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Critical point of tori collision in quasiperiodically forced systems
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We report on a type of scaling behavior in quasiperiodically forced systems. On the parameter plane the
critical point appears as a terminal point of the tori-collision bifurcation curve; its location is found numerically
with high precision for two basic models, the forced supercritical circle map and the forced quadratic map. The
hypothesis of universality, based on renormalization group arguments, is advanced to explain the observed
scaling properties for the critical attractor and for the parameter plane arrangement in the neighborhood of the
criticality.

PACS numbsd(s): 05.45.Df, 05.10.Cc

[. INTRODUCTION The paper is organized as follows. In Sec. Il we discuss
the phenomenology of tori collision in quasiperiodically
Transition to chaos via quasiperiodicity is one of the mostforced systems and outline the topography of the parameter
common scenarios of the onset of temporal disorder in dyplane. A method based on rational approximations to the
namical systems. One rather convenient way to study subtiequency of driving allows us to find the TCT point with
details of such a transition is to use quasiperiodically forcedligh accuracy. In Sec. lil we formulate the renormalization
systems: in these models the frequency ratio appears as 8fPuUp approach and study the fixed point of the RG transfor-
independent parameter, and can be effectively controllefnation. The universal scaling properties of the dynamics,
both in numerics and in experiments. It has been discovereyhich follow from the RG analysis, are derived and con-
that in quasiperiodically forced systems the transition fromfirmed numerically in Secs. IV and V.
order to chaos is typically mediated by strange nonchaotic

attractorg SNAs). The termstrangerefers to the geometrical Il. TCT CRITICAL POINT IN QUASIPERIODICALLY

structure of the attractors, while the temmonchaoticindi- FORCED MAPS

cates absence of sensitivity of the dynamics to initial condi-

tions (all Lyapunov exponents of SNA’s are nonposilive In this section we introduce model maps to be studied and

Nevertheless, trajectories on SNAs possess h|gh sensitivhgescribe the critical situation, which we call the TCT point.
with respect to the phase of the quasiperiodic force, and dukirst, we discuss two cases of torus-torus collision, namely,
to this property the set of trajectories appears to be a fractdhe smooth and the fractal collision, and demonstrate that the
object rather than a smooth torus. The SNAs were first decorresponding bifurcation lines meet at the TCT point. Next,
scribed by Greboget al. [1] and since then have been ex- We describe a method to determine this point, which is based
tensively studied numericallj2—17] and experimentally ©On rational approximations to the frequency of the quasiperi-
[18—20. Moreover, SNAs have been shown to be relevant iredic force.
the analysis of the Schdinger equation with a quasiperiodic
potential[2,21]. A. Smooth and fractal tori collisions

Recently, the approach based on the concepts of scaling
and the renormalization gro|®rG), which has been proved
to be extremely fruitful for understanding transitions to
chaos, has been applied to the problem of the onset of a

As the first example we consider a quasiperiodically
forced circle map

K
SNA. Two situations have been analyzed with this approach. Xn+1=Xptb— z—=siN 27 (x,+cC)]
The first, the so called blow-out transition to the SNA, was 2m
reported i 22]. The second case relates to the terminal point +esin2my,) (mod 1), (1)

of the torus-doubling bifurcation curve, the TDT point,
where the regions of torus, double torus, SNA, and chaos
meet together in the parameter pldd&].

In this paper we study the dynamics associated with the
terminal point of the bifurcation line, where a stable torusThe dynamical variable is defined on the circle €x<1.
collides with an unstable one. We call it ti€T point(tori- ~ The variabley describes the phase of the external force; it
collision terminal poink At this point the bifurcation lines of also varies from 0 to 1. The paramet&andb are the usual
smooth[23] and fractal[12] torus collisions meet together; parameters of the circle map, while the amplitudand the
the attractor at this point is a fractal. Our main tool is thefrequencyw characterize the forcing: rational frequencies
renormalization group. In particular, it provides universalcorrespond to periodic, and irrational to quasiperiodic driv-
constants describing the scaling properties of phase spadeg. In this paper we fix the frequency to be equal to the
and parameter space associated with the TCT point. inverse golden meam=(\/5—1)/2.

Yn+1=Ynt® (mod 1).
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FIG. 1. The bifurcation diagram of the quasiperiodically forced circle ifiapn the p,€) plane, for fixedk=2.5. Regions of torus,
intermittent chaos, and two types of SNA are presented. The panels A and B show the enlarged boxes of the upper panel. The phase portraits
illustrating the dynamical regimes at the marked points are depicted in Fig. 2 below. In the upper panel one can observe joining of the two
different boundaries of the torus area at the TCT critical point.

We intend to consider here only the supercritical circle If the external force is turned on, then* 0, and instead
map,K>1. In this case the map as a function>ofs irre-  of a stable fixed point we obtain an attractor, represented by
versible and nonmonotonic, i.e., it has maxima and min-a smooth closed invariant curve; its size grows with the am-
ima. For a given K it is convenient to setc plitude of the force. In the context of continuous-time dy-
=arctan{/K?—1)/2x to place the minimum of the map ex- namical systems, this invariant curve may be thought of as a
actly atx=0. We take an arbitrarily fixed value ¢¢=2.5  cross section of a two-dimensional torus; it is common usage
(see the discussion below of the role of this parametad  to term such an attractor a torus. Note that an unstable torus
present the numerically obtained chart of the parameter plangists nearby, emerged from the unstable fixed point. With
(b,€) in Fig. 1. The regions of different dynamical regimes jncreasingb, one observes a similar transition as described
are shown in gray scale. The phase plane portraits at reprgpnoye, but for the tori rather than for the fixed points. That is,
sentative points marked by crosses illustrate different dyihe two tori, one stable and the other unstable, come close,

namical regimesFig. 2). meet, and disappeésee Fig. 3 This is the case of a smooth

