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Alternative technique for complex spectra analysis

Pragya Shukla*
Department of Physics, Indian Institute of Technology, Kharagpur 721302, India

~Received 20 January 2000!

The choice of a suitable random matrix model of a complex system is very sensitive to the nature of its
complexity. The statistical spectral analysis of various complex systems requires, therefore, a thorough probing
of a wide range of random matrix ensembles which is not an easy task. It is highly desirable, if possible, to
identify a common mathematical structure among all the ensembles and analyze it to gain information about
the ensemble properties. Our successful search in this direction leads to the Calogero Hamiltonian, a one-
dimensional quantum Hamiltonian with inverse-square interaction, as the common base. This is because both
the eigenvalues of the ensembles and a general state of the Calogero Hamiltonian evolve in an analogous way
for arbitrary initial conditions. The varying nature of the complexity is reflected in different forms of the
evolution parameter in each case. A complete investigation of the Calogero Hamiltonian can then help us in the
spectral analysis of complex systems.

PACS number~s!: 05.45.2a, 03.65.Sq, 05.40.2a
re
e

o

m
e

e
e

de
ha
ov

log

is
o

ve
th

lo
lu
n
so
t

v
ov

i-

ted

im-
ni-
on
face

ll
of

, is
of

ro
al
the

the

of
les

lex
the
r
al,
E

as
i-

tary

a-
Recent statistical studies in various branches of theo
cal physics, ranging from the Calogero model of a on
dimensional~1D! fermionic system@1#, a random matrix
~RM! model of disordered systems, and matrix models
random surfaces to a nonlinears model~NLSM! of quantum
chaotic systems, have revealed the presence of a com
mathematical structure@2–4#. The connecting web of thes
various models with each other is well described in@3#.
However, so far, the connection of a RM model with oth
models was established only for standard Gaussian
sembles~SGE!, that is, Gaussian ensembles invariant un
unitary transformation. This was achieved by showing t
the distribution of the eigenvalues of the ensemble is g
erned by a Fokker-Planck~FP! equation@6,7# similar to that
of Dyson’s ‘‘Brownian’’ motion model@5#. Through the re-
duction of the FP equation to the Schro¨dinger equation, the
latter model is already known to be connected to the Ca
ero Hamiltonian and thereby to various other models@6–8#.
In this paper, we explore RM models with noninvariant d
tributions, and, following the same route as in the case
SGE, connect them to the Calogero Hamiltonian. This gi
us a new technique to analyze the spectral behavior of
quantum operators of complex systems.

The connection between complex systems and the Ca
ero Hamiltonian seems to be wide ranging. The eigenva
dynamics of Hermitian operators, for example, Hamiltonia
of complex quantum systems, e.g., chaotic systems, di
dered systems seem to have an intimate connection with
particle dynamics of the Calogero-Moser~CM! Hamiltonian.
The latter describes the dynamics of particles interacting
pairwise inverse square interaction and is confined to m
along a real line@1#,

Ĥ52(
i

]2

]m i
21

1

4 (
i , j

b~b22!

~m i2m j !
2 2(

i
V~m i !. ~1!

Here m i is the position of thei th particle andV(m i) is the
confining potential. Similarly the level dynamics of the un
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tary operators, e.g., the time-evolution operator is connec
to the Calogero-Sutherland~CS! Hamiltonian@9#

Ĥ52(
i

]2

]m i
21

b~b22!

16 (
iÞ j

cosec2S m i2m j

2 D
2

b2

48
N~N221!, ~2!

where particles are confined to move in a circle, thus m
icking the similar confinement of eigenvalues due to the u
tary nature of the operator. The morphological transiti
caused by the interacting steps on a miscut crystal sur
can also be modeled by the CS Hamiltonian@10#. Here the
complexity is thermodynamic in nature. It is already we
known that the parametric dispersion of the eigenvalues
the quantum system, with a nonintegrable classical limit
described by a set of equations similar to the equations
motions of particles, in time, of the classical Caloge
Hamiltonian@11#. This analogy extends also to the statistic
properties in the two cases. The parametric evolution of
distribution PNb(e1 , . . . ,eN ;t) of the eigenvaluese i of a
HamiltonianH5H01tH1 ~of sizeN), with perturbationH1
taken from a SGE corresponds to the time evolution of
distribution PNb(r 1 , . . . ,r N ;t) of positionsr i ’s of the par-
ticles and both the static as well as dynamical correlators
the eigenvalues turn out to be similar to those of the partic
in the CM Hamiltonian@with V(m)}m2 in Eq. ~1!# @6–8#.
Hereb refers to the generic symmetry class of the comp
systems and therefore the transformation properties of
associated RM models~known as GOE, GUE, and GSE fo
b51,2, and 4, where O, U, and S refer to the orthogon
unitary, and symplectic nature of transformation and G
stands for Gaussian ensemble! @12,6#. In the limit t→`, the
eigenvalues attain an equilibrium distribution, known
Wigner-Dyson, which coincides with the probability distr
bution ofN-particle coordinatesPNb(r ;t→`) of the ground
state of the CM Hamiltonian@3,8#. Similar analogies can also
be made between the evolution of the eigenvalues of uni
operatorsU5U0ei tM, with M taken from SGE, and the CS
Hamiltonian @13#. This is equivalent to saying that the st
2098 ©2000 The American Physical Society
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tionary and nonstationary states of the CSM Hamilton
correspond to the eigenvalue distribution of the systems s
jected to random perturbations, strong (t→`) and weak~fi-
nite t), respectively, and thereby to equilibrium and no
equilibrium distribution of SGE. In this paper we show
unique connection between the CM and RM model: a n
stationary state~finite t) of the CM Hamiltonian can also b
mapped to the eigenvalue distribution of a generaliz
Gaussian ensemble~GGE!; the correspondence is establish
by identifying a parameterY for GGE, equivalent to timet
for the CM Hamiltonian. This mapping can then be used
obtain the information about various spectral properties
GGEs.

In the recent past, RM ensembles have quite often b
used to model the physical systems with complicated in
actions@2,12#. The logic which could be given in support o
the model is that the missing information about the deta
nature of the interactions can be mimicked by randomiz
the associated generators of motion, that is, by taking t
matrix representations as random matrices. However, as
specific details of the complexity of an operator should
reflected in the associated RM model, the distribution of
matrix elements can be of various types. For example, fo
Hamiltonian with a chaotic classical limit~the least predict-
ability of the long-term dynamics!, the distribution can be
chosen as Gaussian~the least information ensemble!, with
distribution parameters to be determined by the associ
quantum dynamics. The corresponding RM model will th
belong to a generalized Gaussian ensemble with the m
elements distribution given byP(H)}e2 f 1(H) f 2(H) ~with f 1
and f 2 arbitrary functions andH as a typical matrix!. The
SGEs, with the matrix elements distribution given byP(H)
}e2Tr H2

are special cases of GGEs and many of their pr
erties are already known. The various features of GG
have, however, remained unknown so far. The purpose
this paper is to suggest a technique to fill in this gap in
information. As for SGE, the nature of matrix elements
GGE also depends on the exact symmetry conditions of
Hamiltonian and is again indicated by parameterb, with b
51,2,4 for a generic matrix element to be real, complex,
quaternion@12#. Here we discuss, in detail, the properties
the GG ensemble of complex Hermitian matrices (b52);
the GG ensemble of real-symmetric matrices (b51) has
been discussed elsewhere@14#. We also probe briefly the
non-Gaussian ensembles that can serve as good mode
complex systems with various conditions on the associa
quantum dynamics.

We proceed as follows. Our technique is based on
statistical evolution of the eigenvalues of a GG ensem
with respect to a change in their distribution parameters. T
requires prior information about the effect of a small chan
in the matrix element on eigenvalues and eigenvectors;
related study is given in Sec. I A. These results are then u
to obtain, as described in Sec. I B, the distribution of eig
values P(m,Y) of a matrix H taken from a Gaussian en
semble, noninvariant under unitary transformation. The e
lution of the eigenvalues is governed by a partial differen
equation which, after certain parametric redefinitions, tu
out to be formally the same as the FP equation for
Brownian motion of particles in Wigner-Dyson~WD! gas
@12#. Section II contains the details of the reduction of the
n
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equation to the Schro¨dinger equation of the CM Hamiltonian
and a mapping of their respective correlators. Section
deals with the application of our technique to some import
physical processes, e.g., localization and a brief discussio
our technique applied to a few other important matrix e
sembles is given in Sec. IV. Section V gives an alternat
evolution equation for the eigenvalues. We conclude in S
VI, which is followed by the Appendixes containing th
proofs of some of the results given in the main text of t
paper.

I. EIGENVALUE DISTRIBUTION OF GENERALIZED
GAUSSIAN ENSEMBLES

A. The change of eigenvalues and eigenfunctions

The eigenvalue equation of a complex Hermitian mat
H is given byHU5UL with L as the matrix of eigenvalue
ln andU as the eigenvector matrix, unitary in nature. As
obvious, a slight variation of the matrix elements ofH will,
in general, lead to a variation of both the eigenvalues as w
as the eigenvectors and associated rates of change ca
obtained as follows.

