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The choice of a suitable random matrix model of a complex system is very sensitive to the nature of its
complexity. The statistical spectral analysis of various complex systems requires, therefore, a thorough probing
of a wide range of random matrix ensembles which is not an easy task. It is highly desirable, if possible, to
identify a common mathematical structure among all the ensembles and analyze it to gain information about
the ensemble properties. Our successful search in this direction leads to the Calogero Hamiltonian, a one-
dimensional quantum Hamiltonian with inverse-square interaction, as the common base. This is because both
the eigenvalues of the ensembles and a general state of the Calogero Hamiltonian evolve in an analogous way
for arbitrary initial conditions. The varying nature of the complexity is reflected in different forms of the
evolution parameter in each case. A complete investigation of the Calogero Hamiltonian can then help us in the
spectral analysis of complex systems.

PACS numbegps): 05.45—-a, 03.65.5Sq, 05.46.a
Recent statistical studies in various branches of theoretitary operators, e.g., the time-evolution operator is connected

cal physics, ranging from the Calogero model of a oneto the Calogero-Sutherlan€S) Hamiltonian[9]
dimensional(1D) fermionic system[1], a random matrix

(RM) model of disordered systems, and matrix models of HZ—Z ‘7_2+ 18(18_2)2 ed r“i_f“i)
random surfaces to a nonlineamodel(NLSM) of quantum T oul 16 & 2

chaotic systems, have revealed the presence of a common )

mathematical structurf2—4]. The connecting web of these P N(Nz-1) %)
various models with each other is well described[&]. 48 '

However, so far, the connection of a RM model with other . i . . .
models was established only for standard Gaussian erf!nere particles are confined to move in a circle, thus mim-
sembles(SGB, that is, Gaussian ensembles invariant undeI‘Ck'ng the similar confinement of eigenvalues due to the_qnl-
unitary transformation. This was achieved by showing thaf@’y nature of the operator. The morphological transition
the distribution of the eigenvalues of the ensemble is goy€@used by the interacting steps on a miscut crystal surface
erned by a Fokker-PlandlEP) equation[6,7] similar to that ~ ¢&n also be modeled by the CS Hamilton[d@]. Here the

of Dyson’s “Brownian” motion model[5]. Through the re- complexity is thermodyngmlq in ngture. It is glready well
duction of the FP equation to the ScHioger equation, the known that the parametric dispersion of the eigenvalues of
latter model is already known to be connected to the Calogth® guantum system, with a nonintegrable classical limit, is
ero Hamiltonian and thereby to various other modélsg. ~ described by a set of equations similar to the equations of
In this paper, we explore RM models with noninvariant dis-motions of particles, in time, of the classical Calogero
tributions, and, following the same route as in the case ofamiltonian[11]. This analogy extends also to the statistical
SGE, connect them to the Calogero Hamiltonian. This give®roPerties in the two cases. The parametric evolution of the
us a new technique to analyze the spectral behavior of théiStribution Pg(ey, ... .ey;7) of the eigenvalueg; of a
quantum operators of complex systems. HamiltonianH=Hy+ 7H, (of sizeN), with perturbatiorH,

The connection between complex systems and the Calo aken from a SGE corresponds to the time evolution of the
ero Hamiltonian seems to be wide ranging. The eigenvaludistribution Pyg(ry, ... ry;t) of positionsr;’s of the par-
dynamics of Hermitian operators, for example, Hamiltonians“des_ and both the static as We!l as dynamical correlators of
of complex quantum systems, e.g., chaotic systems disofhe eigenvalues turn out to be similar to those of the particles

1 +J - v . . . . 2 .
dered systems seem to have an intimate connection with t8 the CM Hamiltonianfwith V() u® in Eq. (1)] [6-8].
particle dynamics of the Calogero-Mog@M) Hamiltonian. Here B refers to the generic symmetry qlass of the_complex
The latter describes the dynamics of particles interacting vigyStéms and therefore the transformation properties of the

pairwise inverse square interaction and is confined to mov@ssociated RM modelknown as GOE, GUE, and GSE for
along a real lind 1], B=1,2, and 4, where O, U, and S refer to the orthogonal,

unitary, and symplectic nature of transformation and GE
- E #? 1 B(B—2) 2 v 1 stands for Gaussian ensemtl&2,6]. In the limit 7—oo, the
- (9#? 4 & (Mi—Mj)Z i (wi). (D) eigenvalues attain an equilibrium distribution, known as
Wigner-Dyson, which coincides with the probability distri-
Here u; is the position of thdth particle andV(w;) is the  bution of N-particle coordinate®y(r;t— ) of the ground
confining potential. Similarly the level dynamics of the uni- state of the CM HamiltoniafB,8]. Similar analogies can also
be made between the evolution of the eigenvalues of unitary
operatorsU=Uye'™, with M taken from SGE, and the CS
*Email address: Shukla@phy.iitkgp.ernet.in Hamiltonian[13]. This is equivalent to saying that the sta-
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tionary and nonstationary states of the CSM Hamiltoniarequation to the Schdinger equation of the CM Hamiltonian
correspond to the eigenvalue distribution of the systems suland a mapping of their respective correlators. Section ||
jected to random perturbations, strong-=) and weak(fi- deals with the application of our technique to some important
nite 7), respectively, and thereby to equilibrium and non-physical processes, e.g., localization and a brief discussion of
equilibrium distribution of SGE. In this paper we show a our technique applied to a few other important matrix en-
unigue connection between the CM and RM model: a nonsembles is given in Sec. IV. Section V gives an alternative
stationary statéfinite t) of the CM Hamiltonian can also be evolution equation for the eigenvalues. We conclude in Sec.
mapped to the eigenvalue distribution of a generalized/l, which is followed by the Appendixes containing the
Gaussian ensemb(&GE); the correspondence is establishedproofs of some of the results given in the main text of the
by identifying a parameteY for GGE, equivalent to time¢  paper.
for the CM Hamiltonian. This mapping can then be used to
obtain the information about various spectral properties of |. EIGENVALUE DISTRIBUTION OF GENERALIZED
GGEs. GAUSSIAN ENSEMBLES

In the recent past, RM ensembles have quite often been
used to model the physical systems with complicated inter-
actions[2,12]. The logic which could be given in support of  The eigenvalue equation of a complex Hermitian matrix
the model is that the missing information about the detailedH is given byHU =UA with A as the matrix of eigenvalues
nature of the interactions can be mimicked by randomizing\, andU as the eigenvector matrix, unitary in nature. As is
the associated generators of motion, that is, by taking theiobvious, a slight variation of the matrix elementstbfwill,
matrix representations as random matrices. However, as the general, lead to a variation of both the eigenvalues as well
specific details of the complexity of an operator should beas the eigenvectors and associated rates of change can be
reflected in the associated RM model, the distribution of theobtained as follows.
matrix elements can be of various types. For example, for a As RnZEi,jUniHijUﬁj, the rate of change of, with re-
Hamiltonian with a chaotic classical limithe least predict- spect toHy,.s (with s referring to reals=1, and imaginary,
ability of the long-term dynamigs the distribution can be s=2 parts ofH,,) can be given
chosen as Gaussidgthe least information ensemblewith
distribution parameters to be determined by the associated JN\p _is*l N o
quantum dynamics. The corresponding RM model will thus (9Hk|;s_9_k|[U'” kn— (= 1)U Uknl, 3
belong to a generalized Gaussian ensemble with the matrix
elements distribution given bp(H)ece f1(Mf2(M) (with f,  whereg, =1+ 8. This can further be used to obtain the
and f, arbitrary functions andd as a typical matrix The  following relations(Appendix A):
SGEs, \évith the matrix elements distribution given B¢H) )
xe” """ are special cases of GGEs and many of their prop- IAn _ x _
erties are already known. The various features of GGEs k% 521 ﬁHkusHkl;s ; AaUinUin =2 @
have, however, remained unknown so far. The purpose of
this paper is to suggest a technique to fill in this gap in oudnd
information. As for SGE, the nature of matrix elements in )
GGE also depends on the exact symmetry conditions of the 2 Ny ONm
Hamiltonian and is again indicated by paramegemwith 8 = MHy:s MHygs
=1,2,4 for a generic matrix element to be real, complex, or
guaternion 12]. Here we discuss, in detail, the properties of For our analysis later, we also require the information
the GG ensemble of complex Hermitian matricgd=2);  about the second-order change of an eigenvalue with respect
the GG ensemble of real-symmetric matricg3=(1) has to a matrix element and, therefore, the rate of change of one
been discussed elsewhdr®4]. We also probe briefly the of the eigenvector components with respecttg. This is
non-Gaussian ensembles that can serve as good models fgiven as follows(Appendix B:
complex systems with various conditions on the associated