To understand in more detail the arrangement of the P3ori collision. At the bifurcation point the stable and unstable

rameter plane let us start with the vanishing amplitude of th(?ori coincide and form a single semistable torus. This is the

external forcee=0. One can easily find a value & for situation at the instability threshold, and the Lyapunov expo-
which the map1) has a stable and an unstable fixed point N ent at this moment is zexsee[23)] for detaily. This bifur-

the region wherelx, 1 /dx,>0; see Fig. 3. With increasing ation occurs at some bifurcation curve in the parameter
b these fixed points come closer to one another; finally, the : urs lfturcation curve in the par
lane p,€) (Fig. 1). Beyond the bifurcation an intermittent

collide (the multiplier of the fixed point becomes equal to 1) V<" s )
and then disappear. The moment of collision corresponds tgF9iMme appears, which may be regarded as a version of

the tangent, or saddle-node, bifurcati4]. After that, in ~ YPe-l intermittency modified by quasiperiodic driving. In
the region where the former fixed points were located, &19- 2 this transition is illustrated by panels | and II.

narrow channel remainsl which the dynamical variakle If we start from the tangent bifurcation in the unforced
passes very slowly. In the context of the transition to chaosSystem, and increasefollowing the line of the smooth tori
the motion in the channel is a laminar phase of type-I intercollision, we observe that the semistable torus grows in size
mittency; reinjection of the trajectories after passage throughvith the forcing amplitude(Fig. 4). Finally, atb~0.38, €

the channel corresponds to one rotationxofiround the ~0.13, this torus touches the line=0, and this is what we
circle. call the tori-collision terminal critical point.
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FIG. 2. lllustration of smooth
and fractal tori collisions. The
numbers on the panels correspond
to the points marked in the bifur-
cation diagram Fig. 1. In I, IlI,
and IV the stable and the unstable
tori are shown with bold dots and
dashed line, respectively. The
transition Il is the smooth tori
collision. The transition IH-1V
—V—VI is a fractal tori colli-
sion. Near the collisioripanel I\V)
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As mentioned, at the bifurcation line of the smooth toritrated by panels Il1-VL.
collision the torus has zero Lyapunov exponent; the same is From Fig. 1 one can see that both the bifurcation lines of
true at the TCT point. However, at the moment of touchingsmooth and fractal tori collisions meet at the TCT critical
the linex=0 one trajectory on the torus becomes superstablpoint. Hence, this point is of most importance for under-
and has a Lyapunov exponent equal to minus infinity. Morestanding the dynamics of the system because all relevant
over, this superstable trajectory must be dense on the critic&igimes and transitions are present in the neighborhood of
torus because of the quasiperiodic nature of the dynamicghis point.
Such a combination of properties—a threshold of instability ~\We argue that the properties of dynamics at the TCT point
for the invariant set as a whole, and the presence of one
superstable trajectory—means that the critical torus has to be
a fractal. To distinguish the SNA domains we used a numerical technique
There is another bifurcation line of tori collision in the based on the phase sensitivity exponjdrif]. Because of the finite
diagram of Fig. 1, which cannot be followed downéde 0. resolution of this technique, we cannot exclude the possibility that
On this line the stable and unstable invariant curves toucHtractalization of the stable torus occurs, not before, but just at the
but do not coincide. This means that at least one of thénoment of the tori collision. If this is the case, then the region
curves must be nonsmooth, corresponding to a fractal torugl@rked as SNA-1 in Fig. 1 is occupied in fact by the regimes of
As shown in Ref[12], such a bifurcation gives rise to a smooth tori. To solve this problem, a special theoretical and nu-

strange nonchaotic attractor. In Fig. 2 this transition is iIIus-VnJgrrLcal study is needed, which is beyond the scope of the present
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FIG. 3. lllustration of saddle-node collisiofa) The bifurcation of collision of stable and unstable fixed points in the autonomous circle
map. (b) The bifurcation of tori collision in the presence of quasiperiodic forcing.

are universal. Indeed, if we go along the line of smooth toriother supercritical values of the parameker For eachK
collision, the TCT point is that where the attractor touches>1 a TCT criticality may be found at some defind@ande.

the singular point of zero derivative. Thus, it is essential thatn other words, there exists @resumably smoo}hTCT

this singularity should be a quadratic extremum. One mighturve in the three-dimensional parameter spakeb(e).
expect(and this expectation will be confirmed by the renor- However, the situation will be distinct if the singularity of
malization group analysis belgwthat any one-dimensional the map is not quadratic. For example, =1 the circle
map having a quadratic extremum and demonstrating a tammap has a cubic inflection point, and the nature of critical
gent bifurcation will exhibit at some point of the parameterbehavior becomes different; this case will be discussed else-
space the same kind of criticality under golden-mean quasiwhere. The situation becomes yet more unclear when the

periodic driving. In particular, for the circle map one can try singular point disappeardor K<1); we plan to study this

case in the future.

