was also present in the earlier ver-
Skl STy Skl sions of DPD—see, for example, RdB]—where it was
X[UK'HUK"&")G"]). 2 +2 2<Mk'>< 2 ) introduced to simplify the numerical treatmériBue to the
existence of an overlap region in our model, the dissipative
LIRS E+ E S E %“i force has both a component parallelgg and a component
4r, KTKEFKRy T Y, kI* g kb parallel to the relative velocityJ,,. However, due to the

linear nature of the stress-strain relation in the Newtonian
(43 MD fluid studied here, this force has the same simple linear
where T, =T,—T, is the temperature difference between velocity dependence that has been postulated in the litera-
DP’s k andl, and we have used linear interpolation to write tU"¢- o _ .
(€)= (1/2)(Ex/V,+E, IV,). The first term above describes The _fnctlon_ co_efﬁment is S|mply_the viscosity of the
the heat flux according to Fourier's law. The next nonfluctu-Underlying fluid times the geometric ratig, /ry;. As has

ating terms, which are multiplied Hy,,/2, represent thaate ~ 0&€n pointed out both in the context of DRID4] and else-
of) work done by the interparticle forces, and g term Wherg,_ the viscosity is gene(alﬂ)otproportlonal to afnqtlon
represents the work done by the fluctuati,n force coefflglent between the parplcles. Afterl all, c_onservatlve sys-
P . y 9 B tems like MD are also described by a viscosity. Generally the
AE has been pointed out by ALvans and Mackie ano! byviscosity will be caused by the combined effect of particle
Espamwl [16,17, the work done byry, has the effect that it interaction(dissipation, if any and the momentum transfer
increases the thermal motion of the DP’s at the expense of gaused by particle motion. The latter contribution is propor-
reduction inE, . This is the case here as well since the abov&jonal to the mean free path. The fact that the MD viscosity
Fui- Uy term always has a positive average due to the posis, the DPD viscosity, and the friction coefficient are one and
tive correlation between the force and the velocity incre-the same therefore implies that the mean free path effectively
ments. vanishes. This is consistent with the space-filling nature of
Equation(493) is identical in form to the energy equation the particles. See Sec. VI B for a further discussion of the
postulated by Avalos and Mackié6], save for the fact that zero viscosity limit.
here the conservative forcgepy+ p;)/2]eq-Ux/2 (which Note that constitutive relations like Eq86) and(42) are
sums to zero undex,) is present. The pressure forces in theusually regarded as components of a top-down or macro-
present case correspond to the conservative forces in conveseopic description of a fluid. However, any bottom-up meso-
tional DPD—it will be observed that they are both derived scopic description necessarily relies on the use of some kind
from a potential. However, while the conservative force inof averaging procedure; in the present context, these rela-
conventional DPD must be thought to be carried by someions represent a natural and convenient although by no
field external to the particles, the pressure force in our modeineans a necessary choice of average. The derivation of
has its origin within the particles themselves. There is also @mergent constitutive relations is itself part of the program of
small difference between the present form of Fourier's lawnonequilibrium statistical mechanickinetic theory, which
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provides a link between the microscopic and macroscopiequations there is no significant contradiction between the
levels. However, as noted above, no general and rigorousvo interpretations. For that reason and in order to connect
procedure for deriving such relations has hitherto been realwith the existing analysegl4,16,17 we will apply the Ifo
ized; in the present theoretical treatment, such assumed coimterpretation in what follows.

stitutive relations are therefore a necessary input in the link-

ing of the microscopic and mesoscopic levels. A. The thermal forces
We consider the system o, >1 MD patrticles inside a
IV. STATISTICAL MECHANICS OF DISSIPATIVE given DR at a given time, say, all the MD particles with
PARTICLE DYNAMICS positions that satisfy,(x;)>1/2 at timet,. At later times it

will be possible to associate a certain volume per particle

In this section we discuss the statistical properties of thevith these particles, and by definition the system they form
DP’s with the particular aim of obtaining the magnitudes ofwill exchange volume and energy but not mass. We consider
Fy andqy. The discussion is based on the conventionakll the remaining DP’s as a thermodynamic bath with which
Fokker-Planck description of DP[16]. DPy is in equilibrium. The system defined in this way will be

It is not straightforward to obtain a general statistical me-described by the Gibbs free energy and the isobaric en-
chanical description of the DP system. The reason is that theemble. Due to the diffusive spreading of MD particles, this
DP’s, which exchange mass, momentum, energy, and vokystem will only initially coincide with the DP; during this
ume, are not captured by any standard statistical ensembltsansient time interval, however, we may treat the DP’s as
For the grand canonical ensemble, the system in question 8ystems of fixed mass and describe them by the approxima-
defined as the matter within a fixed volume, and in the casgon <|\'/|k|>:o_ In fact, the(Mk|>=0 approximation may rep-

of the isobaric ensemble the particle number is fixed. Neithefesent a practical numerical strategy for which the following
of these requirements holds for a dissipative particle in genanalysis will be exact.

