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Dynamical entropy for systems with stochastic perturbation
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Dynamics of deterministic systems perturbed by random additive noise is characterized quantitatively. Since
for such systems the Kolmogorov-Sin#iS) entropy diverges if the diameter of the partition tends to zero, we
analyze the difference between the total entropy of a noisy system and the entropy of the noise itself. We show
that this quantity is finite and non-negative and we call it the dynamical entropy of the noisy system. In the
weak noise limit this quantity is conjectured to tend to the KS entropy of the deterministic system. In particu-
lar, we consider one-dimensional systems with noise described by a finite-dimensional kernel for which the
Frobenius-Perron operator can be represented by a finite matrix.

PACS numbd(s): 05.45—-a, 05.40.Ca, 05.16.a

[. INTRODUCTION verges also for the pure noigwith the trivial deterministic
limit f(x)=1(x)=x for xe X], we study the difference be-
Stochastic perturbations are typical for any physical realiween the total entropy of the system with noise and the
ization of a given dynamical system. Also round-off errors,entropy of the noise itself. First, we set the partition fixed,
inevitable in numerical investigation of any dynamics, mayand then we take the supremum over all finite partitions with
be considered as a random noise. Quantitative characterizeegular cell boundaries. In this way our definition resembles
tion of dynamical systems with external stochastic noise is @he coherent states dynamical entroflyat two of us pro-
subject of several recent studigs-4]. On the other hand, posed several years a§@2—24 as a measure of quantum
the influence of noise on various low-dimensional dynamicakchaos. The entropy of the noise, discussed in this paper,
systems and the properties of random dynamical systengays the role of entropy of quantum measurement, con-
have been extensively studied for many yd&rs10. nected with the overlap of coherent states and linked to the
Consider a discrete dynamical system generated blleisenberg uncertainty relation.
f:X—X, whereX is a subset ofR?, in the presence of an Even though our definition is suitable fordimensional

additive noise systems with an arbitrary additive noise, we demonstrate its
usefulness on simple one-dimensional systems. We choose a
Xne1=f(Xp) +&ns (1)  specific kind of distribution defining the noise, which can be
expanded in a finite basis &f functions in both variableg
where&; ,&,, ... areindependent random vectors fulfilling andy. This condition allows us to express thestep prob-

(£)=0 and<§n§m>:g25mn_ The case with vanishing noise abilities, required to compute the entropy, as a product of
strengthc—0 will be called the deterministic limit of the certain matrices. Moreover, we represent the Frobenius-
model. Properties of such stochastic systems have recentRerron operator of the system with noise by aw-+1)
been analyzed by means of the periodic orbit thedrij. X (N-+1) matrix, and obtain its spectrum by numerical di-
Convergence of invariant measures of the noisy system iagonalization. The deterministic limit— 0 requiresN— o,
the deterministic limit has been broadly discussed in thevhich resembles the classical limit of quantum mechanics.
mathematical literaturésee, for instancg12—-20Q). This paper is organized as follows. In Sec. Il the dynami-

A dynamical system generated bis called chaotic if its ~ cal entropy for noisy systems is defined and some of their
Kolmogorov-SinaiKS) entropy is positivgé21]. Such a defi- properties are analyzed. One-dimensional systems with ex-
nition is not applicable for stochastic systems, characterizegandable noise and their invariant measures are analyzed in
by infinite entropy. In this case the partition-dependent enSec. lll, while different methods of computing the entropy
tropy diverges if the partitiond of the spaceX is made are presented in Sec. IV. The entropy for some exemplary
increasingly finer. systems with noiséRenyi map, logistic mapis studied in

In this paper we propose a generalization of the KS enSec. V. The paper is concluded by Sec. VI, while an illus-
tropy for systems with additive noigd). Since entropy di- trative iterated function system, used for computation of the

entropy of noise, is provided in Appendix A.
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represented by a string af symbols, v={ig,....in_1} We assume that, has a unique invariant measuig ,
where each lettel; denotes one of thlecells. Assuming that  which is absolutely continuous with respect to the Lebesgue
initial conditions are taken fronX with the distributioni;  measurem (i.e., it has a density; ). Clearly, u, =m, and
invariant with respect to the maf, let us denote by 7 :
Pig.... iy the probability that the trajectory of the system

can be encoded by a given string of symbols, i.e.,

sop; =1. Moreover, we assume that the measure tends

weakly to u;, for c—0, whereu; is some invariant mea-
sure for the deterministic systemin Sec. IlIB we discuss

= ui(ix:xeE;,f(x) e E . the situation, where the above assumptions are fulfilled.
-1 0 1 Now, let us fix a partition4d of X. We define theotal
entropy Hq(f,;.A) of the noisy systeni, by formulas(3)
and (4), analogously to the deterministic case. Note, how-
ever, that in this case the initial conditions should be taken
from X with the measureu . As we shall see below this

entropy grows unboundedly with Hence, we cannot define
k partition independent entropy of the noisy system using for-
., d mula(6), as the supremum if6) is, in this case, equal to the
oo fn-1=1 infinity. On the other hand, there are two kinds of random-
ness in our model: the first is connected with the determin-
istic dynamics; the second comes from the stochastic pertur-
bation. Accordingly, we split the total partition-dependent
entropyH,,; of a noisy systenf, given by Eqs(3) and(4)

P

igreeein
0 eE D, 2

The partial entropies H, are given by the sum over &I
strings of lengtn

while the dynamical entropy of the system f with respect to
the partition. A reads