To support the argument that the existence of the TCT
critical point is rather a general property of forced noninvert-
ible maps with a quadratic extremum, we present one more
example, a quadrati¢ogistic) map under quasiperiodic forc-
ing:

_0.10 .
; Xni1=X+ b+ esin(2my,),
< (2
0.05 ] Yns1=Ynto (mod D), w=(y5-1)2.
For vanishing amplitude of the external foree 0 and small
b, this map possesses a stable and an unstable fixed point. At
o . . . some value ob>0 they collide and disappear via the tan-
0.00 0.05 0.10 0.15 gent bifurcation. ,
X If external force is presentef~0), we have a stable and

an unstable torus that collide at sobeOn increasing the

FIG. 4. The invariant curve at the smooth tori-collision point, @mplitude of the external force and going along the bifurca-

for different values ofe. The smallest curve corresponds to the tion curve, we finally reach the situation where the closed
smallest forcing amplitude; as e grows the curve becomes larger, invariant curve at the threshold of the torus-collision bifur-
and finally at the TCT critical point it touches the line=0. This  cation touches the lin&=0. This is the TCT point—the
last invariant curve is fractal. critical point of the same nature as has been described for the
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TABLE I. The approximations of the TCT point for the forced circle map based on rational approxima-

CRITICAL POINT OF TORI COLLISION IN . ..

tions of the driving frequency. The parameteisb, converge to the TCT point; the phasas,v (initial

phases for the superstable cycle and the cycle at instability threshold, respéativ@herge to a definite

value as well.

Fro1/Fy 144/233 233/377 377/610

€ 0.13246827351501 0.13250795751162 0.13253613129985
b 0.37789716819380 0.37788430788852 0.37787571332547
u 0.28256543113078 0.28507911784015 0.28352121995658
v 0.28390824416939 0.28424462744230 0.28403287626312
Fr 1/Fy 610/987 987/1597 1597/2584

€ 0.13254894376094 0.13255711167252 0.13256112439438
b 0.37787164279323 0.37786912162019 0.37786785844262
u 0.28447737339461 0.28388514644255 0.28424919282601
v 0.28416035662086 0.28408010084896 0.28412859034350

1999

circle map. As will be shown below, the critical behavior of (1) For some initial phasgy,= u, there exists a periofy
both our models belongs to the same universality class. Theycle starting fromx=0, and the derivativelx/dy, van-
disadvantage of the quadratic map in comparison to théshes. This means that the locus of periodic points for differ-
circle map is that instead of the transition to chaos via interent phases of the external force—the closed curve approxi-
mittency we observe a divergence of the iterations to infinity.mating the invariant curve for irrational—touches the line
So the dynamics is not as rich as for the circle map; inx=0.
particular, the intermittent regimes do not occur because (2) The maximal multiplier reached at some other initial
there is no reinjection mechanism here. phasey,=v\ is equal to 1: for this phase the periég-cycle
is precisely at the threshold of the tangent bifurcation. This
condition means that the periodic orbit, which is stable be-
. N ) o fore the bifurcation, just meets its unstable partner.
In order to find the critical point with high accuracy we  The data from our computations are summarized in Table
use rational approximations to the frequenayln our case | Note the evident convergence of the pointg,0,) to a
of the reciprocal golden mean, these approximants are thgefinite limit. Estimating this limit, we get the coordinates of
ratios of the Fibonacci numbers: the TCT point €. ,b.) for the map(1). (This estimate will be
essentially improved in the next sectipis a by-product,
we obtain the limit values for the phaseg and vy: u,
(3) :liml<4,;,o Uk:"mkg‘ka.
It is worth explaining why we discuss the TCT point in
the context of strange nonchaotic dynamics. Let us take a
If we apply a rational frequencw,, then, instead of the rational approximant, and the corresponding point from
torus, we will have a cycle of perioB,. On increasing the Table I. Then we have simultaneously a superstable cycle
control parametelb we expect to see a tangent bifurcation of for one phase of the external force afid a cycle at the
this cycle at some parameter value that gives an approximdangent bifurcation threshold for another phase. This means
tion to the torus-collision bifurcation. that with an infinitesimal shift of the parametdrse we can
It is worth stressing here that for a rational frequengy face a situation where the cycle remains stable at one phase
the bifurcation point depends on the initial phageof the  and becomes unstable at another one. Hence, changing the
external force. Thus, there is a whole interval of parameterphase of the external force leads to a bifurcation. According
between the first and the last bifurcation points. However, irfo the criterion for the presence of a SNA suggested in Ref.
the situation of smooth tori collision, this bifurcation interval [11], we conclude that an arbitrarily small shift of parameters
tends to zero as the order of the rational approximants grow&om the TCT point may ensure appearance of a SNA.
(k—); cf. [23]. Hence, asymptotically there is no depen- Using the rational approximants for the frequency of the
dence on the initial phase; this is the reason why we ca@xternal force, we can find the TCT point for the logistic
speak of the smooth bifurcation of the tori. Certainly, this ismap (2) also. In Table Il we present the corresponding nu-
the case for small amplitudes In numerical computations, merical data. Again we observe a convergence of the points
by gradually increasing the amplitude, we can trace this bi{ex,by) to a definite limit (;,b.), which is the TCT point
furcation up to larger amplitudes of the force. for the quadratic map. We also obtain the limit for the phases
According to our definition of the TCT point, the invari- Ux anduvy.
ant curve corresponding to the terminal point of the torus-
collision bifurcation must touch the line=0. Let us formu-
late the conditions for this in terms of the rational
approximants. For a given rational frequensy=F,_,/Fy
we have to find the appropriate valueshet b, ande= ¢, to
satisfy the following conditions.