As ln5( i , jUniHi j Un j* , the rate of change ofln with re-
spect toHkl;s ~with s referring to real,s51, and imaginary,
s52, parts ofHkl) can be given

]ln

]Hkl;s
5

i s21

gkl
@UlnUkn* 2~21!sUln* Ukn#, ~3!

wheregkl511dkl . This can further be used to obtain th
following relations~Appendix A!:

(
k< l

(
s51

2
]ln

]Hkl;s
Hkl;s5(

k,l
HklUlnUkn* 5ln ~4!

and

(
k< l

gkl(
s51

2
]ln

]Hkl;s

]lm

]Hkl;s
52dmn . ~5!

For our analysis later, we also require the informati
about the second-order change of an eigenvalue with res
to a matrix element and, therefore, the rate of change of
of the eigenvector components with respect toHkl . This is
given as follows~Appendix B!:

]Upn

]Hkl;s
5

i s21

gkl
(

mÞn

1

ln2lm
Upm@Ukm* Uln

1~21!s11Ulm* Ukn#, ~6!

and now by using Eqs.~3! and ~6!, one can show that~Ap-
pendix C!

(
k< l

gkl(
s51

2
]2ln

]Hkl;s
2

54(
m

1

ln2lm
. ~7!

For the real-symmetric case, the corresponding relati
can be obtained by usingU15UT ~as the eigenvector matrix
is now orthogonal! in Eqs. ~3!–~7! and takingHi j ;250 for
all values ofi , j ~see@8#!.
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B. The evolution equation for the eigenvalues

Let us consider an ensemble of complex Hermitian ma
cesH, with matrix elementsHkl5Hkl;11 iH kl;2(12dkl) dis-
tributed as Gaussians with arbitrary variances and mean
ues; the variances of real and imaginary parts of a sin
matrix element also need not be same. Thus we choose
distributionr(H) of matrix H to be following:

r~H,y,b!5C expS 2(
s51

2

(
k< l

akl;s~Hkl;s2bkl;s!
2D ~8!

with C5)k< l)s51
2 Aakl;s /p as the normalization constant,y

as the set of coefficientsykl;s5akl;sgkl5gkl /2^Hkl;s
2 &, andb

as the set of allbkl;s . Note that such a choice leads to
nonrandom complex Hamiltonian (Hkl5bkl;11 ibkl;2) in the
limit akl;1 ,akl;2→` and, therefore, can model various re
physical situations such as the switching of disorder in
nonrandom Hamiltonian, e.g., metal-insulator transitions.

Let P(m,y,b) be the probability of finding eigenvaluesl i
of H betweenm i andm i1dm i at a giveny andb,

P~m,y,b!5E )
i 51

N

d~m i2l i !r~H,y,b!dH. ~9!

As the a dependence ofP in Eq. ~9! enters only through
r(H) and ]r/]akl;s5@(2akl;s)

212(Hkl;s2bkl;s)
2#r

5(2akl;s)
21@r1(Hkl;s2bkl;s)(]r/]Hkl;s)# with ]r/]Hkl;s

52]r/]bkl;s , a derivative ofP with respect toakl;s can be
written as follows:

]P

]akl;s
5

P

2akl;s
1

1

2akl;s
E )

i 51

N

d~m i2l i !Hkl;s

]r

]Hkl;s
dH

1
1

2akl;s
E )

i 51

N

d~m i2l i !bkl;s

]r

]bkl;s
dH. ~10!

The second integral in Eq.~10! is equal to
bkl;s(]P/]bkl;s). The first integral can also be simplified b
using integration by parts followed by the use of t
equality ]) i 51

N d(m i2l i)/]Hkl;s52(n51
N @]) i 51

N d(m i

2l i)/]mn#(]ln /]Hkl;s):

E )
i 51

N

d~m i2l i !Hkl;s

]r

]Hkl;s
dH

52E
])

i 51

N

d~m i2l i !

]Hkl;s
Hkl;srdH

2E )
i 51

N

d~m i2l i !rdH5I kl;s2P, ~11!

where

I kl;s5 (
n51

N
]

]mn
E )

i 51

N

d~m i2l i !
]ln

]Hkl;s
Hkl;srdH. ~12!

Substitution of Eq.~11! in Eq. ~10! then gives
i-

al-
le
the

l
a

2akl;s

]P

]akl;s
5I kl1bkl;s

]P

]bkl;s
. ~13!

Our aim is to find a functionY of the coefficientsakl;s’s
andbkl;s’s such that the evolution ofP(m,Y) in terms ofY
satisfies a FP equation similar to that of Dyson’s Brown
motion model~Wigner-Dyson gas! @5,12#. For this purpose,
we consider the sum 2(k< l(g2gklakl;s)akl;s(]P/]akl;s),
where g is an arbitrary parameter, and thereby obtain
following relation:

(
s51

2

(
k< l

~g2ykl;s!F2ykl;s

]P

]ykl;s
2bkl;s

]P

]bkl;s
G

5(
s51

2 Fg(
k< l

I kl;s2(
k< l

ykl;sI kl;sG . ~14!

As shown in Appendix D, the first term on the right-han
side of Eq.~14! can further be simplified:

(
s51

2

(
k< l

I kl;s5(
n

]

]mn
~mnP!. ~15!

The second term can similarly be rewritten as follow
~Appendix E!:

(
s

(
k< l

ykl;sI kl;s52(
n

]

]mn
F ]

]mn
1 (

mÞn

b

mm2mn
GP

2(
k< l

ykl;sbkl;s

]P

]bkl;s
, ~16!

whereb52. Using both the equalities~15! and ~16! in Eq.
~14!, we obtain the desired FP equation

]P

]Y
5g(

n

]

]mn
~mnP!1(

n

]

]mn
F ]

]mn
1 (

mÞn

b

mm2mn
GP.

~17!

Here the left-hand side of the above equation, summ
over all ykl;s andbkl;s , has been rewritten as]P/]Y with Y
given by the condition that

]P

]Y
52(

s
(
k< l

ykl;s~g2ykl;s!
]P

]ykl;s
2g(

s
(
k< l

bkl;s

]P

]bkl;s
.

~18!

By using the orthogonality of eigenvectors and following t
same steps, it can be proved for a real symmetric case
~now b51) @14#. It is worth noting that Eq.~17! is the same
as the evolution equation for the eigenvalues of Brown
ensembles. It is also similar to the one governing the tra
tions between any two universality classes of SGE cause
a random perturbation of strengtht ~with t→Y) @8,6#.

C. How to obtain the complexity parameterY

The variableY, a function of relative values of the coe
ficients akl;s’s and bkl;s’s, is a measure of the degree an
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nature of the complexity of a system and can therefore
referred to as the ‘‘complexity parameter.’’ For the case d
cussed here@Eq. ~18!#, Y can be obtained by the following
method.

We defineM52N2 variables (Y1 , . . . ,YM) as the func-
tions of allykl;s’s andbkl;s’s such that the condition given b
Eq. ~18! ~whereY[Y1) is satisfied. This is indeed possib
by using the orthogonal~Jacobi! coordinate transformation
between variables $Yi% i 51, . . . ,M and
$ykl;s ,bkl;s%k< l ;k,l 51, . . . ,N;s51,2 defined by the following rule:

Yi5(
j 51

M

ai j Xj for i 51→M , ~19!

where Xj[
1
2 ln(ykl;s/uykl;s2gu)1cj for j <N2 and Xj[

2(1/g)lnubkl;su1cj for j .N2, with cj as arbitrary constant
of integration. Here coefficientsai j must satisfy the relation
( j 51

M ai j 5d i1 which is a necessary condition for orthogona
ity but not sufficient to get the right form for]/]Y. With D
being the functional derivative ofYi ’s with respect toXj ’s,
we also need the elementsD1 j

21 of its inverse to be unity.
One way to achieve this is to set all adjuncts of the ma
elements]Y1 /]Xj equal. Now by choosinga1 j also equal,
a1 j5M 21, we are left with M conditions for ai j , iÞ1,
which can easily be fulfilled.

The form of Y5( ja1 jXj , fulfilling condition ~18!, can
therefore be given as

Y5
1

2N2 (
k< l

(
s51

2 F1

2
ln

ykl;s

uykl;s2gu
2

1

g
lnubkl;suG1C ~20!

with C5M 21( j cj .
As is obvious, this method is applicable only for the ca

when the prefactor associated with a derivative ofP with
respect to a variabler in Eq. ~18! depends only onr (r can
be any one of theykl;s or bkl;s). Our studies on the en
sembles more complicated than Eq.~8! show that the pref-
actors can also depend on a combination of variousr vari-
ables. This requires a more general method to obtainY which
can also be used for the case discussed here~Appendix F!.