H(f;A):=lim EHn- (4) into two components: theoise entropyand thedynamical
noe N entropy The latter quantity characterizes the underlying dy-
namicsf,, and is defined by
The above sequence is decreasing and the quantity
K den(f(r;A) =Hoi(f 53 A) —Hpoisd 0, A), (7)
Hi=—2 wi(EDIn[u(E)], (5)
=1 where the entropy of the nois¢,,;s{ o,.A) reads

which depends offi only via u;, is just theentropy of the
partition .A. We denote it byH 4(u¢). TheKS entropyof the Hpoisd 0, A4) =Hyoi(1 3. A), (8)
systemf is defined by the supremum over all possible parti-
tions A [21]

and |, is a stochastic system given by E@) with f=I
Hks(f):=supH(f;A). (6)  (pure noisg. Although both the quantitiebl;,; and H,sise
A may diverge in the limit of fine partitiotd| 0 (k—x) for a
. ) ) ) ) nonzero noise strength, one can make their differdmgg,
A partition for which the supremum is achieved is called aqnged, taking an appropriate sequence of partitions, as we
generatingpartition. Knowledge of &4 elements generating gpg|| see in Sec. 11 C.
partition for a given map allows one to represent the time |, order to keep away from the ambiguity in the choice of

evolution of the system ik-letters symbolic dynamics and 5 partition, we eventually define thiynamical entropy of
to find the upper bound for the KS entrogyi s(f) <Inky. f as

In the general case it is difficult to find a generating partition 7

and one usually performs another limit, tending to zero with

the diameter of the largest cell of a partition, which implies Hayn(fo) :=supHgy(f,;A), 9
the limit k—o. We shall denote this limit by4|0. A

B. Entropy for systems with stochastic perturbation the supremum being taken over all finite partitions

For simplicity we consider the one-dimensional case tak-A={E;, ... ,Ey} such thatm(E;)=1/k andm(JE;)=0 for
ing X=[0,1], imposing periodic boundary conditions, and €achi=1,... k, ke N. We will call such partitionsiniform
joining the interval into a circle. We denote the LebesgueTlhe restriction to uniform partitions is necessary, since oth-
measure orX by m, settingdx=dm(x) [clearly m(X)=1]. erwise we may encounter various “pathologies” in the de-
The noisy system introduced in E€L) will be denoted by terministic limit [25]. Note, that the uniformity assumption
f,. From now on we assume that all the random vecggrs Mmay be omitted in the case when all the measwes ur,
(neN) in Eq. (1) have the same distribution with the density and m coincide.
P,. Then the probability density of transition fromto y It seems that in many cases the entropy of the n@se
under the combined action of the deterministic mapd the  tends to zero in the deterministic limit— 0, and the dy-
noise is given byP_ (f(x),y)=P.(f(x) —y), wherex,y e X namical entropy off , converges to the KS entropy of the
and the difference is taken modl. In the pure noise caseorresponding deterministic systein(for partial results in
(f=1) this density depends only on the length of the jumpthis direction se¢15] and[22]; for numerical evidence see
and equals t®P,(x,y) =P, (x—Y). Sec. VD.
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C. Boltzmann-Gibbs entropy and bounds zero for any system, which guarantees that the dynamical
for dynamical entropy entropy given by the supremum over all partitio(® is
pon-negative.

Let us now investigate the behavior of the total entropy in
the opposite casgl| 0 (k—o0) for a nonzero noise strength
o. Performing the time limi{4) we find, as in[24], that for

very fine partitions the total entropy of the system is given
Hpo(0o):=— fXdMIU(X) fxdyprr(x_y)ln Po(Xx=y) approximately by the sum of the Boltzmann-Gibbs entropy
and the entropy of the partitiaithis statement is again based
on the Theorem 2.3 frorf26])

In this section we discuss the behavior of the dynamica
entropy in another limit4] 0 (k— ). We first introduce the
Boltzmann-GibbgBG) entropyof the noise

- f dEP,(E)INPy(£). (10
x AlO

For interpretation and generalizations of this quantity, some- Hior(fo,A) =~ Hpg(o) +Ink. (15

times calledcontinuous entropyconsult the monographs of . :
Guiagl [26], Martin and EnS{aCnd[Zﬂ, Jumarie [gzsf or Observe that due to the prope_r¢y2) the right-hand S|d.e
Kapur [29]. In the simplest case of the rectangular noisedoes not de_pend on the dynamical systeand the approxI-
given byPy(x) =0 (b/2—x) O (x+b/2)/b, for 1=b>0 and mate equality(15) holds also f_or the entropy of the noise
x e X, the BG entropy is equal to In Note that this quantity Hnoisd 0,.4). Therefore dynamical entropy tends to zero for

vanishes for the noise uniformly spread over the entire spacl%Oth limiting cases

(b=1), becomes negative fdr<1, and diverges to minus

infinity in the deterministic limito— 0. Hayn(fo (X} =0 for k=1, (16)
For the systeni , combining the deterministic evolutidn _
and the stochastic perturbation, the probability density of L'\T) Hayn(fs, A)=0 for k—co. 17)

transition fromx to y during one time step is given by
P, (f(x),y)=P,(f(x)—y) for x,ye X. The BG entropy for

this system can be defined as Let us now discuss what the minimal and maximal dy-

namical entropies admissible for a certain kind of stochastic
noise are. From Eq$13) and(14) we get

Hoo(f)== | dug,00 | dyP,EO0.0INP(F00.).

