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Controlling Hamiltonian chaos by adaptive integrable mode coupling
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The adaptive integrable mode coupling method is proposed to control two-dimensional Hamiltonian chaos.
We demonstrate that this control method can stabilize chaotic motions into regular ones in a model of the
standard map. Global stochasticity can be removed from the phase space by the control being switched on and
off.

PACS numbds): 05.45.Gg

Chaotic phenomena arise ubiquitously in natural systems Opi1=0p+JIns1, modl
and in manmade devices. The pioneering work of Ott, Gre-
bogi, and YorkgOGY) [1] sparked a great deal of interest in where it exhibits, in spite of its simplicity, much of the com-
control of chaotic dynamic systemi2—4]. Almost all of the  plex and canonical behavior of more complicated models,
systems studied share one common feature—being dissipand this is ideally suited for the study of chaotic dynamics in
tive. Dissipative systems exhibit ergodic behavior on theHamiltonian systems. FoK less than the threshold value
strange attractors, while chaotic Hamiltonian systems havgEl2] K,=0.97% ... motion inJ is bounded by the existence
complicated phase space structure, they have no attract@f good Kolmogorov, Arnold, and MosdKAM ) [13] sur-
but interwoven chaotic and regular regions, which have comfaces. FoilK>K_, there is unbounded motion ify and glo-
plicated influence on the chaotic dynamics and present bal chaos sets in.
challenge to chaos controlling. There have been some fore- We are interested in the chaotic orbits, that can reach
runners in this directioh5—9]. Noting that an unstable peri- arbitrary values ofl when K>K,.. To our knowledge, the
odic orbit in Hamiltonian systems often exhibits complex- greater the nonintegrability of the Hamiltonian systém.,
conjugate eigenvalues at one or more of its orbit points, Lathe largerK is), the fewer BirkhoffM cycles, the smalleM
et al. [5] extended the OGY stabilization method to controland N are (rotation numbers of these orbits al/M, in
Hamiltonian chaos by incorporating the notion of stable andvhich M andN are coprime integeyg11]. For the standard
unstable directions at each periodic point. Similar to OGY’smap, each of these elliptil cycles has one fixed point on
method, applying this scheme one has to follow the trajec#=0, and this is a common feature of all valueoiihclud-
tory, and has to calculate the corresponding perturbation pang the integrable cas€ =0. In the case oK=0, the solu-
rameters on each step by a complicated algorithm. There isons corresponding to these ellipti¢ cycles are integrable
another type scheme, whose goal is directing a trajectory to modes, which we apply in controlling. Coupling with these
desired target in the phase sp&6e9]. Obviously, itis nota integrable modes, the system under control can be described
general way to control Hamiltonian chaos. Therefore, soméy the following equations:
new methods for controlling Hamiltonian chaotic systems K
ought to be found, which should be both efficient and gen- Jni1=Jdh— ESiﬂ(Z’JTan)'Fe(yn— 0,, modl
eral.

In this paper, we will propose one method for controlling
chaos in two-dimensional Hamiltonian systems, which is
called the adaptive integrable mode coupling method. Our Xns1=X[1—-0O(6,)]+3,0(6,), mod1l
goal is to remove the chaotic motions that permeate into the
global phase space, and to stabilize them all into regular ~ Yn+1=Ya[1—=0O(6,) ]+ 6,0(6,)+ X1, mod1l
motions with small perturbation while the final states of the
controlled system remain the main features of the originalVNereé
Hamiltonian system. In the following, we will demonstrate 1 6,<¢ 60,=1—¢
this method in a model of the standard map. O0)=10 ccpci-ec ()

The standard map is one of the most frequently occurring " '
models in many different application40,11 written in the ¢ is a control parameter, andis set on 0.001. Equatiof2)
form can be considered as a system with two coupling subsystems:

{J,6} and{X,y}. It is obvious that the subsyste{fiX,y} is
1) integrable in both cases &(6,), and it drives the other
subsystem{J,d} by a linear coupling ofg=e(y,— 6,).
Wheneverd,, comes into the vicinity of — e, + €], the inte-
grable subsysterfiX,y} is reset to{ X=J,y=6+J}, and we
*Author to whom correspondence should be addressed. Emadall this process aadaptiveexertion.
address: ygyao@aphy.iphy.ac.cn The Jacobian determinant of E@®) equals

0n+1:0n+\]n+1, mod 1, (2)

K
Jni1=dn— Zsin(zmbn), mod 1,
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1 —Kcog2mo,)—e 0 e
1 —Kcog27w6,)—e+1l 0 e
00, (Jn=X)®'(6,) 1-0(6,) 0 ' @