A. The change of eigenvalues and eigenfunctions

280 (5)

quantum dynamics. IUpn %71 1 U [U* U

We proceed as follows. Our technique is based on the MHis O mzn An— A prl UinUin
statistical evolution of the eigenvalues of a GG ensemble
with respect to a change in their distribution parameters. This +(= 1% U Uil (6)

requires prior information about the effect of a small change .
in the matrix element on eigenvalues and eigenvectors; th@nd Now by using Eqg3) and (6), one can show tha@p-
related study is given in Sec. | A. These results are then usdeendix O

to obtain, as described in Sec. | B, the distribution of eigen- 2
valuesP(u,Y) of a matrix H taken from a Gaussian en- E 9 d"\n :42 1 @
semble, noninvariant under unitary transformation. The evo- = e aHﬁl_s m An—Am

lution of the eigenvalues is governed by a partial differential

equation which, after certain parametric redefinitions, turns For the real-symmetric case, the corresponding relations
out to be formally the same as the FP equation for thean be obtained by usifng™=UT (as the eigenvector matrix
Brownian motion of particles in Wigner-DysofWD) gas is now orthogonalin Egs. (3)—(7) and takingH;;.,=0 for
[12]. Section Il contains the details of the reduction of the FPall values ofi,j (see[8]).
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B. The evolution equation for the eigenvalues

JP
Let us consider an ensemble of complex Hermitian matri- 2es g =t bk'?sabkl;s' (13

cesH, with matrix element$,;=H\.; +iHy.o(1— 6y) dis-

tributed as Gaussians with arbitrary variances and mean val- Our aim is to find a functiorY of the coefficientsy.s's

ues; the variances of real and imaginary parts of a singlandb,.s's such that the evolution dP(u,Y) in terms ofY

matrix element also need not be same. Thus we choose tiatisfies a FP equation similar to that of Dyson’s Brownian

distribution p(H) of matrix H to be following: motion model(Wigner-Dyson gas[5,12]. For this purpose,
we consider the sum 2, (y—gwaxi;s) @ki;s(IP/day;s),

2
where vy is an arbitrary parameter, and thereby obtain the
p(H,y,b):Cexp( Z 2 ay:s(Hyr:s bkl;s)2 (8) foIIowirTg relation: yp y

with C=HKS|H§21\/ak,;S/w as the normalization constamt, i 2 JP JP
as the set of coefficientg.s= ay.s0x = gk|/2(HkI o), andb & & (Y= Yxis) Zyk'?Sgykl;S_bk'?Sgbkl;s

as the set of alby,.;. Note that such a choice leads to a

nonrandom complex Hamiltoniard(, = by.q +iby.,) in the z

limit ay.;,ay.,— and, therefore, can model various real 2521 [szl lkis— k% ykl:s'kl;s}- (14)
physical situations such as the switching of disorder in a

nonrandom Hamiltonian, e.g., metal-insulator transitions. As shown in Appendix D, the first term on the right-hand
Let P(u,y,b) be the probability of finding eigenvalues  gjge of Eq.(14) can further be simplified:
of H betweenu; and u;+du; at a giveny andb,

J
m(/fvnp)- (15

N
P(u,y,b>=filjl - N)p(HyD)dH. (9

As the o dependence oP in Eq. (9) enters only through The second term can similarly be rewritten as follows

o Appendix B:
pH)  and  aplimgs=[(2ar) '~(Hys—bd?lp PPN E
:(Zakl;s) [p+(Hkl;s_bkl;s)(&p/&Hkl;s)] with &p/&HkI;s J 9 B
= —dpldby,.s, a derivative ofP with respect tox,.s can be 2 E Vsl kiis= _2 + P
written as follows: s k=l n OMn| Ofn  mZEn Mm™ Mn
JP
P P ap = Yisbuis— (16)
= = ! Soby-e’
day;s 201k|s 2ay; SJ H olpi=h )HklsﬁH dH K= Klis

P where 8=2. Using both the equalitied5) and (16) in Eq.
f H S )\i)bkl;sab_de- (10)  (14), we obtain the desired FP equation
kl;s

2ak|s
The second integral in Eq.(10) is equal to T yE ,unP) Z 13 +> 'ﬁ P.
bu.s(9P/dby.s). The first integral can also be simplified by Mn  m#n Km™ Mn
using integration by parts followed by the use of the (17)

equality  JITN 3 8 —Ni)/ Hyg.s= — R4 [T (py

Here the left-hand side of the above equation, summin
N Fpn](ONn /M i.o): N g

over allyy.s andby,.s, has been rewritten agP/dY with Y
N 3 given by the condition that
p
S(pi—N)Hy.s=—dH
j |];[1 (=M kI'SO"Hkrsd JP

aY_Zz 2 ykl S(Y ykl S) 725 = bkl;s(?bkhsl

al'[ S(pmi—Ni) (18

—a. HuspdH By using the orthogonality of eigenvectors and following the

N same steps, it can be proved for a real symmetric case also

(now B=1) [14]. It is worth noting that Eq(17) is the same
U —N)pdH=1;s—P, (11 as the evolution equation for the eigenvalues of Brownian
ensembles. It is also similar to the one governing the transi-
where tions between any two universality classes of SGE caused by
a random perturbation of strength(with 7—Y) [8,6].

e
|

li;s= E

7\n
I f H o(pu Hy, —7——HspdH. (12) C. How to obtain the complexity parameterY
n S

The variableY, a function of relative values of the coef-
Substitution of Eq(11) in Eq. (10) then gives ficients ay.s's and by.¢'s, is a measure of the degree and
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nature of the complexity of a system and can therefore be To show that Eq(21) is indeed a solution of Eq17), we
referred to as the “complexity parameter.” For the case dis-study a general case. Consider a partial differential equation
cussed her¢Eq. (18)], Y can be obtained by the following for a functionF(A;t) defined in the matrix space ®fxN

method. Hermitian matricesA
We defineM = 2N? variables ¥4, ...,Yy) as the func-
tions of ally,.s's andby.s's such that the condition given by F o,
Eq. (18) (whereY=Y,) is satisfied. This is indeed possible E_[VAFJFV'(AF)]' (22)
by using the orthogonaldacob) coordinate transformation
between variables {Yitiz1, ... m and  where
{Yki:s:Pi:stk=1:ki=1, ... n:s=1,2 defined by the following rule:
2 2
M 5 d 1 1%
. = _+ — —_—,
Yi=_21 a;X; for i=1-M, (19) Va=2 o2 2 2 e
J:
J
where X;=3In(yigs/lyk:s—A)+¢; for j<N? and X;= V- (AF)=2 ——(AjF), (23
i<j ij

—(1/y)lnfbk|;s|+cj for j>N2, with c; as arbitrary constants
of integration. Here coefficients;; must satisfy the relation
EJM: 18ij= &i1 Which is a necessary condition for orthogona
ity but not sufficient to get the right form fa#/9Y. With D
being the functional derivative of;’s with respect toX;’s,
we also need the elemenis;;* of its inverse to be unity. F(A;t):f K(A,B,t)f(B)dB, (24)
One way to achieve this is to set all adjuncts of the matrix
elementsdY,/dX; equal. Now by choosing,; also equal,
all:M‘l, we are left withM conditions fora;;, i#1,
which can easily be fulfilled. 1
The form of Y=3a,;X;, fulfiling condition (18), can K(A,B,t)=(4wt)"\‘2’2exr{— —tr(A—B)z}, (25)
therefore be given as 4t

I_With the initial conditionF(A;0)=1f(A). This equation is
known to have a unique solutidisee p. 174 of12)),

where

where B is an NXN Hermitian matrix. Depending on the
nature of bothA and B, we can choose a special class of
eigenvector matriced , andUg (for A andB real symmet-
ric, complex Hermitian, or symplecti¢), and Ug are or-

_ o te thogonal, unitary, and symplectic matrices, respectjvely
with C=M~"Zc;. such that

As is obvious, this method is applicable only for the case
when the prefactor associated with a derivativePofvith
respect to a variable in Eg. (18) depends only om (r can
be any one of they,.s or by.s). Our studies on the en-
sembles more complicated than E8) show that the pref-
actors can also depend on a combination of variouari-
ables. This requires a more general method to obfaimich
can also be used for the case discussed tAppendix B.