(11) Hea(o)<Hayn(f,, A)<—Hps(o) —INk+H 4(us )

=—H . 18
Due to the homogeneity of the noise and due to the periodic se(0) (18)

boundary conditions the integral ovgin Eq. (11) does not
depend orx. Therefore for any systernperturbed by a non-
zero noise ¢>0) one obtains

Thus the dynamical entropy is bounded from above by
—Hgg(o). Combining this with Eq(17) one obtains

OSden(f(r)g_HBG(U)- (19)
Hoolf)=Hool @)=~ | dyP,(yInP,y). (12
X This relation provides a valuable interpretation of the
) ) ) ) Boltzmann-Gibbs entropy. This quantity, determined by the
Applying this equality and using the same _methods 6[24]!_ given probability distribution of the noisé,, tells us
we can prove that the total entropy fulfills the following \yhether the character of the dynamics of a specific determin-
inequalities (the first inequality can be deduced from the jgtic systemf can be resolved under the influence of this
lower bound for the variation of information obtained in yise. For example, the rectangular noise of wigthl may
Theorem 2.3 fron{26]; the second inequality comes from pe cajleddisruptive since the corresponding BG entropy is
the definitior) equal to zero, and consequenttiy,(f,,.4)=0 for every
uniform partition.4. Under the influence of such a noise we

Hgg(o) +In k$Ht0t(fU'A)$HA(”fU)' (13 have no information, whatsoever, concerning the underlying
dynamicsf. Furthermore, it is unlikely to distinguish be-
For f=1 we get tween two systems, both having KS entropies larger than
—Hgg(o) of the noise present.
Hgg(o) +InksHpgisd o, A)<Ink. (14 Evidently, in the deterministic limit the maximal entropy

tends to infinity. On the other hand, in this case, one obtains

Hence, both the total entropy,,(f,,.4) and the noise in Eq.(17) the KS entropy. This apparent paradox consists of
entropy Hyoisd 0,A4) diverges logarithmically in the limit the order of the two limits: the number of cells in coarse
Al0. Let us now study how does the dynamical entropygraining to infinity and the noise strength to zero. These two
which is the difference of these quantities, depend on théimits do not commute.
partition A. Note that several authors proposed different approaches to

If the partition.4={X} consists of one cell onlyk=1),  the notion of dynamical entropy of a noisy system. Crutch-
we haveHy(f,,A) =Hpisd 0, 4)=H 4=0. Thus, the dy- field and Packardi30] introduced theexcess entropio ana-
namical entropy with respect to this trivial partition equalslyze the difference between partial entropies of a noisy sys-
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tem and the corresponding deterministic system, and We analyzed the dynamical entropy of théngiemap
investigated its dependence on the noise strengénd the  fs(X) =[SX]moqz (With integer parametes) subjected to the
number of the time steps rectangular noise. Independently of the noise strength, the
In order to avoid problems with the unbounded growth ofuniform distribution remains the invariant density of this sys-
the total entropy for sufficiently fine partitions Gaspard andteém. For a large noise~1 the dynamical entropy is close to
Wang studiede entropy[31], where the supremum is taken Z€ro, since the difference between the noise and the system
over the class of the partitions, for which the minimal diam-With noise is hardly perceptible. The dynamical entropy
eter of a cell is larger thae. This quantity can be numeri- 9rows with the decreasing noise widifand in the determin-

cally approximated by the algorithm of Cohen and PrOCﬂCCi%_'StiC case seems to tend to the KS entropy of thayRenap
[32]. The € entropy diverges logarithmically in the limi

ks(fs)=Ins. For more involved systems the computation
—.0; the character of this divergence may be used to classifgf the dynamical entropy becomes rather difficult even for
various kinds of random procesdé,33.

is simple rectangular noise. In order to avoid calculakihg
The dependence of e cyramial oy on e yieka 1 el F0(5), n the sbsecent sectn we
another interesting problem. For discrete deterministic sys-, ... :
tems the KS entropy is additive in timeH«(f) ab|I|t.|e'.5 Pi_o ,,,,, i fgr any dynamical system reduces to
— THys(f). On the other hand, it follows from E¢L9) that ~ Multiplication of matrices.
the dynamical entropy of a noisy system fquiHi;dyn(flTT)
< —Hpgg(0), for each timeT. Thus for a nonzere the ratio Iil. SYSTEMS WITH SMOOTH NOISE
den(f;)/T tends to zero in the limiT— o, while for the OF DISCRETE STRENGTHS

dTeterminiStiC dynamic$H Ks(fT)]/_T_:_HKs(f)- The_ symbol A. Model distribution of noise
f, represents the same deterministic sysfersubjected to In this section we define the particular discrete family of

the stochastic perturbation only once fbitime steps. The the probability distributiond? representing the noise and

related issue has been recently raised by 4 in the ; ) ; ) :
context of deterministic evolution of Gaussian densities. TheStUdy properties of dynamical system subjected to this noise.

) - T . . . As above, we consider one-dimensional spge€ 0,1) and
d|scont|nl:c|tt¥] O];Hdty?ﬁf({)tq mt:]he ll.'m.'tt Ut'_>0 Its g;:o_r;se- dimpose periodic boundary conditions. We shall look for a
quence of the fact that the other imits, ime 1o nfinity an kernelP(x,y) homogeneous, periodic, and being decompos-
noise strength to zero, do not commute.