B. Rational approximations to the TCT point

wkZFk,lle, k:1,2,...,

FOZO, F1:F2:1, Fk+1:Fk+Fk—l'

IIl. RENORMALIZATION GROUP EQUATION
AND HYPOTHESIS OF UNIVERSALITY

In the case of the golden-mean frequency, which is of
interest here, the main idea of the renormalization group ap-
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TABLE Il. The same as Table I, but for the forced quadratic map.

Fro1/Fy 610/987 987/1597 1597/2584

€ 1.01092505020861 1.01098675212306 1.01101690728124
b 0.09981191332417 0.09979289883669 0.09978341968243
u 0.28409804003715 0.28350525381290 0.28386947751449
v 0.28378074120914 0.28370032358923 0.28374879148774
Fro1/Fx 2584/4181 4181/6765 6765/10946

€ 1.01103504807250 1.01104434510749 1.01104972857703
b 0.09977779656842 0.09977488690490 0.09977321340337
u 0.28364394312993 0.28378268847958 0.28369681588723
v 0.28371827623344 0.28373673977169 0.28372514801896

proach is to consider a sequence of evolution operators #&pplying the variable change to both elements of the func-
Fibonacci numbers of iteratiofi25-27,22,18 Suppose that tional pairf(X,y), ¢«(X,y), we introduce the rescaled func-
precisely at the critical TCT point we produ€g iterations  tions
for one of our model mapé€l) or (2) and write the result as

9(X,Y) = AF (XTALY (— )9),

Xn+Fk:fk(Xnvyn)a ‘
Gi(X,Y)=Acd (XA Y (— 0)")

=Acfi 1 (XTALY (= 0)9). )

(4)
Ynir, =YnTt wFy  (mod 1).

In our derivation of the RG equation we will suppose that theFinally, we designate
extremum point of mapis x=0, and the origin for variable

y is placed at the poini.. According to the definition of the
Fibonacci numbers, we can represent the evolution over . . ) )
Fr.o=Fci,+F, iterations as a result of two subsequentand rewrite Egs(6) in terms of the renor_mallzed functiogs
steps, containing .. , and F, iterations respectively. Thus, &ndG to obtain the following RG equations:

we can write[13]

ak:Ak+1/Ak:fk(oio)/fk+l(010) (9)

Ok+1(X,Y) = G ( X/ ey, — wY),

= 10

Fre200Y) = Flfir 1 (Y)Y + F s 10). (5) G a(X.Y)= GG X — @Y), — oY), (10
To find the new functiorf,, we need to use two previous
functions,f, andf, ;. This may be reformulated in terms of
functional pairs: To find a new pajif,; 1(X,Y), dr+1(X,Y)
=fi2(X,y)] we need one previous functional pair
[ (XY), du(X,y)=Tri1(X,y)]. Indeed, from our definition
and from Eq.(5) it follows that

where
gk(0,0):l, Gk(0,0)=1/ak.

We can calculate the terms of the functional sequence
ok(X,Y),Gr(X,Y) by virtue of straightforward iterations of
the original maps at the critical point. Given a Fibonacci
numberF,, we first set the initial conditioxg=0, yo= U,

6)  and iterate the mapping?) F times. The resulting, is

= + . . <
Per106Y) = T DX Y)Y+ Fier 1) used to obtain the normalization facta=1/xg,. Then, to
It is worth noting here that the second arguments of the funcfind gi(X,Y) for some particular values of arguments, we

tionsf and ¢ are defined modulo 1, and due to the propertiesagain iterate the mag2), tk>ut with initial conditions xg
of the Fibonacci numbers, we have =X/A, andyy=u.+Y(— w)". After F, iterations we get

fre1(XY) = di(X,y),

Y+ F0=y— (-t (mod 2. k(X Y)=AXg,, (11)
Now, as in any procedure in renormalization group analy-and afterF,, ; iterations

sis, a scale change of the variableandy should be imple-

mented. We set=X/A, andy=(— )XY (cf. [22,13). Af-

ter this substitution the first equatigd) transforms to

Gk(X’Y)zAkXFkJrl' (12)

Numerical results show that at the TCT point the func-
tions obtained for high-order Fibonacci numbers tend to a
definite limit. In Fig. 5 we present an illustration for the
and, if we wish to normalize the map in such a way that itsquadratic map: For randomly chosen poin¥sY) the values
value at the origin is 1, we have to set of gx(X,Y) have been calculated and plotted. This has been
done for several Fibonacci numbers, namely, 144, 233, and
377. One can see that the points form a well defined surface

Xn+Fk:Akfk(Xn IAGY (= w)k)-

Ak: 1/fk(0,0) (7)
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- XFy N _h u X
“ XFk+1, o Fk+2, e XFk+3,
“ _XFiis
k+3 Xr,_ .
1 and requiren, = a4 1= ax. 2= o, 3. This yields three equa-
tions, from which the three unknown parametess,b.,u.)

can be found with the help of Newton’s method. To con-

struct the matrix of derivatives needed for this method, a set

of mappings for derivativex,,x,,X, is iterated together
FIG. 5. The universal function: The illustration of the conver- with the original map(2):

gence of the functional sequengg(X,Y) to the fixed-point solu-

1 -1

tion of the RG equation. The plotted values g X,Y) originate Xen+1= 2XnXen TSI 27(Yn)],

from randomly chosen points in the domainl <X<1, —w<Y

<1. The quadratic map was iterated for Fibonacci numidgrs Xb,n+1= 2XpXp,nt+ 1, (16)
=144,233,377, and the scaled function was obtained by virtue of