1 S,y 1
kl;s

Y= =InT——"————In|by.{| | +C (20

2N2 k=<l 521 2 |ykl;s_’)’| ¥ |k|,s| ( )

A=USaU, and B=UZbUg, (26)

wherea=[a;d;;], b=[b;d;;] are diagonal matrices with;
andb; as the eigenvalues & and B, respectively, andJ®
=U" orUT or UR, depending on whethéJ is an eigenvec-
tor matrix for a complex Hermitian, real symmetric, or sym-
plectic matrix[12]. Let 8, and Bg give the number of com-
ponents of typical matrix elements A&andB, respectively.
D. Determination of P(i,Y) Changing the variables from matrix elements to theigen-

Equation(17) describes an evolution of the eigenvalues ofValu€s and3N(N—1)/2 angle(i.e., eigenvectorparameters

GGE due to changing distribution parameters of the en®" WhichUg depends, we have
semble that can be solved, in principle, to obtRif.,Y) for
arbitrarily chosen initial values of the parameters. If the en-
semble corresponding to the initial set of parameters is re- .
ferred asH, an integration oveH, would lead toP(u,Y), with
free of initial conditions. In fact, it can be shown that

dB=|A(b)|frdbdUg

N
, 1 db=]] db; and A(b)=]] (bi=b). (@7
P(M;Y):(4WY)*N’ZJ ex;{—wtr(,u—UﬁuOU)Z =t =)

X F( 120)| Al 20) | Pod pod U, 21) The substitution of these relations in E4) gives us

1

_ N2

where ug is the set of eigenvalues of the initial mattik, F(A)=(2mt)™N IZJ EXF{ T tr(a—U%bU)?

with B, given by its symmetry conditions, andl is the in-

tegral over unitaryor orthogongl space of matrices. X f(b,Ug)|A(b)|ArdbdUsg, (28
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whereU=UgU3 andUS=U,Ug. Now if f(b,Ug) is inde-  decrease ofyy ., (from ©—y while keepingy,,., fixed)
pendent ofUg thenF(A;t) is also independent df . This  leads to the GOE GUE transition with intermediate en-
helps us to rewrite E28) as follows: sembles as those of complex Hermitian matrices. Similarly
Poisson— GUE transition can be brought about by a choice
ey ~N22 of the initial ensemble as Poissdalmost all yy.1,Yk:2
F(a;t)=(4mt) j G(a,b,t)f(b)|A(b)|#edb, (29) oo for K£1, Vi1 =7 Yio= 7, andbi.o=0 for all k,|,s
valueg and by varying bothy,.; andyy., up to y. As is
clear from abovey fixes the variance of the final ensemble
1 and an arbitrariness iry leaves the latter arbitrary. This,
G(a,b,t)zf exp{ - —tr(a—USbU)z}dU. however, does not affect the statistical properties of the in-
4 termediate ensembles.
The equation(21) for P(u,Y) can be used to obtain the
th-order density correlatoR, (w1, .. .u,;Y), defined by
=[NV/(N=M)!T/P(&,Y)dupnsq---duy. (R, can also
expressed in the formv(wq,Y) - v(un,Y)) with
v(w,Y)=N"1Z,6(u— u;) as the density of eigenvalues and
J (---) implying the ensemble averageHere note that the
|A(a)|fa—+VZ . (30) analogy of Eq.(17) to that of Dyson’s Brownian ensembles
Ja; A (BE) implies the same form oP for both the cases and
o _ ) thereforeR,,. A lot of information is already available about
By the substitution of Eq(30) in Eq. (22) and using the  |eve| density and various correlations for Brownian en-
independence df (a;t) of Ua, one can rewrite Eq22) as  gemples; it can directly be used for the ensemble described
follows: by Eq. (8). Thus, as for BE, a direct integration of the FP
equation (17) leads to the Bogoliubov-Born-Green-

where

Here the integral is over the grouyp of orthogonal, unitary,

and symplectic matrices, respectively. Further the Laplacia
Vi can also be written in terms of eigenvalues and angl%g
parameters oA (see Appendix A.5 of12)),

D

V3(A)=
(A) |A(a)|ﬁa T 0g;

JF(ai) 1 > K |A(a)|B35F(a?t) Kirkwood-Yvon (BBGKY) hierarchic relations among the
at |A(a)|fa T 92 aa; unfolded local correlators
J . Rn(ﬂlv LR !Iu‘n;Y)
— (a R.(ry, ...rp:A)=1Iim
T2 g @) (3 T T A= M R (i Y) - Ra(an:Y)

with F(a;t) given by Eq.(29). Now by using the equality

H _ . _ _ 2 _p—1.
>i(#%19a?)|A(a)|Pa=0, Eq.(31) can be reduced in the fol- with r=[" Ry(u;Y)du andA=(Y—Y,)/D* (D=R; 7; the

mean level spacind13],

lowing form:
JF J al o Ba IR, R, d ( R, )
—=> —(aF)+ > —|—+ F, (32 —n_> —
at Z r?ai( iF) 2. day| da; ;. a;—a; 32 A 2 ar; B;k arj\rj—ry
which is similar to Eq(17) with a;— u;, t—Y, y=1, and D d (* Ry
F—P. The joint probability density? can therefore be ob- —B oar. ol =Ty (33

tained by evaluating the integré®9). However, so far, the

integration could be performed only for the unitary group of
mat?ices[lS 16,13, P y y grotp (here, for simplification;y is chosen to be unijy As can be

seen from the above equation, the transitionRgioccurs on
the scales determined bg~D? and a smooth transition can
be brought only in terms of the paramet&r obtained by
The steady state of Eq.(17), P(w,2)=P., rescalingY by D2. On the other hand, fdR;, the correspond-
_ 2 i . . . 2 . .
=|A(u)|Pe” "2%kk, corresponds tof —Yo—o (with Y, ing scale is given byr~ND*<. This implies, therefore, dur-
as the complexity parameter of the initial ensembtéich  ing the transition inR,, the densityR; remains nearly un-
can be achieved by two wayor finite Y, values. The first ~ changed,; this fact is very helpful in unfolding the correlators
is when almost aly,;.; — y andyy,.,— (for finite by.; and R,. Forn=1 and in largeN limit, the above equation re-
by.» values which results in a GOE steady state. The secondluces to the Dyson-Pastur equatjds] for the level density
is when almost ally,.1— y.yx.o— 7. resulting in a GUE. {¥(u1,Y))=N"'Ry,
This indicates that, in the steady-state limit, the system tends

E. Steady state, level density, and correlations

to belong to one of the SGEs. Equatiiv) can, therefore, Hv(w)) 9 (v(u"))
describe a transition from a given initial ensemblath Y N _'BWL 2 Pl du a—p (v(u)),
=Y,) to either GOE or GUE withY—Y,, as the transition m (34

parameter. The nonequilibrium states of this transition, given

by nonzero finite values of —Y,, are various Gaussian en- ) ) o

sembles corresponding to varying values of the coefficientd/hich results in a semicircular form for,
Yki:s and by.s. For example, the choice of the initial en-

semble as GOEalmost allyy;.1 = 7,Yy.o— initially) and a v(r)=(2lmn?)(n?—r?)1?
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with 7?=4N(1+Y?) [17]. The application of the supersym- (Qa(Y)Qu(0))=(0|Q,Se ""S™1Qy|Py)
metry (SUSY) technique[18] to ensembld8) gave a similar vn
result(also see Sec. 4.3 ¢12]). = (ol Qa€™ "'Qy| ho)- 37

1. NNECTION TO THE CALOGERO HAMILTONIAN
co CTIONTO CALOGERO © Ill. APPLICATION TO PHYSICAL PROBLEMS

A similarity transformation followed by a Wick rotation The ai bl ferred to h G
converts the FP equation into a self-adjoint fof&]. This e given ensemblB), referred to here as “G,” is rep-

can be seen as follows. The FP equation, in general, can %Sse_nteql by a poinit'in the parametric space, consisting of
expressed in a form ’ ' Istribution parameters and various transition curves may