. . le in a fini i
In some sense this resembles the noncommutativity of th"é1b e in afinite basis

limits time — % and#—0 in quantum mechanics, crucial for P(X,Y)=P(x—y)=P(&),
investigation of the so-calledjuantum chaos(see, e.g.,
[35,36)). Continuing this analogy even further, the entropy of P(x,y)=P(x modly modl), (20

noise corresponds to the entropy of quantum measurement

[22,23, while the Boltzmann-Gibbs entrogytzg plays the

role of the Wehrl entropy37], recently used by two of us P(x,y)=|r2:0 Aty (X)oi(y),

(W.S., K.Z) to estimate the coherent states dynamical en- '

tropy [24]. for x,yeR, where A=(A )| -0 .. n IS a real matrix of
expansion coefficients. We assume that the functions
r=0,...N andv;, I=0,... N are continuous irKx=[0,1)

D. Systems with rectangular noise and linearly independent. Consequently, we can uniquely ex-

We now discuss the computation of the entropy of noisepresgle as their linear gombinations._Both sets of base
for the rectangular noisg, (see Sec. Il Cwith the periodic  functions form an K+ 1)-dimensional Hilbert space. The
boundary conditions imposed. Computation of the transitio@St ProPerty in Eq(20) is necessary in order to proceed with
probabilities in Eq(3) reduces to simple convolutions of the the matrix method of computation of the probabilities in
rectangular noise and is straightforward for the first few timeEd- (3)- . - ) _
steps. For largen the calculations become tedious, and the All these conditions are satisfied by tlisgonometric
convergence in the definition of entrofs¥) is rather slow MNOIS€
(not faster than b). It is hence advantageous to consider the Py(&)=Cpnco(7é), (21)
sequence ofelative entropies G:=H,,—H_1) which con-
verge much faster to the same lintit(f;.4) [30,33. For whereN is even N=0,2,...). Thenormalization constant
some systems the exponential convergence of this quantifgy can be expressed in terms of the Euler beta function

N

was reported38—4Q. B(a,b) or the double factorial
In our analytical and numerical computations we used - NI
relative entropie$s, . In all of the cases studied, the tefy Cn= = - (22)
gives the entropy lim .G, with a relative error smaller N+1 1} (N=D!
than 10°°. For a partition consisting of two equal cellk ( 2 '2
=2) and the rectangular noid®, we obtained an explicit ) i )
expression foiG,, as a function of the noise width Ana- /e use basis functions given by
lytical results obtained ifi25] that are too lengthy to repro- U, (x) = cog (mx)simt =" (7X),
duce here give an approximation of the entropy of noise with 23)

precision 104, v,(x)=cos(my)silN ' (7y),
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FIG. 1. Probability density of the noiseP(x) for N
=10, 20, 50, and 100. FIG. 2. Transition kernePy(f(x),y) for the logistic mapf (x)
=4x(1—x) with the noise characterized byY=20. The darker
wherexe X andr,|=0,...N. We do not require their or- color denotes a higher value of the kernel according to the attached

thonormality. Expanding cosine as a sum tolith powerin ~ Scale. The variabl& is periodic;x=Xoq;.-

Eq. (21) we find that the N+ 1) X (N+ 1) matrix A, defined ) )
in Eq. (20), is for this noise diagonal Mp corresponding to the largest eigenvalue equal 1. For the

deterministic system, the invariant densityfulfills the for-
mal equation

N
AIr:CN( [ >5Ir . (24) 1
o= | 8600 -ypx)ax. (26
The parameteN controls the strength of the noise mea- ) _ _ )
sured by its variance In the presence of a stochastic perturbation this equation be-

comes

(25 pp(Y)=Mp(pp))(Y)

1 1 * 1
2:_,‘1,/ - =1,
7 2 ( ) 27T2(k—(N2/2)+1k2 1
=f f P(x",y) o(f(x) —x")pp(x)dx"dx
0Jo

whereW'’ stands for the derivative of the digamma function
[41].

Figure 1 presents the densities of the noiseNer10, 20,
50, and 100. The deterministic limit is obtained by lettikg
tend to infinity. SinceN determines the size of the Hilbert whereMp is the Frobenius-PerronFP) operatorconnected
space, in which the evolution of the densities takes place, with the noisy system(1). Let us assume that the kernel
can be compared with the quantum numperl/s used in  satisfies the condition&0) listed in Sec. Il A and so it can
guantum mechanics. Note that for each value of the paranbe expanded a®(f(x),y)= E| r=oAr U (F(X))v (y). Then
eter N the probability function Py(x)>0 for x#1/2  we have
(mod2), so the analyzed perturbation is notal in the sense
of Blank [18]. 1

It is worthwhile to mention that the properti¢20) are Me(p)(y)= fo |ZO Airtr (F(x))vi(y) p(x)dX
preserved for the kernd@(f(x),y) describing the dynamics
of the system with noisé€l). The expansion matriA is the
same, if one uses the modified basis functions defined by 2
Ug(x) :=u,(F(x)), for xe X, which explicitly depend on the
deterministic dynamic$. To illustrate some features of our
model we plot in Fig. 2 the transition kern®}(f(x),y) for Z
the logistic map perturbed by the noise defined in &4)
with N=20.