Eq. (11). Observe that the points collapse on a single surface in this Xu,n+ 1= 2XpXynt+2me cog 2m(yp) ],

three-dimensional plot. o -
where the initial conditions are, (=0, x,0=0, andx o

in the spaceX,Y,qg). The larger the Fibonacci numbers, the =0. ) o
higher the precision of coincidence fgf andg, . ;. Using the data of the last row of Table Il as an initial

This observation leads to a conjecture that there exists 8Uess, we have implemented the above scheme step by step
fixed point of the RG equatioil0) in a properly chosen for subsequent levelk to obtain a more and more precise
space of the functional pairs. Passing to the linit in the location of the critical point. For Fibonacci numbers of order
RG equation(10), we must have the same function in the 10° the usual double-precision arithmetic becomes insuffi-

left- and right-hand parts, so we get the fixed-point equatior¥i€nt, and the calculations were performeduiTHEMATICA
with  60-digit precision (up to the levels Fy

g(X,Y)=aG(X/a,— oY) =514229...352578). The best result for the coordinates
' ’ ' of the TCT critical points for the quadratic map is

(13
G(X,Y)=ag(G(X/a,— 0Y),— oY+ w), b.=0.099 77122895, e.=1.011056 090 99,
(17)
where u.=0.28372941325
9(0,0=1, G(0,0=1la. (14)  (see Table Ill. Analogous computationgTable V) per-

formed for the circle map a=2.5 with 20-digit precision

Excluding the functiorG by means of the first equation, we up to the levels =46 368 . . . 317 81Yield
can rewrite the second one as a functional equation for the be=0.377 866239, €,=0.132566 321,

single unknown functiorg(X,Y): (19

B u.=0.284 109 286.
g(X,Y)=a’g(a tg(X/a,— 0Y),w’Y+w). (15
All our numerical results confirm the RG conjectures, in
The fixed-point equatiorf15) is self-consistent: it does particular, the renormalization factaer following from the
not contain any memory of the original map. Its smooth so-calculations appears to be the same for both maps, namely,
lution, having at the origin a quadratic extremum with re-
spect to the first argument, must be in some sense universal. a=1.711. (19
The conjectured universality is supported by the fact that . _ )
both our models—the quadratic map and the circle map_Hoyvever, the convergence to the universal functeee Fig. _
yield the same limit function of Fig. 5. 6) is rather slow. As we have found,.the convergence is
Being convinced of the existence of the fixed-point solu-governed by two comgonents decaying a§ with v,
tion of the RG equation, we can develop a method that give§0-945 andv,=—0.770" This explains why we need to
a possibility of essentially improving the accuracy of estima-consider such deep leveddo be sure that the convergence to
tion of the parameter values corresponding to the TCT critithe fixed point of the RG equation indeed takes place. Also,
cal point. Let us take, for instance, the mé@. Instead of this is the reason why the estima®9) for « is not very
using the rational approximants we now fix=(\5—1)/2.  Precise.
Then we try to find an appropriate set of parameters
(ec,be,ug), that gives coincident values of the scaling fac-
tors ay at four subsequent levels. That is, starting iterations 2This observation may be used to improve the computation of the
of EqQ. (2) from x=0,y=u., we set universal functiong(X,Y) by the iteration method.
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TABLE Ill. The improvement of the TCT location estimate for the quadratic map, using the equalization
of a at four subsequent levels. The last row gives the best estimate for the critical point.

F Kk F k+4 b € u
75025 514229 0.0997712288641926 1.0110560912888772 0.2837294133021853
121393 832040 0.0997712293313196 1.0110560897902704 0.2837294133060294
196418 1346269 0.0997712289716737 1.0110560909440631 0.2837294132590979
317811 2178309 0.0997712290364777 1.0110560907361631 0.2837294132586475
514229 3524578 0.0997712289664062 1.0110560909609621 0.2837294132482973
832040 5702887 0.0997712289735432 1.0110560909380657 0.2837294132481097

b.=0.09977122895 €.=1.01105609099 u.=0.28372941325

To have firm support for the hypothesis of universality, it V. SCALING PROPERTIES OF THE DYNAMICS AT THE
is desirable to have a direct numerical solution of the fixed- TCT POINT
point RG equatior{15); this will provide high precision data :
for the universal functiorg(X,Y) and for the factor. One _I_n Fig. 4 one can observe that the attractor at the T.CT
possible approach is to approximate the function by a finité"itical point is represented by a nonsmooth fractal-like
polynomial containing odd and even powersYoand even  CUrve. We call itthe critical torus In this sec_tlon we d|scuss_
powers ofX, and to search numerically for a set of coeffi- briefly the consequences of the RG analysis for the dynamics
cients of this polynomial satisfying Eq15) with the best exactly at the critical point.
possible accuracy. A straightforward realization of this idea Let us consider a plot of the critical attractor in the coor-
appears not to be feasible, and we have used some trickdinates &,y). If we rescale the variables andy—u. by
First, we have selected a restricted domain of the definitiofiactorsae and 8= — 1/w, respectively, then the dynamics is
for the functiong in the (X,Y) plane. The condition is that expected to remain the sartexcept for the rescaling of time
for any point ,Y) of this domainD the points ¥K/«, by the factor 14). Hence, the curve must remain invariant
—wY) and (o 'g(X/a,— oY), 0?Y+w) [see the right- under this transformation. Figure 7 demonstrates that this is
hand part of Eq(15)] belong toD. As we have the approxi- indeed the case: The picture inside the selected box repro-
mate data for the functiog (see Fig. 5, we can check that duces itself under subsequent magnificatitwish inversion
the domain in respect tgy, due to the negative factor of the scalinghis
scaling property near the origin implies that the critical curve
behaves asx~|y|” with the exponenty=logal/logp
=1.117. The powery is close to 1, so visually the curve
is appropriate. For the representation of the functioD we  looks as if it is broken at the point of singularity. In fagt,
applied an expansion in orthogonal Chebyshev polynomials>1, and this means that the singularity is weak: the invariant
and constructed a Newtonian scheme to calculate the coeffgurve, apparently, remains differentiable, but not twice dif-
cients of this expansion. As initial guess we used the funcferentiable. Due to ergodicity ensured by irrationality of the
tion obtained numerically from iterations of the quadraticfrequency, the weak singularity at the origin implies the ex-
map at the estimated TCT point. As our final result, theistence of a dense set of singularities of the same type over
solution of Eq.(15) was found with precision of order I6.  the whole invariant curve.
The scaling constant obtained in this way is In Fig. 8@ the Fourier spectrum is shown for the time
series generated by motion on the critical attractor. It is
drawn in the commonly used form, with a linear scale for the
frequency and a logarithmic scale for the amplitude. This
in good agreement with the previously mentioned numericapicture may be directly compared with possible experimental