D. Determination of P„µ,Y…

Equation~17! describes an evolution of the eigenvalues
GGE due to changing distribution parameters of the
semble that can be solved, in principle, to obtainP(m,Y) for
arbitrarily chosen initial values of the parameters. If the e
semble corresponding to the initial set of parameters is
ferred asH0, an integration overH0 would lead toP(m,Y),
free of initial conditions. In fact, it can be shown that

P~m;Y!5~4pY!2N2/2E expF2
1

4Y
tr~m2U1m0U !2G

3 f ~m0!uD~m0!ub0dm0dU, ~21!

wherem0 is the set of eigenvalues of the initial matrixH0,
with b0 given by its symmetry conditions, andU is the in-
tegral over unitary~or orthogonal! space of matrices.
e
-

x

e

f
-

-
e-

To show that Eq.~21! is indeed a solution of Eq.~17!, we
study a general case. Consider a partial differential equa
for a functionF(A;t) defined in the matrix space ofN3N
Hermitian matricesA

]F

]t
5@¹A

2F1¹•~AF!#, ~22!

where

¹A
25(

i

]2

]Aii
2

1
1

2 (
i , j

]2

]Ai j
2

,

¹•~AF!5(
i< j

]

]Ai j
~Ai j F !, ~23!

with the initial conditionF(A;0)5 f (A). This equation is
known to have a unique solution~see p. 174 of@12#!,

F~A;t !5E K~A,B,t ! f ~B!dB, ~24!

where

K~A,B,t !5~4pt !2N2/2expF2
1

4t
tr~A2B!2G , ~25!

where B is an N3N Hermitian matrix. Depending on the
nature of bothA and B, we can choose a special class
eigenvector matricesUA andUB ~for A andB real symmet-
ric, complex Hermitian, or symplectic,UA and UB are or-
thogonal, unitary, and symplectic matrices, respective!
such that

A5UA
s aUA and B5UB

s bUB , ~26!

wherea5@aid i j #, b5@bid i j # are diagonal matrices withai
and bi as the eigenvalues ofA and B, respectively, andUs

5U1 or UT or UR, depending on whetherU is an eigenvec-
tor matrix for a complex Hermitian, real symmetric, or sym
plectic matrix@12#. Let bA andbB give the number of com-
ponents of typical matrix elements inA andB, respectively.
Changing the variables from matrix elements to theN eigen-
values andbN(N21)/2 angle~i.e., eigenvector! parameters
on whichUB depends, we have

dB5uD~b!ubbdbdUB

with

db5)
i 51

N

dbi and D~b!5)
i< j

~bi2bj !. ~27!

The substitution of these relations in Eq.~24! gives us

F~A;t !5~2pt !2N2/2E expF2
1

2t
tr~a2UsbU!2G

3 f ~b,UB!uD~b!ubbdbdUB , ~28!
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whereU5UBUA
s andUs5UAUB

s . Now if f (b,UB) is inde-
pendent ofUB thenF(A;t) is also independent ofUA . This
helps us to rewrite Eq.~28! as follows:

F~a;t !5~4pt !2N2/2E G~a,b,t ! f ~b!uD~b!ubbdb, ~29!

where

G~a,b,t !5E expF2
1

4t
tr~a2UsbU!2GdU.

Here the integral is over the groupU of orthogonal, unitary,
and symplectic matrices, respectively. Further the Laplac
¹A

2 can also be written in terms of eigenvalues and an
parameters ofA ~see Appendix A.5 of@12#!,

¹2~A!5
1

uD~a!uba
(

i

]

]ai
uD~a!uba

]

]ai
1¹UA

2 . ~30!

By the substitution of Eq.~30! in Eq. ~22! and using the
independence ofF(a;t) of UA , one can rewrite Eq.~22! as
follows:

]F~a;t !

]t
5

1

uD~a!uba
(

i

]

]ai
F uD~a!uba

]F~a;t !

]ai
G

1(
i

]

]ai
~aiF ! ~31!

with F(a;t) given by Eq.~29!. Now by using the equality
( i(]

2/]ai
2)uD(a)uba50, Eq. ~31! can be reduced in the fol

lowing form:

]F

]t
5(

i

]

]ai
~aiF !1(

i

]

]ai
F ]

]ai
1(

j Þ i

ba

aj2ai
GF, ~32!

which is similar to Eq.~17! with ai→m i , t→Y, g51, and
F→P. The joint probability densityP can therefore be ob
tained by evaluating the integral~29!. However, so far, the
integration could be performed only for the unitary group
matrices@15,16,12#.

E. Steady state, level density, and correlations

The steady state of Eq. ~17!, P(m,`)[P`

5uD(m)ube2(g/2)(kmk
2
, corresponds toY2Y0→` ~with Y0

as the complexity parameter of the initial ensemble! which
can be achieved by two ways~for finite Y0 values!. The first
is when almost allykl;1→g andykl;2→` ~for finite bkl;1 and
bkl;2 values! which results in a GOE steady state. The seco
is when almost allykl;1→g,ykl;2→g, resulting in a GUE.
This indicates that, in the steady-state limit, the system te
to belong to one of the SGEs. Equation~17! can, therefore,
describe a transition from a given initial ensemble~with Y
5Y0) to either GOE or GUE withY2Y0 as the transition
parameter. The nonequilibrium states of this transition, gi
by nonzero finite values ofY2Y0, are various Gaussian en
sembles corresponding to varying values of the coefficie
ykl;s and bkl;s . For example, the choice of the initial en
semble as GOE~almost allykl;15g,ykl;2→` initially ! and a
n
le

f

d

ds

n

ts

decrease ofykl;2 ~from `→g while keeping ykl;1 fixed!
leads to the GOE→GUE transition with intermediate en
sembles as those of complex Hermitian matrices. Simila
Poisson→ GUE transition can be brought about by a choi
of the initial ensemble as Poisson~almost all ykl;1 ,ykl;2
→` for kÞ l , ykk;15g, ykk;25g, andbkl;s50 for all k,l ,s
values! and by varying bothykl;1 and ykl;2 up to g. As is
clear from above,g fixes the variance of the final ensemb
and an arbitrariness ing leaves the latter arbitrary. This
however, does not affect the statistical properties of the
termediate ensembles.

The equation~21! for P(m,Y) can be used to obtain th
nth-order density correlatorRn(m1 , . . .mn ;Y), defined by
Rn5@N!/(N2n)! #*P(m,Y)dmn11•••dmN . (Rn can also
be expressed in the form̂n(m1 ,Y)•••n(mn ,Y)& with
n(m,Y)5N21( id(m2m i) as the density of eigenvalues an
^•••& implying the ensemble average!. Here note that the
analogy of Eq.~17! to that of Dyson’s Brownian ensemble
~BE! implies the same form ofP for both the cases and
thereforeRn . A lot of information is already available abou
level density and various correlations for Brownian e
sembles; it can directly be used for the ensemble descr
by Eq. ~8!. Thus, as for BE, a direct integration of the F
equation ~17! leads to the Bogoliubov-Born-Green
Kirkwood-Yvon ~BBGKY! hierarchic relations among th
unfolded local correlators

Rn~r 1 , . . . ,r n ;L!5 lim
N→`

Rn~m1 , . . . ,mn ;Y!

R1~m1 ;Y!•••R1~mn ;Y!

with r 5* r R1(m;Y)dm andL5(Y2Y0)/D2 (D5R1
21; the

mean level spacing! @13#,

]Rn

]L
5(

j

]2Rn

]r j
2 2b (

j Þk

]

]r j
S Rn

r j2r k
D

2b (
j

]

]r j
E

2`

` Rn11

r j2r k
~33!

~here, for simplification,g is chosen to be unity!. As can be
seen from the above equation, the transition forRn occurs on
the scales determined byY'D2 and a smooth transition ca
be brought only in terms of the parameterL, obtained by
rescalingY by D2. On the other hand, forR1, the correspond-
ing scale is given byY'ND2. This implies, therefore, dur-
ing the transition inRn , the densityR1 remains nearly un-
changed; this fact is very helpful in unfolding the correlato
Rn . For n51 and in largeN limit, the above equation re
duces to the Dyson-Pastur equation@13# for the level density
^n(m1 ,Y)&[N21R1,

]^n~m!&
]Y

52b
]

]m S (
m

PE dm8
^n~m8!&
m2m8 D ^n~m!&,

~34!

which results in a semicircular form forn;

n~r !5~2/ph2!~h22r 2!1/2
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with h254N(11Y2) @17#. The application of the supersym
metry ~SUSY! technique@18# to ensemble~8! gave a similar
result ~also see Sec. 4.3 of@12#!.

II. CONNECTION TO THE CALOGERO HAMILTONIAN

A similarity transformation followed by a Wick rotation
converts the FP equation into a self-adjoint form@8#. This
can be seen as follows. The FP equation, in general, ca
expressed in a form

]uPY&
]Y

52PuPY&, ~35!

where P is a FP operator with non-negative eigenvalu
HereuPY& is a general state of operatorP at ‘‘time’’ Y and its
projection in eigenvalue space can be obtained by the u
operationP(m,Y)[^muPY& ~with m as set of the eigenval
ues!. Let P(m,Y0)[^muP0& be the equilibrium probability.
One can further define a vector^0u[*dm^mu . . . satisfying
^0uP50 thus implying the conservation of probability i
‘‘time’’ Y in this state~the ground state!. The FP operator
can now be Hermiticized through a similarity transformati
S21PS5H, whereS is the Hermitian and invertible operato
depending only on the eigenvalues. Thus the ground-s
condition must be given byHSu0&50 ~as P1u0&50). Let
the effect of similarity transformation on the stateuPY& and
uP0& is expressed byuc&5S21uPY& and uc0&5S21uP0&, re-
spectively. The similarity transformation of Eq.~35! will
then give the desired form]uc&/]Y52Huc&; the ground
state uc0& must now satisfy the conditionHuc0&50. The
comparison of the two different forms of the ground-sta
condition givesuc0&5Su0& and thereforeuP0&5S2u0&.

In the case of the FP equation~17!, H turns out to be a
CM Hamiltonian@Eq. ~1! with r i→m i# and has well-defined
eigenstates and eigenvalues@1,19#. As is well known, the
particles in the CM system undergo an integrable dynam
thus implying a similar motion for the eigenvalues, too. He
H is a generic member of GGE; this result is valid for
systems with interactions complicated enough to be mod
by GGE.

