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Leading Ruelle resonances of chaotic maps
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The leading Ruelle resonances of typical chaotic maps, the perturbed cat map and the standard map, are
calculated by variation. It is found that, excluding the resonance associated with the invariant density, the next
subleading resonances are, approximately, the roots of the eqaétion wherey is a positive number that
characterizes the amount of stochasticity of the map. The results are verified by numerical computations, and
the implications to the form factor of the corresponding quantum maps are discussed.
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The statistical characteristics of the quantum-mechanicaive dynamics of general chaotic systems. The physical ap-
spectrum of a system, which has a classical analog, are regroach for calculating Ruelle resonances is to project the
lated to its underlying classical dynamics. For example, indynamics, from the full phase space, down to the manifold
chaotic systems, this relation is revealed by Gutzwiller'son which the dynamics is slow, and to construct an equation
trace formuld 1] that expresses the density of states in termdor the probability density on this manifold. For example, in
of a sum over the classical periodic orbits of the system. Irflisordered systems, the fast and the slow manifolds are the
disordered systems, spectral properties of the quantum sy§lomentum and the real space, respectively. Projecting the
tem are expressed in terms of the diffusions and the Coopdynamics down to real space yields the diffusion equation,
eron diagrams associated with the classical diffusive mode¥hose eigenvalues constitute the leading Ruelle resonances
of the systen{2]. of the system. In trying to apply a similar procedure for

There is, however, a difference between the periodic orbifleneral chaotic systems, one encounters the problem of iden-
picture and the diagrammatical approach of disordered sydifying the slow and the fast manifolds. These can be com-
tems. The first uses the individual trajectories of the systemBlicated functions in phase space.
as the basic ingredients for the semiclassical expansions, In this paper, we choose a different approach. We will
whereas the second approach employs spectral properties @@nstruct a simple variational method for calculating the
the evolution operator of classical distribution functions. Theleading resonances, and apply it to two generic maps: The
latter approach is, therefore, more suitable for a fieldPerturbed cat mafil0] and the standard maf]. The results
theoretic treatment. indicate that, indeed, the leading Ruelle resonances of these

Recently, an extension of the field-theoretic formalism,maps share some universal featutdsgferent from diffu-
from disordered systems to general chaotic ones, has beé&#n. Namely, the configuration of the leading resonances in
proposed3]. The analog of classical diffusion, in the gener- the complex plain is similar. Excluding the eigenvalue asso-
alized case, is the coarse-grained Liouville dynamics of disciated with the invariant densitgo=1, the next subleading
tribution functiong 4] in the limit of zero coarse grainirig].  resonances are, approximately, the roots of the equatfon:
The corresponding evolution operator is the Frobenius= 7, Wherey is a real positive number, smaller than unity,
Perron operator, and its eigenvalues are the Ruelle resdthich decreases as the map becomes more stochastic. It will
nanceg6]. These eigenvalues describe the decay of classicdle shown that this configuration of resonances is significant
correlation functions of smooth observables. for the spectral statistics of the corresponding quantum maps.

The association of spectral properties of quantum chaoti€or example, in the form factor, it leads to a suppression of
systems with their classical spectra calls for a study of théhe nonuniversal corrections to the results of random matrix
Ruelle resonances of general chaotic systems. The centrdieory[11] (RMT).
question is whether chaotic systems can be classified into In introducing our ideas it will be instructive to consider a
equivalence classes according to their classical spectrum. Aspecific example. We begin with the perturbed cat frid},
obvious example of such a class is systems where the effe#hich is an area preserving map from the unit torus to itself:
tive dynamics is diffusive. For instance, the kicked rotor map

exhibits diffusion in momentum spad¢], and the stadium —ox +

. . .. . . Xn+1 Xn yn
billiard, in the limit of small distance between the semi- (mod 1). 1
circles, is diffusive in the angular momentum sp8g Yn1= 3%+ 2Yn+ f(Xn1 1)

Are there other universality classes? In principle, there
should be. Diffusion is not the Only type of universal dynam'Here, Q(n ’yn) are the phase-space coordinates at discrete
ics of chaotic systems where correlations are rapidly lostijme n, and
Other possibilities can be, for instance, various types of Levy
flights [9]. K
Yet, the lack of approximation schemes for calculating _~ _
Ruelle resonances obstructs the characterization of the effec- Fo0= 2W[cos{2wx) cog4mx)]
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is a perturbation function. This function is smooth and peri- 1
odic on the torus, therefore, the map is continuous, and dif-
ferentiable. Atk=0, the map, known as Arnold’s cat map
[12], is highly chaotic[13]. Namely, time correlation func-
tions decay faster than exponential. This behavior is relatec
to the presence of hidden symmetries of number theoretica
origin [14]. The role off (x) is to break these symmetries. As
a result, at finite values &, relaxation is exponential. It has
been also proved that f&<<0.11, all the fixed points of Eq.
(1) are in one-to-one correspondence with the original cat 0
map. Consequently, all orbits are unstable and the systen.
can be characterized as “hard chaoticQ].

The classical propagator of the map, for one time step, i

FIG. 1. Left panel: The absolute value of the right eigenfunction
‘T‘p’f of the perturbed cat map &=0.5 and coarse graining
’ o _ ’ e VT =0.001. The dark and the bright regions correspond to the minima
(x"y"|UIx.y) = dp[x" = 2x—y] [y’ —3x—2y —f(x )](’2) and maxima of{ |, respectively. This function follows the un-
stable manifold of the map that is shown on the right panel.

where 5,(x) is a periodicé function on the torus. Due to
Liouville’'s theorem, the above propagator is unitary when
acting on Hilbert space of square-integrable functions
Within this space the dynamics is reversible; however, a
soon as the dynamics is coarse grained, it becomes irrevers-
ible and phase-space densities relax to the invariant densit
A simple way of coarse graining the dynamics is to give
the & functions in Eq.(2) a finite width, for instance, by the

replacement F=(L|U|R)—z(L|R), (4)

unstable manifold depicted on the right panel. As the coarse-
graining parametess reduces, the eigenfunction becomes
'énore singular, in accordance with Ruelle’s theorem.