®(0n) (‘Jn_xn_yn+9n)®’(0n)+®(0n) 1_®(0n) 1_®(0n)

where®'(6,))=456(6,—1+¢€)— 6(6,— €). We note that de- bilized into regular motions. Then, when we release the con-
terminant(4) does not always equat 1. When®(6,)=0, trol (i.e., resee=0), the system follows Ed1), and iterates
Det. (4) equals 1 and the system of E) conserves its in the corresponding stablagain islands permanently. Fig-
measure. Wher® (60,)=1, Det. (4) equals 0, andX is a  ure 2 exhibits the typical orbits in the phase space on differ-

trivial dimension. If we considetfJ, 6,y} only, we obtain ent control stages. The global chaotic motions shown in Fig.
2(a) have been controlled by regular ones in the limited re-
1 —Kcog2mo,) —e e gions in Fig. 2b), and they become regular orbits in the
1 —Kcog2mh,)—e+l e|l=—¢ (5) stable islands shown in Fig(@ after releasing the control

action. Thus, global chaos in E() has been controlled, and
global stochasticity has been removed. We have mentioned
above that the system under control becomes dissipative, it
has local convergent regions. Taking into account our simu-
lation results, these limited regions are just inside the former
stable islands region, and all the systems running under con-
trol will be trapped in these regions, then turn into regular

E.‘]’H} |ntott{x,y>}(, antd aJszortTLerrtn oftthe d|tSS|pat|vte Tteset'motions. The control does not change the periodic orbits of 1
ing, resettingX,y} to {J,6}. The wo terms turn out alter- and 2. By inserting their corresponding solutions into the

nately. Via this interactive course, one can expect the systen .. . : s P
. ! rix corr ndin Ed4) an rmining their linear
to turn into the common stable structure of the two sub- atrix corresponding to Eqd) and dete g the ca

.- > stability, we know that the norms of all the eigenvalues for
systems, and tha.t glqbal chaos can be suppresseq n th'S.W em are no larger than 1, so these special periodic orbits
The first question is: Can global chaos under this handlmgemain stable under contro’I
be stabilized into regular motions? The answer is positive, Since we only have somé limited regions of regular mo-
a.nd trﬁ control para;me(‘;er i"’(}/n bl?tr?ot srfntahll thattthﬁ zontrq}ons in Fig. 2Zb) which belong to the former stable islands,
signal has a mass of order 1% of that of the controlied SySg,q gacond guestion is can the stabilized regular orbits under
tem. For eactK considered, we have determinet 420 to

be of random initial values, all of which can be completely

11 0

which indicates dissipation. It is notable that for global sto-
chasticity, the probability for the case @f(6,)=0 is much
bigger than that o (6,)=1 due toe=0.001 and Eq(3).
So, there is a long term of the conservative driving, driving

controlled. Figure 1 shows an example in whi€k-1.9, e Jn
=0.006, and the global chaotic motion is controlled by regu- 07 |
lar motion. After cutting off enough relaxation iterations, all )
the stable islands maintain their stable regions while becom- (a)
ing smaller, and all the global chaotic orbits have been sta- 03
Jn 3 Jn > @
0.7 0.7 . - . _
@) - - - | ©
03 03 | t -
Jn Ed 154
0.7 . . . (C)
= & ”
(b) o3 [ T, -
01 —
0.1 03 07 én
0 10000 20600 30600 n FIG. 2. Typical orbits in the phase space,(J,). (a) is from

Eq. (1); (b) is from Eq.(2); (c) is from Eq.(2) after the control is
FIG. 1. Stabilized global chaoga) J,, vs n; (b) 6, vs n; K switched off, and all the global chaotic motions have been removed
=1.9, e=0.006, and 1®iterations have been cut. from (a). K=1.1, e=0.006, and 10iterations have been cut.
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n FIG. 4. Distribution of the relaxation times for achieving a

table stateK=1.9, e=0.006, and 108 100 different initial con-

FIG. 3. Typical changes of the system. The control is releasecgitiorls are considered

from n=1000. (a)—(c) are J,, vs n, and (d)—(f) are 6,, vs n corre-
sponding to(a)—(c). K=1.2, e=0.006, and the only difference which are stabilized into the . :

. . e period 2 family {@a) and the
among(a), (b), and(c) [(d), (e), and(f)] is the different initial value. period 1 family in(b), respectively. The trajectories in both

{;) and (b) almost visit the whole phase space d,J).

control belong to those of the former stable islands? Th ; . . .
answer is negative, and remains negative except for the sp omparing Figs. @ with 6(b), we can state that the basins

cial periodic orbits mentioned above. This is easy to estimatgf attraction for the two are intermingled with each other.

and to show. After global chaos has been stabilized, we re- _ . _
lease the control, check the resultant motion, then we have 08 .Llv e T ]
the behaviors in Fig. 3, showing that changesjnare all IR TP
small, while inJ,, there are three kinds of typical changes. Y A (a)
They are either shrinking as i@, swelling as in(b), or P R T
changing very little as iric). Although their regular modes S

. . 1 B T
are changed, the resultant motions are still inside the again T S
stable islands, and global chaos has been completely stabi- A
lized. % os 06 09

It is worthwhile to note that for different initial values, the .