1
- fo P((x),y)pe(X)d, 27

N

f u (F(x))p(x)dx|v(y)

N

f LAy (28

for y e X, wherev, == (A, v,. Thus, any initial density is
projected by the FP operatdvlp into the vector space
B. Invariant measure for systems with stochastic perturbation spanned by the functio,:,gr :;r=0,... N, and so its image

The density of the invariant measysg of the system(1) may be expanded in the badig}|_o ... n. This statement
is given as the eigenstate of the Frobenius-Perron operataoncerns also the invariant densjiy . Expandingpp
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N
pP:|20 a(P) v, (29)
18P

with unknown coefficientsq(P), and inserting this into
Eqg. (28) we obtain the eigenequation for the vector of the

coefficientsq(P)=1{q(P)o., . . . .a(P)n} 12f
q(P)=Dq(P). (30) -

(=%

The FP operator is represented here by the o08f
(N+1)-dimensional matrixX© =:BA, whereA is given by

Eq. (24), and the entries of the matrR are given by
04}

1
Brm:J U (F(X))vm(x)dx (31)
0

for n,m=0,... N. Observe thatA does not depend on the
deterministic dynamic$, while B depends on the noise via
the basis functions andv. Furthermore, note that FIG. 3. Invariant density for the logistic maifx) =4x(1—-Xx)
subjected to the trigonometric noisBl€ 20): the solid line repre-
1 ~ sents the density related to the leading eigenvector of the nmiagrix
Dim= fo Ur (FX))om(X)dx (32 the histogram is obtained by iteration of one million of initial points
by the noisy map.

X

forr,m=0,... N, and

N N
~ ~ p(y)= —F—— (35
Mp 20 Q|U|(Y))=|EO(DOI)|U|(Y) (33 mYy(1-y)
for each vectorq={qqo,...,qn}€RV*L It follows from foryeX.
Egs.(28) and(33) that there is a one-to-one correspondence
between the eigenvectors Bfand the eigenfunctions of the C. Spectrum of randomly perturbed systems

FP operatoMp. The latter has a one-dimensional eigens- The spectral decomposition of the Frobenuis-Perron op-
pace corresponding to the eigenvalue 1, since the kernekrators corresponding to classical maps is a subject of an
P(x,y) vanishes only fox—y=1/2 (mod1), which implies intensive current researdd3—47,17,34,4B The spectrum

that the two-step probability P(x,z)P(z,y)dz>0 for x,y  of a FP operator is contained in the unit disk on the complex
e X (see[17], Th. 5.7.4. Thus equatior{30) has the unique plane and depends on the choice of a function space, in
solutionqg(P) fulfilling which acts the FP operator. If the dynamical system has an
invariant density, the largest eigenvalue is equal to the unity.

z

The radius of the second largest eigenvalue determines the
Z (P)rf r(y)dy=1, (34 rate of convergence to the invariant measure. To charac-
or equivalently(q(P),7)=1, where the vectore RN*! is 3
given by 7= (fxvo(y)dy.[xva(Y)dy, .. ..[xvun(y)dy). We
find it diagonalizing numerically the matriR. The function 251

pp given by Eq.(29) is then the invariant density for the
system with noisd .

This technique was used to find the invariant measure for
the logistic map given by (x) =4x(1—x) for xe X in the .
presence of noise. Figure 3 presents the invariant density foc 15F}
the logistic map with noise parametdr= 20. It can be com-
pared to the histogram showing the density of the 11th itera-
tion of one million uniformly distributed random initial
points.

In the deterministic limito—0 the size of the matrix 05F
N+ 1 grows to infinity. We believe that our approach can be
used to approximate the invariant measure of the determin 0

istic system by decreasing the noise strength. Figure 4 pre 0 0.2 04 06 038 1
sents a plot of invariant densities for the logistic map per- X
turbed with the trigonometric noise fod=10, 20, 50, and FIG. 4. Invariant densities of the logistic map for parameters of

100, compared with the invariant measure for the determinthe trigonometric noisé= 10, 20, 50, and 100, together with the
istic caseN— 0 given by[42] deterministic limitN— <.
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results of Blank and Kellef50], who showed the instability
of the spectrum for some maps subjected to certain perturba-
tions.

IV. COMPUTING ENTROPY FOR SYSTEMS
WITH EXPANDABLE NOISE

A. Matrix formulation of probability integrals

Our aim is to compute probabilities entering the definition

of the total dynamical entropy of a noisy systé . iy

Pi,. ... |n,1—f _ pp(Xo) dxofE_ dxg- - -
X fE. dXn -1 P(f(X0) X)) P(F(X1), %) - - -
XP(f(Xn-2): Xn-1)- (36)

Introducing f1—1) times the expansio(R0) applied to the
kernel P(f(x),y) and interchanging the order of summing

Re A and integration we arrive at
FIG. 5. Spectra of the FP operator for the logistic nf{g) Pi :TT[D(in—l)' --D(i;)D(ig)1q(P), (37)
=4x(1—x) subjected to the noisBy with N=10, 20, 50, and 100. 0rrrrin-t
where A, 7, and q(P) are defined in Sec. IlIBD(i)
terize the spectrum one definessential spectral radius it =B(i)A, and matricesB(i) are given by the integral over
is the smallest non-negative number for which the elementthe cell E;, i.e., B(i),=/gu,(f(x))v,(x)dx for i
of the spectrum outside the disk of radiyscentered at the _ 1,...k: r,1=0,...Nin the anlalogy to Eq(31).