The ‘‘state’’ c or P(m,YuH0) can be expressed as a su
over the eigenvalues and eigenfunctions which on integra
over the initial ensembleH0 leads to the joint probability
distributionP(m,Y) and thereby static~at a single paramete
value! density correlationsRn . The above correspondenc
can also be used to map the multiparametric correlation
multitime correlations of the of CM Hamiltonian. For ex
ample, the parametric correlation^Qa(Y)Qb(0)&, for a clas-
sical variableQ(Y) with @Q,S#50 can be mapped to th
corresponding ground-state correlation of the CM Ham
tonain ^c0uQa(Y)e2YHQb(0)uc0&. This follows because

^Qa~Y!Qb~0!&5E QaQbP~m,Y!dm

5E ^muQaQbuPY&dm. ~36!

Now as the evolution ofuPY& with respect toY is given by
uPY&5Se2YHS21uP0&, one has
be

.

al

te

s,

d

n

to

-

^Qa~Y!Qb~0!&5^0uQaSe2YHS21QbuP0&

5^c0uQae2YHQbuc0&. ~37!

III. APPLICATION TO PHYSICAL PROBLEMS

The given ensemble~8!, referred to here as ‘‘G,’’ is rep-
resented by a pointY in the parametric space, consisting
distribution parameters and various transition curves m
pass through this point. The question therefore arises a
which curve should be chosen for the studies of the prop
ties of G? The answer is the one which does not leave a
arbitrariness behind and if there is more than one such cu
each one of them should give the same answer for var
fluctuation measures ofG. These criteria for the right choice
are based on the symmetry properties of ensembleG, that is,
the nature of allakl and bkl with endpoints~the final and
initial ensemble, referred to here as ‘‘F ’’ and ‘‘ O,’’ respec-
tively! chosen in such a way that the values correspondin
G occur during the variation of distribution parameters fro
one end to the other. Furthermore, the chosen transi
should preferably be the one whose properties are alre
known and can therefore tell us aboutG. For many GGE
described by Eq.~8!, the above criteria is satisfied by choo
ing F as a SGE with variancêFii

2 &52^Fi j
2 &5g21, g

<min$ykl;s@G#%, k,l 51,2, . . . ,N, s51,2, andO as an en-
semble with eachakl@O# given by the maximum value take
by the functional form of the correspondingakl@G#. How-
ever, as explained in the following examples,O can also be
chosen as some other ensemble. For example, IfG is an
ensemble of real-symmetric matricesH represented by
r(H)}exp@2(k<laklHkl

2 # with finite but different values for
all akl , the Poisson→GOE curve is more suitable for it
study rather than GOE→GUE. Here the GOE ensemble
described bŷ Fii

2 &52^Fi j
2 &5g21 with g as the minimum

value among givenykl@G#s. However, if variousakl in the
above example can also take complex values, the ense
can now be chosen on any one of the curves, namely, P
son→ GUE or GOE→ GUE. Here now GUE can be cho
sen as^Fii

2 &52^Fi j ;1
2 &52^Fi j ;2

2 &5g21. The GOE for the
second curve can be chosen as the one with^Oii

2 &
52^Oi j ;1

2 &5q21 and ^Oi j ;2
2 &50 with q5max$yij ;1@G#%.

Similarly, for the Poisson→ GUE curve, the initial en-
semble may be taken as one with^Oii

2 &5g21 and ^Oi j ;1
2 &

5^Oi j ;2
2 &50 for iÞ j . The reason for the choice of the tw

transitions is due to the availability of the results for the
two-point correlationR2 @13#:

For Poisson→ GUE

R2~r ;L!2R2~r ;`!5
4

p E
0

`

dxE
21

1

dzcos~2prx !

3exp@28p2Lx~11x12zAx!#

3S A~12z2!~112zAx!

11x12zAx
D ~38!

and for GOE→ GUE
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R2~r ;L!2R2~r ;`!

52
1

p2E
0

p

dxE
p

`

dz xsin~rx !exp@2L~x22y2!#
sin~yr !

y
,

~39!

whereR2(r ,`)512@sin2(pr)/p2r2# ~the GUE limit!.
It is obvious therefore that ifL1 andL2 are the paramete

values for the ensembleG on Poisson→ GUE and GOE→
GUE curves, respectively, one should haveR2,P→U(r ;L
5L1)5R2,O→U(r ;L5L2). This would require an intersec
tion of two curves in theR22L space which, however, i
possible. This is because the GOE can occur as an inte
diate point in the Poisson→ GUE transition. The GOE→
GUE curve can also appear as a part of the Poisson→ GUE
curve; thus the choice of two different initial ensembles h
corresponds only to two different origins of dynamics on t
same curve.

The parameterg, which determinesY as well as the vari-
ances ofF, enters into the calculation at a step given by E
~14! and can be chosen arbitrarily. As suggested by Eq.~17!,
the choice of differentg values corresponds to differentY
values as well as the transition curves with endpoints of
same nature but different variances; this, however, would
imply different properties for the ensemble G~Appendix G!.
Similarly, although the FP equation is independent of
choice of the initial ensemble, the latter is required for t
determination of the correlations ofG. The possibility of an
arbitrary choice ofO may seem to imply a certain arbitrar
ness left in the correlation ofG. However, the choice of two
different initial ensembles corresponds only to the two d
ferent origins of the dynamics approaching the same poin
the parametric space. This will be clarified by the examp
given below.

A. Anderson transition

Using the above method, the transition parameter fo
metal-insulator transition as a result of increasing disor
can exactly be calculated. To see this, let us consider the
of a d-dimensional disordered lattice, of sizeL, in the tight-
binding approximation. Here, in the configuration space r
resentation of the Hamiltonian, anN3N matrix of sizeN
5Ld, the diagonal matrix elements will be site energiese i .
The hopping is generally assumed to connect only thez near-
est neighbors with amplitudet so that the electron kinetic
energy spread or bandwidth iszt. This therefore results in a
sparse form of the matrixH. We first consider the case of th
L→D transition brought about by decreasing diagonal d
order only. In this case, site energiese i are taken to be inde
pendent random variables with the probability densityp(e i).
In the Anderson model@20# of the metal-insulator~MI ! tran-
sition, p(e) was taken to be a constantW21 between
2W/2 to W/2. Various physical arguments and approxim
tions used in this case led to the conclusion that here all
states are localized forW.4Kt ln(W/2t) with K as a func-
tion of z andd.

However, as is well known now, the MI transition do
not depend on the nature ofp(e) and the latter can also b
chosen as Gaussian; the type ofp(e) affects only the critical
point of the transition. Ther(H), for any intermediate state
e-
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of MI transition brought about by diagonal disorder, c
therefore be chosen as in Eq.~8! with akl→`, bkl52t for
kÞ l , akk5a, andbkk50 for all k which results in

Y5
1

2N2 FN

2
ln

2a

u2a2gu
2g21K ln t G1C.

HereK is total number of the sites connected and depends
the dimensionalityd of the system. The system can initiall
be considered in an insulator regime where all the eigenv
tors become localized on individual sites of the latti
~strong disorder limit!. This results in a diagonal form of th
matrix H with the eigenvalues independent from each oth
The insulator limit can therefore be modeled by ensemble~8!
with akl→` for kÞ l , akk5a0 ~for all k values! and bkl
→0 ~for all k,l ), giving Y05(1/4N)ln(2a0 /u2a02gu)1C ~as
K50 in the insulator regime!. The decrease of the diagon
disorder, that is, an increase ofakk from a0 to some finite
values~while akl , kÞ l , remains infinite throughout the tran
sition! will ultimately lead to a metal regime with fully de
localized wave functions. The eigenvalue distribution ofH in
the regime can be well modeled by the SGE; let it be
scribed byaM(.a0). Thus for the study of the transition in
this case we should chooseg52aM . The transition param-
eter can now be given as follows, with the mean level sp
ing D}1/AN:

L5
Y2Y0

D2 5
1

4 F ln
aua02aMu
a0ua2aMu

2
K

NaM
ln t G . ~40!

As is obvious from the above, the transition is governed
relative values of the disorder and the hopping. HereL→0
leads a to fully localized regime that corresponds to the
lowing condition ona and t:

ln
a

a0
1

a2a0

aM
5

K

NaM
ln t. ~41!

Equation~40! gives, therefore, the condition for the critica
region or mobility edge (K/N→finite as N→`). As (ua
2a0u/aM)!1 even for largea values, the condition is al-
ways satisfied ifK/Na→0. This explains the localization o
all the states in infinitely long wires~or strictly 1D systems
whereK!N) even for very weak disorder. With increasin
dimensionalityd, connectivityK of the lattice and thereby
the possibility ofuLu@0 and the delocalized states increas
The L can similarly be calculated when off-diagonal diso
der is also present.

B. 1D, quasi-1D, and periodic 1D disordered
and chaotic systems

In 1D geometry of a solid state system, e.g., a chain oN
interacting sites, in tight-binding approximation, the lon
range random hopping leads to a banded structure of
matrix, known as the random banded matrix~RBM! @21,22#.
Here the effectively nonzero, randomly distributed, mat
elements are confined within a band with its width govern
by the range of hopping. The 1D periodic geometry, e.g
chain of interacting sites joined into a ring leads to a perio
RBM in which all nonzero matrix elements belong to thr
regions: a band along the main diagonal, the upper ri
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corner and the lower left one@21#. A real disordered wire has
a finite cross section~referred to as quasi-1D geometry! and
therefore allows for propagating modes with different tra
verse quantization numbers frequently referred to as tra
verse channels. This case can again be modeled by R
with the bandwidth given by the number of transverse ch
nels @23,22#. In the case of dynamical systems also exhib
ing strong chaos in the classical limit, the generic structure
the Hamiltonian matrix in some basis is banded and ma
elements can be assumed to be pseudorandom@24#. For ex-
ample, the Hamiltonian of a quantum kicked rotor turns o
to be a RBM in momentum basis@21#.