eral. The magnitudes ofq and F follow in the form of

A System that exchanges mass, mom.entum, energy’,ar?ﬂictuation-dissipation relations from the Fokker-Planck
volume without any further restrictions will generally be ill ¢4 iyalent of our Langevin equations. The mathematics in-
defined as it will lose its identity in the course of time. The 5 eq in obtaining fluctuation-dissipation relations is essen-
DP’s, of course, remain well defined by virtue of the CoU-yiq|1y well known from the literaturg 9], and our analysis

pling between the momentum and volume variables: The DRaaiels that of Avalos and Mackja6]. However, the fact

volumes are defined by the positions of the DP centers ang,at the conservative part of the conventional DP forces is
the DP momenta govern the motion of the DP centers. Hencgg replaced by the pressure and that the present DP's have

the quantities that are exchanged with the surroundings arg  ariaple volume makes a separate treatment enlightening.
not independent and the ensemble must be constructed ac- 1,o probabilityp(V, ,Py ,E,) of finding DR, with a vol-

corgingly. f hall | id humevk, momentumP,, and internal energi, is then pro-
_ However, for present purposes we shall leave aside g iqng) 1o exp®;/kg) whereS; is the entropy of all DP’s
interesting challenge of designing the statistical mechanic

: ; : iven that the values\,P,,E,) are known for DR [30]. If
properties of such an ensemble, and derive the magnitude ’Vdenotes theverl:trz\é';/ oF thé)bath wevc\:lan wEEr,eEa[s l
Fy andqy from an approximation. This approximation is

justifiable from the assumption th&t, andq, have a neg-
ligible correlation time. It follows that their properties may
be obtained from the DP behavior on such short time scales 5
that the DP centers may be assumed fixed in space. As a S (Ve Pe B S’ s Py ﬂ_S'V
result, we may take either the DP volume or the system of ~S'(Vr,Pr.Er) JE | K 2M EIVAML
MD particles as fixed for the relevant duration of time. .

H_ence, for_ the purpose of obtainirﬁ| andgq, we may use — —P+S,, (44)
either the isobaric ensemble applied to the DP system, or the aP
grand canonical ensemble applied to the MD system. The o
analysis of the DP system using the isobaric ensemble folvhere the derivatives are evaluated ¥ (Pr,Ey) and thus
lows the standard procedure using the Fokker-Planck equ&haracterize the bath only. Assuming tifatvanishes there
tion, and the result for the equilibrium distribution is valid i nothing in the system to give the vecta®'/JP a direc-
only in the short time limit. The analysis of the MD system tion, and it must therefore vanish as wgB4]. The other
corresponding to the grand canonical ensemble could be coflerivatives give the pressum and temperaturd, of the
ducted along similar lines. bath, and we obtain

The Langevin equations that have been discussed in the
literature have all been given the " Itonterpretation
[14,16,17,2% The present equations are derived on the con-
ceptual basis of molecules, and it is clear that the fluctuating
forces cannot be strictl$ correlated. On the contrary, they where the Gibbs free energy has the standard G E,
must have smooth correlation functions, and consequently- poV,— ToSc. Since there is nothing special about,OP
the Stratonovitch interpretation is the appropriate p2@.  immediately follows that the the full equilibrium distribution
We shall later show that on the level of the Fokker-Planckhas the form

5
—E | +5
K

2M

ST:S,(VT_VkaPT_PkyET_

Pk

Gict o

, (45)

1
ST:S’(VTaPTvET)_T_
0
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P2 It is a standard result in nonequilibrium statistical me-
pquZ—l(TO,po)eX[{ —Boz WJer ,  (46)  chanics that a Langevin description of a dynamical variable
k
y7
whereBy=1/(kgTy). y=a(y)+G(y), (52

The distribution given in Eq(46) implies that the total
energy and momentum will fluctuate. These quantities arghare G(y)=w(y)W(t), is a & correlated force so that

conserved, however, and the system of all DP’s thus_ haf’\N(t)W(O))zé(t). Equation(52) has a probabilistic repre-
three degrees of freedom fewer than Ef) suggests. This  gontation in terms of the Fokker-Planck equation
is potentially important in the case of only a few DP’s. In the

thermodynamic limit, i.e., when the difference between the ap(y,t) 1

thermodynamic reservoir represented by a finite and infinite ~ —_— =~ V-[ay)p(V)]+ 5 VV:[A(y)p(Y)], (53
number of DP’s is negligible, Eq46) is a good approxima-

tion for the computation of single DP quantities. whereV denote derivatives with respect yoand p(y,t) is