D:{—0.1+ 0.9 <|x|<0.1+ 0.9y, —w<y<1} (20

a=1.7109605, (21)

estimate(19). results. In Fig. &), as in Ref.[25], we use a double loga-
TABLE IV. The same as Table I, but for the forced circle map.
Fk Fk+4 b € u
4181 28657 0.37786623026092 0.13256634957866 0.28410928832113
6765 46368 0.37786624505218 0.13256630219886 0.28410929173653
10946 75025 0.37786623782053 0.13256632536350 0.28410928671796
17711 121393 0.37786624024109 0.13256631760989 0.28410928713446
28657 196418 0.37786623890263 0.13256632189730 0.28410928614991
46368 317811 0.37786623928299 0.13256632067891 0.28410928619017

b.=0.377866239

€.=0.132566321

u.=0.284109286
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1.54 ‘ "X=05 be found. Substituting these expressions into our modified
¥=-05 RG equation10) and accounting for the first-order terms we
£ obtain
e
@’ vh(X,Y)=aH(X/a,~ oY),
0 15 20 25 T 2‘0 2'5 vH(X,Y)=0a[g'(G(X/a,— wY),
k K —wY+w)HXla,— oY) (23)
FIG. 6. The convergence of the valuesgp{X,Y) for two par-
ticular pairs of the argumentsX(Y). The numerics show that for +h(G(X/a,— Y)),

large k the convergence is dominated by a linear combination of

two terms, decaying as 0.9and (—0.75). —wY+o)],

rithmic scale: it reveals the self-similar structure of the spec-Whereg denotes the derivative in the first argument. Be-

trum. The envelope of the family of spectral lines has a Slopgause we have found the TCT point by tuning two free pa-
~3.0, in contrast to the case of the known spectrum at théameters, one should expect that there exist two relevant ei-

golden-mean winding number in the critical circle map with- genvalues larger than 1, namelys 8, andv= &, where we

out external force, where the slope constant is 2. Note that PPOSe thad, > 5,. Then, asymptotically, the behavior of

for the TDT critical point 13] the slope is close to 4. In Fig. an infinitesimal perturbation will contain the two correspond-

8(c) we present the spectrum of the functiafy), which ing eigenvectors. The coefficients at these vectors depend on

describes the form of the invariant curve in Fig. 7. The pow-thef parameters of the 9r|g|nal map and vanish at the critical
oint. Thus, we can write

erlike decrease of the spectral amplitudes illustrates again tHE

fractal-like nature of the critical attractor.
gk(X,Y)=g(X,Y) +Cy(e,b) &hy(X,Y)

V. SCALING PROPERTIES OF THE PARAMETER SPACE +Cyle,b) hy(X,Y),
NEAR THE TCT CRITICAL POINT (24)
A. Linearization of the RG equation and estimation G(X,Y)=G(X,Y)+Cy(€,b) s5H(X,Y)

of the relevant eigenvalues +Cz(e,b)5'§H2(X,Y).

In terms of the RG approach, the investigation of a neigh-
borhood of the TCT critical point in the parameter space is Now we can explain the procedure of calculation of the
associated with small perturbations of the fixed-point solueijgenvaluess; and 8, from the iterations of the original
tion of the functional equatiomO). To Slmpllfy the analysis map, e.g., quadratic mdﬁ) Suppose we perforrﬁk itera-
we use a little trick: Instead of the level-dependent factars  tions in the vicinity of the TCT critical point=e¢.,b=b,,
we substitute into Eq(10) the fixed valuea=lim a. Cer-  starting fromx=0,y=u,. According to Eq(24), in terms of
tainly, the fixed point of the modified equation remains thethe rescaled variablX the result will be
same. Next, we set
X¢, =09(0,0)+Cy(€,b)55h1(0,0 + Cy(€,b) 55h,(0,0).

