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Dynamical entropy for systems with stochastic perturbation
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Dynamics of deterministic systems perturbed by random additive noise is characterized quantitatively. Since
for such systems the Kolmogorov-Sinai~KS! entropy diverges if the diameter of the partition tends to zero, we
analyze the difference between the total entropy of a noisy system and the entropy of the noise itself. We show
that this quantity is finite and non-negative and we call it the dynamical entropy of the noisy system. In the
weak noise limit this quantity is conjectured to tend to the KS entropy of the deterministic system. In particu-
lar, we consider one-dimensional systems with noise described by a finite-dimensional kernel for which the
Frobenius-Perron operator can be represented by a finite matrix.

PACS number~s!: 05.45.2a, 05.40.Ca, 05.10.2a
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I. INTRODUCTION

Stochastic perturbations are typical for any physical re
ization of a given dynamical system. Also round-off erro
inevitable in numerical investigation of any dynamics, m
be considered as a random noise. Quantitative characte
tion of dynamical systems with external stochastic noise
subject of several recent studies@1–4#. On the other hand
the influence of noise on various low-dimensional dynami
systems and the properties of random dynamical syst
have been extensively studied for many years@5–10#.

Consider a discrete dynamical system generated
f :X→X, whereX is a subset ofRd, in the presence of an
additive noise

xn115 f ~xn!1jn , ~1!

wherej1 ,j2 , . . . areindependent random vectors fulfillin
^jn&50 and^jnjm&5s2dmn . The case with vanishing nois
strengths→0 will be called the deterministic limit of the
model. Properties of such stochastic systems have rece
been analyzed by means of the periodic orbit theory@11#.
Convergence of invariant measures of the noisy system
the deterministic limit has been broadly discussed in
mathematical literature~see, for instance,@12–20#!.

A dynamical system generated byf is called chaotic if its
Kolmogorov-Sinai~KS! entropy is positive@21#. Such a defi-
nition is not applicable for stochastic systems, characteri
by infinite entropy. In this case the partition-dependent
tropy diverges if the partitionA of the spaceX is made
increasingly finer.

In this paper we propose a generalization of the KS
tropy for systems with additive noise~1!. Since entropy di-
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verges also for the pure noise@with the trivial deterministic
limit f (x)5I (x)5x for xPX], we study the difference be
tween the total entropy of the system with noise and
entropy of the noise itself. First, we set the partition fixe
and then we take the supremum over all finite partitions w
regular cell boundaries. In this way our definition resemb
the coherent states dynamical entropythat two of us pro-
posed several years ago@22–24# as a measure of quantum
chaos. The entropy of the noise, discussed in this pa
plays the role of entropy of quantum measurement, c
nected with the overlap of coherent states and linked to
Heisenberg uncertainty relation.

Even though our definition is suitable ford-dimensional
systems with an arbitrary additive noise, we demonstrate
usefulness on simple one-dimensional systems. We choo
specific kind of distribution defining the noise, which can
expanded in a finite basis ofN functions in both variablesx
and y. This condition allows us to express then-step prob-
abilities, required to compute the entropy, as a product
certain matrices. Moreover, we represent the Froben
Perron operator of the system with noise by an (N11)
3(N11) matrix, and obtain its spectrum by numerical d
agonalization. The deterministic limits→0 requiresN→`,
which resembles the classical limit of quantum mechanic

This paper is organized as follows. In Sec. II the dynam
cal entropy for noisy systems is defined and some of th
properties are analyzed. One-dimensional systems with
pandable noise and their invariant measures are analyze
Sec. III, while different methods of computing the entro
are presented in Sec. IV. The entropy for some exemp
systems with noise~Rényi map, logistic map! is studied in
Sec. V. The paper is concluded by Sec. VI, while an illu
trative iterated function system, used for computation of
entropy of noise, is provided in Appendix A.

II. DYNAMICAL ENTROPY FOR SYSTEMS WITH NOISE

A. Dynamical entropy for deterministic systems

Let us consider a partitionA5$E1 , . . . ,Ek% of X into k
disjoint cells. The partition generates the symbolic dynam
in the k-symbol code space. Everyn-steps trajectory can be
:

2018 ©2000 The American Physical Society
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represented by a string ofn symbols, n5$ i 0 , . . . ,i n21%,
where each letteri j denotes one of thek cells. Assuming that
initial conditions are taken fromX with the distributionm f
invariant with respect to the mapf, let us denote by
Pi 0 , . . . ,i n21

the probability that the trajectory of the syste
can be encoded by a given string of symbols, i.e.,

Pi 0 , . . . ,i n21
5m f„$x:xPEi 0

, f ~x!PEi 1
, . . . ,

f n21~x!PEi n21
%…. ~2!

Thepartial entropies Hn are given by the sum over allkn

strings of lengthn

Hnª2 (
i 0 , . . . ,i n2151

k

Pi 0 , . . . ,i n21
ln Pi 0 , . . . ,i n21

, ~3!

while thedynamical entropy of the system f with respect
the partitionA reads

H~ f ;A!ª lim
n→`

1

n
Hn . ~4!

The above sequence is decreasing and the quantity

H152(
i 51

k

m f~Ei !ln@m f~Ei !#, ~5!

which depends onf only via m f , is just theentropy of the
partition A. We denote it byHA(m f). TheKS entropyof the
systemf is defined by the supremum over all possible pa
tions A @21#

HKS~ f !ªsup
A

H~ f ;A!. ~6!

A partition for which the supremum is achieved is called
generatingpartition. Knowledge of akg elements generating
partition for a given map allows one to represent the ti
evolution of the system inkg-letters symbolic dynamics an
to find the upper bound for the KS entropy:HKS( f )< ln kg .
In the general case it is difficult to find a generating partiti
and one usually performs another limit, tending to zero w
the diameter of the largest cell of a partition, which impli
the limit k→`. We shall denote this limit byA↓0.