The temperatureT,=(dS,/JE,)~* and pressurep, the probability distribution for the variably at time t,
=T(dS¢/ V) will fluctuate around the equilibrium values (G(y,)8(y,t"))=Ad(t—t'), andA is a symmetric tensor
To andpy. The above distribution is analyzed by Landau andyf rank 2[31]. Equation(53) corresponds to the ltimterpre-
Lifshitz [24], who show that the fluctuations have the mag-4ion [29] of our Langevin equations. In Sec. IV C and the

nitude Appendix we will return to show that the different interpre-
2 tations are equivalent at the relevant order of approxima-
(A P2>= kBTO < 2>: kBTO (47) tions.
K Vs K v, In the preceding paragrapfy denotes all the fluctuating

terms in Eqs(39) and(43). Using the above definitions it is
where the isentropic compressibilitys= — (1/V)(dV/dP)s  a standard mattd®] to obtain the Fokker-Planck equation
and the specific heat capacity are both intensive quanti- ;
ties. Comparing our expression with the distribution postu- p
lated by Avalos and Mackie, we have replaced the Helm- ot~ (LotlostLor)p (54)
holtz by the Gibbs free energy in E@L6). This is due to the
fact that our DP’s exchange volume as well as energy. where

We write the fluctuating force as

d d P
Lo=—> — U+ 2, |k|(a—Pk‘eK|7

Fu= @y | Wi+ @ Wi (48) k dk k#l
where, for reasons soon to become apparent, we have chosen + i% ) UHM ,
to decomposé&,, into components parallel and perpendicular IEx 4
to g,. The W’'s are defined as Gaussian random variables p s (U T
with the correlation function Los= >, |k{_ P2 ( K ED )\ ﬁ) }
i@ MoPe KB 2 K Ty )]
<Wkla(t)an,8(t,)>: 5a,85(t_tl)( SknSim+ kmOin),
( 1 d d Uy
LDIFZE gl wklkl'a_Pk'Lkl_O-,_Ek wklkl'?'ﬁkl
wherea andg denote eithet or||. The product ofs factors
ensures that only equal vectorial components of the forces o[ 0 d
between a pair of DP’s are correlated, while Newton'’s third — Ay 9E. 9B [ (55
law guarantees thady = — w . Likewise, the fluctuating K '
heat flux takes the form Fo= (/7 )[ U+ (Ug-8q)&q], and the sunt, ., runs over
_ bothk andl. The operatorZ,, is defined as in Ref.16]:
A= A Wi (50
[ d Ug [ @ d
whereW,; satisfies Eq(49) without the 8,5 factor and en- L= P, dP] 2 \9E. 9E) (56)
ergy conservation implied ;= — A, . . . .
The force correlation function then takes the form The steady-state solution of EG4) is already given by Eq.
(46); following conventional procedures we can obtain the
(Fun(DFim(t)) = (@ @m. + O @) fluctuation-dissipation relations fes and A by insertingp®4
in Eq. (54).
X (k1 Onm™T SkmOin) S(t—1") Apart from the tensorial nature @, the operators g

andL e are essentially identical to those published earlier in

conventional DP[J16,17. However, the “Liouville” opera-
(51) tor Lo plays a somewhat different role as it contains the

dl 9E term, corresponding to the fact that the pressure forces
where we have introduced the second order teasQf,. do work on the DP’s to change their internal energy.

= Wy nm( Ok Onm™T Skmdin) 6(t—1"),
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While Lyp®% conventionally vanishes exactly by construc- B. The It6-Stratonovitch dilemma
tion of the inter-DP forces, here it vanishes only to order and the final equations of motion
1/N,. In order to evaluaté ,p°9 we need the relationship

Consider the integration of the momentum equatid®)
P— Pk+|~:kdt plus the hydrodynamic terms. Observing

J Jd
A 0Vk>' ®7) from Eq. (62 that F, depends on time through the depen-
dence on the position and temperature, we need to decide
which is derived by direct geometrical consideration of thewhether to evaluat&, at timet or t+dt or some time in
Voronoi construction. By repeated use of £8@) itisthena  petween. This is the well-known H8tratonovitch dilemma.
straightforward algebraic task to obtain It is possible to show29] that when the time correlation

function of F, is not strictly 8 correlated, the Stratonovitch

, (58 interpretation, wherd~, is evaluated at timet¢-dt)/2, is
appropriate. In fact, with nonsingular correlation functions
there is no dilemma, and the only reason for using the Ito
interpretation is mathematical convenience.