relaxation iterations which should be cut are different; a few 0009 [ - .
of them spend 10 For example, we control 100100 initial e s
values withK=1.9 ande=0.006, and the initial values are B A
distributed uniformly in the phase space of the system with- Jn T s e (b)
out control. We calculate the distribution of the relaxation R
times in Fig. 4 to quantify the iterations to achieve the final 0003 P B
localized regular state. From Fig. 4, we note that the time D
scale has a peak at about 30000 iterations in addition to a 0 — " ————
long time tail. 94.86% of the initial conditions can be con- 04 0403 0408 0409
trolled in 1C iterations, while the other 5.14% need®10 oxOSf - T . o ml
This implicitly reflects the third question we are interested N . PR
in: What are the complex basins of attraction? There are only Sl e -

- : . 6x10% - - . Sl e
two families of regular motions under the condition as stated N IR L R Y ()]
above, most of which correspond to the primary period 1 R PO
family, while under the other condition a few correspond to XI0° g U e .
the primary period 2 family, to which the initial values con- R S
tributed are illustrated in Fig. 5. There is 10Q00 points OxtQ? Lt T e LT
with homogeneous distribution considered in each frame of 04 040003 040006 040009
Fig. 5, where(b) magnifies(a), and(c) magnifies(b). Scat- an

tering distribution can be observed in finer and finer scale in

Fig. 5. It can be expected that: if one point in the phase space FiG. 5. Initial values are controlled into a period 2 familg
of (6,J) is controlled in the period 2 family, in its arbitrary full set; (b) enlargement of region defined if{6o,Jo)|0.4< 6,
small vicinity, there must be another point which will be <0.41,0<3,<0.0%; (c) enlargement of region defined in
controlled in the period 1 family. This is obvious in Fig. 6. {(6,,Jo)|0.4< 6,<0.4001,6<J,<0.000}. K=1.9, e=0.006, and
Figure 6 shows two trajectories of the controlled systemi00x 100 points with homogeneous distribution are considered.
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1.1 into because the attractive basins for them are complicated

;. o being intermingled. The method can be implemented safely
in the range ofK<4, even in the case whelt¢ is a little
larger than 4, but it still has some effect on global chaotic
motions.

The principle behind this method is using the adaptive
integrable mode of the system as a dissipative pulse to con-
trol Hamiltonian systems. The system under control is con-
servative in a long term, and dissipative in a short term due
to the short dissipative pulse exaction. The width of the dis-
sipative pulse is very shoftr(e)=10 3] and the strength of
the pulse is very weakef<10~?) so that the final trajectories
of the system remain the main features of the original Hamil-
tonian system. This method can control all the different
kinds of initial values considered, so its efficiency is general.
For an experimental system, the integrable mode may be
produced either by an integrable real system corresponding
I . to the controlled system or by a signal generator. Since we

0.1 : : can have computer in signal’s analyzing and controlling, it is
01 03 07 11 not difficult to introduce a weak dissipative pulse to the ex-
0n perimental system, and it is easy to apply this method.
The method studied in this paper is based on the symme-

FIG. 6. Typical trajectories of the controlled system with relax- try and continuity between a nonintegrable system and its
ation. The orbit in(a) is controlled into period 2 family, and the integrable counterpart. This indicates a possibility of apply-
orbit in (b) is controlled into period 1 family, ank=1.2, e  ng it to other two-dimensional Hamiltonian systems, and our
=0.006. further work in this context is in process. One of the most

o ) . important lessons learned from the kicked rotator model,

Now, the fourth question is: What is the effective range Ofgrom which one kind of real physical system of the standard
our control method? It is reasonable to conjecture: if thergnay arises is the classical diffusion excitation taking place
are stable primary islands in the phase space, all global chagg,oye the chaotic threshold, which is quantum mechanically
can be driven into regular motions. The last Birkhoff cycle issuppressed by interference effects that lead to exponential
a 1 cycle, so the control method might guarantee the Uppgpcajization of excitation in momentum spafd]. Further-
bounds ask=4. Much numerical simulation justifies this mqre, the formal connection between the rotator problem and
conjecture. In fact, eveK is larger than 4, for example, of e one-dimensional tight-binding model with a time-
K=4.3, we can still stabilize some of the global chaotic MO-independent pseudorandom potential was folr, which
tions into regular ones, but we cannot stgbilize all of them. |eq to the recognition that the quantum suppression of the

In summary, we proposed an alternative method to conghaotic excitation of the rotator is a sort of dynamical ver-

trol the two-dimensional Hamiltonian chaos in a model of sjon of Anderson localization. Since then, we can expect this
the standard map. And we demonstrated that this method c3fethod to apply to controlled dynamical localization phe-
stabilize the chaotic orbits that permeate throughout the gloqomenon in a quantum Hamiltonian system.

bal phase space. All the orbits are controlled into some lo-

calized regions similar to the former stable islands but Y.Z.thanks Sang-Yoon Kim and Gang Hu for a valuable

smaller. When the control is switched off, the regularity will discussion. This work was partially supported by the Na-

be kept. We cannot determine in advance what kinds of reguional Natural Science Foundation of China and the Science
lar motions the system under control will finally be stabilized Foundation of the China Academy of Engineering Physics.
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