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Symmetry-breaking on-off intermittency under modulation: Robustness
of supersensitivity, resonance, and information gain
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Nonlinear dynamical systems possessing an invariant subspace in the phase space and chaotic or stochastic
motion within the subspace often display on-off intermittency close to the threshold of stability of the sub-
space. In a class of symmetric systems, the intermittency is symmetry bréakimgCheng Lai, Phys. Rev.

E 53, R4267(1996]. We report interesting and practically important universal behavior of robustness of
supersensitivity, resonance, and information gain in this class of systems when subjected to a weak modulation.
While intermittent loss of synchronization may be harmful to the application of high-quality synchronization of
coupled chaotic systems, the features reported here may lead to interesting application of on-off intermittency.

PACS numbd(s): 05.45—a, 05.40—-a, 89.70+c

[. INTRODUCTION able features in the systems subjected to a weak modulation
signal in the noisy environment.
Nonlinear dynamical systems possessing an invariant sub-

space are of great interest, particularly when the system mo- Il. MODEL
tion within the subspace can be chaotic or stochastic. Ex- ) .
amples include chaotic systems with symmefdy2] or Let x(t) represent the distance of the dynamics from the

invariant subspace, andt)>0 andx(t)<0 denote the dy-

coupled chaotic systeni8]. Bubbling[4,5] and on-off inter- A , :
namics in the two symmetric components, respectively. In

mittency [6] are typical behaviors in a system close to a trv-breaki ; ¢ i betwearD
threshold of transverse stability of the subspace due to thg‘e Symmetry-breaking systems, transitions betwe

fluctuative nature of the local transverse Lyapunov exponen‘%"’]dx<0.Can.OnIy occur when(t) comes to the Ievgl of the .
L . Wweak noisy signal. For a system displaying appreciable lami-
in different part of the subspace. In bubbling, the subspace is . ; :

nar state, the main features of the dynamics can be described

stable on average, but local instability can result in IargeDy the general linear equation close to the subspace:
bursts away from the subspace when it is perturbed. The

sensitivity of this weak stability to parameter mismatch and
noise has been studied by Pikovsky and Grassbdrger

_Inter_mittent I‘_)SS of synchronizatid@] in expe_zriments _With Here\ is the transverse Lyapunov exponent of the subspace,
mewtablg noise and_ param_eter mlsmatt_:h is undesirable iBnd o1&(t) with (£(t))=0 is the fluctuation of the local
the application of high-quality synchronization, such as 10 ya5unov exponent due to the chaotic or stochastic motion
communicatior{8]. In on-off intermittency, the subspace is yithin the subspace. In general, chaotic system has quickly
slightly unstable on average, but local transverse attractioaecayim;l correlation, and in a large enough time stalét)

may keep the dynamics very close to the subspace for a longgs an asymptotic Gaussian distributieft) is the additive
period of time. Great attention has been paid to the duratioghite noise with levebr,< o, ands(t) is a weak modulation

of this laminar period that exhibits universal power-law diS-signaL The exact form of the signal is unimportant for the
tribution in a broad class of systerf8]. Noise in the system phenomena reported below, provided it varies on a time
prevents its state from approaching the subspace close bseale slower than the characteristic times of the systems.
yond the noise level, thus it has important effects on theHere we consides(t) a random binary stream1 with
laminar period distributioi9] or the escape timglO]. In a  probability 0.5 with a bit durationT. p<o is the amplitude
noisy environment, bubbling and on-off intermittency are es-of the signal, andR= p/ o, provides a natural measure of the
sentially the same phenomenon. signal-to-noise ratio.

Sensitivity in nonlinear systems can be very useful for In Ref. [10], Cenys and Lustfeld studied the statistical
applications such as controlling global dynamics of the sysproperties of the escape time of on-off intermittency sub-
tem by local tiny perturbationgll]. It is interesting to ask jected to noise by means of Fokker-Planck equation. It has
whether the sensitivity of on-off intermittency may lead to been shown that on-off intermittency is very sensitive to
any potential application of the phenomenon. An observatiomoise[9,10.. We employ the same approach of the Fokker-
is that in a class of symmetric systems, on-off intermittencyPlanck equation, and focus on the property of amplification
can be symmetry breakirid], namely, the bursting behavior of the weak external signai(t) in the system. Our results
does not possess the system symmetry when the system hasl demonstrate that the system is also very sensitive to the
two symmetric but distinct attractors. This paper reports thatveak signal, and the amplification of the weak signal is ro-
a combination of the sensitivity of on-off intermittency and bust to the additive noise. This sensitivity exhibits resonant
the symmetry breaking of the bursting can result in remarkbehavior as the system parameters change.