In all these cases, the nature of the disorder or associ
randomness decides the nature of the distribution of the
trix elements. The physical properties of such systems
therefore be analyzed by studying the distribution of the
genvalues of associated RBMs. The most studied type
RBM is that with the zero mean value of all matrix elemen
and variance given bŷHnm

2 &5v2a(un2mu/b), wherea(r )
is some function satisfying the condition limr→`a(r )50 and
determines the shape of the band@22#. For a large but finite
size of the matrixN@b@1, its statistical properties wer
shown~by the SUSY method! to be determined by the sca
ing parameterb2/N with the transition parameter scaling a
N f(b2/N) @21#.

The transition parameter for the RBM can also be cal
lated by our method. Let us first consider the simplest ca
i.e., the Rosenzweig-Porter~RP! model where all the off-
diagonal matrix elements are distributed with the same v
ance which is different from the diagonal ones. Let us ta
a i j ; iÞ j@G#52(11m) and a i i @G#51 with m>0; thus
min$yij@G#%52 and we can chooseg52. This GGE can
therefore be mapped to a Brownian ensemble, with

Y2Y052
N21

4N
lnU12

1

11mU' 1

4m
for m.1,

appearing in a Poisson→ GOE transition where the initia

matrix elements distribution is given byP(H0)}e2( iHii
2

and
the final, stationary state, obtained for largeL-values, is
P(H)}e2(g/2)Tr H2

. Now as R1'AN @6,18#, the D2'1/N,
and thereforeL'N/4m which implies that the GGE will
have an eigenvalue statistics very different from that of Po
son or GOE only ifm'cN (c is a finite constant!. For m
.cN, L→0 and form,cN, L→` for N→`, and thus the
GGE behaves like a Poisson ensemble in the first case
like a GOE in the second case; this result is in agreem
with the one obtained, in@25#, by using the NLSM tech-
nique.~Note that in Ref.@25#, D is taken asD}1/N, which
gives L'N2/2m and therefore the GOE and Poisson e
semble result form,cN2 andm.cN2, respectively.!

Consider the ensemble with the exponential decay of
variances away from the diagonal i.e.,akl5euk2 l u/b,k< l ,1
!b!N. Thus, againg52 and the final ensemble is a SG
with P(H)5e2(g/2)Tr H2

and therefore Y5
2(1/4N2)( i< j 51

N lnu12gyij
21u1C. Here the initial ensemble is

that of the diagonal matrices with a Poisson distribution
the eigenvalues which corresponds toyii @O#52 and
yi j ; iÞ j@O#→` @this being the maximum value ofykl@G##
giving Y052(1/4N2)( i 51

N lnu12gyii
21@O#u1C. Thus Y2Y0
-
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52(1/4N2)( r 51
N (N2r )lnu122e2r/bu'b/N. As R1'AN, the

transition parameter for the infinite system (N→`) turns out
to beL5Y/D2'b ~see@14#! which reconfirms that, in infi-
nite systems, the transition is governed only by the ba
width b @22,21#.

Another case of importance is the ensemble with pow
law decay of variancesHi j 5Gi j a(u i 2 j u) with G a typical
member of SGE (̂Gii

2 &52^Gi j
2 &5v2) and a(r )51 and

(b/r )s for r<b andr .b (b@1), respectively~known as the
PRBM model where P stands for power! @26#. This corre-
sponds toyi j 5@1/v2a2(u i 2 j u)# and thereforeg5min $yij%
51/v2. Again, as for the exponential case, the choice of
initial and final ensembles remains the same. Now asyi j
[yr5g(r /b)2s ~with r 5u i 2 j u), we get

L5D22~Y2Y0!

52
1

4N (
r 5b11

N

~N2r !lnF12S b

r D 2sG
'

N

4(
j 51

`
1

j S b

ND 2 j sE
b/N

1

dx~12x!x22 j s ~42!

5
N

4 (
j 51

`
1

j F 1

2~122 j s!~12 j s! S b

ND 2 j s

2
1

~122 j s!

b

N

1
1

2~12 j s! S b

ND 2G . ~43!

Thus, for largeN values ands,1/2, L(}N122s) is suffi-
ciently large and the eigenvalue statistics approaches
SGE limit. At s51/2, the statistics is governed by the p
rameterb2/N instead ofN only. Fors51, the nonzero, finite
L value (L}b even whenN→`) leads to an eigenvalue
statistics intermediate between that of SGE or Poisson.
s.3/2 with N→`, L→0; therefore, the eigenvalue stati
tics approaches the Poisson limit,L being very small. All
these results are in agreement with those obtained in@26# by
the SUSY technique.

Another type of RBMs often encountered in atomic a
nuclear systems are those with the nonzero mean value o
matrix elements and with variance given bŷHnm

2 &
5v2a(un2mu/b); the transition parameter for them can al
be obtained as for the above cases@27–29,43,24,30#.

C. Quantum Hall case

A quantum Hall system without disorder has all the sta
degenerate within a single Landau level. The introduction
disorder leads to a broadening of the levels~also termed as
diagonal disorder! as well as random hopping between the
~off-diagonal disorder! and a competition between the tw
leads to aL→D transition. Note this is different from the
Anderson model where theL→D transition is caused by the
competition between diagonal disorder and nonrandom h
ping ~bandwidth! @20#. TheN3N Hamiltonian matrix in the
presence of disorder therefore belongs to an ensemble
more complicated than Eq.~8!, known as the random Landa
matrix, as now various matrix elements are no longer in
pendently distributed:
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r~H,y,b!5C expF2(
s51

2

(
k,l ;k< l

Hkl;sS akl;sHkl;s

2 (
i , j ; i< j

8 bi jkl ;sHi j ;sD G
with C as the normalization constant andy andb as the sets
of inverse of variancesykl;s5akl;sgkl and coefficients
bi jkl ;s , respectively, withgkl511dkl . Here ( i , j8 bi jkl ;s will
imply that the summation is over all possible pairs of indic
$ i , j % such that the pair$ i , j %Þ$k,l % or $ l ,k% @31#. In this
case, too, one can show that the eigenvalue distributioP
satisfies Eq.~17! but the condition for the determination ofY
is no longer given by Eq.~18!; the details will be presente
elsewhere.

D. Critical ensemble and multifractality of eigenvectors

Recent studies of some metal-insulator transitions
vealed that the energy level statistics in the critical region
universal and different from both Wigner-Dyson as well
Poisson statistics. The eigenfunctions associated with
critical statistics show multifractal characteristics@32–34#.
The level number varainceS2(N) is believed to be an im-
portant indicator of this critical behavior with its asymptot
linearity in the mean number of levelsN̄ @35#; S2(N̄)
5^(dN)2&5xN̄,x,1. The critical statistics, therefore, gov
erns the spectral fluctuations that are weaker than for
Poisson statistics@S2(N̄)5N̄# but much stronger than fo
the Wigner-Dyson statistics,@S2(N̄)5 ln N̄#. Later on re-
markable similarities were found between the spectral sta
tics of a number of dynamical systems, e.g., pseudoi
grable billiards and the critical statistics near the mobil
edge@36#. However, since such a critical region was inacc
sible either perturbatively or semiclassically, a different to
was required to probe into it. This led to the suggestion o
RM modeling of this region@34#. TheN3N matrices in this
model are Hermitian and matrix elements are Gaussian
tributed with zero mean and the variance given by

^~Hi j !
2&5F11S u i 2 j u

B D 2sG21

. ~44!

Using the SUSY technique, it has been shown@26# that for
largeB values (B@1), this ensemble behaves like a SGE f
s,1 and as a Poisson fors.1. The cases51 is believed
to be of special relevance as it supports critical statistics
multifractal eigenstates; the application of the SUSY te
nique gives R2(r )'12(1/16B2)@sin2(pr)/sinh2(pr/4B)#
andS2(N)'xN @37,38,34#.

The existence of the ensembles with critical statistics
indicated by our technique too. TheN dependence of the
transition parameterL, entering throughY and the mean
level-spacingD, causes the transition to reach the equil
rium in limit N→` for finite, nonzeroY values. In some
cases, however, theN dependence ofY may be such that it
balances the one due toD, thus resulting in anN-independent
L ~as shown in Secs. III A and III B! and therefore critical
statistics. As can be seen from Eq.~20!, L for the ensemble,
s
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given by Eq.~44!, is alsoN independent fors51; here the
ensemble appears as an intermediate point between the
son→ GUE transition with

Y2Y05
1

4N2 (
r 51

N

~N2r !lnF11S b

r D 2sG
andL behaves as in the case of the PRBM model discus
above, showing criticality fors51. The correlationR2 for
the ensemble~44! can therefore be given by Eq.~38!, which
for largeL values can be approximated as follows@39,40#:

R2~r ,L!511
L

p2L21r 2
1

1

2p2r 2
@cos~2pr !e22(r 2/L)21#

~45!

511
1

p2L
1

1

2p2r 2
@e22(r 2/L)

22e22(r 2/L)sin2~pr !21# ~r !AL! ~46!