_ k
0(X,Y)=g(X,Y)+ v*h(X,Y), (25)

(22

_ k
GLXY)=GX V) F7H(X,Y), Thus, at subsequent Fibonacci numbers of the iterations, the

whereg(X,Y) andG(X,Y) correspond to the fixed point and ©riginal variablex will behave as

satisfy Eq.(13). The functionsh andH describe a perturba-

~ . —k Kk k
tion and are supposed to be small, anté an eigenvalue to Xp=a [do+di(€,0)d1+dz(e,D) 5], (26)

(=) (e)

b
1.2 - ' ' ¥ 0.70 ® ' ' ' ¥ ' 0.4
0.9 /\ / 0.561 \ / 1 0.3f
0.42} 1

M o0.6F e ® o2t J
0.28 -
0.3r i 0.14} . 0.1F ]
0.0 ‘ . . . 0.001. X . . . . 0.0
-04 -02 00 0.2 04 -0.3-0.2-0.1 0.0 0.1 0.2 0.3
y y y

FIG. 7. The scaling of the critical torus of the quadratic map on the phase ptaye Panel(a) shows the whole picture, panéd)
presents the enlargement of the box from pdakgland pane(c) shows the enlargement of the box from pafigl The magnification factors
are a=1.711 for the vertical axis ang @ ~*=—1.618 for the horizontal axis.
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FIG. 8. The Fourier spectrufi(w)|? of the time series,, generated by the quadratic map at the TCT critical pdmtlinear scale for
the frequency and logarithmic scale for the amplitudg;double logarithmic scalgr) the Fourier spectrum of the periodic functig(y)
describing the critical torus.

whered,, d;, andd, are some combinations of the coeffi- sentation for G [according to Eg. (13), G(X.,Y)
cients and constants. As we mentioned in the previous sec=a 'g(aX,—Y/w)], and analogous expansions for the
tion, it is possible to compute the derivatives of the variablefunctionsh(X,Y) andH(X,Y). The relevant eigenvalues are
X with respect to the parameters by simultaneous iterations dbund to be

the original map(2) together with Eqs(16) at the critical

point. According to Eq(26), the derivatives will behave as 6,=3.6008D..., 6,=1.82833..., (31
Xe, =01 c(€,bo)(81/ @) +dp(€c,bc)(52 /@), in reasonable agreement with the estimaB8;.
_ ’ « 2D
Xb":kzdl’b(fc be)(01/a) +dap(€c,be)(52/a)". B. Self-similarity on the plane of parameters
No matter which of these expressions we take, for l&rtje From the relation for the evolution operat@4) one can
first term will dominate, and the value @& may be found S€e that the parameter plane near the critical point possesses
from the ratio of subsequent terms, some properties of self-similarity, or scaling. Indeed, sup-
pose we consider a dynamical regime at the poinb),
XeF, Xb,F, which corresponds to some values of the coefficiebis
S=as Eaxb : (28)  =c? andC,=C9. If we find a point €’,b’) such that the
&Fk—1 Fr1

coefficients are equal 8, =C3/8; andC,=CY/ §,, then the
To obtain8,, we have to select properly the direction of €volution operator corresponding ., iterations at the
the perturbation in the parameter plangh) to exclude a NeW point will coincide Wlth the evolution operator fét _
contribution from the largest eigenvector. For this, we firstitérations at the old point. Hence, the type of dynamics
calculatex, ¢ andxy ¢ for the maximal Fibonacci number (torus, chaos, SNAshould be the same at both points and
Fo we can r':andle ar':d reaui Aetxe = Ab=0. For differ only _by the characteristic time s_cale: Itis Iarg_er at the
N ’ . q : Ix%'FN. b.Fn ' second point by a factdf, ;/F,, which tends tow ! as
F\ smaller tharF the derivatives with respect to a value of |, According to this, all quantitative characteristics of
the shift in the direction 4¢,Ab) should behave ag,r,  poth regimes can easily be expressed one via the other. For
x(8,/a)¥, and &, can be estimated from the ratio of the example, the Lyapunov exponents are connected as
terms for subsequefkt In practice, however, a technical dif-
ficulty arises here: the derivatives appear to be in a more A(€',b")=wA(e,b). (32)
complicated dependence &rbecause of the notable contri- . . )
bution from the third eigenvalue, associated with a shift oflt is worth stressing that all the scaling relations are
initial phase from the point, . This is the trivial eigenvalue asymptotic, i.e., they are more precise when we are closer to
83=—(\5+1)/2, and it may be excluded by using a modi- the critical point.

fied ratio, namely, T_o demonst(ate the scaling .numerically, it wpuld be con-
venient to define an appropriate local coordinate system
XpE,  —(03la)Xp e (scaling coordinatesnear the critical point in such a way
Frat P.Fi . . .
Or=a 5] . (29 that the scaling transformation described above would corre-
XpF~ (Gl )Xo, spond simply to the simultaneous scale change along the

. : coordinate axes by facto®, and d,, respectively. Unfortu-
The calculations have been performed for the quadratic magately, we do not know explicit expressions for,C, via e

and for the circle map. For both maps the results are in goo ndb, so the problem has to be resolved numerically. Let us

agreement, yielding place the origin of the desirable coordinate system,) at
5,=3.65, &,=1.81. (300  the critical point and note, first, that one coordinate axis,
corresponding to the larger scaling factqr may be directed
To compute the constangs and &, with higher accuracy, almost arbitrarily. A shift along this direction has to contrib-
one can turn to a numerical solution of the eigenproblenute to the coefficien€, in Eq. (24); therefore, the only con-
(23). We used the Chebyshev polynomial expansion for thelition is that it must be transverse to a curve on the param-
universal functiong (see Sec. Ill, the corresponding repre- eter plane given by the equati@y(e,b)=0. In contrast to
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FIG. 9. A demonstration of the scaling properties on the plane of the parameters near the TCT critical point. We plot the Lyapunov
exponent for the circle map using a gray scale. For clarity of presentation, only the region of negative exponents is resolved. The upper panel
shows the Lyapunov exponents in the origiha¢ coordinates. The left lower panel shows the transformation to the scale coordBvies
and the middle and the right lower panels show successive magnifications: for each subsequent picture the horizontal scale is scaled by the

factor §;=3.65, and the vertical scale is scaled by the fadior 1.81. The magnitudes of the Lyapunov exponent are coded by the gray
scale, from light(positive valuesto dark (negative values The coding rule from picture to picture is redefined according to(E#).