X() =[N+ o1 £ IX(1) + aoe(t) + ps(t). 1)
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LA B FIG. 1. (a) A typical time se-
ries of x(t) in the noisy environ-
10" ment witho,=10"5: upper panel,
R=0, and lower panelR=0.5.
The dotted line iss(t). A=
(o)) —0.02, T=2000, (b) Numerical
» T estimated(x) as a function ofR
10° - » o (star3 compared to the analytical
10 10 10 estimation of Eq.(5) (line). X\
=0, b=1, andp=10"".
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The Fokker-Planck equation for E€}) is and the boundary of the nonlinearity, exhibiting typical on-
W P 2 off intermittency and sensitivity to the weak modulation.
g1 .. ..
—_— = — |x+ps(t) W) Variation of the parametex or o, affects the competition
at 2 2 between the drift and the diffusion, and the system is ex-
14 pected to display optimal response to the weak modulation
- _2[(02 24 o2)W]. (2)  with resonant characterization.

N+

Ill. ROBUSTNESS OF SUPERSENSITIVITY

In general, it is quite difficult to solve E@2) exactly. LetT, 70 THE WEAK SIGNAL

be the relaxation time of the system afét) switching from
+1(—1) to —1(+1). If T>T,, the probability distribution Let us consider the diffusion dominant region close to the
W(t) can establish an approximate static state during eacgritical point of the stability of the subspace, e.\|<1,

bit of the input signal. Under the adiabatic approximafion |« In(x,/A)|<1, o1~1, p~10""(m>1). Employing the ap-
>To, IW/3t~0, and the static solution can be obtained anaproximation in Eq.(4), and the effective reflecting bound-

lytically as aries at+x,,, the ensemble avera@x(t)) is estimated as
2\ (a—1)/2 ZpS(t) X
W(x)=C| x*>+ —2 exp{ arctanL (3) (X(V)=s(t) (= =25 tanh— )
0-1 0107 ( )
whereazleaf. For|oyx/A|>1 [A=max(,c,)], which in the noise-free Iimitr2—>0, assumes the form
_ mps(t) 7
W(x)~Cx|* 1exp[ oo, SO (@ ()=S0 ©

A logarithmical dependence df(t)) on the input levelp
vi d,(\alg\%tvc\)/ etngerzeg?gggeobneehalggfet?t? f%sst(?;rr (;\?#erbee dImeans an amplification of the weak sigra$(t) with an
T 2= 4 factor(x)/p~10"/m(m>1), i.e., the system exhibisuper-
the dynamics is governed approximately byt)=[\  sensitivityto extremely weak modulation close to the critical
+o1&(t)]x(t). Letz=In|x], thenz(t)=\+ o1 £(t) which de-  point. This sensitivity was also reported in an overdamped
scribes a Brownian motion with a constant difand diffu-  Kramers oscillator with multiplicative noise free from addi-
sion constanir?/2. The nonlinearity of the system can be tive noise ¢,=0), which is a specific example in this class
modeled by an effective reflecting boundaries of the Brown-of systemq12]. In the absence ai(t), the system produces
ian motion at*=x,, which is of the order ofr;. The prob-  symmetric bursting pattern witftx(t))=0; while the burst-
ability density has a power forw/(x) =|x|*~ 1, but is asym-  ing pattern is reorganized to manifest the weak signal after it
metric forx>0 andx<0 in the presence af(t). The system is fed into the systengsee Fig. 1 The most interesting and
can rarely perform transition betwean-0 andx<0 in this  practically important property is that the weak signal is
regime due to the symmetry-breaking property, until itmanifested even buried in a relatively high level of noise,
comes to the other regime, where the noisy inpye(t) namely, therobustness of the supersensitivityhis behavior
+ps(t) dominates the dynamics and the system performsriginates from thesymmetry breaking of the on-off intermit-
transition betweenx>0 andx<0 frequently. The behavior tencyin the system.
of the system is determined by the competition between the To demonstrate the above analysis, we employ the fol-
diffusion and the drift of the Brownian motion. If the drift lowing system in simulationgl]
time t,=In(o4 /A)/|\| is much smaller than the diffusion time
tg=2 |n2((71/A)/0'§, the drift is dominant over the diffusion,
and the system will either come to a metastable state induced x=(a+by)sin(x) —x+ a,e(t)+ ps(t), )
by the noisy input for\ <0, or approach some state away
from the invariant subspace fot>0. In both cases, the wherey constitutes the forced Duffing chaotic oscillator.
weak noisy input has no significant effects on the systenWith y=0.05, f;=2.3, andw= 3.5, the Duffing system is
behavior, i.e., the system is insensitive to the modulation. Orhaotic andr,;~0.964. The nonlinearity of the variabbeis
the other hand, the diffusion is dominant fge-ty, and the  related to an experimental model of superconducting quan-
system can have access to both the level of the weak inpttim interference devicgl3]. However, we should stress that