'11
1

p2L
2

sin2~pr !

p2r 2e2r 2/L

'12
6

p2L

sin2~pr !

sinh2~rA6/L!
, ~47!

which is similar to the result given by the SUSY techniqu
However, for L@r @AL, our method gives 12R2(r ,L)
5@2L/(p2n21r 2)#1@1/(2n2r 2)# while the SUSY tech-
nique gives 12R2 as an exponentially decaying function.

As is obvious from Eq.~47!, R2 approaches the GUE
limit as L→` but, for finite L values, it is very different
from both Poisson as well as GUE. This indicates that
ensembles with distribution parameters giving rise to a fin
L do not reach stationarity even for the infinite size of th
matrices, and, their properties being very different fro
those of the equilibrium ensembles, can be referred to
‘‘critical.’’ However, in our technique, as shown in previou
sections, the difference between variousGG ensembles
~within the same stationarity limits! manifests itself only in
different L values, leaving the functional form of variou
statistical measures unaffected. Thus the RP model as we
ensemble~44!, both being GGEs and lying on the Poisson→
GUE curve, would follow similar formulations for variou
statistical measures; For example,R2 for both of them is
given by Eq.~47! although with different formulas forL and
both can show the critical behavior. However, a contrad
tion arises when one considers the number variance stati
S2(r ) which can be expressed in terms ofR2(r ) @12#,

S2~r ;L!5r 22E
0

r

~r 2s!@12R2~s!#ds ~48!

and therefore should show a similar behavior, as a func
of L, for both @the RP model and ensemble~44!#. But a
detailed study of the RP model by the SUSY technique@39#
suggests that although it shows critical statistics form5cN,
it cannot support the linear nature ofS25xr with x,1. As
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claimed by this study, the difference inS2(r ) behavior arises
due to the difference in larger (L@r @AL), behavior of
R2(r ) in the two cases.

As our technique is equally applicable to both these s
tems, multifractality should exist in either both or none
them. Note that the multifractal nature of an ensemble is
far believed to be indicated by itsS2 behavior. But the latter
is not yet clearly understood for the RP model~see@39,40#!
and therefore the question of multifractality is still not ful
settled. Also note that the earlier results for both models
obtained by the SUSY technique using the saddle-point
proximation at various stages which may also be mislead
It is also possible that~i! the seeming multifractality of en
semble~44! is just the erroneous conclusion of too ma
approximations in the SUSY technique, or~ii ! S2(r )'xr is
not always a correct indicator of multifractality and therefo
its absence in the RP model.

We believe that theS2(r ) behavior is a bigger suspec
than the approximations used in other techniques@33,41#.
Our belief has its roots in the direct applicability of our tec
nique to the Anderson model too. Here also the ensemble
H is located between Poisson→ GUE ~for a time-reversal
breaking disorder! with correspondingR2 behavior given by
Eq. ~38!. Thus for finiteL values corresponding to the crit
cal region, the eigenvalue statistics is different from Pois
or GUE. But again forS2 obtained by using Eq.~38!,
S2(r )5” xr with x,1 and therefore if it is indeed an indica
tor of multifractality of eigenfunctions, our technique wou
suggest its absence in the Anderson model. However,
existence of multifractality among the eigenfunction of t
Anderson Hamiltonian is experimentally confirmed.

Our results indicate that multifractality either will be
common feature of all the Gaussian ensembles with finiteL
values in the limitN→` or it does not exist in any of them
Thus the questions related to critical statistics, the cor
criteria for multifractality, and its analysis by the SUS
technique require further probing.

IV. OTHER CASES

A. A perturbed Hamiltonian with GG-type perturbation

The intimate connection of the RM theory→CM Hamil-
tonian continues also for systemH5H01xV with a random
perturbation V drawn from a GGE @i.e., r(V,y,b)
5C exp(2(s51

2 (k<lakl;s(Vkl;s2bkl;s)
2#. In this case, the eigen

values evolve due to the changing strength of the pertu
tion too. To obtain the desired evolution equation, therefo
one needs to consider the sum

]P

]x
1(

s
(
k< l

~g2ykl;s!F2ykl;s

]P

]ykl;s
2bkl;s

]P

]bkl;s
G ,

which leads to the following equality:

]P

]x
1(

s
(
k< l

~g2ykl;s!F2ykl;s

]P

]ykl;s
2bkl;s

]P

]bkl;s
G

5(
s

(
k< l

I kl;s2(
s

(
k< l

ykl;sI kl;s , ~49!
-
f
o

re
p-
g.

or

n

he

ct

a-
,

where I kl;s is still given by the same form as Eq.~12! but
with H replaced byV. As the right-hand side of Eq.~49! is
the same as that of Eq.~14!, one again obtains the evolutio
equation~17! but nowY is given by the condition that

]P

]Y
5

]P

]x
1(

s
(
k< l

~g2ykl;s!F2ykl;s

]P

]ykl;s
2bkl;s

]P

]bkl;s
G .

Proceeding just as in Sec. I C,Y can be shown to be given b
the following relation:

Y5
1

2N211 Fx1(
k< l

(
s51

2 S 1

2
ln

ykl;s

uykl;s2gu

2g21lnubkl;su D G1C. ~50!

Again the steady state is achieved forY→` which corre-
sponds tox→` andykl;s→g; the steady-state solution forP

is given by) i , j um i2m j ube2(g/2)(kmk
2
. Here onlyx→` ~with

]P/]x50 andH5xV) no longer represents a steady sta
as in the case whenV belongs to SGE, but it represents
transition state with]P/]YÞ0. Note from Eq.~50! that Y
→` as x→`, seemingly implying that the equilibrium is
reached and thereforeH belongs to SGE. But, as obviou
from H5H01xV, in the limit x→`, H5xV and therefore
H must be a GG matrix. This contradiction is a result of t
error made in not ensuring the mean spacing ofH the same
asH0 andV @6#. Here, to ensure the latter, we need to us
modified Hamiltonian, given by H5e2t/NH0

1A(12e22t/N)/NV with t52N21ln cos(x/N) ~the same as
before in the large-N limit !. The effect of this modification
on theFP equation~17! is that now

]P

]Y
5

]P

]t
1

1

N~12e22t/N!
(

s
(
k< l

~g2ykl;s!

3F2ykl;s

]P

]ykl;s
2g21bkl;s

]P

]bkl;s
G

and the coefficientg of the drift term is now replaced by
N21g @see Eq.~13! of @42##. TheY can now be obtained by
the second method given in Sec. I C.

B. Non-Gaussian ensembles

As mentioned before, the RM models of complex syste
can, in general, be non-Gaussian, e.g.,r(H)5C exp
@2(k<l fkl(Hkl)# with f as an arbitrary function, and it is not a
easy task to obtain the correlations in this case. Howe
this case can be analyzed by our method iff is a well be-
haved function and can be expanded in a Taylor’s series
understand this, let us consider an ensemble of real sym
ric matricesH with a distribution of a more general natur
e.g., f as a polynomial ofH with degree 2M , f kl(x)
5( r 51

M gkl(r )x2r with C as the normalization constant an
variances for the diagonal and off-diagonal matrix eleme
chosen to be arbitrary.

To obtain an evolution equation in this case, we now co
sider the sum
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2(
r 51

M

r(
k< l

@g2ykl~1!#ykl~r !
] P̃

]ykl~r !

@with P5CP̃ andykl(r )5gklgkl(r )# where the derivative of
P̃ with respect togkl(1) can be shown to be the followin
~with r5Cr̃):

] P̃

]gkl~1!
5

1

2gkl~1!
E )

i 51

N

d~m i2l i !Hkl

]r̃

]Hkl
dH

2(
r 52

M

r
gkl~r !

gkl~1!
E )

i 51

N

d~m i2l i !
]r̃

]gkl~r !
dH.

~51!

Now as ]r̃/]gkl(r )52Hkl
2rr and ]r̃/]Hkl5

22( r 51
M rg(r )Hkl

2r 21r, the second integral in Eq.~51! being

equal to] P̃/]gkl(r ), Eq. ~11! can be rearranged to show th
2( r 51

M rgkl(r )(] P̃/]gkl(r ))5I kl with I kl given by Eq.~12!,
@but without subscript~s! on quantities#. The required evolu-
tion equation in this case can be obtained from the follow
equality:

2(
r 51

M

(
k< l

r @g2ykl~1!#ykl~r !
] P̃

]ykl~r !

5g(
k< l

I kl2(
k< l

ykl~1!I kl ~52!

where, again,(k< l I kl5(n(]/]mn)(mnP̃) and

(
k< l

ykl~1!I kl52(
n

]

]mn
F ]

]mn
1 (

mÞn

b

mm2mn
G P̃1(

k< l
Jkl

~53!

with Jkl now given by the following relation:

Jkl52(
n

]

]mn
(
k< l

E )
i 51

N

d~m i2l i !
]ln

]Hkl

3F (
r 52

M

rykl~r !Hkl
2r 21GrdH ~54!

5gkl(
r 51

M

~r 11!ykl~r 11!
] P̃

]ykl~r ! F ~2r 11!

12(
s51

M

sykl~s!
] P̃

]ykl~s!G . ~55!

Using these relations as before, one again obtains the
equation forP̃ similar to Eq. ~17! with b51 and ] P̃/]Y

52(k< l( r 51
M hkl(r )@] P̃/]ykl(r )# where
g

FP

hkl~r !52r ykl~r !@g2ykl~1!#1~r 11!~2r 11!