B. Entropy for systems with stochastic perturbation

For simplicity we consider the one-dimensional case t
ing X5@0,1#, imposing periodic boundary conditions, an
joining the interval into a circle. We denote the Lebesg
measure onX by m, settingdx5dm(x) @clearly m(X)51].
The noisy system introduced in Eq.~1! will be denoted by
f s . From now on we assume that all the random vectorsjn
(nPN) in Eq. ~1! have the same distribution with the dens
Ps . Then the probability density of transition fromx to y
under the combined action of the deterministic mapf and the
noise is given byPs„f (x),y…5Ps„f (x)2y…, wherex,yPX
and the difference is taken mod1. In the pure noise c
( f 5I ) this density depends only on the length of the jum
and equals toPs(x,y)5Ps(x2y).
-

e

h

-

e

se

We assume thatf s has a unique invariant measurem f s
,

which is absolutely continuous with respect to the Lebes
measurem ~i.e., it has a densityr f s

). Clearly,m I s
5m, and

sor I s
[1. Moreover, we assume that the measurem f s

tends

weakly to m f , for s→0, wherem f is some invariant mea
sure for the deterministic systemf. In Sec. III B we discuss
the situation, where the above assumptions are fulfilled.

Now, let us fix a partitionA of X. We define thetotal
entropy Htot( f s ;A) of the noisy systemf s by formulas~3!
and ~4!, analogously to the deterministic case. Note, ho
ever, that in this case the initial conditions should be tak
from X with the measurem f s

. As we shall see below this
entropy grows unboundedly withk. Hence, we cannot defin
partition independent entropy of the noisy system using f
mula ~6!, as the supremum in~6! is, in this case, equal to th
infinity. On the other hand, there are two kinds of rando
ness in our model: the first is connected with the determ
istic dynamics; the second comes from the stochastic pe
bation. Accordingly, we split the total partition-depende
entropyHtot of a noisy systemf s given by Eqs.~3! and ~4!
into two components: thenoise entropyand thedynamical
entropy. The latter quantity characterizes the underlying d
namicsf s and is defined by

Hdyn~ f s ;A!ªHtot~ f s ;A!2Hnoise~s,A!, ~7!

where the entropy of the noiseHnoise(s,A) reads

Hnoise~s,A!5Htot~ I s ;A!, ~8!

and I s is a stochastic system given by Eq.~1! with f 5I
~pure noise!. Although both the quantitiesHtot and Hnoise
may diverge in the limit of fine partitionA↓0 (k→`) for a
nonzero noise strength, one can make their differenceHdyn
bounded, taking an appropriate sequence of partitions, a
shall see in Sec. II C.

In order to keep away from the ambiguity in the choice
a partition, we eventually define thedynamical entropy of
f s as

Hdyn~ f s!ªsup
A

Hdyn~ f s ;A!, ~9!

the supremum being taken over all finite partitio
A5$E1 , . . . ,Ek% such thatm(Ei)51/k and m(]Ei)50 for
eachi 51, . . . ,k, kPN. We will call such partitionsuniform.
The restriction to uniform partitions is necessary, since o
erwise we may encounter various ‘‘pathologies’’ in the d
terministic limit @25#. Note, that the uniformity assumptio
may be omitted in the case when all the measuresm f s

, m f ,
andm coincide.

It seems that in many cases the entropy of the noise~8!
tends to zero in the deterministic limits→0, and the dy-
namical entropy off s converges to the KS entropy of th
corresponding deterministic systemf ~for partial results in
this direction see@15# and @22#; for numerical evidence se
Sec. V D!.
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C. Boltzmann-Gibbs entropy and bounds
for dynamical entropy

In this section we discuss the behavior of the dynam
entropy in another limit,A↓0 (k→`). We first introduce the
Boltzmann-Gibbs~BG! entropyof the noise

HBG~s!ª2E
X
dm I s

~x!E
X
dyPs~x2y!ln Ps~x2y!

52E
X
djPs~j!ln Ps~j!. ~10!

For interpretation and generalizations of this quantity, som
times calledcontinuous entropy, consult the monographs o
Guiaşu @26#, Martin and England@27#, Jumarie @28#, or
Kapur @29#. In the simplest case of the rectangular no
given byPb(x)ªQ(b/22x)Q(x1b/2)/b, for 1>b.0 and
xPX, the BG entropy is equal to lnb. Note that this quantity
vanishes for the noise uniformly spread over the entire sp
(b51), becomes negative forb,1, and diverges to minus
infinity in the deterministic limitb→0.

For the systemf s combining the deterministic evolutionf
and the stochastic perturbation, the probability density
transition from x to y during one time step is given b
Ps„f (x),y…5Ps„f (x)2y… for x,yPX. The BG entropy for
this system can be defined as

HBG~ f s!52E
X
dm f s

~x!E
X
dyPs„f ~x!,y…ln Ps„f ~x!,y….

~11!

Due to the homogeneity of the noise and due to the perio
boundary conditions the integral overy in Eq. ~11! does not
depend onx. Therefore for any systemf perturbed by a non-
zero noise (s.0) one obtains

HBG~ f s![HBG~s!52E
X
dyPs~y!ln Ps~y!. ~12!

Applying this equality and using the same methods as in@24#
we can prove that the total entropy fulfills the followin
inequalities ~the first inequality can be deduced from th
lower bound for the variation of information obtained
Theorem 2.3 from@26#; the second inequality comes from
the definition!