y=—yy+4y(1-y?) +f,sinwt,
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the specific form of the nonlinearity is of no importance for 1.0 I T T I I

the phenomena. The transverse Lyapunov exponent of thi oo RO

invariant subspace=0 isA=a—1 due to the symmetry of N ' 4
the Duffing chaotic attractor. Fig. 1 shows typical behavior .g =—u R=0.5

of the system and good agreement between the analytical ant® 0.5 -\
the simulation results fofx(t)) as a function ofR. The :

agreement demonstrates that the general stochastic model

Eq. (1) gives good account for this type of system even B T
though the motion in the subspace is deterministic chaos. I I |
0 0 1 1
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IV. RESONANT BEHAVIOR

It is difficult to perform generally a quantitative analysis
of the system response to the weak signal based on the line: A
dynamics in Eq(1) as parameters or o, changes, because FIG. 2. Resonant behavior with respectNesa—1; b=1.
the effective boundary, changes with the nonlinearity and
the linear dynamical model with an effective reflecting enough diffusion. The switching of the weak signal is
boundary is often not sufficient to capture the dynamical‘'sensed” and manifested by asymmetrical bursting xo
property if « is appreciately positive. Moreover, as the pa->0 andx<0, giving an optimal value of. This process is
rameters change, the relaxation tifigmay become compa- illustrated byC as a function of\ in Fig. 2 for variousR
rable to the bit duratiom, and the transient behavior plays values.
an important role in the system response and an adiabatic
approximation is not valid any more. To demonstrate the B. With the change of oy
resonant properties, we rely on simulations with the system o ] o
in Eq. (7), while the Brownian motion model can provide a  For @ smalloy, where the drift is dominant over diffusion,
qualitative understanding of the properties, thus showing thdf'® System is not sensitive to the weak noisy input &nd

the properties are generic and universal for a general class §8Sumes a small value. With the increase gfthe diffusion
the systems. becomes stronger, resulting in a smaller relaxation firge

For a system with on-off intermittent output), the en- and more frequent large bursts, and the system becomes
semble averagéx(t)) and the correlation betweesft) and ~ More ser_15|t|ve to the ngil_( input. In the noise-free aage
x(t) is relatively small even for the noise-free casg=0, — 0. the increased sensitivity enablégt) to keep closer in
due to the power-law fluctuation of(t). To better charac- Phase to the weak signa(t) andC approaches closer to 1.0
terize the response of the system to the modulation, we trand- the system continues to work in the symmetry-breaking
fer the output seriex(t) into a binary streanX(t) by a  égime, and in general a resonant behavior is not expected.

threshold crossing process: suppaés becomes larger than Th€ picture becomes quite differentdf,#0. With smaller
a prescribed threshold,, at some moment, after that(t) 1o @nd increased sensitivity, the system can keep up with
will keep atX(t)=1 until x(t) crosses—x, at another mo- and mar_nfest more and more no_ls_e-lnduced transitions in
ment; X(t) will not switch back fromX(t)=—1 to + 1 until shorter time scales, and Fhe transition ratex¢f) b_etween
x(t) crossesx, again, and so on. This binary presentation=1 may become much higher than thats¢f), leading to a |
captures the most important feature of the transition of th&l€creasing. An optimal response is achieved when the dif-

bursting pattern between the two symmetric attracte(g) ~ [USION is strong enough to become sensitive to the weak
has a strong correlation with(t) for weak noise caser, input but not too strong to manifest a lot of noise-induced

<p if the system is close to the critical point. The exact!ransitions in short time scales. A typical example of the
value ofxy, is not crucial for the properties described below. SYStém response as a functioneof is shown in Fig. 3.