With this convenience in mind we have applied the Ito
interpretation in writing the Fokker-Planck equations. In the
Appendix we derive the additional terms that enter the

Fokker-Planck equation when we switch to the correct Stra-

/ Ni/Vi (59) tonovitch interpretation. There we show that the correction
terms are all of order (3N,) or smaller. What importance
can these terms have? To answer this question we note that
The last square root term is an intensive quantity of the ordekangevin descriptions always include some sort of hydrody-
Po/(kgTo), as may be easily demonstrated for the case of anamic or macroscopic description that holds for the average
ideal gas. Since each separate quantity that is contained brehavior of the system. This necessarily implies thigt 1.
the differences in the square brackets of E&B) is of the A hydrodynamic description would be meaningless if it were
orderpy/To we have shown that they cancel up to relativesensitive to the removal or addition of single particles. The
order 1IN <1. In fact, it is not surprising that Langevin idea of keeping terms of relative ordeiN}/is thus inconsis-
equations which approximate local gradients to first ordetent with the level of coarse graining used in the description.
only in the corresponding differences, likg,, give rise to a  We have therefore discarded terms of this order throughout.
Eokker—PIanck description that contains higher order correcy follows from this that Eqs(62) remain correct.
tion terms. _ _ In the Appendix it is shown that in passing between the
~ Having shown that ,p®? vanishes to a good approxima- 15 and Stratonovitch interpretations there is no modification
tlon we may proceed to.obtam the fluctuation-dissipation rext the Fokker-Planck equation due to thedependence in
lations from the equationlpys+Lpg)p®=0. It may be Eq. (62). Likewise, the modification due to the temperature
noted from Eq.(55) that this equation is satisfied if dependence iy, is of relative order M, only. The corre-
sponding terms in the Langevin equations, the so-called spu-

p=0, rious drift terms, are therefore safely negligible as well.
However, the situation is not so clear for the corrections

60 due to theF- Uy /2 term in the Langevin energy equation,

J _1E |
&rk_2 & k1€

P Pl
JE;  KkgTT,

eq
p
Lop™="- > Taéa- Uy
K=

which does not vanish identically. However, note that if we
estimateE;~N,kgT we obtain dp,/dE,~ (1/N,)(p,/kgT).
Similarly, we may estimate,, and Ty, from Eq. (47) to
obtain

puTa  VAP?AT? 1

keTTi KeTK T Ni Ve, T2

b 1
lF + E""klklﬁkl

| )\E+ EAZ 9 i) ea_q and so we discuss this issue here. In the Fokker-Planck equa-
WA g 27K GE, 9E ) [P ' tion only thed/ JE, part of thel p,5 term is modified by the
F-U, /2 term. Hence, only the magnitude of the heat-flux
Using the identity fluctuationsA , is affected, and not the momentum fluctua-
tions. The Fokker-Planck equation decomposes into a mo-
&6t ikik=1, (61)  mentum part and an energy part, and within the energy part

Ay receives a correction of relative orderyN, which is
whereiy, is a vector normal t@,, we may show that Eq. discarded. In the Langevin equati¢#), on the other hand,
(60) implies that the F- Uy /2 term also needs to be compared with terms like

| nUZ,. From the statistical mechanical relation Hg7) it

w§|u=2wﬁu=47iks®k|rﬁ, may bg seen thaTk,~1/\/N—, Wh|le_the equipartition prin-

kl ciple givesUZ,=kgT/M,~1/N,. This means that the work
62 termsin Eq.(43) are smaller than the heat conduction terms

AZ= 2kBTkT|)\Iﬂ, by a factor 1{/N,. Consequently, while thé- U, /2 term can

ki be discarded in the Fokker-Planck equation it should be kept
in the Langevin equation. The result of doing this is the
where®,,'=(1/2)(T, + T, Y. energy equation
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where we have writtefr’,, with a prime to denote that it is
uncorrelated withU,,. In a numerical implementation this

HHEE o _ 0 i i I I i i i
implies thatF’,, must be generated from a different random 0 500 1000 1500 2000 2500 3000 3500 4000

. =~ . . Iterati
variable thanF,; which is used to updat&,,. In other erations

words, while Eq.(43) is to be subjected to the Stratonovitch  FIG. 4. The DPD temperature, averaged over 4000 dissipative
interpretation the equivalent E¢0) is to be interpreted ac- particles, as a function of timéteration number in the integration
cording to Ifg as may Eq(39). schemg, showing good convergence to the underlying equilibrium

What is the physical significance of the different magni-molecular dynamics temperature, which was fixed at 300 K. This
tude of the terms in the energy equation? If one tries to heatimulation provides strong support for the approximations used to
a pot, rubbing it is generally a less efficient means than thelerive the fluctuation-dissipation relations in our DPD model from
conduction from a hotplate. We have observed that the sam®olecular dynamics.
is true when the heat conduction and work are due to spon-
taneous fluctuations. In E¢70) we could consistently have specified. These too must be deduced from the microscopic
discarded all work terms, since they are ordeyNl/com-  dynamics, just as we have done for the interparticle forces.
pared to the conduction terms. However, we keep them botithis may be achieved by considering a particulate descrip-
for comparison with existing workl6,17 and for the(rather  tion of the boundary itself and including molecular interac-
unrealisti¢ event that the thermal conductivityvanishes, or  tions between the fluid MD particles and other objects, such
becomes very small, whilg does not. In this case the order as particles or walls. Appropriate modifications can then be
1/{N correction toA, which is derived in the Appendix, made on the basis of the momentum-flux tensor of (£€),
must be retained. which is generally valid.