pass through this point. The question therefore arises as to
which curve should be chosen for the studies of the proper-
=—P|Py), (35) ties of G? The answer is the one which does not leave any
arbitrariness behind and if there is more than one such curve,
) ) ) ) each one of them should give the same answer for various
where P is a FP operator with non-negative eigenvaluescq,ation measures @. These criteria for the right choice
Here|Py) is a general state of operateat “time” Y and its are based on the symmetry properties of enseiBbkaat s,
project.ion in eigenvalue space can be obtained by the usugle nature of alley, and by, with endpoints(the final and
operationP(u,Y)=(u|Py) (with u as set of the eigenval- iyitia| ensemble, referred to here a&* and “ O,” respec-
ues. Let P(u,Yo)=(u|Po) be the equilibrium probability. tively) chosen in such a way that the values corresponding to
One can further define a vect®@|=fdu(u| ... satisfying g gccur during the variation of distribution parameters from
<O_|P:0 thus implying the conservation of probability in gne end to the other. Furthermore, the chosen transition
“time” Y in this state(the ground staje The FP operator gnhoyid preferably be the one whose properties are already
can now be Hermiticized through a similarity transformationynown and can therefore tell us abo@t For many GGE
S 1PSZ_ H, whereSis the Hermitian and invertible operator gescribed by Eq(8), the above criteria is satisfied by choos-
depending only on the eigenvalues. Thus the ground-stariﬁg F as a SGE with variance{F?>:2<F?):y*1, y
condition must be given byS|0)=0 (asP*|0)=0). Let <minfy.JGJ}, kI=12, ... N, s= 1"'2, andO as an en-
the e.ffect of similarity traniormation on the Sjiﬂ@) and  semple with eacla, [ O] given by the maximum value taken
|Po) IS expressed'bw)_zs [Py) and|.¢//o>=S [Po), '€~ py the functional form of the corresponding,[G]. How-
spectively. The similarity transformation of E¢35) will ever, as explained in the following exampl€gcan also be
then give the desired fornd|y)/9Y=—H|y); the ground  .posen as some other ensemble. For exampl& 1§ an
o o et S 4 iy gl of ek symmetic macet rpresonea by
" . . p(H)<exg —2,<aHg] with finite but different values for
condition gives|yo) = /0) and therefor¢Po) = $°|0). all ay,, the Poisson>GOE curve is more suitable for its
In the_casc_e of the FP (_equatlojﬂﬂ), H turns out to pe a study rather than GOE-~GUE. Here the GOE ensemble is
CM Hamiltonian[Eg. (1) with r;— ;] and has well-defined described by(F2)=2(F2)=y"! with y as the minimum
eigenstates and eigenvalugs19]. As is well known, the value among giI\I/eryk,[G”]s Hyowever %varioumm in the

particles in the CM system undergo an integrable dynamicsabove example can also take complex values, the ensemble
thus implying a similar motion for the eigenvalues, too. Here P P ’

H is a generic member of GGE; this result is valid for all can now be chosen on any one of the curves, namely, Pois-

L : : n— GUE or GOE— GUE. Here now GUE can be cho-

E};séecr;nEs.wnh interactions complicated enough to be modeleSen aS<Fﬁ>:2<Fizj;1>=2<Fi2j;2>= 1. The GOE for the

The “state”  or P(u,Y|H,) can be expressed as a sum secontzj curve can be 2chosen as the one wier,)
over the eigenvalues and eigenfunctions which on integratiorr 2( O] =9 ' and (Of.,)=0 with g=maxy;.|[G]}.
over the initial ensembléd, leads to the joint probability ~Similarly, for the Poisson— GUE curve, the initial en-
distributionP(x,Y) and thereby statiat a single parameter Semble may be taken as one wit®7)=y"* and(O7.,)
value density correlationsR,,. The above correspondence =(Oi2,-;2>=0 for i #j. The reason for the choice of the two
can also be used to map the multiparametric correlations ttransitions is due to the availability of the results for their
multitime correlations of the of CM Hamiltonian. For ex- two-point correlatiorR, [13]:
ample, the parametric correlatid®,(Y)Qy(0)), for a clas- For Poisson— GUE
sical variableQ(Y) with [Q,S]=0 can be mapped to the
corresponding ground-state correlation of the CM Hamil-

d|Py)
oY

tonain{ 0| Qa(Y)e™ YHQ,(0)| o). This follows because Ry(riA)—Ry(r:e) = ifmdxfl dzc0827x)
T Jo -1
<Qa(Y)Qb(O)>:f QaQpP(u,Y)du X exf — 8m2AX(1+X+22X)]
J(1=23)(1+22%)
Zf (1]QaQp|Py)dpu. (36) X( 1+ x+ 229 (39

Now as the evolution ofPy) with respect toY is given by
|Py)=Se Y"S™!|Py), one has and for GOE— GUE
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Ry(r;A)—Ry(r;) of MI transition brought about by diagonal disorder, can
L ) ) therefore be chosen as in B®) with a),—, b= —t for
™ * sin(yr = - i i
:__zf dxf dz xsin(rx)exp 2A (2—y2)] n(y , k#!, a=a, andb,=0 for all k which results in
mJo T y
Yo N 2% ikint| 4o
(39) ToNZ|2 M2a—y Y RINYTC

_ . 2 . .
whereR,(r ) = 1~ [sir(mm)/7r?] (the GUE limip. HereK is total number of the sites connected and depends on

Itis obvious therefore that ik ; and A, are the parameter o gimensionalityd of the system. The system can initially
values for the ensembl® on Poisson— GUE and GOE_—’ be considered in an insulator regime where all the eigenvec-
GUE curves, re§pectlvely, one should haRgp_y(r;A  tors become localized on individual sites of the lattice
=A1)=Ry0-u(r;A=A3). This would require an intersec- (strong disorder limit This results in a diagonal form of the
tion of two curves in theR,— A space which, however, is  matrix H with the eigenvalues independent from each other.
possible. This is because the GOE can occur as an intermeye jnsylator limit can therefore be modeled by ensert®le
diate point in the Poisson» GUE transition. The GOE-~ With @y —o for k#1, a=ap (for all k values and by,
GUE curve can alsq appear as a part pf.t_he Poiss)BUE ¢ (for all k,1), giving Yo= (1/4N)In(2a/|2ap— 1)) +C (as
curve; thus the choice of two different initial ensembles hergc — g in the insulator regime The decrease of the diagonal
corresponds only to two different origins of dynamics on thedisorder, that is, an increase af, from «, to some finite
same curve. _ _ _values(while ay,, k+#1, remains infinite throughout the tran-

The parametey, which determine& as well as the vari-  gjtion) will ultimately lead to a metal regime with fully de-
ances ofF, enters into the calculation at a step given by Eq.jocgjized wave functions. The eigenvalue distributiorHdf
(14) and can be chosen arbitrarily. As suggested by(Ef),  ihe regime can be well modeled by the SGE; let it be de-
the choice of differenty values corresponds to differelt  gcrined byay, (> a,). Thus for the study of the transition in
values as well as the transition curves with endpoints of thenis case we should choose=2a,, . The transition param-

same nature but different variances; this, however, would NOLier can now be given as follows, with the mean level spac-
imply different properties for the ensemble(&ppendix G. ing Do 1/\N: '
e

Similarly, although the FP equation is independent of th
choice of the initial ensemble, the latter is required for the Y=Yy 1] a|lag—ay
determination of the correlations &. The possibility of an A=—pz==7|In
arbitrary choice ofO may seem to imply a certain arbitrari-

ness left in the correlation . However, the choice of two  As is obvious from the above, the transition is governed by
different initial ensembles corresponds only to the two dif-re|ative values of the disorder and the hopping. Hére 0

ferent origins of the dynamics approaching the same point ifeads a to fully localized regime that corresponds to the fol-
the parametric space. This will be clarified by the examplesowing condition ona andt:

given below.

gl an| —NaMInt . (40)

| a a—ap K
. —+ =
A. Anderson transition : ag ay Nay,

Int. (41

Usmg the above !T.‘eth"d' the transition parameter for 'ri‘Equation(40) gives, therefore, the condition for the critical
metal-insulator transition as a result of increasing disorder

can exactly be calculated. To see this, let us consider the cased'on of mobility edge K/N—finite asN—w). As (ja

of a d-dimensional disordered lattice, of sizein the tight- ~ aol/ay) <1 even for largex values, the condition is al-

binding approximation. Here, in the configuration space repyvays satisfied iIK/Na— 0. This explains the localization of

resentation of the Hamiltonian, @dxX N matrix of sizeN all the states in infinitely long wweé_or strictly 1D systems
i d . . , . . whereK<N) even for very weak disorder. With increasing
=LY the diagonal matrix elements will be site energies