3ykl~r 11!gkl12~r 11!ykl~r 11!gkl

3(s51
M s ykl~s!@] P̃/]ykl~r !#.

Note that the condition forY here includes terms of type

@] P̃/]ykl(r )#@] P̃/]ykl(s)# andY can no longer be obtaine
by methods given in Sec. I C.

C. Block-diagonal ensembles

Equation ~7! and, therefore, evolution equation~17! of
P(m,Y) is no longer valid if the matrixH is in a block-
diagonal form. This is because the eigenvalues belongin
different blocks do not repel each other, are not correla
and undergo an evolution independent of the other block.
this case, the evolution of eigenvalues in each block can
considered separately, leading to one FP equation simila
Eq. ~17! for each block. A detailed discussion of this case
given in @14#.

V. AN ALTERNATIVE EVOLUTION EQUATION
FOR THE EIGENVALUES

In Sec. I B, the equation~17! governing the evolution of
the eigenvalues was obtained by using the relation~14!.
However, as obvious from Eq.~13!, P also satisfies the rela
tion

(
k< l

F2ykl;s

]P

]ykl;s
2bkl;s

]P

]bkl;s
G5(

k< l
I kl;s ~56!

and, therefore, one can define a functionZ(ykl;s ,bkl;s) such
that

]P

]Z
5(

n

]

]mn
~mnP!. ~57!

HereZ is given by the condition

]P

]Z
5(

k< l
F2ykl;s

]P

]ykl;s
2bkl;s

]P

]bkl;s
G

which can be solved~as in Sec. II! to show that

Z5
1

4N2 lnF)
k< l

)
s51

2

uykl;subkl;s
22 G1C.

Equation~57! also describes the evolution of eigenvalues
the same ensemble~3!. But now the ‘‘time’’ scale is such
that the eigenvalues seem to be drifting only, hiding the
pulsion between them. Again the steady state of Eq.~57! is
given by uZ2Z0u→` and the final ensemble as Poiss
~with finite, nonzero variances for diagonal matrix eleme
and zero variances for the off-diagonal ones!. The ensemble
G will now appear as an intermediate point in a transiti
from some initial ensemble to the Poisson ensemble and
principle, the transition can be used for the analysis ofG. For
example, the critical parameter for the Anderson transit
~the same model as used in Sec. III! can be obtained by
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taking the initial state ‘‘O’’ as metal with the energy-leve
distribution described by a GUE (^Oii

2 &5aM
21 , ^Oi j

2 &50)
and all ^Oi j ;s&5tM which gives Z05(1/2N2)@N ln aM
22K lnutMu#1C. The critical region will therefore occur as a
intermediate point in the GUE→ Poisson transition with
transition parameter

L5D22~Z2Z0!5
1

2N FN ln
a

aM
22K ln

utu
utMuG .

As is obvious, the increase of the diagonal disorder (a/aM
,1) for a fixed hopping rate (t5tM) will ultimately lead to
Poisson statistics, implying localization of states; note h
the transition occurs backwards in ‘‘time’’L. However, the
results for correlations associated with the SGE→ Poisson
transition are inconclusive about which leaves Eq.~17! as a
better tool to analyze the properties of GGEs. Equation~17!
has one more advantage over Eq.~58!: the reduction of the
former to the CM Hamiltonian reveals the underlying unive
sality of statistical formulation among various complex sy
tems.

VI. CONCLUSION

In this paper we have described a method to analyze
statistical properties of the RM model of complex system
Our technique is based on the exact reduction of spec
analysis in the general case to the one in SGE. This gre
reduces the degree of difficulty of the original problem
many of the properties of SGE are already known. This a
indicates that a thorough knowledge of the properties of S
or CSM will be highly advantageous even for systems w
interactions too intricate to be modeled by SGE. So far,
probing of GGE is carried out only by the SUSY techniq
which requires a saddle-point approximation at various st
and is not easily applicable, even approximately, to ca
where our technique can be used for exact probing. Note
the main term in GGEs responsible for the corresponde
with the CSM Hamiltonian is due to the repulsion betwe
eigenvalues. As the mathematical origin of this term lies
the transformation from matrix space to eigenvalue spa
which is the same for all the Hermitian ensembles~belonging
to the same symmetry class!, the correspondence with th
CSM Hamiltonian should exist for almost all of them, irr
spective of the distribution of their matrix elements. As d
cussed in Sec. III, our study also confirms the conject
regarding the one parameter scaling of localization and p
vides the formula for a relevant parameter.

The reduction technique presented here raises some
questions. Why does the reparametrization of the spec
properties of different RM ensembles result in a simi
mathematical formulation for them? In other words, why
the eigenvalues of quantum operators associated with c
plex systems evolve in a similar ordered way~like equations
of motion for Calogero particles! notwithstanding the varied
nature of their complexity? The reason may lie in the follo
ing. The eigenvalues and eigenfunctions of a Hamilton
evolve due to a change in either the degree or nature o
complexity. The evolution of the eigenfunction is chaotic
the sense that the overlapping between the eigenfuncti
associated with two Hamiltonians even with slightly diffe
e
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ent complexity, decreases rapidly in time~page 2 of@6#!.
However, an eigenvalue of an operator is its average valu
the state described by the associated eigenfunction an
ordered evolution of the former will, in general, imply a
ordered change in the average behavior of the latter. Thu
seems that the eigenvalues and eigenfunctions, on ave
are not able to view the fine subtleties of the varied nature
complexity and therefore are not affected too drastically
loose correlations even when the nature of the comple
changes. Note, for a small change in the interactions,
result is not surprising and is used as the base for the pe
bation theory. But the results in this paper imply that t
eigenvalues~and the physics based on them! even after a
violent change in the interactions remain correlated in
parametric space. Thus it seems that certain physical pro
ties, based on the average behavior of eigenvalues and e
functions, of one complex system are related to the phy
of another, very different in nature of the interactions.
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APPENDIX A: PROOF OF EQS. „3…–„5…

The use of the eigenvalue equationHU5UL, with U as
a unitary matrix andL the eigenvalue matrix, leads to th
following:

(
j

Hi j U jn5lnUin and (
i

Hi j Uin* 5lnU jn* ,

~A1!

where Hi j 5Hi j ;11 iH i j ;2. Differentiating both sides of
above equation with respect toHkl;s ~with s51 or 2), we
get

(
j

]U jn

]Hkl;s
Hi j 1(

j
U jn

]Hi j

]Hkl;s
5ln

]Uin

]Hkl;s
1

]ln

]Hkl;s
Uin .

~A2!

Now as( iUin* Uim5dnm , multiplying both the sides byUin*
followed by a summation over alli ’s, we get the following:

]ln

]Hkl;s
5(

i , j
Uin*

]Hi j

]Hkl;s
U jn , ~A3!

which further gives

]ln

]Hkl;s
5 i s21

1

gkl
@UlnUkn* 2~21!sUln* Ukn#. ~A4!

This can further be used to show that
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(
k< l

(
s51

2
]ln

]Hkl;s
Hkl;s5(

k< l

1

gkl
FUlnUkn* (

s
i s21Hkl;s

1Uln* Ukn(
s

i s21~21!s11Hkl;sG
~A5!

5(
k< l

1

gkl
@HklUlnUkn* 1Hkl* Uln* Ukn#

~A6!

5(
k< l

1

gkl
HklUlnUkn* 1(

k> l

1

gkl
Hlk* Ukn* Uln

~A7!

5(
k,l

HklUlnUkn* 5ln , ~A8!

where Eq.~A8! is obtained from Eq.~A7! by using Hermit-
ian properties ofH (Hlk* 5Hkl). By using Eq.~A4!, one can
also show that

(
k< l

gkl(
s51

2
]ln

]Hkl;s

]lm

]Hkl;s

5(
k< l

(
s51

2

i 2(s21)
1

gkl
@UlnUkn* 2~21!sUln* Ukn#

3@UlmUkm* 2~21!sUlm* Ukm# ~A9!

5(
k< l

2

gkl
@UlnUkn* UkmUlm* 1Uln* UknUlmUkm* #

~A10!

52(
k,l

UlnUkn* UkmUlm*

5(
k

UknUkm* (
l

UlmUln*

52dmn , ~A11!

where Eq. ~A11! follows from Eq. ~A10! by writing
(k< lUln* UknUkm* Ulm5(k> lUlnUkn* UkmUlm* and the last
equality in Eq.~A11! is due to unitary nature ofU.

APPENDIX B: PROOF OF EQ. „6…

Multiplying both the sides of Eq.~A2! by Uim* (mÞn)
followed by a summation over alli ’s, we get the following:

(
j

U jm*
]U jn

]Hkl;s
5

1

ln2lm
(
i , j

Uim*
]Hi j

]Hkl;s
U jn , ~B1!

a multiplication of both the sides byUrm followed by a sum-
mation over allm’s then gives

]Urn

]Hkl;s
5 i s21

1

gkl
(

mÞn

Urm

ln2lm
@Ukm* Uln2~21!sUlm* Ukn#.

~B2!
APPENDIX C: PROOF OF EQ. „7…

(
k< l

gkl(
s51

2
]2ln

]Hkl;s
2

5(
k< l

(
s51

2

i s21
1

gkl

]

]Hkl;s

3@UlnUkn* 2~21!sUln* Ukn# ~C1!