HBG~s!1 ln k<Htot~ f s ,A!<HA~m f s
!. ~13!

For f 5I we get

HBG~s!1 ln k<Hnoise~s,A!< ln k. ~14!

Hence, both the total entropyHtot( f s ,A) and the noise
entropy Hnoise(s,A) diverges logarithmically in the limit
A↓0. Let us now study how does the dynamical entro
which is the difference of these quantities, depend on
partition A.

If the partitionA5$X% consists of one cell only (k51),
we haveHtot( f s ,A)5Hnoise(s,A)5HA50. Thus, the dy-
namical entropy with respect to this trivial partition equa
l

-

e

ce

f

ic

,
e

zero for any system, which guarantees that the dynam
entropy given by the supremum over all partitions~9! is
non-negative.

Let us now investigate the behavior of the total entropy
the opposite caseA↓0 (k→`) for a nonzero noise strengt
s. Performing the time limit~4! we find, as in@24#, that for
very fine partitions the total entropy of the system is giv
approximately by the sum of the Boltzmann-Gibbs entro
and the entropy of the partition~this statement is again base
on the Theorem 2.3 from@26#!

Htot~ f s ,A! '
A↓0

HBG~s!1 ln k. ~15!

Observe that due to the property~12! the right-hand side
does not depend on the dynamical systemf and the approxi-
mate equality~15! holds also for the entropy of the nois
Hnoise(s,A). Therefore dynamical entropy tends to zero f
both limiting cases

Hdyn~ f s ,$X%!50 for k51, ~16!

lim
A↓0

Hdyn~ f s ,A!50 for k→`. ~17!

Let us now discuss what the minimal and maximal d
namical entropies admissible for a certain kind of stocha
noise are. From Eqs.~13! and ~14! we get

HBG~s!<Hdyn~ f s ,A!<2HBG~s!2 ln k1HA~m f s
!

<2HBG~s!. ~18!

Thus the dynamical entropy is bounded from above b
2HBG(s). Combining this with Eq.~17! one obtains

0<Hdyn~ f s!<2HBG~s!. ~19!

This relation provides a valuable interpretation of t
Boltzmann-Gibbs entropy. This quantity, determined by
given probability distribution of the noisePs , tells us
whether the character of the dynamics of a specific determ
istic systemf can be resolved under the influence of th
noise. For example, the rectangular noise of widthb51 may
be calleddisruptive, since the corresponding BG entropy
equal to zero, and consequentlyHdyn( f s ,A)50 for every
uniform partitionA. Under the influence of such a noise w
have no information, whatsoever, concerning the underly
dynamics f. Furthermore, it is unlikely to distinguish be
tween two systems, both having KS entropies larger th
2HBG(s) of the noise present.

Evidently, in the deterministic limit the maximal entrop
tends to infinity. On the other hand, in this case, one obta
in Eq. ~17! the KS entropy. This apparent paradox consists
the order of the two limits: the number of cells in coar
graining to infinity and the noise strength to zero. These t
limits do not commute.

Note that several authors proposed different approache
the notion of dynamical entropy of a noisy system. Crutc
field and Packard@30# introduced theexcess entropyto ana-
lyze the difference between partial entropies of a noisy s
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tem and the corresponding deterministic system,
investigated its dependence on the noise strengths and the
number of the time stepsn.

In order to avoid problems with the unbounded growth
the total entropy for sufficiently fine partitions Gaspard a
Wang studiede entropy@31#, where the supremum is take
over the class of the partitions, for which the minimal dia
eter of a cell is larger thane. This quantity can be numeri
cally approximated by the algorithm of Cohen and Procac
@32#. The e entropy diverges logarithmically in the limite
→0; the character of this divergence may be used to clas
various kinds of random processes@31,33#.

The dependence of the dynamical entropy on time yie
another interesting problem. For discrete deterministic s
tems the KS entropy is additive in time:HKS( f T)
5THKS( f ). On the other hand, it follows from Eq.~19! that
the dynamical entropy of a noisy system fulfillsHdyn( f s

T)
<2HBG(s), for each timeT. Thus for a nonzeros the ratio
Hdyn( f s

T)/T tends to zero in the limitT→`, while for the
deterministic dynamics@HKS( f T)#/T5HKS( f ). The symbol
f s

T represents the same deterministic systemf, subjected to
the stochastic perturbation only once forT time steps. The
related issue has been recently raised by Fox@34# in the
context of deterministic evolution of Gaussian densities. T
discontinuity of Hdyn( f s

T)/T in the limit s→0 is a conse-
quence of the fact that the other limits, time to infinity a
noise strength to zero, do not commute.

In some sense this resembles the noncommutativity of
limits time→` and\→0 in quantum mechanics, crucial fo
investigation of the so-calledquantum chaos~see, e.g.,
@35,36#!. Continuing this analogy even further, the entropy
noise corresponds to the entropy of quantum measurem
@22,23#, while the Boltzmann-Gibbs entropyHBG plays the
role of the Wehrl entropy@37#, recently used by two of us
~W.S., K.Ż.! to estimate the coherent states dynamical
tropy @24#.

D. Systems with rectangular noise

We now discuss the computation of the entropy of no
for the rectangular noisePb ~see Sec. II C! with the periodic
boundary conditions imposed. Computation of the transit
probabilities in Eq.~3! reduces to simple convolutions of th
rectangular noise and is straightforward for the first few ti
steps. For largern the calculations become tedious, and t
convergence in the definition of entropy~4! is rather slow
~not faster than 1/n). It is hence advantageous to consider t
sequence ofrelative entropies GnªHn2H (n21) which con-
verge much faster to the same limitH( f ;A) @30,32#. For
some systems the exponential convergence of this qua
was reported@38–40#.