The hopping is generally assumed to connect onhetear- g ISR BER Ve, TORAEE G B0 8 AOES 0L T
est neighbors with amplitude so that the electron kinetic P y '

energy spread or bandwidth i$. This therefore results in a ggfié ;22 sg;l:rrllty be calculated when off-diagonal disor-
sparse form of the matrild. We first consider the case of the P '
L—D transition brought about by decreasing diagonal dis-

order only. In this case, site energiesare taken to be inde- B. 1D, quasi-1D, and periodic 1D disordered
pendent random variables with the probability dengity;). and chaotic systems
In the Anderson moddR0] of the metal-insulato(MI) tran- In 1D geometry of a solid state system, e.g., a chaiN of

sition, p(e) was taken to be a constaw ! between interacting sites, in tight-binding approximation, the long-
—W/2 to W/2. Various physical arguments and approxima-range random hopping leads to a banded structure of the
tions used in this case led to the conclusion that here all theatrix, known as the random banded mat®RBM) [21,22.
states are localized foV>4Kt In(W/2t) with K as a func- Here the effectively nonzero, randomly distributed, matrix
tion of zandd. elements are confined within a band with its width governed
However, as is well known now, the MI transition does by the range of hopping. The 1D periodic geometry, e.g., a
not depend on the nature p{e) and the latter can also be chain of interacting sites joined into a ring leads to a periodic
chosen as Gaussian; the typepgg) affects only the critical RBM in which all nonzero matrix elements belong to three
point of the transition. The(H), for any intermediate state regions: a band along the main diagonal, the upper right
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corner and the lower left orf@1]. A real disordered wire has =—(1/4N?) =N, (N—r)In|1—2e "°|=b/N. As R;~ N, the

a finite cross sectiofreferred to as quasi-1D geometand  transition parameter for the infinite systei-() turns out
therefore allows for propagating modes with different transto be A =Y/D?~b (see[14]) which reconfirms that, in infi-
verse quantization numbers frequently referred to as transite systems, the transition is governed only by the band-
verse channels. This case can again be modeled by RBMgidth b [22,21].

with the bandwidth given by the number of transverse chan- Another case of importance is the ensemble with power-
nels[23,22. In the case of dynamical systems also exhibit-|gw decay of variancesl;; =G;:a()i—j|) with G a typical

ing strong chaos in the classical limit, the generic structure ofnember of SGE (G%)=2(G?%)=v?) and a(r)=1 and

the Hamiltonian matrix in some basis is banded and matrixp/r)7 for r<b andr>b (b> 1)1’ respectivelyknown as the
elements can be assumed to be pseudorari@dinFor ex-  pPRBM model where P stands for powé6]. This corre-
ample, the Hamiltonian of a quantum kicked rotor turns outspongs toy;; =[12a?(|i—j|)] and thereforey=min {y;}

to be a RBM in momentum basj21]. =1/v2. Again, as for the exponential case, the choice of the

In all these cases, the nature of the disorder or associatéfitial and final ensembles remains the same. Nowyas
randomness decides the nature of the distribution of the Ma=y = (r/b)27 (with r=|i—j|), we get

trix elements. The physical properties of such systems can
therefore be analyzed by studying the distribution of the ei-y — D 2(Y—Y,)
genvalues of associated RBMs. The most studied type of
RBM is that with the zero mean value of all matrix elements 1 XN b\ 2
and variance given byH?2 )=v2a(|n—m|/b), wherea(r) =- mh%H (N=r)In 1_<F) }
is some function satisfying the condition lim,.a(r)=0 and -
determines the shape of the bd22]. For a large but finite N 1/b\%e r1 _
(—) fb/Ndx(l—x)x’z“’ (42)

size of the matrixXN>b>1, its statistical properties were ~7 . J— N
=

shown(by the SUSY methodto be determined by the scal-
ing parameteb?/N with the transition parameter scaling as
Nf(b?/N) [21].

The transition parameter for the RBM can also be calcu-
lated by our method. Let us first consider the simplest case,
i.e., the Rosenzweig-PortéRP) model where all the off- 1 b
diagonal matrix elements are distributed with the same vari- T 2(1—jo)\N
ance which is different from the diagonal ones. Let us take
ajj;i#j[G]=2(1+tun) and a;[G]=1 with u=0; thus  Thys, for largeN values andr<1/2, A(xN'~2%) is suffi-
min{y;[G]}=2 and we can choosg=2. This GGE can cjently large and the eigenvalue statistics approaches the

o

_N2 1 1 (b)zi" 1 b
T4 &0 |20-2j0)(1—jo)\N]  (1-2jo) N

2
(43

therefore be mapped to a Brownian ensemble, with SGE limit. At o=1/2, the statistics is governed by the pa-
N-1 1 1 rameteh?/N instead olN only. Fora= 1, the nonzero, finite
Y=Yo=— In[l1— ——|~-— for u>1, A value (A«<b even whenN—x=) leads to an eigenvalue
4N I+ul 4u statistics intermediate between that of SGE or Poisson. For

0>3/2 with N—=, A—0; therefore, the eigenvalue statis-
appearing in a Poissor: GOE transition where the initial tics approaches the Poisson limi, being very small. All
matrix elements distribution is given tfg/(HO)oce*EiHﬁ and these results are in agreement with those obtainé@@hby

the final, stationary state, obtained for largevalues, is the SUSY technique. _ _
P(H)oce‘(V’Z)T’HZ Now asR;~ N [6,18], the D2~ 1/N Another type of RBMs often encountered in atomic and
and thereforeA~.N/4,u whicﬁ implies'tha{t the GGE will huclear systems are those with the nonzero mean value of all

have an eigenvalue statistics very different from that of Pois™Matr!x elements and with variance given b{HG)
son or GOE only ifu~cN (c is a finite constant For u ~ ~Y a(|n—m|/b); the transition parameter for them can also

>cN, A—0 and foru<cN, A— for N—oc, and thus the be obtained as for the above ca$2s-29,43,24,3D

GGE behaves like a Poisson ensemble in the first case and

like a GOE in the second case; this result is in agreement C. Quantum Hall case
with the one obtained, ifi25], by using the NLSM tech-
nique. (Note that in Ref[25], D is taken adD < 1/N, which
gives A~N?/2u and therefore the GOE and Poisson en-

semble resun fopu<cN? and{u>cN2, respectl_velw- diagonal disordgras well as random hopping between them

Consider the ensemble with the gxpone?lflell‘llgecay of testt_diagonal disorderand a competition between the two
variances away from the diagonal i.e=e K=<l " |eads to aL—D transition. Note this is different from the
<b<N. Thus, againy=2 and the final ensemble is a SGE angerson model where tHe—D transition is caused by the
with ~ P(H)=e (¥2TrH and  therefore Y= competition between diagonal disorder and nonrandom hop-
— (14N 2L, _;In|1—yy; | +C. Here the initial ensemble is ping (bandwidth [20]. TheNx N Hamiltonian matrix in the
that of the diagonal matrices with a Poisson distribution ofpresence of disorder therefore belongs to an ensemble far
the eigenvalues which corresponds #0;[O]=2 and more complicated than E¢8), known as the random Landau
Yij:i#j[O]—0 [this being the maximum value of[G]]  matrix, as now various matrix elements are no longer inde-
giving Yo=—(1/4N?)=N jIn|1—yy; [O]+C. ThusY—Y, pendently distributed:

A quantum Hall system without disorder has all the states
degenerate within a single Landau level. The introduction of
disorder leads to a broadening of the levigkso termed as
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given by Eq.(44), is alsoN independent foo-=1; here the

2
p(H,y,b)= [{ E Hk,;s< ay:sHki:s ensemble appears as an intermediate point between the Pois-
s=1 kilk<l son— GUE transition with
N
2/ 1 b 20
Kl _
L IJ sH ij; S)} Y_YO_W 21 (N=r)In| 1+ F }

with C as the normalization constant ap@ndb as the sets andA behaves as in the case of the PRBM model discussed
of inverse of variancesy,;.s= ay;s9x and coefficients above, showing criticality fo=1. The correlatiorR, for
bijii;s, respectively, withg, =1+ &,,. HereX/ bjj.s Will  the ensemblé44) can therefore be given by E88), which
imply that the summation is over all possible pairs of indicesfor large A values can be approximated as follof@®,40:

{i,j} such that the paifi,j}#{k,I} or {l,k} [31]. In this

case, too, one can show that the eigenvalue distribU®ion

satisfies Eq(17) but the condition for the determination ¥f  Ra(r,A)=1+
is no longer given by Eq18); the details will be presented

1 2
+ [cog2mr)e (/M) 1
m2A2+r2 271'2|’2L s ) !

elsewhere. (45
_ 2
D. Critical ensemble and multifractality of eigenvectors =1+ TA+ o2 2[8 2(r/A)
ar Tr

Recent studies of some metal-insulator transitions re- i
vealed that the energy level statistics in the critical region are —2e 2NsiR(7r)—1]  (r<yA) (46)
universal and different from both Wigner-Dyson as well as
Poisson statistics. The eigenfunctions associated with the 1 Siré(ar)
critical statistics show multifractal characteristig32—-34. ~1+ T YT
The level number varaincB?(N) is believed to be an im- TN mrte
portant indicator of this critical behavior with its asymptotic 6 sir( )
. N — = -
linearity in the mean number of levels [35]; S?(N) (47)

JR— 2 - )
=((8N)?)=xN,x<1. The critical statistics, therefore, gov- m2A sintf(r JB/A)

erns the spectral fluctuations that are weaker than for the &hich is similar to the result given by the SUSY technique.