5(
k< l

(
s51

2

i s21F ]Ukn*

]Hkl;s
Uln1

]Uln

]Hkl;s
Ukn*

1~21!s11
]Uln*

]Hkl;s
Ukn

1~21!s11
]Ukn

]Hkl;s
Uln* G . ~C2!

Now by using Eq.~B2! and its complex conjugate in Eq
~C2! and by summing overs, we get

(
k< l

gkl(
s51

2
]2ln

]Hkl;s
2

54(
k< l

1

gkl
(
m

1

ln2lm
@UkmUkm* UlnUln*

1UknUkn* UlmUlm* # ~C3!

54(
k,l

(
m

1

ln2lm
@UkmUkm* UlnUln* #

~C4!

54(
m

1

ln2lm
F(

k
UkmUkm* G

3F(
l

UlnUln* G . ~C5!

Now by using the unitary relation( jU jm* U jm51, one ob-
tains the desired relation~7!.

APPENDIX D: PROOF OF EQ. „15…

Equation~12! gives us the following:

(
k< l

(
s51

2

I kl;s5(
n

]

]mn
E )

i
d~m i2l i !

3F(
k< l

(
s51

2
]ln

]Hkl;s
Hkl;sGrdH. ~D1!

The use of Eq.~A8! will further simplify it in following
form:

(
k< l

(
s51

2

I kl;s5(
n

]

]mn
E )

i
d~m i2l i !lnrdH ~D2!

5(
n

]

]mn
~mnP!. ~D3!
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APPENDIX E: PROOF OF EQ. „16…

For eachs value, we have the following relation:

(
k< l

ykl;sI kl;s5 (
n51

N
]

]mn
(
k< l

gklakl;sE )
i 51

N

d~m i2l i !
]ln

]Hkl;s
Hkl;srdH ~E1!

52 (
n51

N
]

]mn
(
k< l

gkl

2 E )
i 51

N

d~m i2l i !
]ln

]Hkl;s
F ]

]Hkl;s
22akl;sbkl;sGrdH ~E2!

52 (
n51

N
]

]mn
(
k< l

gkl

2 E )
i 51

N

d~m i2l i !
]ln

]Hkl;s

]r

]Hkl;s
dH1(

k< l
Jkl;s , ~E3!

where Eq.~E3! is obtained by using the equality]r/]Hkl;s522akl;s(Hkl;s2bkl;s)r andJkl;s is given by Eq.~E9!.
By integrating Eq.~E3! further by parts, one obtains

(
k< l

(
s51

2

ykl;sI kl;s5(
s

(
n

]

]mn
(
k< l

gkl

2 E S ]

]Hkl;s
)

i
d~m i2l i ! D ]ln

]Hkl;s
rdH ~E4!

1(
s

(
n

]

]mn
(
k< l

gkl

2 E )
i

d~m i2l i !
]2ln

]Hkl;s
2

rdH1(
k< l

(
s

Jkl;s ~E5!

52(
n

]

]mn
(
m

]

]mm
E )

i
d~m i2l i !F(

s
(
k< l

gkl

2

]ln

]Hkl;s

]lm

]Hkl;s
GrdH ~E6!

2(
n

]

]mn
E )

i
d~m i2l i !F (

mÞn

2

lm2ln
Gr~H !dH1(

k< l
(

s
Jkl;s ~E7!

52(
n

]2P

]mn
22(

n

]

]mn
F2 (

mÞn

P

mm2mn
G1(

k< l
(

s
Jkl;s , ~E8!

whereJkl;s can be obtained as follows:

Jkl;s5ykl;sbkl;s(
n51

N
]

]mn
E )

i 51

N

d~m i2l i !
]ln

]Hkl;s
rdH ~E9!

52ykl;sbkl;sE ])
i 51

N
d~m i2l i !

]Hkl;s
rdH ~E10!

5ykl;sbkl;sE )
i 51

N

d~m i2l i !
]r

]Hkl;s
dH ~E11!

52ykl;sbkl;sE )
i 51

N

d~m i2l i !
]r

]bkl;s
dH52ykl;sbkl;s

]P

]bkl;s
, ~E12!
E

where in Eq. ~A32!, the equality ]r/]bkl;s52akl;s(Hkl;s
2bkl;s)r52]r/]Hkl;s is used. A substitution of Eq.~E12!
in Eq. ~E8! now leads to the Eq.~16!.

APPENDIX F: A GENERAL METHOD OF OBTAINING Y

Let us consider a transformation ofM52N2 coordinates
$r j% to another set ofM coordinates$Yi%, where r j ’s are
various coefficientsykl;s ~total N2) andbkl;s ~total N2). The
Yi ’s should be chosen such that the right-hand side of
 q.

~18!, summing over allykl;s , ’s andbkl;s’s, can be rewritten
as

(
i

M
]P

]Yi
5(

k< l
2~g2ykl;s!ykl;s

]P

]ykl;s
2g(

k< l
bkl;s

]P

]bkl;s

[(
j 51

M

gj~r 1 ,r 2 , . . . ,r M !
]P

]r j
, ~F1!

where, for our case,gi(r 1 , . . . ,r M)52(g2r i)r i if r i is one
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of the ykl;s and gi(r 1 , . . . ,r M)52gr i if r i is one of the
bkl;s .

Now, as we want( i
M(]/]Yi)5(]/]Y1), with Y1[Y, this

imposes the following conditions on the functionsYi ’s ~as
can be shown by using the theory of partial differentiatio!:

]P

]Y1
5(

i 51

M

(
j

M

gj~r 1 ,r 2 , . . . ,r M !
]P

]Yi

]Yi

]r j
, ~F2!

and therefore

(
j 51

M

gj~r 1 ,r 2 , . . . ,r M !
]Yi

]r j
5d1i . ~F3!

According to the theory of partial differential equation
@15#, the general solution of linear PDE
( i

MPi(x1 ,x2 , . . . ,xM)(]Z/]xi)5R is F(u1 ,u2 , . . . ,un)
50, where F is an arbitrary function and
ui(x1 ,x2 , . . . ,xn ,Z)5ci ~a constant!, i 51,2, . . . ,n are in-
dependent solutions of the following equation:

dx1

P1
5

dx2

P2
5•••

dxk

Pk
5•••

dxM

PM
5

dZ

R
. ~F4!

Thus the general solution of Eq.~F3! for eachYj is given
by a relationF j (u1 j ,u2 j , . . . ,uM j )50 where functionF j is
arbitrary andui j (r 1 ,r 2 , . . . ,r M ,Yj )5ci j , (i 51,2, . . . ,M )
~with ci j ’s as constants! are independent solutions of th
equation

dr1

g1
5

dr2

g2
5•••

drk

gk
5•••

drM

gM
5

dYj

d1 j
. ~F5!

The above set of equations can be solved for variousYj to
obtainF j . For Y1, we get the relationsY12 1

2 log(ri /uri2gu)
5ci1 ( i 51, . . . ,M /2), Y11(1/g)loguriu5ci1 ( i 51
1M /2, . . . ,M ), and thereforeF1 satisfies the relation
F1 @Y12 1

2 log(r1 /ur12gu), . . . , Y1 2 1
2 log(rM/2 /ur M /22gu ),

Y11g21logurM/2u, . . . ,Y11g21logurMu]50. The functionF1
being arbitrary here, this relation can also be expressed in
following form:

Y15
1

M F1

2 (
i 51

M /2

log
r i

ur i2gu
2

1

g (
i 5M /211

M

logur i uG1C,

~F6!

whereC is another arbitrary function of constants: for e
ample,
s.

tt
he

C[C@ 1
2 log~r 1 /ur 12gu!1g21logur Mu,

1
2 log~r 2 /ur 22gu!1g21logur Mu, . . . ,

1
2 log~r M21 /ur M212gu!1g21logur Mu].

Similarly the variablesYi , i .1 can be obtained; howeve
their knowledge is not required for our analysis.

APPENDIX G

The choice ofg is based only on the requirement th
ykl(O).ykl(G).g for all k,l . Thus g can take any value
such thatg<minykl(G). Let us consider two such possibil
ties forg, g5g1 andg5g2 and try to evaluate properties o
G on these curves referred to asT1 andT2, respectively~for
some initial ensemble!. Let the value ofY for G on these
curves beY1 andY2 where

Y15
1

2N2 (
k< l

(
s51

2 F1

2
ln

ykl;s

uykl;s2g1u
2

1

g1
ln bkl;sG1C,

~G1!

Y25
1

2N2 (
k< l

(
s51

2 F1

2
ln

ykl;s

uykl;s2g2u
2

1

g2
ln bkl;sG1C.

~G2!

However,Y1 can also be written as follows:

Y15
1

2N2 (
k< l

(
s51

2 F1

2
ln

ykl;s8

uykl;s8 2g2u
2

1

g2
ln bkl;s8 G1C.

~G3!

Now asykl;s8 5ykl;s(g2 /g1)Þykl;s andg2/g1bkl;s8 5b this
implies thatY1 would correspond to a point, different from
Y2, on the transition curveT2 and therefore would give prop
erties for the ensembleG different from those given byY2.
This conclusion is, however, erroneous and is a result of
rescaling applied only to one pointY1 on the transition curve
T1. To get the right answer, the entire curveT1 should be
rescaled which would also require a rescaling of the e
points and therefore changed distances on the rescaled c
~call it T18). Thus the pointY1 will appear at the same loca
tion on theT18 curve, relative to endpoints, whereY2 appears
on theT2 curve and therefore both will imply the same pro
erties for the ensembleG.
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