In our analytical and numerical computations we us
relative entropiesGn . In all of the cases studied, the termG7
gives the entropy limn→`Gn with a relative error smaller
than 1025. For a partition consisting of two equal cells (k
52) and the rectangular noisePb we obtained an explicit
expression forG4, as a function of the noise widthb. Ana-
lytical results obtained in@25# that are too lengthy to repro
duce here give an approximation of the entropy of noise w
precision 1024.
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We analyzed the dynamical entropy of the Re´nyi map
f s(x)5@sx#mod1 ~with integer parameters) subjected to the
rectangular noise. Independently of the noise strength,
uniform distribution remains the invariant density of this sy
tem. For a large noiseb;1 the dynamical entropy is close t
zero, since the difference between the noise and the sys
with noise is hardly perceptible. The dynamical entro
grows with the decreasing noise widthb and in the determin-
istic case seems to tend to the KS entropy of the Re´nyi map
HKS( f s)5 ln s. For more involved systems the computatio
of the dynamical entropy becomes rather difficult even
this simple rectangular noise. In order to avoid calculatingkn

different integrals in Eq.~3!, in the subsequent section w
introduce the class of noises for which computing of pro
abilities Pi 0 , . . . ,i n21

for any dynamical system reduces
multiplication of matrices.

III. SYSTEMS WITH SMOOTH NOISE
OF DISCRETE STRENGTHS

A. Model distribution of noise

In this section we define the particular discrete family
the probability distributionsPN representing the noise an
study properties of dynamical system subjected to this no
As above, we consider one-dimensional spaceX5@0,1) and
impose periodic boundary conditions. We shall look for
kernelP(x,y) homogeneous, periodic, and being decomp
able in a finite basis

P~x,y![P~x2y!5P~j!,

P~x,y![P~x mod1,y mod1!, ~20!

P~x,y!5 (
l ,r 50

N

Alr ur~x!v l~y!,

for x,yPR, where A5(Alr ) l ,r 50, . . . ,N is a real matrix of
expansion coefficients. We assume that the functionsur ,
r 50, . . . ,N and v l , l 50, . . . ,N are continuous inX5@0,1)
and linearly independent. Consequently, we can uniquely
press f [1 as their linear combinations. Both sets of ba
functions form an (N11)-dimensional Hilbert space. Th
last property in Eq.~20! is necessary in order to proceed wi
the matrix method of computation of the probabilities
Eq. ~3!.

All these conditions are satisfied by thetrigonometric
noise

PN~j!5CNcosN~pj!, ~21!

whereN is even (N50,2, . . . ). Thenormalization constan
CN can be expressed in terms of the Euler beta funct
B(a,b) or the double factorial

CN5
p

BS N11

2
,
1

2D 5
N!!

~N21!!!
. ~22!

We use basis functions given by

ur~x!5cosr~px!sinN2r~px!,
~23!

v l~x!5cosl~py!sinN2 l~py!,
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wherexPX and r ,l 50, . . . ,N. We do not require their or-
thonormality. Expanding cosine as a sum to theNth power in
Eq. ~21! we find that the (N11)3(N11) matrixA, defined
in Eq. ~20!, is for this noise diagonal

Alr 5CNS N
l D d lr . ~24!

The parameterN controls the strength of the noise me
sured by its variance

s25
1

2p2
C8S N

2
11D5

1

2p2 S (
k5(N/2)11

`
1

k2D , ~25!

whereC8 stands for the derivative of the digamma functi
@41#.

Figure 1 presents the densities of the noise forN510, 20,
50, and 100. The deterministic limit is obtained by lettingN
tend to infinity. SinceN determines the size of the Hilbe
space, in which the evolution of the densities takes plac
can be compared with the quantum numberj ;1/\ used in
quantum mechanics. Note that for each value of the par
eter N the probability function PN(x).0 for xÞ1/2
~mod1!, so the analyzed perturbation is notlocal in the sense
of Blank @18#.

It is worthwhile to mention that the properties~20! are
preserved for the kernelPN„f (x),y… describing the dynamics
of the system with noise~1!. The expansion matrixA is the
same, if one uses the modified basis functions defined
ũk(x)ªuk„f (x)…, for xPX, which explicitly depend on the
deterministic dynamicsf. To illustrate some features of ou
model we plot in Fig. 2 the transition kernelPN„f (x),y… for
the logistic map perturbed by the noise defined in Eq.~21!
with N520.

B. Invariant measure for systems with stochastic perturbation

The density of the invariant measurerP of the system~1!
is given as the eigenstate of the Frobenius-Perron ope

FIG. 1. Probability density of the noiseP(x) for N
510, 20, 50, and 100.
it

-

y

tor

M P corresponding to the largest eigenvalue equal 1. For
deterministic system, the invariant densityr fulfills the for-
mal equation

r~y!5E
0

1

d„f ~x!2y…r~x!dx. ~26!

In the presence of a stochastic perturbation this equation
comes

rP~y!5„M P~rP!…~y!

5E
0

1E
0

1

P~x8,y!d„f ~x!2x8…rP~x!dx8dx

5E
0

1

P„f ~x!,y…rP~x!dx, ~27!

whereM P is theFrobenius-Perron~FP! operatorconnected
with the noisy system~1!. Let us assume that the kern
satisfies the conditions~20! listed in Sec. III A and so it can
be expanded asP„f (x),y…5( l ,r 50

N Alr ur„f (x)…v l(y). Then
we have

M P~r!~y!5E
0

1

(
l ,r 50

N

Alr ur„f ~x!…v l~y!r~x!dx

5 (
l ,r 50

N

Alr F E
0

1

ur„f ~x!…r~x!dxGv l~y!