Equationg32), (39), and(70) together with Eq(62) com- Consider, for example, the case of a colloidal suspension,
plete the derivation of our Voronoi based dissipative particlewhich is shown in Fig. 5. Beginning with the hydrodynamic
dynamics.

V. SIMULATIONS

&
3
H
5
H

While the present paper primarily deals with theoretical
developments, we have carried out simulations to test the
equilibrium behavior of the model in the isothermal case.
This is a crucial test as the derivation of the fluctuating ; : ‘
forces relies on the most significant approximations. The E F Sl D i
simulations are carried out using a periodic Voronoi tessel- ‘ ok S
lation described in detail elsewhe@?].

Figure 4 shows the relaxation process toward equilibrium
of an initially motionless system. The DP temperature is
measured aéPZ/(2M,)) for a system of DP’s with internal
energy equal to unity. The simulations were run for 4000
iterations of 4000 dissipative particles with a time stip
=0.0005 using the molecular mass, density, and viscosity of
water at 300 K. The Reynolds numbé&ee Sec. VI B is
Re=0.38. It can be seen that the convergence of the DP
system toward the MD temperature is good, a result that
provides strong support for the fluctuation-dissipation rela- FIG. 5. Multiscale modeling of colloidal fluids. As usual, the

tions of Eq.(62). dissipative particles are defined as cells in the Voronoi lattice. Note
that there are four relevant length scales in this problem: the scale
VI. POSSIBLE APPLICATIONS of the large, gray colloid particles, the two distinct scales of the

dissipative particles in between and away from the colloids, and
finally the molecular scale of the MD particles. These mediate the

For most practical applications involving complex fluids, mesoscopic interactions and are shown as dots on the boundaries
additional interactions and boundary conditions need to béetween dissipative and colloidal particles.

A. Multiscale phenomena



PRE 62 FOUNDATIONS OF DISSIPATIVE PARTICLE DYNAMICS 2153

momentum-flux tensor Eq19) and Eq.(39), it is evident Neglecting gravity for the time being, E¢39) takes the

that we also need to define an interaction region where théorm

DP-colloid forces act: the DP-colloid interaction may be ob- .

tained in the same form as the DP-DP interaction of (86) k , Pk 1 ,

by making the replacemeht— L, , whereL,, is the length dt _2 | 7 8t Rel Vit (Vi 8a)&]

[or area in three dimensiort8D)] of the arc segment where

the dissipative particle meets the collggke Fig.  and the b ptpl . Ut o

velocity gradientr ., )[ (Uy- €q)eq+ Uy ] is that between the t2 o, 2 - Ug—5—+ | Furs

dissipative particle and the colloid surface. The latter may be

computed usingJ, and the velocity of the colloid surface (64)

together with a no-slip boundary condition on this surface. In , , 5 5 5.

Eq. (62) the replacemenity—L,, must also be made. wherePy=P/(MUo), Py=piro/(MUg), M=prg in 2D,

Although previous DPD simulations of colloidal fluids the ~ Reynolds — number ReUgrop/n, and Fy

have proved rather successful0] at low to intermediate = (r,/MU3)F,, andF,, given by Eqs(48) and(62). A small

solid volume fractions, they break down for dense systemga|culation then shows that K, is related tow), andt’ as

whose solid volume fraction exceeds a value of about 40%,%kI is related tow,, andt, then

because the existing method is unable to handle multiple

length scale phenomena. However, our version of the algo- 1 kaT 1

rithm provides the freedom to define dissipative particle wpi~ B

sizes according to the local resolution requirements as illus-

trated in Fig. 6. In order to increase the spatial resolution . . .

where colloidal particles are within close proximity, it is nec- Where we have neglected dimensionless geometric prefactors

essary and perfectly admissible to introduce a higher densit{k€ l«i/Ta and used the fact that the ratio of the thermal to

of dissipative particles there: this ensures that fluid lubricakinetic energy by definition ob is 1. _

tion and hydrodynamic effects are properly maintained. Af- The abqve resqlts |mpIy that whgn the DPD system Is

ter these dissipative particles have moved it may be necegjgasured in nondimensionalized ”’?"S everything is deter-

sary to retile the DP system; this is easily achieved bymlned _by the value of the mesoscopic Re_yno"?'s number Re.
Co .~ .“There is thus no observable difference in this system be-

distributing the mass and momentum of the old dissipati

. . . V&ween increasing, and decreasing.
partlcles on t_he nNew ones according to their e(mfa/o!ume . Returning to dimensional units again, the DP diffusivity
in 3D). Considerations of space prevent us from dlscussmgnay be obtained from the Stokes-Einstein relafid§] as
this problem further in the present paper, but we plan to
report in detail on such dense colloidal particle simulations kT
using our method in future publications. We note in passing D= arn’ (66)
that a wide variety of other complex systems exist where 0’7

modeling and simulation are challenged by the presence %herea is some geometric factom( 67 for a sphergand

several simultaneous length scales, for example, in polyz; qyantities on the right hand side exceprefer directly to
meric and amphiphilic fluids, particularly in confined geom- i, underlying MD. As we are keeping the MD system fixed