origin, are isolated eigenvalues of finite multiplicity. It was  The above formula provides a significant simplification in
shown[49] that for one-dimensional piecewi&” expand-  the computation of entropy. Instead of performing multidi-
ing maps and the FP operator defined on the space of fungnensional integrals in E¢36), we start from computing the
tions of bounded variations, the spectral radius is related tenatricesD (i) for any celli=1,... k, and receive the desired
the expanding constant. probabilities by matrix multiplications. By this method the
We analyzed the spectral properties of the FP operator gfrobabilities may be efficiently obtained even for larger
the perturbation of the logistic map, for which the Lyapunovnumbers of the time steps The only problem consists in
exponents equals (B) (in analogy to the tent map for which the number of terms in Ed3), equal tok", which for larger
r=1/2 we draw such a circle to guide the eye and observ@umber of cellsk becomes prohibitively high. To overcome
that besides the leading eigenvalues, all others are localizéhis difficulty we apply in this case the technique of iterated
inside this circle. The interval 0,1] is joined into a circle to ~ functions systems presented below.
keep the system conservative in the presence of noise. The
FP operator of the system subjected to the shift-invariant
additive perturbatiorPy is represented by the matr@ of In this section we present a method of computing the
the sizeN+1. We obtained its spectrum by the numerical dynamical entropy(7), which is especially useful when the
diagonalization. The largest eigenvalugof D was equal to  number of cells of the partition of the spack is large. We
the unity up to a numerical error of order 1. The abso- USe the concept of iterated function systeifSs, discussed
lute value of the second eigenvalae was found to ap- N detail in the bogk of Barnslejs1]. Consider the set df
proachr=1/2 in the deterministic limiN— . Since the ma- [unctionsp;:Y—~R" and maps;:Y—Y defined a§52,53

B. Computation of entropy via IFS

trix D has real entries, its eigenvalues are real or appear in pi(z)=7D()z, i=1,...k zeY,
conjugate pairs. Figure 5 presents the largest eigenvalues of (39)
this system folN= 10, 20, 50, and 100. All other eigenvalues ~ D(i)z

Fi(2) i=1,...k, zeY,

are so small that they coincide with the origin in the picture.

P2
Observe that eigenvalues do not tend to the valhgs I
=1/4""1 for m=1,2, ... found for the deterministic system Where the vector and the matriceB (i) are defined in Secs.

in [34]. 1B and IV A, respectively, andYyCRN*?! is the convex
Our results show that the structure of the spectrum of thglosure of the set of all vectors of the form(f(x)) for

FP operator of a deterministic system depends on the chax-<[0,1].

acter of the method used to approximate it. Introducing a Let us stress that the spacex=[0,1] and the

random noise may be considered as a possible approximéN+ 1)-dimensional spac€éare different. The normalization

tion, since it enables us to represent the FP operator by @f the kernelfxP(f(x),y)dy=1 for xe X leads to the con-

matrix of a finite dimension. In other words, the presence ofdition Eikzlpi(z)=1 for anyze Y. Therefore the functions

the noise predetermines a certain space, in which the eigep; can be interpreted as place-dependent probabilities and

states live. This numerical finding corresponds to the recerntbgether with the function§&; form an IFS. It is uniquely
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determined by the dynamical systdmwvith the noise given 4 - T T
by the densityP and a specifik-element partitiond. Thus, o o N=10
the number of cell& determines the size of the IFS. It can be o @ N=20
shown [53] that the entropy of the considered dynamical
system with noise is equal to the entropy of the associatec '
IFS. __e-"
The IFS generates a Markov operathbt acting on the < _ e ° - u
space of all probability measures &h For any measurable 3 ,| PR A -* _
. . ] o
setSCY the following equality holds: ~° R L
) 090,::‘5 g’ug
o, 0O
(Mv)(S)=2 f _, _Piw)dw(w). (39 1t 0%ad .
i=1 JF ks o2,
O|:|/q /
o’y
It describes the evolution of the measurdransformed by 1y
M. If the functionsF; fulfill the strong contraction condition o114 . .
[51], there exists a unique attracting invariant meagufer 10 20k 80 40
this IFS

FIG. 6. Dependence of the entropy of the ndikg;s{k) on the
Mup=p, (40) number of cellsk in partition forN=10 (O) and 20 (). Open
symbols are obtained with the matrix method, while the datfor
which, in general, displays multifractal propertigst]. The =20 are received with the IFS techniquelosed symbols The
total entropy can be computed as the Shannon entropsplid line represents the upper bour¢k)=In k, while two dashed
he(p1, - - - P = —Eik:lpiln p, averaged over the invariant lines provide lower bounds given by E.4).

measurg 23,52
A. Boltzmann-Gibbs entropy

Htot(f(r;A):f hP1(Y), - - P(yNdu(y). (42 A simple integration allows us to obtain the BG-entropy
Y Hgg(N) for this kind of noise,

The calculation of such an integral from the definition cor-
responds to the matrix method presented previously. How-
ever, the existence of the attracting invariant meaguend

the Kaijser-Elton ergodic theoref85,56 assures that N[

1
HBG(N):—L dé Cy cosV(mé)In[Cy cosl(mé)]
N) (N-‘rl
n-1 v 2 o 2

1
n“_rno B 20 h(y1), (42 \wherew denotes the digamma functi¢#1] and the normal-
ization constanCy is given by Eq.(22).
It follows from Eq. (43) that in the deterministic limit
N— ) the BG entropy diverges to minus infinity, namely

2

+1-InCy, (43

Hiot( fo 3 A) =

where{y,} is a generic random sequence produced by th
IFS. Such a method of computing an integral is often calle
a random iterated algorithrf51]. We start computations
from an arbitrary initial pointy,, iterate it by the IFS, and lim — Hga(N) _ E (44)
compute the averagét?) along a random trajectory. To N o INN 2
avoid transient dependence on the initial pgipione should
not take into account a certain number of initial iterations.This relation shows how the maximal dynamical entropy
Note that the computing time grows only linearly with the —H, [see Eq.(18)], admissible by a certain level of the
number of cellsk and one does not need to perform thenoise, grows logarithmically in the deterministic limit.
burdensome time limit4).