Poisson statlst|c$22(N) N] but much _stronger than for However, for A>r> /A, our method gives +R,(r,A)

the Wigner-Dyson statistics,S?(N)=InN]. Later on re- =[—A/(#2n2+r?)]+[1/(2n%r?)] while the SUSY tech-
markable similarities were found between the spectral statisnique gives + R, as an exponentially decaying function.

tics of a number of dynamical systems, e.g., pseudointe- As is obvious from Eq.47), R, approaches the GUE
grable billiards and the critical statistics near the mobility |imjt as A—c but, for finite A values, it is very different
edge[36]. However, since such a critical region was inaccesfrom both Poisson as well as GUE. This indicates that the
sible either perturbatively or semiclassically, a different toolensembles with distribution parameters giving rise to a finite
was required to probe into it. This led to the suggestion of a\ do not reach stationarity even for the infinite size of their
RM modeling of this regioi34]. TheNX N matrices in this matrices, and, their properties being very different from
model are Hermitian and matrix elements are Gaussian dehose of the equi]ibrium ensemb|es, can be referred to as

tributed with zero mean and the variance given by “critical.” However, in our technique, as shown in previous
li—jl\2e]- septipns, the difference petv_veen va_rioGi;. ensemblt_as
(Hpd=|1+|—— (44)  (within the same stationarity limitamanifests itself only in

B different A values, leaving the functional form of various

statistical measures unaffected. Thus the RP model as well as
Using the SUSY technique, it has been shd®6] that for ~ ensemblé44), both being GGEs and lying on the Poissen
largeB values B> 1), this ensemble behaves like a SGE for GUE curve, would follow similar formulations for various
o<1 and as a Poisson fer>1. The caser=1 is believed statistical measures; For exampk; for both of them is
to be of special relevance as it supports critical statistics angiven by Eq.(47) although with different formulas foh and
multifractal eigenstates; the application of the SUSY tech-both can show the critical behavior. However, a contradic-
nique gives R,(r)~1—(1/16B?)[sir?(mr)/sint(mr/4B)] tion arises when one considers the number variance statistics

and>?(N)~ yN [37,38,34. >2(r) which can be expressed in termsRJ(r) [12],
The existence of the ensembles with critical statistics is
indicated by our technique too. THe dependence of the 200 A —r fr _ _
transition parameter\, entering throughY and the mean AnA)=r=2 O(r SI1=Ry(s)]ds “8)

level-spacingD, causes the transition to reach the equilib-

rium in limit N—o for finite, nonzeroY values. In some and therefore should show a similar behavior, as a function
cases, however, thid dependence of may be such that it of A, for both [the RP model and ensemb{d4)]. But a
balances the one due [ thus resulting in aiN-independent  detailed study of the RP model by the SUSY technif@

A (as shown in Secs. lll A and llIBand therefore critical suggests that although it shows critical statisticsgef cN,
statistics. As can be seen from E80), A for the ensemble, it cannot support the linear nature Bf= yr with y<1. As
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claimed by this study, the difference ¥7(r) behavior arises wherel,.s is still given by the same form as E¢l2) but
due to the difference in large (A>r>\/A), behavior of ~ with H replaced byV. As the right-hand side of Eq49) is
R,(r) in the two cases. the same as that of E¢l4), one again obtains the evolution

As our technique is equally applicable to both these sysequation(17) but nowY is given by the condition that
tems, multifractality should exist in either both or none of
them. Note that the multifractal nature of an ensemble is so dP P B
far believed to be indicated by i behavior. But the latter gy _ ax < & (Y= Yus)
is not yet clearly understood for the RP modete[39,40)
and therefore the question of multifractality is still not fully Proceeding just as in Sec. | € can be shown to be given by
settled. Also note that the earlier results for both models ar¢he following relation:
obtained by the SUSY technique using the saddle-point ap-
proximation at various stages which may also be misleading. 1
It is also possible thati) the seeming multifractality of en- Y= N2+ 1
semble(44) is just the erroneous conclusion of too many
approximations in the SUSY technique, @ 32(r)~ xr is
not always a correct indicator of multifractality and therefore -y lIn|bk|;s|
its absence in the RP mzodel.

We believe that the<(r) behavior is a bigger suspect . . . .
than the approximations used in other techniql@%41. Again the steady state 'S_ achieved 10r» 0 WhICh.COI’I’e-
Our belief has its roots in the direct applicability of our tech- sponds tox— andyj;s— v; the stzeady—state solution fé
nique to the Anderson model too. Here also the ensemble fd6 given byll; ;| ui— uj|Pe” ("= Here onlyx—o (with
H is located between Poisser GUE (for a time-reversal JP/dx=0 andH=xV) no longer represents a steady state,
breaking disorderwith correspondindR, behavior given by ~as in the case whew belongs to SGE, but it represents a
Eq. (38). Thus for finiteA values corresponding to the criti- transition state withyP/9Y+0. Note from Eq.(50) that Y
cal region, the eigenvalue statistics is different from Poisson—® as x—, seemingly implying that the equilibrium is
or GUE. But again for3? obtained by using Eq(38), reached and thereford belongs to SGE. But, as obvious
32(r)# xr with y<1 and therefore if it is indeed an indica- from H=Hgy+xV, in the limit x—c, H=xV and therefore
tor of multifractality of eigenfunctions, our technique would H must be a GG matrix. This contradiction is a result of the
suggest its absence in the Anderson model. However, therror made in not ensuring the mean spacingidhe same
existence of multifractality among the eigenfunction of theasHy andV [6]. Here, to ensure the latter, we need to use a
Anderson Hamiltonian is experimentally confirmed. modified  Hamiltonian, ~ given by H=e "NH,

Our results indicate that multifractality either will be a +(1—e 27V)/NV with 7=—N"1In cos@N) (the same as
common feature of all the Gaussian ensembles with fikite before in the largdN limit). The effect of this modification
values in the limitN—cc or it does not exist in any of them. on theFP equation(17) is that now
Thus the questions related to critical statistics, the correct
criteria for multifractality, and its analysis by the SUSY P 9P 1

technique require further probing. N oo N(l—e 27N z k% (Y= Yki;)

P o oP
kI;Sabkl;s.

Jd
2y|<|;s,ﬂykI -
'S

1 .
X+ > (—In—yk"S

k=l =112 |Ykl;s_')’|

+C. (50)

JP JP
IV. OTHER CASES X 2yk|;sm_ v bkl;sm
'S 'S

A. A perturbed Hamiltonian with G G-type perturbation

The intimate connection of the RM theersCM Hamil- and the coefficienty of the drift term is now replaced by
tonian continues also for systeh=Ho+xV with a random N~ ' [see Eq(13) of [42]]. TheY can now be obtained by
perturbation V drawn from a GGE [i.e., p(V,y,b) the second method given in Sec. IC.
=C exp(—25212,@ak“S(Vk,;S—bkks)z]. In this case, the eigen-
values evolve due to the changing strength of the perturba- B. Non-Gaussian ensembles
tion too. To obtain _the desired evolution equation, therefore, ag mentioned before, the RM models of complex systems
one needs to consider the sum can, in general, be non-Gaussian, e.g(H)=C exp

9P p 9P [« fu(H)] with f as an arbitrary function, and it is not an
— > 2 (Y= Yus) 2yk|_s——bk|_s—}, easy task to obtain the correlations in this case. However,
X S kSl ’ " Ykiis by this case can be analyzed by our method i a well be-
haved function and can be expanded in a Taylor’s series. To
which leads to the following equality: understand this, let us consider an ensemble of real symmet-
ric matricesH with a distribution of a more general nature,
e.g., f as a polynomial ofH with degree M, f(X)
£+2 2 (v—y )[Zy i—b i} =E?"=1yk|(r)x2’ with C as the normalization constant and
X k= Y Vs kl;saykl;s k';sﬁbkus variances for the diagonal and off-diagonal matrix elements
chosen to be arbitrary.
_ To obtain an evolution equation in this case, we now con-
_Es: k% 'kiis Es: k% Yidislkiss: 49 sider the sum |
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h(r)=2ry (n[y=yu(H]+(r+1)(2r+1)
XY(r+1)gi+2(r+ 1)y (r+1)gy

Y S V() [PIay(r)].