R_eMUng_e’ (65)

etries such as porous mediz3]. and increasing Re by increasing, it is seen thatD and
_ o _ henceny vanish in the process.
B. The low viscosity limit and high Reynolds numbers We note in passing that i is written in terms of the

In the kinetic theory derived by Marsh, Backx, and Emstmean free path, D=\ kgT/(pr3), and this result is com-
[15] the viscosity is explicitly shown to have a kinetic con- pared with Eq.(73), we get\'=N\/ro~1/ry in 2D, i.e., the
tribution 7= pD/2 whereD is the DP self-diffusion coeffi- mean free path measured in units of the particle size de-
cient andp the mass density. The kinetic contribution to the creases as the inverse particle size. This is consistent with the
viscosity was measured by Masters and Wafi@4] within ~ decay ofz, . The above argument shows that decreasjng
the context of an improved theory. How then can the viscosis equivalent to keeping the microscopic MD system fixed
ity » used in our model be decreased to zero while kinetiovhile increasing the DP size, in which case the mean free
theory puts the lower limity, to it? path effect on viscosity is decreased to zero as the DP size is

To answer this question we must define a physical way ofncreased to infinity. It is in this limit that high Re values
decreasing the MD viscosity while keeping other quantitiesnay be achieved.
fixed, or, alternatively rescale the system in a way that has Note that in this limit the thermal forcdapRe*l’z will
the equivalent effect. The latter method is preferable as ivanish, and we are effectively left with a macroscopic, fluc-
allows the underlying microscopic system to remain fixed. Intuationless description. This is no problem when using the
order to do this we nondimensionalize the DP momentunpresent Voronoi construction. However, the effectively
equation Eq(39). spherical particles of conventional DPD will freeze into a

For this purpose we introduce the characteristic equilibcolloidal crystal, i.e., into a lattice configurati¢®,9], in this
rium velocity Uy= VkgT/M, and the characteristic distance limit. Also, while conventional DPD has usually required
ro as the typical DP size. Then the characteristic tithe calibration simulations to determine the viscosity, due to dis-
=rqy/U, follows. crepancies between theory and measurements, the viscosity
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various existing mesoscale methods have been put on a
bottom-up theoretical foundation. To be precise, we have

coarse grainin . .
+ i i placed the present version of DPD on a molecular basis in

Time symmetric the sense that) the DP’s have a consistent conceptual in-
coarsed grained equations terpretation as collections of moleculd§; the forces be-
of motion tween the DP’s are averages of explicit microscopic particle
+ averaging over MD configurations qux_es (DPD_],_); and (iii)_ the conservation Iaws_ of our DPD
derive explicitly and directly from the underlying conserva-
tion laws of the molecular system. We have applied this
+ constitutive relations and Markovian assumption particle interpretation to resolve the”{8iratonovich di-

lemma as arD(1/N) effect, whereN is the number of mol-
ecules in a dissipative particle. We have further used the
particle interpretation as a natural basis for the statistical me-