5(
r 50

N F E
0

1

ur„f ~x!…r~x!dxG ṽ r~y! ~28!

for yPX, whereṽ r5( l 50
N Alr v l . Thus, any initial density is

projected by the FP operatorM P into the vector space
spanned by the functionsṽ r ;r 50, . . . ,N, and so its image
may be expanded in the basis$ṽ l% l 50, . . . ,N . This statement
concerns also the invariant densityrP . ExpandingrP

FIG. 2. Transition kernelPN„f (x),y… for the logistic mapf (x)
54x(12x) with the noise characterized byN520. The darker
color denotes a higher value of the kernel according to the attac
scale. The variablex is periodic;x5xmod1.
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rP5(
l 50

N

q~P! l ṽ l ~29!

with unknown coefficientsq(P) l and inserting this into
Eq. ~28! we obtain the eigenequation for the vector of t
coefficientsq(P)5$q(P)0 , . . . ,q(P)N%

q~P!5Dq~P!. ~30!

The FP operator is represented here by
(N11)-dimensional matrixD5:BA, whereA is given by
Eq. ~24!, and the entries of the matrixB are given by

Brm5E
0

1

ur„f ~x!…vm~x!dx ~31!

for n,m50, . . . ,N. Observe thatA does not depend on th
deterministic dynamicsf, while B depends on the noise vi
the basis functionsu andv. Furthermore, note that

Drm5E
0

1

ur„f ~x!…ṽm~x!dx ~32!

for r ,m50, . . . ,N, and

M PS (
l 50

N

ql ṽ l~y!D 5(
l 50

N

~Dq! l ṽ l~y! ~33!

for each vectorq5$q0 , . . . ,qN%PRN11. It follows from
Eqs.~28! and~33! that there is a one-to-one corresponden
between the eigenvectors ofD and the eigenfunctions of th
FP operatorM P . The latter has a one-dimensional eigen
pace corresponding to the eigenvalue 1, since the ke
P(x,y) vanishes only forx2y51/2 ~mod1!, which implies
that the two-step probability*P(x,z)P(z,y)dz.0 for x,y
PX ~see@17#, Th. 5.7.4!. Thus equation~30! has the unique
solutionq(P) fulfilling

(
r 50

N

q~P!rE
0

1

ṽ r~y!dy51, ~34!

or equivalently^q(P),t&51, where the vectortPRN11 is
given byt5„*Xṽ0(y)dy,*Xṽ1(y)dy, . . . ,*XṽN(y)dy…. We
find it diagonalizing numerically the matrixD. The function
rP given by Eq.~29! is then the invariant density for th
system with noisef s .

This technique was used to find the invariant measure
the logistic map given byf (x)54x(12x) for xPX in the
presence of noise. Figure 3 presents the invariant density
the logistic map with noise parameterN520. It can be com-
pared to the histogram showing the density of the 11th ite
tion of one million uniformly distributed random initia
points.

In the deterministic limits→0 the size of the matrix
N11 grows to infinity. We believe that our approach can
used to approximate the invariant measure of the determ
istic system by decreasing the noise strength. Figure 4
sents a plot of invariant densities for the logistic map p
turbed with the trigonometric noise forN510, 20, 50, and
100, compared with the invariant measure for the determ
istic caseN→` given by @42#
e

e

-
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r

or

-

e
n-
e-
-

-

r~y!5
1

pAy~12y!
~35!

for yPX.

C. Spectrum of randomly perturbed systems

The spectral decomposition of the Frobenuis-Perron
erators corresponding to classical maps is a subject o
intensive current research@43–47,17,34,48#. The spectrum
of a FP operator is contained in the unit disk on the comp
plane and depends on the choice of a function space
which acts the FP operator. If the dynamical system has
invariant density, the largest eigenvalue is equal to the un
The radius of the second largest eigenvalue determines
rate of convergence to the invariant measure. To cha

FIG. 3. Invariant density for the logistic mapf (x)54x(12x)
subjected to the trigonometric noise (N520): the solid line repre-
sents the density related to the leading eigenvector of the matriD;
the histogram is obtained by iteration of one million of initial poin
by the noisy map.

FIG. 4. Invariant densities of the logistic map for parameters
the trigonometric noiseN510, 20, 50, and 100, together with th
deterministic limitN→`.
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terize the spectrum one definesessential spectral radius r. It
is the smallest non-negative number for which the eleme
of the spectrum outside the disk of radiusr, centered at the
origin, are isolated eigenvalues of finite multiplicity. It wa
shown @49# that for one-dimensional piecewiseC2 expand-
ing maps and the FP operator defined on the space of f
tions of bounded variations, the spectral radius is relate
the expanding constant.

We analyzed the spectral properties of the FP operato
the perturbation of the logistic map, for which the Lyapun
exponents equals ln~2! ~in analogy to the tent map for whic
r 51/2 we draw such a circle to guide the eye and obse
that besides the leading eigenvalues, all others are loca
inside this circle!. The interval@0,1# is joined into a circle to
keep the system conservative in the presence of noise.
FP operator of the system subjected to the shift-invar
additive perturbationPN is represented by the matrixD of
the sizeN11. We obtained its spectrum by the numeric
diagonalization. The largest eigenvaluel1 of D was equal to
the unity up to a numerical error of order 10210. The abso-
lute value of the second eigenvaluel2 was found to ap-
proachr51/2 in the deterministic limitN→`. Since the ma-
trix D has real entries, its eigenvalues are real or appea
conjugate pairs. Figure 5 presents the largest eigenvalue
this system forN510, 20, 50, and 100. All other eigenvalue
are so small that they coincide with the origin in the pictu
Observe that eigenvalues do not tend to the valueslm
51/4m21 for m51,2, . . . found for the deterministic system
in @34#.