P with respect toy, (1) can be shown to be the following Note that the condition fol here includes terms of type

(with p=Cp):
~ N ~
JP 1 dp
= S(wi—N:)H, ——dH
Yi(1) 27k|(1)J’i]:[l (s~ ) K oH
7k|( )J ap
1) —d
r:2 7k|(1) H (wi— AYy(1)
(51
Now as dplayg(r)=—Hip and dploH=

—23M ry(r)HZ ~1p, the second integral in E§51) being

equal todP/dy,(r), Eq.(11) can be rearranged to show that

22 1r 'yk|(r)(z9P/(97k|(r)) =1 K with Ikl glven by Eq (12)
[but without subscripts) on quantities The required evolu-

[P/ 3y, (r)I[dP/dy,(s)] andY can no longer be obtained
by methods given in Sec. I C.

C. Block-diagonal ensembles

Equation (7) and, therefore, evolution equatiqi7) of
P(u,Y) is no longer valid if the matrixH is in a block-
diagonal form. This is because the eigenvalues belonging to
different blocks do not repel each other, are not correlated,
and undergo an evolution independent of the other block. For
this case, the evolution of eigenvalues in each block can be
considered separately, leading to one FP equation similar to
Eq. (17) for each block. A detailed discussion of this case is
given in[14].

V. AN ALTERNATIVE EVOLUTION EQUATION
FOR THE EIGENVALUES

tion equation in this case can be obtained from the following

equality:
» D=
= lr[Y V(1) 1yii(r )(9y (")
:yk§<:| |k|—k§<:| Yir(D) (52
where, again® -l ==,(d/duy) (w,P) and
ol a B -
ly=— + P+> J
k2€| YDl ; dpn| Iy mEN Mm~— Mn kzl kl
(53
with J,; now given by the following relation:
J N I\
Jy=— S ) —
kl ; (?/Lnkzl i[[l (ki ')(?H
M
x| 2 ry(HHE | pdH (54)
r=2
M ~
P
=0u 2 (T Lya(r+1) s (2r+1)
v 5P
+22, Syu(s 55
2 SwSg (S)} (55

Using these relations as before, one again obtains the II)B

equation forP similar to Eq.(17) with =1 and P/daY
=23 2L g (r)[ 9P/ dyj(r)] where

In Sec. I B, the equatiolil7) governing the evolution of
the eigenvalues was obtained by using the relatibf).
However, as obvious from E13), P also satisfies the rela-
tion

JP
Zykl:saykI -
:S

aP

bkl;s ﬁbkl; kSI (56)

IkI s
k=l

and, therefore, one can define a functidfyy.s,by.s) such
that

ﬁZ—E (mnwnP) (57)

HereZ is given by the condition

JP
TS

k=l

JaP

[ JP b
kI:SO”ka;s

2yk|;sm_
'S

which can be solvedas in Sec. Il to show that

2

[T TT lywslbuZ|+C
k=l s=1

1
szm

Equation(57) also describes the evolution of eigenvalues for
the same ensembi@). But now the “time” scale is such
that the eigenvalues seem to be drifting only, hiding the re-
pulsion between them. Again the steady state of (B@) is
given by |Z—Z,|—« and the final ensemble as Poisson
(with finite, nonzero variances for diagonal matrix elements
and zero variances for the off-diagonal onéhe ensemble

G will now appear as an intermediate point in a transition
om some initial ensemble to the Poisson ensemble and, in
rinciple, the transition can be used for the analysi&.ofor
example, the critical parameter for the Anderson transition
(the same model as used in Sec) Ithn be obtained by
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taking the initial state ©” as metal with the energy-level ent complexity, decreases rapidly in tinjeage 2 of[6)).
distribution described by a GUE(Q3)=ay', (Oi2j>=0) However, an eigenvalue of an operator is its average value in
and all (Oj.)=ty which gives Zy=(1/2N®)[NIney the state described by the associated eigenfunction and an
—2K In[ty|]+C. The critical region will therefore occur as an ordered evolution of the former will, in general, imply an
intermediate point in the GUE~ Poisson transition with ordered change in the average behavior of the latter. Thus it

transition parameter seems that the eigenvalues and eigenfunctions, on average,
are not able to view the fine subtleties of the varied nature of
_ 1 a [t] complexity and therefore are not affected too drastically to
A=D"Z-2Z9= 2N N 'n@_ZK Inm : loose correlations even when the nature of the complexity

changes. Note, for a small change in the interactions, this
As is obvious, the increase of the diagonal disordefaf, result is not surprising and is used as the base for the pertur-
<1) for a fixed hopping ratet&ty,) will ultimately lead to  bation theory. But the results in this paper imply that the
Poisson statistics, implying localization of states; note hereigenvaluesand the physics based on theeven after a
the transition occurs backwards in “timeX. However, the violent change in the interactions remain correlated in the
results for correlations associated with the SGEPoisson  parametric space. Thus it seems that certain physical proper-
transition are inconclusive about which leaves Bd) as a  ties, based on the average behavior of eigenvalues and eigen-
better tool to analyze the properties of GGEs. Equatioh ~ functions, of one complex system are related to the physics
has one more advantage over E5g): the reduction of the of another, very different in nature of the interactions.
former to the CM Hamiltonian reveals the underlying univer-
sality of statistical formulation among various complex sys-
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In this paper we have described a method to analyze theriticism of the wo_rk. A brief discussion with B. Altshuler
statistical properties of the RM model of complex systemsand B. Huckenstein was also helpful.
Our technique is based on the exact reduction of spectral
analysis in the general case to the one in' SGE. This greatly APPENDIX A: PROOF OF EQS. (3)(5)
reduces the degree of difficulty of the original problem as
many of the properties of SGE are already known. This also The use of the eigenvalue equatilt =UA, with U as
indicates that a thorough knowledge of the properties of SGR unitary matrix andA the eigenvalue matrix, leads to the
or CSM will be highly advantageous even for systems withfollowing:
interactions too intricate to be modeled by SGE. So far, the
probing of GGE is carried out only by the SUSY technique
which requires a saddle-point approximation at various steps 2 HijUjn=ApU;, and 2 HijU{‘n=)\nU}‘n,
and is not easily applicable, even approximately, to cases ! '
where our technique can be used for exact probing. Note that
the main term in GGEs responsible for the correspondence
with the CSM Hamiltonian is due to the repulsion betweenwhere Hj;=H;;.;+iHj;;,. Differentiating both sides of
eigenvalues. As the mathematical origin of this term lies inabove equation with respect ty;s (with s=1 or 2), we
the transformation from matrix space to eigenvalue spacejet
which is the same for all the Hermitian ensemkjleslonging
to the same symmetry clgsghe correspondence with the IUj

(A1)

IH;; F1U TR W

CSM Hamiltonian should exist for almost all of them, irre- E IH H|,+Z Uj”&H =7\nﬁH TR Uin .
spective of the distribution of their matrix elements. As dis- Klis ! klis Klis Klis (A2)
cussed in Sec. lll, our study also confirms the conjecture

regarding the one parameter scaling of localization and pro-

vides the formula for a relevant parameter. Now asX;UjUin= d,m, multiplying both the sides by}

The reduction technique presented here raises some bad@lowed by a summation over ails, we get the following:
guestions. Why does the reparametrization of the spectral
properties of different RM ensembles result in a similar INp IHjj
mathematical formulation for them? In other words, why do g => Ui’;aH—U,—n, (A3)
the eigenvalues of quantum operators associated with com- Klis 1) Kl:s
plex systems evolve in a similar ordered wéike equations
of motion for Calogero particlesiotwithstanding the varied which further gives
nature of their complexity? The reason may lie in the follow-
ing. The eigenvalues and eigenfunctions of a Hamiltonian I\
evolve due to a change in either the degree or nature of its 4
complexity. The evolution of the eigenfunction is chaotic in
the sense that the overlapping between the eigenfunctions,
associated with two Hamiltonians even with slightly differ-  This can further be used to show that

1
—is—1 * _(_1\S||*
e ! gkI[Uln ki~ (T DURU]. (A4)
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I\p 1
—H —| U, Us iSTIH,,.
e aHkI kl:;s™ z Jul In knzS kl;s

+U|*nUkn2;4 IS H(=1)5 tHy.