We used a similar method to compute the quantum coher-

ent states entropf23] and the Rayi entropies for certain
classical deterministic mag§4]. We used the matrix method of computing probabilities,

which led to partial entropiesl,, and the relative entropies
G, . Fast(presumably exponentiatonvergence of the se-
quenceG, allowed us to approximate the entropy B
with accuracy of order=10"°. Figure 6 presents the depen-
In this section we will study the entropy of the R@map  dence of the entropy of the noisg,,is{N,k) on the number
and the logistic map perturbed by the trigonometric noiseof cellsk in the partition4, for two different amplitudes of
given by Eq.(21). We will consider the partitionsi, of the  noise (N=10 and 20). The data for large number of cells
interval [0,1] into k equal subintervals. We puH(k) (k=20) are obtained by the technique of IFS. The results are
=H(A), Hiot(N,K) :=Hoi(frn i Ak, Hpoisd N, K) compared with the upper and lower bounds for the entropy
=Hnoisd fniAk) s Hayn(N,K) :=Hgyn(fn:Al), andHgyn(N) of the noise which occurred in E¢L4). It follows from Eg.
=Hgyn(fn). (14) that the entropy diverges logarithmically with the num-

B. Entropy of the noise

V. DYNAMICAL ENTROPY FOR NOISY
SYSTEMS — EXEMPLARY RESULTS
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/
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K N
2 . . i 2 — FIG. 8. Dynamical entrop¥ y,, for the Reyi map (O) and the
b) logistic map (d) depicted as functions of the noise parameter
In(@) |--ovooveeeee RAR AL L AL i | * Horizontal lines represent the valueg@nand In2) of the KS en-
0o o N=10 tropy for the corresponding deterministic maps.
15 ' A I R
« aa, . 4 Nl a partition-dependent entropy of the deterministic system
A+t 4a, + given byf. It saturates at the generating partitiop=6 and
) dot e te taa, A achieves the valuélcg(f)=In(6). It seems that this value
-~ + 2% a e, . faa, L° gives another lower bound for the total entrofy,;. The
’j " oo o e, o total entropy and the entropy of the noise diverge in the limit
. "o o "o, T of fine partition 4|0 (k—=), but their difference remains
osf 2 . ° o, "ma_ | osl | bounded.
a oy, : Figure 7b) shows the differencél gy ,(N,k) =H,o(N,k)
CE y! )
° —H0isd N,K) necessary for computation the dynamical en-
tropy (9). This quantity tends to zero fér=1 andk— o (17)
0 5 10 pys 0 0 and achieves its maximum—giving a lower bound for the
Kk dynamical entrop n(N)—close to the number of cel
dy

) _ in the generating partition. Dynamical entropy is equal to
FIG. 7. Entropies for the Reyi map f(x) =[6X]mog Perturbed  7ero for N=0 and increases with the decreasing noise
by the noise wittN=10 (O), 20 (), 50 (+),and 100 &)  gyength. In the limitN— it is conjectured to tend to the

as a function of the number of celts(a) The total entropyH (k). KS entro P _
- ) py of the deterministic systehis=In(6) repre-
The solid line represents the upper boumﬂAg) while the dashed sented by a horizontal line.

line provides the lower boun@l3) for N=10. (b) The dynamical
entropyHgyy (k). The maximum of each curve gi as rep-
resen%a/d doynn(th)e right sid):. . urve givésyn P D. Entropy for the noisy logistic map
A similar study was performed for the logistic map given
ber of cellsk in the partition. For a fixed partition it de- by f(x)=4x(1—x) for x[0,1] perturbed by the trigono-
creases to zero with decreasing strength of the stochastivetric noise21). As before we treat the intervlas a circle

perturbation(increasing paramete\). setting f(X)="f(Xmnoq7)- Numerical d,ata produce pictures
analogous to those obtained for thenRemap with s=6.
C. Entropy for the noisy Rényi map Instead of presenting them here, we supply a compilation of

_ \ . . the results for both systems. Computing total entropy and
The Reyi mapf )(X) =[SXImoa 1 (€ N), with explicitly  gnropy of the noise for several partitions we took the largest
known metric entropyHs(f(s)) =In's, is particularly suit-  itference between them as an approximation of the dynami-
able to test changes of the dynamical entropy with stochastigy) entropy(9). Figure 8 shows how the dynamical entropy
perturbation. Results obtained for the trigonometric ”Oisechanges with the noise parametérfor both systems. It is
(21) are much more accurate than these obtained for reCta'%'onjectured to tend to the corresponding values of the KS

gular noise and reviewed briefly in Sec. Il D. Data presente%ntropy[m(z) for the logistic map and I6) for the Ranyi
below are received for the Rgi map withs=6 (we putf mag] in the deterministic limitN—s .

=f(s)). Dependence of the total entropy;,(N,k) on the
number of cell is presented in Fig. (@) for four levels of
noise N=10, 20, 50, and 100). The solid line represents the
entropy of the partitiorH(k) =Ink (upper boun@l and the The standard definition of the Kolmogorov-Sinai entropy
dashed line provides th¥-dependent lower bound given by is not applicable for systems in the presence of a continuous
H(k)+Hgg(N) (for N=10), while the stars denote the random noise, since the partition-dependent entropy diverges

VI. CONCLUDING REMARKS
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in the limit of a fine partition. We generalize the notion of
the KS entropy for dynamical systems perturbed by an un- »
correlated additive noise. The total entropy of a random sys-
tem is split into two parts: thelynamical entropyand the
entropy of the noiseln the deterministic limit(the variance ~ 1
of the noise tends to zerthe entropy of the noise vanishes, o5
while the dynamical entropy of the stochastically perturbed
system is conjectured to tend to the KS entropy of the deter- o
ministic system.