Our results show that the structure of the spectrum of
FP operator of a deterministic system depends on the c
acter of the method used to approximate it. Introducing
random noise may be considered as a possible approx
tion, since it enables us to represent the FP operator b
matrix of a finite dimension. In other words, the presence
the noise predetermines a certain space, in which the ei
states live. This numerical finding corresponds to the rec

FIG. 5. Spectra of the FP operator for the logistic mapf (x)
54x(12x) subjected to the noisePN with N510, 20, 50, and 100
ts
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results of Blank and Keller@50#, who showed the instability
of the spectrum for some maps subjected to certain pertu
tions.

IV. COMPUTING ENTROPY FOR SYSTEMS
WITH EXPANDABLE NOISE

A. Matrix formulation of probability integrals

Our aim is to compute probabilities entering the definiti
of the total dynamical entropy of a noisy systemPi 0 , . . . ,i n21

Pi 0 , . . . ,i n21
5E

Ei 0

rP~x0! dx0E
Ei 1

dx1•••

3E
Ei n21

dxn21P„f ~x0!,x1…P„f ~x1!,x2…•••

3P„f ~xn22!,xn21…. ~36!

Introducing (n21) times the expansion~20! applied to the
kernel P„f (x),y… and interchanging the order of summin
and integration we arrive at

Pi 0 , . . . ,i n21
5tT @D~ i n21!•••D~ i 1!D~ i 0!#q~P!, ~37!

where A, t, and q(P) are defined in Sec. III B,D( i )
5B( i )A, and matricesB( i ) are given by the integral ove
the cell Ei , i.e., B( i ) rl 5*Ei

ur„f (x)…v l(x)dx for i
51, . . . ,k; r ,l 50, . . . ,N in the analogy to Eq.~31!.

The above formula provides a significant simplification
the computation of entropy. Instead of performing multid
mensional integrals in Eq.~36!, we start from computing the
matricesD( i ) for any celli 51, . . . ,k, and receive the desire
probabilities by matrix multiplications. By this method th
probabilities may be efficiently obtained even for larg
numbers of the time stepsn. The only problem consists in
the number of terms in Eq.~3!, equal tokn, which for larger
number of cellsk becomes prohibitively high. To overcom
this difficulty we apply in this case the technique of iterat
functions systems presented below.

B. Computation of entropy via IFS

In this section we present a method of computing
dynamical entropy~7!, which is especially useful when th
number of cellsk of the partition of the spaceX is large. We
use the concept of iterated function systems~IFSs!, discussed
in detail in the book of Barnsley@51#. Consider the set ofk
functionspi :Y°R1 and mapsFi :Y°Y defined as@52,53#

pi~z!5t TD~ i !z, i 51, . . . ,k, zPY,
~38!

Fi~z!5
D~ i !z

pi~z!
, i 51, . . . ,k, zPY,

where the vectort and the matricesD( i ) are defined in Secs
III B and IV A, respectively, andY,RN11 is the convex
closure of the set of all vectors of the formu„f (x)… for
xP@0,1#.

Let us stress that the spacesX5@0,1# and the
(N11)-dimensional spaceY are different. The normalization
of the kernel*XP„f (x),y…dy51 for xPX leads to the con-
dition ( i 51

k pi(z)51 for any zPY. Therefore the functions
pi can be interpreted as place-dependent probabilities
together with the functionsFi form an IFS. It is uniquely
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PRE 62 2025DYNAMICAL ENTROPY FOR SYSTEMS WITH . . .
determined by the dynamical systemf with the noise given
by the densityP and a specifick-element partitionA. Thus,
the number of cellsk determines the size of the IFS. It can b
shown @53# that the entropy of the considered dynamic
system with noise is equal to the entropy of the associa
IFS.

The IFS generates a Markov operatorM acting on the
space of all probability measures onY. For any measurable
setS,Y the following equality holds:

~Mn!~S!5(
i 51

k E
Fi

21(S)
pi~w!dn~w!. ~39!

It describes the evolution of the measuren transformed by
M. If the functionsFi fulfill the strong contraction condition
@51#, there exists a unique attracting invariant measurem for
this IFS

Mm5m, ~40!

which, in general, displays multifractal properties@54#. The
total entropy can be computed as the Shannon entr
hk(p1 , . . . ,pk)52( i 51

k pi ln pi averaged over the invarian
measure@23,52#

Htot~ f s ;A!5E
Y
hk„p1~y!, . . . ,pk~y!…dm~y!. ~41!

The calculation of such an integral from the definition co
responds to the matrix method presented previously. H
ever, the existence of the attracting invariant measurem and
the Kaijser-Elton ergodic theorem@55,56# assures that

Htot~ f s ;A!5 lim
n→`

1

n (
l 50

n21

hk~yl !, ~42!

where $yl% is a generic random sequence produced by
IFS. Such a method of computing an integral is often cal
a random iterated algorithm@51#. We start computations
from an arbitrary initial pointy0, iterate it by the IFS, and
compute the average~42! along a random trajectory. To
avoid transient dependence on the initial pointy0 one should
not take into account a certain number of initial iteration
Note that the computing time grows only linearly with th
number of cellsk and one does not need to perform t
burdensome time limit~4!.

We used a similar method to compute the quantum co
ent states entropy@23# and the Re´nyi entropies for certain
classical deterministic maps@54#.