(A5)
_kzl %[Hklulnukn—'— HGU Ukl

(AB)
—2 —H IUInUkn+2 knUYin

(A7)
= HgUinUg= Xy, (A8)

kI

where Eq.(A8) is obtained from Eq(A7) by using Hermit-
ian properties oH (Hj,=H,). By using Eq.(A4), one can
also show that

2

2N 2N
E 9k|2 - -

k=1 77651 dHygs IHygs

=> 2 26~ 1’—[um K (—1)SUF Uyl

k=l s=

X[UimUim= (= 1)%U{Uim] (A9)
kzlg [UInUankm m+UrnUanImU:m]
(A10)
:2% UInugk‘nukmul*m
:Ek Uin :mEI Uim "
=260, (A11)

where Eg. (A11l) follows from Eq. (A10) by writing

U UinUinUim= 2= UinUilUinUT, - and - the  last
equality in Eq.(A11) is due to unitary nature di.
APPENDIX B: PROOF OF EQ. (6)
Multiplying both the sides of Eq(A2) by U}, (m#n)

followed by a summation over alls, we get the following:

U 1 oH;
in _ * ij
2 UlmaHkls Ap—A py U'maH U'"’

m i,

(B1)

a multiplication of both the sides Wy, followed by a sum-
mation over allm’s then gives

Uy . 1

s-1©
IHyi:s Okl m#n Ay _7\

[U Uln ( 1)SU Ukn]

(B2)
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APPENDIX C: PROOF OF EQ. (7)
2 2 2
d“N\q 0
=l gklszl IHE.s E Z1 gl 19Hk| s
><[Uln En_(_l)sul*nukn] (Cl)
= i is [ (9UE ol *
k=l $=1 IHy-s n IHy. kn
Ut
4 (—1)5+1 n
( 1) ﬁHkI;sUkn
Uyn
4(= s+1 *
(-, 2

Now by using Eq.(B2) and its complex conjugate in Eg.
(C2) and by summing oves, we get

2

9\
2 92 o =4 =3 = [YknUinUin
k=I s=1 kls k=l Okl “'m
+Uan:nUImUrm] (CS)
:42 2 AN ——{Uim mUInUI’;]
(C4)
:42 Y [E Ukm ;m}
m n ml k
X| 20 Unn |} (CH)
Now by using the unitary reIatioE,-U}*mUjmz 1, one ob-
tains the desired relatiofY).
APPENDIX D: PROOF OF EQ. (15
Equation(12) gives us the following:
Jd
> E l:s= > 3 fH O(pi—N\j)
k<l s=1 n Mn i
2
X & 521 F SHkI s|pdH. (D1)

The use of Eq.(A8) will further simplify it in following
form:

Z |k|;s:§n:

k<l s=1

J
ﬂfﬂ S~ A\)hopdH (D2

—Z

(D3)




PRE 62 ALTERNATIVE TECHNIQUE FOR COMPLEX SPECTRA . .. 2111

APPENDIX E: PROOF OF EQ. (16)

For eachs value, we have the following relation:

INn
E Yiiislki;s= 2 Dt 2 Ok Sf H O ui— HkI pdH (E1)
nk
. g d

kI
- O(pi— A ——— —2ayq.¢by1.s | pdH E2
nEl a/-”nk§<:| 2 H (MI )&H kl:s &Hkl s @ki;sVkl;s| P ( )

Y
o i dH+ 2, s, E3
n=1 é)#n|(Z| H (Ml ) O')Hk| s 2 klis ( )

where Eq.(EJ) is obtained by using the equalityp/dH .s= — 2ay;.s(Hyi:s— byi:s) p @andJy. is given by Eq.(E9).
By integrating Eq(EJ) further by parts, one obtains

2
Oki I\,
2 2 Vashis= 22%;' 2f(aH.H5<“' x))aH pdH (E4)
d i
+3 S LS W] a2 o+ 3 S v =
s n dupk=I 2 kls
Jd J Jki 077\ (9)\
=— — O( i —N\; dH E6
; Iftn % aﬂmf 1_II (u )[2 I(ZI 2 dHys dHy;s P (E9
2
=S T stwn)| 3 o pHIdH+ S S 3 E7)
n 14 n i m#n 7\m )\n ksl s
Jd
2 + Jiiess ES8
;aﬂﬁ Z‘9:""n n;n,ufm Mn I(ZIES klis 8
whereJ,,.s can be obtained as follows:
N N
P g
Jk|;s—)’1<|;sbk|;sn§::l6,—,un iﬂl 5(Mi_7\i)mde (E9)
O i~
— Yki:sbki; sj H (9|_|| dH (E10
=1 kl;s
ap
= Yki:sbki; sf H O(pi— '—dH (E1D)
N
— Vb fH P -—x')a—de:— e (E12
Yki:sOkl:s Ly Mi i abkl;s Yki:s kl;sabkl;su

where in Eq.(A32), the equality dp/dby;.s=2ay.s(Hx.s  (18), summing over allyy,.,’s andby,.s's, can be rewritten
—Dby.) p=—dpldH,,.s is used. A substitution of EqE12) as

in Eq. (E8) now leads to the Eq.16). M

JP
> WZE 2(y=Yui;9)Yui; 307 )’E By, Sab
APPENDIX F: A GENERAL METHOD OF OBTAINING Y i i ksl Yki; k=<l

Let us consider a transformation bf=2N? coordinates M aP
{rj} to another set oM coordinates{Y;}, wherer g 's are Ezl 9i(rurz, - )5 (F1)
various coefficientyy.s (total N?) and by.s (total N9). The . !
Y;'s should be chosen such that the right-hand side of Eqwhere, for our casei(rq, ... fm)=2(y—rj)r; if r; is one
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of the yy.s and gj(rq, ... ry)=—yr; if r; is one of the
bkI;s-

Now, as we wanEM(d/dY;)=(a/aY,), with Y;=Y, this
imposes the following conditions on the functioWgs (as
can be shown by using the theory of partial differentiation

C=C[zlog(ry/|r;— )+ Hog|rul,
slog(ra/|ro=y))+y Hogryl, - ..,

slog(ry—1/rm—1—7])+y tog|ryll.
M

JP M JIP Y,
_:2 2 9i(F1,lay - F )= — (F2) Similarly the variablesy;, i>1 can be obtained; however,
Yy =T dY; ar; their knowledge is not required for our analysis.
and therefore APPENDIX G
M
i The choice ofy is based only on the requirement that
> Gi(Faulan oo F) o =6y (F3)
=1 ar; Vi (0)>y,(G) >y for all k,I. Thus y can take any value

_ . _ _ _ such thaty=miny,,(G). Let us consider two such possibili-
According to the theory of partlal dlﬁerentlal equations ties fory, y= vy, andy= vy, and try to evaluate properties of
[15], the general soluton of linear PDE G on these curves referred to &% andT2, respectivelyfor

SMPi(Xq,Xa, « .. Xm)(9Z19x)=R is F(ui,up, ...u,)  some initial ensemble Let the value ofY for G on these
=0, where F is an arbitrary function and curves beY, andY, where
Ui(X1,X2, ... X,,Z)=cC; (a constant i=1,2,...n are in-
dependent solutions of the following equation: 1 271 Yii:s 1
lew E Z Elnﬁ— —In bkl;s +C,
dx, dx, dx dxy dz k=1 s=1| Yeis— 71l 71 ]
PP, PPy R (F4) (G)
Thus the general solution of E¢F3) for each; is given v 1 22: Eln Yiis ilnb he
by a relationF;(uy;,Uy;, . . . uy;) =0 where functiorF; is ZNZE E 2 s vl e KT
arbitrary anduj;(rq,rp, ....rm,Yj)=cj, (i=1,2,... M) (G2
(with ¢;;’s as constanjsare independent solutions of the
equation However,Y, can also be written as follows:
dry drp  dry  dry dY; 1 2 1 vl 1
=t I = (F5) _ + ks + ,
9 9 9k O 9y " W% 521 2In|y|,(|;s_ V2| 72|n Pl | 7€
The above set of equations can be solved for varius (G3
obtainF;. ForY,, we get the relationy ; — 3log(r; /|ri— 7)) , , ,
—c;  (i=1,...M/2), Yi+(Uyplogli=c, (i=1  Nowasy:s=VYiis(v2/v1)#Yxis and yz/ yiby;s=b this
+M/2,... M), and thereforeF, satisfies the relation Implies thatY, would correspond to a point, different from
Fi[Ys—2log,/Iri—=), .., Y1 — 2ogCua/ |t mm— 1), Y2, on the transition curvé, and therefore would give prop-
Y1+ v Hoglrwsl, - - . Y1+ v Hoglryl]=0. The functionF,  erties for the ensembi@ different from those given by .
being arbitrary here, this relation can also be expressed in thENiS conclusion is, however, erroneous and is a result of the
following form: rescaling applied only to one poilit, on the transition curve
o " T,. To get the right answer, the entire cur¥e should be

rescaled which would also require a rescaling of the end-
T —a" . E log|r;| | +C, points and therefore changed distances on the rescaled curve
Iri—yl  yi=farz1 i i X
(F6) (call it T;). Thus the pointY, will appear at the same loca-
tion on theT; curve, relative to endpoints, wheYg appears
where C is another arbitrary function of constants: for ex- on theT, curve and therefore both will imply the same prop-
ample, erties for the ensemblé.
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