The continuous Boltzmann-Gibbs entropy characterizes
the density of the distribution of the noise. It provides an
upper bound for the maximal dynamical entropy observable
under the presence of this noise. If the BG entropy is equal tc
zero such a noise may be called disruptive because one can-
not draw out any information concerning the underlying de-
terministic dynamics. Investigating properties of the dynami-

. A . associated with the trivial dynamical systdifx)=x in the pres-
cal entropy we find that the two limits, the diameter of thegnce of the trigonometric noise witi=2. The number of cell&

partition to zero, and the noise strength to zero do not COM= 4 determines the number of functions in the IFS and the structure
mute, and we point out some consequences of this fact.  of the depicted set.

Computation of the dynamical entropy becomes easier if
one assumes that the density of the noise can be expandedddmplementary limits: the semiclassical linjit>o of the
a finite (N+1)-element basis consisting of continuous basecorresponding quantum map and the deterministic limit
functions. In this case we find a simple way of computing then — « of a classical noisy system. Some preliminary results
probabilities of trajectories passing through a given sequencgn the related issue of truncating the infinite matrix which
of the cells in the partition. The calculations are based Oﬁepresents the FP operator of a deterministic System have
multiplication of matrices of siz&l+1 and the Computing been achieved very recenm58'5q_
time grows linearly with the length of a trajectony On the
other hand, diminishing the noise strength causes an increase ACKNOWLEDGMENTS
of the matrix dimension.

For each dynamical system perturbed by this kind of one of us(K.z.) would like to thank Ed Ott for the hos-
noise and for a givek-element partition of the phase space pjtajity he received at the University of Maryland, where a
we construct an associated iterated function system, WhiCBart of this work was done. A.O. gratefully acknowledges
consists ofk functions with place-dependent probabilities sypport by the Subsydium FNP 1/99. This work was also
and acts in a certainN+1)-dimensional auxiliary space. sypported by the Polish KBN Grant No. PO3B 060 13.
Entropy of the dynamical system with noise is shown to be
equal to the entropy of IFS, which can be easily computed by APPENDIX: EXEMPLARY ITERATED FUNCTION
the random iterated algorithm. This method is particularly SYSTEM
suitable for large number of cells for which the number of
possible trajectories grows in time &S . To illustrate the IFS method we discuss the computation

We study some one-dimensional maps perturbed by trigo-

nometric noise, for which the basis functions are given byOf the entropy of the noise given by EQ1) for N=2 and

trigonometric functions. In this case we can represent thé?‘r the partition of the intervl0,1] into k=4 equal cells. In

Frobenius-Perron operator for the noisy system by a matri IS case Eq(38) gives th? IFS consisting M_34 functions
of size N+1). Diagonalizing this matrix numerically we acp_ng in a three-dimensional spave-[ —1,1J". The prob-
find the spectrum of this operator. Analyzing the Iogisticabllltles pi are place dependent,

map subjected by such a random perturbation we indicate

that the invariant measure tends to the invariant measure of  X(m+2) y  zw—2)

the deterministic system in the liml—oc. On the other Pi(Xy.2)= 167 +ﬁ+ 167 '

hand, the spectrum of the Frobenius-Perron operator describ-

ing the noisy system need not to tend to the corresponding

FIG. 9. Fractal support of the invariant measurg of the IFS

X(m—=2) 'y z(wm+2)

characteristics of the deterministic system. Po(X,Y,2) = 2 '

The deterministic limitN—o resembles in a sense the 167 8w 16w
semiclassical limit of quantum mechaniés—0. For ex- (A1)
ample, if one discuss the quantum analogs of classical maps X(m—2) 'y z(w+2)
on the spher¢57], the size of the Hilbert spacej2 1 be- ps(X,y,2)= 67 ng T
haves as #/, whergj is the spin quantum number. Therefore,
it would be interesting to analyze such two-dimensional clas-
sical systems in the presence of noige the case of two- X(m+2) 'y z(wm—2)
dimensional “trigonometric” noise the FP operator can be Pa(X.y\2) =~ ~ g+t

represented by a matrix of the sik&) and to compare how
the spectrum of a given classical map is approached in twavhile the functions read
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1 X(8+3 3 z 3X Z X 2(37m—8
p1(X,Y,2) 32 16w 32’ 87 16 87’32 167 327
1 X(37—8) y z X y 3z x 3y z3w+8)
oY= y2) | 327 ' 16m 32 8 16 87’32 16m B21 |
(A2)
1 X(37—8) y z X y 3z x 3y z(3w+8)
Fa(xy,2)= et et A TAs T T aam |
pa(x,y,2)| 327 167 32 8w 16 8m'32 16w 327
. B 1 X(37+8) 3y z X y z X y z(37m—8)
Y D= VD | B2r 16m 320 8n 16 832 l6m ' 32w

for (x,y,2) €Y.

Figure 9 presents the support of the invariant meagufer this IFS. Applying the random iteration algorithm we obtain
in this case the entropy of the noibk,,;sc=1.1934. Ironically, a less interestifgore contractingfractal picture leads to a

faster convergence of the averagég).
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