V. DYNAMICAL ENTROPY FOR NOISY
SYSTEMS — EXEMPLARY RESULTS

In this section we will study the entropy of the Re´nyi map
and the logistic map perturbed by the trigonometric no
given by Eq.~21!. We will consider the partitionsAk of the
interval @0,1# into k equal subintervals. We putH(k)
ªH(Ak), Htot(N,k)ªHtot( f N ;Ak), Hnoise(N,k)
ªHnoise( f N ;Ak), Hdyn(N,k)ªHdyn( f N ;Ak), andHdyn(N)
ªHdyn( f N).
l
d

py

-
-

e
d

.

r-

e

A. Boltzmann-Gibbs entropy

A simple integration allows us to obtain the BG-entro
HBG(N) for this kind of noise,

HBG~N!52E
0

1

dj CN cosN~pj!ln@CN cosN~pj!#

5
N

2 FCS N

2 D2CS N11

2 D G112 ln CN , ~43!

whereC denotes the digamma function@41# and the normal-
ization constantCN is given by Eq.~22!.

It follows from Eq. ~43! that in the deterministic limit
(N→`) the BG entropy diverges to minus infinity, namel

lim
N→`

2
HBG~N!

ln N
5

1

2
. ~44!

This relation shows how the maximal dynamical entrop
2HBG @see Eq.~18!#, admissible by a certain level of th
noise, grows logarithmically in the deterministic limit.

B. Entropy of the noise

We used the matrix method of computing probabilitie
which led to partial entropiesHn and the relative entropie
Gn . Fast ~presumably exponential! convergence of the se
quenceGn allowed us to approximate the entropy byG7
with accuracy of order'1026. Figure 6 presents the depen
dence of the entropy of the noiseHnoise(N,k) on the number
of cells k in the partitionAk for two different amplitudes of
noise (N510 and 20). The data for large number of ce
(k>20) are obtained by the technique of IFS. The results
compared with the upper and lower bounds for the entro
of the noise which occurred in Eq.~14!. It follows from Eq.
~14! that the entropy diverges logarithmically with the num

FIG. 6. Dependence of the entropy of the noiseHnoise(k) on the
number of cellsk in partition for N510 (s) and 20 (h). Open
symbols are obtained with the matrix method, while the data fok
>20 are received with the IFS technique~closed symbols!. The
solid line represents the upper boundH(k)5 ln k, while two dashed
lines provide lower bounds given by Eq.~14!.
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2026 PRE 62ANDRZEJ OSTRUSZKAet al.
ber of cellsk in the partition. For a fixed partition it de
creases to zero with decreasing strength of the stoch
perturbation~increasing parameterN).

C. Entropy for the noisy Rényi map

The Rényi map f (s)(x)5@sx#mod 1 (sPN), with explicitly
known metric entropyHKS( f (s))5 ln s, is particularly suit-
able to test changes of the dynamical entropy with stocha
perturbation. Results obtained for the trigonometric no
~21! are much more accurate than these obtained for rec
gular noise and reviewed briefly in Sec. II D. Data presen
below are received for the Re´nyi map with s56 ~we put f
5 f (6)). Dependence of the total entropyHtot(N,k) on the
number of cellsk is presented in Fig. 7~a! for four levels of
noise (N510, 20, 50, and 100). The solid line represents
entropy of the partitionH(k)5 ln k ~upper bound! and the
dashed line provides theN-dependent lower bound given b
H(k)1HBG(N) ~for N510), while the stars denote th

FIG. 7. Entropies for the Re´nyi map f (x)5@6x#mod1 perturbed
by the noise withN510 (s), 20 (h), 50 (1), and 100 (n)
as a function of the number of cellsk: ~a! The total entropyHtot(k).
The solid line represents the upper bound (HAk

) while the dashed
line provides the lower bound~13! for N510. ~b! The dynamical
entropyHdyn(k). The maximum of each curve givesHdyn as rep-
resented on the right side.
tic

tic
e
n-
d

e

partition-dependent entropy of the deterministic syst
given by f. It saturates at the generating partitionkg56 and
achieves the valueHKS( f )5 ln(6). It seems that this value
gives another lower bound for the total entropyHtot . The
total entropy and the entropy of the noise diverge in the lim
of fine partitionA↓0 (k→`), but their difference remains
bounded.

Figure 7~b! shows the differenceHdyn(N,k)5Htot(N,k)
2Hnoise(N,k) necessary for computation the dynamical e
tropy ~9!. This quantity tends to zero fork51 andk→` ~17!
and achieves its maximum—giving a lower bound for t
dynamical entropyHdyn(N)—close to the number of cellskg
in the generating partition. Dynamical entropy is equal
zero for N50 and increases with the decreasing no
strength. In the limitN→` it is conjectured to tend to the
KS entropy of the deterministic systemHKS5 ln(6) repre-
sented by a horizontal line.

D. Entropy for the noisy logistic map

A similar study was performed for the logistic map give
by f (x)54x(12x) for xP@0,1# perturbed by the trigono-
metric noise~21!. As before we treat the intervalX as a circle
setting f (x)5 f (xmod1). Numerical data produce picture
analogous to those obtained for the Re´nyi map with s56.
Instead of presenting them here, we supply a compilation
the results for both systems. Computing total entropy a
entropy of the noise for several partitions we took the larg
difference between them as an approximation of the dyna
cal entropy~9!. Figure 8 shows how the dynamical entrop
changes with the noise parameterN for both systems. It is
conjectured to tend to the corresponding values of the
entropy @ln~2! for the logistic map and ln~6! for the Rényi
map# in the deterministic limitN→`.