In the following, we fixp=10"’, T=2000, andx;,=1, and

take the cross-correlation functidhbetweens(t) and X(t) 1.0
estimated using TObits of a random stream aft) to dem-

IIIIIII T Illlll T T

onstrate the resonant behavior in the system. 8
et
o
A. With the change of A “t’ 0.5
For \ rather below the critical point =0, the system has 8
a metastable state close to the level of the noisy input, anc
the diffusion is not strong enough to produce large bursts 0.0

frequently enoughC will be small. On the opposite, K is
rather above the critical point, the drift is also dominant so 10
that the system can seldom access to the level of the wea

modulation, and becomes insensitive to the switching(tf

between= 1, resulting in a smalC again. Close to the criti- b

cal point, the system can access to the level of the weak FIG. 3. Resonant behavior with respecbtc resonance occurs
signal and produce large bursts frequently due to strongvheno,#0.
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The above resonant behavior is similar to the conven- 1.0
tional stochastic resonance where a dynamical system dis )
plays increased sensitivity to a subthreshold signal with anZ
optimal level of additive noise, see REi4] for an extensive 45
review. Resonance occurs when a noise-controlled time scal.8 0.5
in the system matches that of the signal. In our system, theth
underlying mechanism of the resonant behavior is quite dif- Q

ferent. The sensitivity to an extremely weak signal is induced 0.0 :
by themultiplicative chaotic or stochastic motion in the sub- A )
. . e s . . [ [l IIIIIII [ L IIIIIII [ Ll
space. To achieve this sensitivity, it is required that the sys-
tem is in the on-off intermittency regime so that it can be- 10'2 10'1 100

come susceptible to the weak signal by coming close enougl

to the subspace, and manifest and amplify it by quick enougt

large bursts away from the subspace with symmetry break: R
ing. As system parameteis and o; change, a competition
between these two factors leads to the resonant behavior.

More interestingly, resonant behavior with respect to thenot aporoach 1.0 a6 due to an average time delay be-
change ofo, the level of the multiplicative chaosoise, PP : in g Y

necessarily occurs only in the presence of the additive nois eenX(t) ands(t) m_duced by the relaxatloln time, which I
onger for weaker signal. Clearly, appreciable information

due to the nature of this competition. These features are g ain is obtained by the svstem in a broad rana&cdnd an
neric and universal in a general class of systems displaying,. AIned by y : ge.and
ptimal gain is found at a certaiR value. If taking into

on-off intermittency with symmetry breaking. Multiplicative .
stochastic resonar){ce hasybeen s)'iudied byg Gamnﬁ)adt(mii account the effect of the time delay betwee(i) ands(t),
e.g., by definingC, as the maximum of the correlation be-

[15] in a multiplicatively driven bistable system with=1. 2 . . ) .
In that case, the system is out of the regime of on-off inter—twgen)l(:(.t) an S(t— ), the information gain region can be
mittency, and consequently cannot display the property ot er (Fig. 4.

(supejsensitivity, and the resonance with respect to the To conclude, we demonstrate_ '|r?terest|ng universal .fea-
change of\ was not resported. tures of robustness of supersensitivity, resonance, and infor-

mation gain in a class of nonlinear systems subjected to a
weak modulation. These systems present a new mechanism
of resonant behavior compared to conventional stochastic
Now consider the system from the viewpoint of transmis-resonance. While intermittent loss of synchronization may be
sion and amplification of a weak signpb(t) contaminated harmful for any applications employing high-quality syn-
W|th Channe| noisej-ze(t) through a System d|Sp|ay|ng on- Chronization[S], the features found in th|S papel’ are mean-
off intermittency with symmetry breaking. It is very interest- ingful for potential applications of on-off intermittency. On-
ing and practically important that more information about theoff  intermittency has been demonstrated in  many
signal may be obtained from the outp(t) than from the expenmental systems and we bellgve tha.t the beha_lwors re-
noisy input ps(t) + o,e(t) itself, besides the fact that the Ported in this paper can be tested in physical experiments.
weak signal has been amplifyed to a level discernible with a
low-resolution detector. To examine the information gain,
we compareC with the correlation between the signad(t)
and the total noisy inputps(t)+o,e(t), i.e., Ci, C.S. Zhou thanks Professor Ging-Cheng Lai for helpful
=R/J1+R? C, C;, and their difference are shown in Fig. discussions. This work is supported in part by grants from
4. C comes to a saturated value fee=1, where the noise- the Hong Kong Research Grants CoundGC) and the
induced transitions betweex>0 and x<0 in short time Hong Kong Baptist University Faculty Research Grant
scales are rarely manifested by large bursts. This value dodsRG).

FIG. 4. An illustration of information gaim\=0, b=1.
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