chanical discussion of the fluctuating fluxsand q, for
example, to identify the DPD and MD temperatures. On the
¢ equilibrium statistical mechanics other hand, the method still relies on some phenomenologi-
cal input parameters. Thus, neither the equation of state nor
the fluid viscosity have been obtained from molecular poten-
DPD complete tials (or Green-Kubo formulas related explicitly to micro-
scopic propertigs Moreover, we have not claimed to intro-
FIG. 6. Outline of the derivation of dissipative particle dynam- duce time irreversibility in a rigorous way. Finally, no
ics from molecular dynamics as presented in the present paper. T@tempt has been made to include any quantum mechanical
MD viscosityNis denoted by; and w is the amplitude of the fluc-  gffects in the present paper.
tuating forceF as defined in Eq(48). Our development brings with it some insights as well as
practical advantages. One of the main virtues of this proce-
in our form of DPD is simply an input parameter. However, dure is the capability it provides to choose one or more
there may still be discrepancies due to the approximationsoarse-graining length scales to suit the particular modeling
made in going from MD to DPD. These approximations in-problem at hand. The relative scale between molecular dy-
clude the linearization of the inter-DP velocity fields, the namics and the chosen dissipative particle dynamics, which
Markovian assumption in the force correlations, and the nemay be defined as the ratio of their number densities
glect of a DP angular momentum variable. poro! pup » IS @ free parameter within the theory. Indeed, this
None of the conclusions from the above arguments wouldescaling may be viewed as a renormalization-group proce-
change if we had worked in three dimensions instead of twodure under which the fluid viscosity remains constant: since
the conservation laws hold exactly at every level of coarse
graining, the result of doing two rescalings, say, from MD to
DPDa and from DPDx to DPDg, is the same as doing
We have introduced a systematic procedure for derivingust one with a larger ratio, i.e.ppppg/pmp= (Pporps/
the mesoscopic modeling and simulation method known agppp,.) (Popoe/PMD) -
dissipative particle dynamics from the underlying description The present coarse-graining scheme is not limited to hy-
in terms of molecular dynamics. Figure 6 illustrates thedrodynamics. It could in principle be used to rescale the local
structure of the theoretical development of DPD equationglescription of any quantity of interest. However, only for
from MD as presented in this paper. The initial coarse grainfocally conserved quantities will the DP particle interactions
ing leads to equations of essentially the same structure as thake the form of surface terms as here, and so it is unlikely
final DPD equations. However, they are still invariant underthat the scheme will produce a useful description of noncon-
time reversal. The label DPD1 refers to E(32), (34), and  served quantities.
(40), whereas the DPD2 equations have been supplemented In this context, we note that the bottom-up approach to
with specific constitutive relations for both the nonequilib- fluid mechanics presented here may throw light on aspects of
rium fluxes (momentum and hegpand an equilibrium de- the problem of homogeneous and inhomogeneous turbu-
scription of the thermodynamics. These equations are Eq$ence. Top-down multiscale methods and, to a more limited
(39) and(43) or (70) along with Eqs(62). The development extent, ideas taken from renormalization-group theory have
we have made that is shown in Fig. 6 does not claim tdeen applied quite widely in recent years to provide insight
derive the irreversible DPD equations from the reversibleinto the nature of turbulenck86,37; one might expect an
ones of molecular dynamics in a rigorous manner, althouglalternative perspective to emerge from a fluid dynamical
it does illustrate where the transition takes place with theheory originating at the microscopic level, in which the cen-
introduction of molecular averages. The kinetic equations ofral relationship between conservative and dissipative pro-
this DPD satisfy arH theorem, guaranteeing an irreversible cesses is specified in a more fundamental manner. From a
approach to the equilibrium state. Note that in passing to th@ractical point of view it is noted that, since the DPD viscos-
time-asymmetric description by the introduction of the aver-ity is the same as the viscosity emergent from the underlying
aged description of Eq36), a time-asymmetric nonequilib- MD level, it may be treated as a free parameter in the DPD
rium ensemble is requirel®6]. model, and thus high Reynolds numbers may be reached. In
This is the first time to our knowledge that any of the the »—0 limit the model thus represents a potential tool for

| DPD2: Langevin equation#

‘ Fokker-Planck equations ‘

Fluctuation dissipation o=woM,T)

VIl. CONCLUSIONS
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hydrodynamic simulations of turbulence. However, we haveservation that our fluctuating forces have smooth correlation
not investigated the potential numerical complications of thisunctions, and that the corresponding Langevin equations
limit. consequently should be treated according to the Stratono-
The dissipative particle dynamics that we have derived iwitch interpretatior 29].
formally similar to the conventional version, incorporating as In this appendix we compute the extra terms in the
it does conservative, dissipative, and fluctuating forces. Th&okker-Planck equatio(b4) that enter with the correct Stra-
interactions are pairwise, and conserve mass and momentutonovitch interpretation. We show that these terms are of
as well as energy. However, now all these forces have beemlative order 1J/N or smaller, and are thus negligible.
derived from the underlying molecular dynamics. The con- Following the discussion in Ref29] we note that the
servative and dissipative forces arise directly from the hydroextra terms that enter the Fokker-Planck equation with the
dynamic description of the molecular dynamics and theStratonovitch interpretation may be obtained by first modify-
properties of the fluctuating forces are determined via dng the drift term in the Langevin equation and then applying
fluctuation-dissipation relation. This relation was derived usthe Itointerpretation. This extra term appears directly if one
ing the approximate isobaric ensemble. An exact ensembliategrates Eq(52) over an intervalAt, keeping the correct
that describes the full interaction between DP’s exists, howerders ofdt:
ever, and work is in progress to understand it.
The simple hydrodynamic description of the molecules o
chosen here is not a necessary requirement. Other choices for Ay(t+At)=Jt dt’y(t')
the average of the general momentum- and energy-flux ten-
sors Eqs(26) and(19) may be made, and we hope these will , ) ~
be explored in future work. More significant is the fact that =a(y)At+f dt’Ay(t")-VG(y(1), (Al)
our analysis permits the introduction of specific physico-
chemical interactions at the mesoscopic level, together with ahich upon averaging and use of E&2) again takes the
well-defined scale for this mesoscopic description. form [29]
While the Gaussian basis we used for the sampling func-
tions is an arbitrary albeit convenient choice, the Voronoi
geometry itself emerged naturally from the requirement that (Ay)=
all the MD particles be fully accounted for. Well-defined

procedures already exist in the literature for the computatioRyhere the last integral contains &function that must be

of Voronoi tessellation38] and so algorithms based on our treated as a peaked but regular function so #fadts(t)
model are not computationally difficult to implement. Nev- — 12 The last term in the above equation is the correction
grtheless, it should_be_qppremated tha_t the Voronoi construGarm  sometimes referred to as the “spurious drift term,”
tion represents a significant computational overhesa. that distinguishes the two interpretations.