VI. CONCLUDING REMARKS

The standard definition of the Kolmogorov-Sinai entro
is not applicable for systems in the presence of a continu
random noise, since the partition-dependent entropy dive

FIG. 8. Dynamical entropyHdyn for the Rényi map (s) and the
logistic map (h) depicted as functions of the noise parameterN.
Horizontal lines represent the values ln~6! and ln~2! of the KS en-
tropy for the corresponding deterministic maps.
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in the limit of a fine partition. We generalize the notion
the KS entropy for dynamical systems perturbed by an
correlated additive noise. The total entropy of a random s
tem is split into two parts: thedynamical entropyand the
entropy of the noise. In the deterministic limit~the variance
of the noise tends to zero! the entropy of the noise vanishe
while the dynamical entropy of the stochastically perturb
system is conjectured to tend to the KS entropy of the de
ministic system.

The continuous Boltzmann-Gibbs entropy characteri
the density of the distribution of the noise. It provides
upper bound for the maximal dynamical entropy observa
under the presence of this noise. If the BG entropy is equa
zero such a noise may be called disruptive because one
not draw out any information concerning the underlying d
terministic dynamics. Investigating properties of the dynam
cal entropy we find that the two limits, the diameter of t
partition to zero, and the noise strength to zero do not co
mute, and we point out some consequences of this fact.

Computation of the dynamical entropy becomes easie
one assumes that the density of the noise can be expand
a finite ~N11!-element basis consisting of continuous ba
functions. In this case we find a simple way of computing
probabilities of trajectories passing through a given seque
of the cells in the partition. The calculations are based
multiplication of matrices of sizeN11 and the computing
time grows linearly with the length of a trajectoryn. On the
other hand, diminishing the noise strength causes an incr
of the matrix dimension.

For each dynamical system perturbed by this kind
noise and for a givenk-element partition of the phase spa
we construct an associated iterated function system, w
consists ofk functions with place-dependent probabilitie
and acts in a certain (N11)-dimensional auxiliary space
Entropy of the dynamical system with noise is shown to
equal to the entropy of IFS, which can be easily computed
the random iterated algorithm. This method is particula
suitable for large number of cellsk, for which the number of
possible trajectories grows in time askn.

We study some one-dimensional maps perturbed by tr
nometric noise, for which the basis functions are given
trigonometric functions. In this case we can represent
Frobenius-Perron operator for the noisy system by a ma
of size (N11). Diagonalizing this matrix numerically we
find the spectrum of this operator. Analyzing the logis
map subjected by such a random perturbation we indic
that the invariant measure tends to the invariant measur
the deterministic system in the limitN→`. On the other
hand, the spectrum of the Frobenius-Perron operator des
ing the noisy system need not to tend to the correspond
characteristics of the deterministic system.

The deterministic limitN→` resembles in a sense th
semiclassical limit of quantum mechanics\→0. For ex-
ample, if one discuss the quantum analogs of classical m
on the sphere@57#, the size of the Hilbert space 2j 11 be-
haves as 1/\, wherej is the spin quantum number. Therefor
it would be interesting to analyze such two-dimensional cl
sical systems in the presence of noise~in the case of two-
dimensional ‘‘trigonometric’’ noise the FP operator can
represented by a matrix of the sizeN2) and to compare how
the spectrum of a given classical map is approached in
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complementary limits: the semiclassical limitj→` of the
corresponding quantum map and the deterministic li
N→` of a classical noisy system. Some preliminary resu
on the related issue of truncating the infinite matrix whi
represents the FP operator of a deterministic system h
been achieved very recently@58,59#.
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APPENDIX: EXEMPLARY ITERATED FUNCTION
SYSTEM

To illustrate the IFS method we discuss the computat
of the entropy of the noise given by Eq.~21! for N52 and
for the partition of the interval@0,1# into k54 equal cells. In
this case Eq.~38! gives the IFS consisting ofk54 functions
acting in a three-dimensional spaceY,@21,1#3. The prob-
abilities pi are place dependent,

p1~x,y,z!5
x~p12!

16p
1

y

8p
1

z~p22!

16p
,

p2~x,y,z!5
x~p22!

16p
1

y

8p
1

z~p12!

16p
,

~A1!

p3~x,y,z!5
x~p22!

16p
2

y

8p
1

z~p12!

16p
,

p4~x,y,z!5
x~p12!

16p
2

y

8p
1

z~p22!

16p
,

while the functions read

FIG. 9. Fractal support of the invariant measurem! of the IFS
associated with the trivial dynamical systemf (x)5x in the pres-
ence of the trigonometric noise withN52. The number of cellsk
54 determines the number of functions in the IFS and the struc
of the depicted set.
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F1~x,y,z!5
1

p1~x,y,z! Fx~813p!

32p
1

3y

16p
1

z

32
;

3x

8p
1

y

16
1

z

8p
;

x

32
1

y

16p
1

z~3p28!

32p G ,
F2~x,y,z!5

1

p2~x,y,z! Fx~3p28!

32p
1

y

16p
1

z

32
;

x

8p
1

y

16
1

3z

8p
;

x

32
1

3y

16p
1

z~3p18!

32p G ,
~A2!

F3~x,y,z!5
1

p3~x,y,z! Fx~3p28!

32p
2

y

16p
1

z

32
; 2

x

8p
1

y

16
2

3z

8p
;

x

32
2

3y

16p
1

z~3p18!

32p G ,
F4~x,y,z!5

1

p4~x,y,z! Fx~3p18!

32p
2

3y

16p
1

z

32
; 2

3x

8p
1

y

16
2

z

8p
;

x

32
2

y

16p
1

z~3p28!

32p G
for (x,y,z)PY.

Figure 9 presents the support of the invariant measurem for this IFS. Applying the random iteration algorithm we obta
in this case the entropy of the noiseHnoise51.1934. Ironically, a less interesting~more contracting! fractal picture leads to a
faster convergence of the averages~42!.
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