this, the seconq cqordinate must pe defined carefully, pe- e=e.+Cy, b=b.+c,+Ac,+Bc3. (34)
cause the contribution to the first eigenvector should vanish

along the coordinate axis. Thus, the line defined by the equarhe coefficientA was defined from the ratio of derivatives at
tion C,(e,b)=0 has to be a coordinate curve along whichthe critical point; cf. Eq.(27). The coefficientB may be

the value ofc, is varied, and on whicle;=0. One may try obtained in the same manner from more elaborate computa-
to search for an explicit expression of this coordinate curvdions involving the second derivatives. From our calculations
via Taylor expansion in the form it was found that for the quadratic map

Ae=c,, Ab=Ac,+Bc+Cci+---. (33 A=-0.3117076, B=—0.2819, (35)

. . . . and for the circle map
This expansion may be cut if we take into account the con-

crete relation between the scaling factatg, 6,. Suppose
that we consider a sequence of pictures of the parameter A=-0.3121848, B=—2.047. (36)
plane near the critical point on smaller and smaller scale

—k —k
na_m_ely,clocaml andcyd; . If we neglect the Taylor co- i cation curve of smooth tori collision. So the coefficient
efficient of c;' in Eq. (33), the <:I_en1:Ikect|on from the proper A ig related to the slope of the bifurcation curve at the TCT
coordinate curve will behave a% ™, and the contribution  4int in the original coordinatese(b), while B is related to
to the first eigenvector in the evolution operat@4) will be  jts curvature.
of order 62_mk5§ . This contribution is thus not dangerous if In F|gs 9 and 10 we demonstrate the Sca“ng of the pa-
|81/ <|85]. According to our estimaté3l), 5,<8; and 35  rameter plane near the TCT critical point. As indicator of the
< 81, but 87> 6, for m=3. Hence, it is sufficient to account dynamical regimes the Lyapunov exponent is used. In the
in Eqg. (33) for only the linear and quadratic tern{(see original parameter planee(b) we select a small fragment
[28,29 for other examples of selecting the scaling coordi-near the TCT critical point with the borders going along the
nates. coordinate lines of the scaling coordinate system. The next
In the spirit of the above discussion, we define the scalinglots show details of this fragment under subsequent magni-
coordinates near the TCT critical point by the following an-fication by factorss; and 8, along the respective axes of the
satz, appropriate for both our model maps: scaling coordinates. For each next diagram we change the

SApparentIy, the coordinate curve, =0 coincides with the
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FIG. 10. The same as Fig. 9, but for the forced quadratic map.

rule of the gray scale coding in accordance with the rule obver the Fibonacci numbers of iterations converge to a fixed-
renormalization for the Lyapunov expondB®). A nice co-  point solution of the RG equation, while for the TDT point it
incidence of the plots observed at subsequent stages of magas a period-3 cycle. As follows from the RG analysis, the
nification proves the scaling. attractor at the TCT pointthe critical torus is represented
by a fractal-like closed invariant curve, having weak singu-
larities at a dense set of points.
The formulation of the linearized RG equation for the
In this paper we have reported on a type of critical behavperturbations of the fixed-point evolution operator allowed
ior at the border between regular and complex dynamicsus to derive the scaling properties of the vicinity of the criti-
This critical behavior is associated with a point in the param-—g| point in the parameter plane. These scaling properties
eter plane of quasiperiodically forced systems, where thguere checked in computer simulations, demonstrating good
torus-collision bifurcation line terminates; we call it the TCT agreement with the RG results.
critical point. In particular, we have found a critical point of |t may be conjectured that the universality class associ-
such type in the quasiperiodically forced supercritical circleated with the TCT critical point will contain not only one-
map and quadratic map. dimensional maps, but also higher-dimensional systems. It
The dynamics of the circle map near this point includeswould be of interest to observe this type of universal behav-
all relevant regimes: torus, chaos, and strange nonchaotigr in experiments similar to that performed for the observa-
attractor. Two different types of transition to chaos meetion of the TDT critical behaviof20]. However, at the mo-
here, one from a torus to intermittent chaos via a smooth tofinent it is not yet clear how the present analysis can be
collision, and another from torus via fractal tori collision to genera”zed to invertible maps. Indeed, in our procedure of
SNA and chaos. For the quadratic map the “zoo” of regimesdetermining the critical behavior the presence of the qua-
is not so rich, because the intermittent and chaotic regimegratic extremum plays a crucial role. However, it does not
do not exist due to escape of trajectories to Inflnlty HOW-exist, e.g., for the forced SubcriticaKK 1) circle map,
ever, from the point of view of the dynamics at the critical where smooth and fractal tori collisions can also be ob-
point, this map belongs to the same universality class.  served. This problem will be the subject of future research.
We have found the precise location of the TCT critical
point for both model maps. To investigate the dynamics at
the critical point we have adopted the RG approach appro- ACKNOWLEDGMENTS
priate for the golden-mean frequency of the external force; it
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renormalized functions describing the evolution operatorof universal behavior for the forced critical circle map stimu-
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