_ Finally, we note the formal similarity of the present par-  Now we apply the above formalism to evaluate the spu-
ticulate description to existing continuum fluid dynamics rious drift term that arises from thEy- Ug/2 term in Eq.

methods incorporating adaptive meshes, which start out fror&s), and then again to estimate the remaining spurious drift

a top-down or macroscopic description. These top-down B ms that arise from th&, andr, dependence i andA.

proaches include in particular smoothed particle hydrody- In order to compute the spurious drift term correspondin
namics[19] and finite-element simulations. In these descrip- P P P 9

tions too the computational method is based on tracing th& the work done byFy, we defineE,=—Z2Fy- U /2.
motion of elements of the fluid on the basis of the forcesNOW, EQ.(A2) takes the form

acting between therh39]. However, while such top-down -
computational strategies lack macroscopic and purely phe- =~ [ IE(Y)
nomenological fluid descriptions, the present approach rests (Bw=

on amolecularbasis.

t+At

a(y)+ft"dt%é(t”)-Vé(t)))m, (A2)

~APk/(t’)>

k!
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R tion of the Fokker-Planck equatid54):
APPENDIX: THE ITO -STRATONOVITCH DILEMMA

. J -
. The Fokker—PIanck equaﬁm(M) correfsponds. to the to LD|s—>LD|s—2 —(E, (A5)
interpretation of Eq(52). This is inconsistent with the ob- x IEk
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which amounts to the replacement where the drift component in the force has been written in
T T 3 1 1 shorthand notation asB and the fluctuations asF
B O ) P iy _> nkB@kl}. ~o(r,T)W(t) whereW(t) is & correlated and the amplitude
Mkl Fki AT\ M M, depends on position and temperature as shown in(@&j.
(A6) Equation(A2) now takes the form

We shall estimate the additional term as o
(AP}=BAt+f dt’(Ar(t")W(t")

10y 7 ar
D= =— A7
MM T B (A7) )
+ —=(AT(t")W(t")). (Al1)
To do this we introduce the viscous and thermal decay times a2
kgpl? In this equation it is easily observed that sinke~ [Udt

' ~ [fdt'dt"F contains a double integral over time, it will
only give a contribution of ordeAt?. The temperature term,

=2 (A8) h ill gi den ibution. Introducing th

t,=pl? 7, owever, will give an ordeat contribution. Introducing the

heat capacity per particle] (which is justkg for an ideal

wherem is the molecular mass arldhe length over which  gag, we may writeAT=AE/(Nc!) and thus

the temperature and velocity vary. We also recall from Eq.

(47) that whenT,, is taken to have the value of the equilib- 1 dw

rium fluctuation and the heat capacity of a DP is estimated as <AP>~BM+,_J dt’—=(AE(t)W(t")). (A12)

Ve, =Neks, then®, /T~ L/YN,. Combining these results ¢.,N

and usingM=mN, we get that Now, the only part ofE that is correlated with the momen-
tum fluctuation functionN(t) is E, and by a derivation that

T

Dklzi 2\ (A9) is completely similar to that which led to EGA4) we obtain
VN by
’ ’ r_ 2
Now, for most normal fluidd, /t,~1. For water, air, and f (AE(t)W(t"))dt' = 0 U~ 7kgTU. (A13)

glycerol at room temperaturg /t,, is approximately 0.001, _ .

0.1, and 1.0, respectively. More importantty/t,, is an in-  Using the fact thaB~ »U we may combine the above re-

tensive quantity so thab,, depends onN, through the sults to get

square root only. Hence the term that estimates the differ-

ence between the “lt@nd Stratonovitch versions of the

Fokker-Planck equations is safely negligible.

The same is true for all other spurious drift terms, as we

now proceed to show. In order to simplify the developmentThis completes the demonstration that the terms in the

we suppress both the vectorial and particle indices and writéokker-Planck equation that distinguish the dted Stratano-

Eqg. (39 in the form vitch interpretations are negligible. It also shows that the
) 5 Langevin equations for the momentum evolution may be in-
P=B(M,P,E)+F, (A10) terpreted in either way without affecting the results.

(AP)~5U L=l g) (A14)
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