In what follows, we shall calculate the leading Ruelle
sonances of the mdg) using a variational approach that
akes into account the structure of the eigenfunctions illus-
trated in Fig. 1. For this purpose we construct the functional

where|R) and(L| are the right and the corresponding left
trail functions. The leading Ruelle resonances are obtained
by variation[16] of F with respect to(L|.
wheres is the coarse graining parameter. The Ruelle reso- The success of a variational calculation depends on the
nances of the map are obtained by diagonalizing the propaxtent to which the variational wave functions capture the
gator at a finite value o, and takings to zeroafter the  physics of the problem. In our case, one should construct left
diagonalization. It can be shown that this procedure isand right trail functions that follow the stable and the un-
equivalent to the introduction of noise into the equations ofstable manifolds, respectively. We will use the dynamics it-
motion (1), calculation of the eigenvalues averaged over theself to generate these functions by repeated applications of
noise, and finally taking the limit of noise to zefd5]. The  the map on a smooth initial state. Thus, our right trail func-
resulting resonances have absolute values smaller than unifjon takes the form
except for the resonance associates with the invariant density
ZO: 1 .

Since the coarse-grained evolution operator is not unitary,
the left eigenfunctions of) are not the complex conjugates
of the right eigenfunctions. Instead they can be viewed as th@hereA,, are amplitudes to be determined by variation, and

right eigenfunctions of the propagator associated with thehe phasesbﬁ(x,y) are defined by the recursion equation
inverse magi.e., the propagator taking the system one time

step backward Thus the eigenvalue equations are dR(x,y)= R (2x—y+f(x),2y—3x—2f(x))

1 2
S (X)— ef(xfn) /s,
-2 T

!

IR)= > Aln), with [ny=e2métw),  (5)
n=—oo

Ul =z,| 4%, (YL lu=(yt|z,, (3)  with the initial phasegR(x,y)=x. We define¢®, to be
" . ) ) _ — ¢R, and the prime indicates that the sum does not include
where| ;) and(y| are the right and the left eigenfunctions tne n=0 term.
associated with the resonaneg. According to Ruelle’s The above sequence of phases, where the first few of
theorem 6], these eigenfunctions become distributions in thethem are
limit of zero coarse graining. The distributions associated

with the left and the right eigenfunctions follow the stable ¢1R=x,
and the unstable manifolds, respectively. Nevertheless, they
satisfy the normalization condition §=2x—y+ f(x),
(6)
(el )= up- PT=Tx—4y+ 410 +1(¢5),
In the left panel of Fig. 1, we show an example of the HR=26x— 15y + 15f (x) + 4f () + f(p5)

right eigenfunctionw? of the perturbed cat map fde=0.5
ands=0.001. As can be seen, this eigenfunction follows theis constructed by application of the m&p) on the initial



PRE 62 LEADING RUELLE RESONANCES OF CHAOTIC MAPS 1979

smooth stateg'>™. Therefore|2),|3), ... become increas- (m|n) is small for largeln|+|m|, and the significant part of
ingly smooth along the unstable manifold and singular alonghe eigenvalue equatiof®) is associated only with a small
the stable one. submatrix.
In the same manner, we construct the left function by With this observation, we turn now to calculate the main
repeated application of the inverse map, namely, matrix elements of Eq9). First, it is straightforward to see
that
(L= 3 " An(ml with (m]=e 2700, (7) (1l1=1,
" (12)
where the left phases are defined by the recursion relation (1=1)=(1]=2)=(13)=(2[2)=0.
S (X,Y)= oL _1(2x+Yy,3x+ 2y + f(2x+Y)) Other matrix elements are given by
L _ 2 k3
and ¢1(x,y)=x. o _ (1]-3)=(2|-2)=T,=— = —i—=+0(k%,
There are two simplifying features characteriz|iR) and 8 16
(L|. First, the operation of the propagatdron these func- 4
tions is simple since, by construction, 2 —3)=T§=3072+ 0(k5), (13)
Ulny=|n+sgn(n)) and (m|U=(m+sgnm)|. (8)
k6
The second feature is that| and|R) are orthogonal to a <2|3>:|T5|2:ﬁ;+ 0(k®),

constant function. This way we eliminate the leading Ruelle
resonance,=1 from our problem, since the invariant dis- where
tribution is constant in phase space. The proof for this or-
thogonality is straightforward. Lef0)=(0|=1 denote the 1 _
invariant distribution. Theg0|n)=(0|U" !|1)=(0[1)=0, Tu:f dxe 20l
where we have used the definition of the invariant distribu- 0
tion: (0]U=(0|, and thaf1)=e?", is orthogonal to a con-
stant. Now, from Eq(5) it immediately follows thatO|R)
=0. Similarly it is straightforward to prove that alga|0)
=0.

Variation of F, given by Eqs.4), (5), and(7), with re-
spect toA?, yields the eigenvalue equation

The above results demonstrate the strong dependence of the
matrix elementgm|n) on |n|+|m|, whenk<1.

If we truncate the matrices in E@9) to 4X4 matrices,
the leading Ruelle resonances are the zeros of the character-
istic polynomial

ITsI2 0 T4 (T)*—zT}

Def{m|n+sgnn))—z(m|n)]=0. 9

(ml )—z(m|n) o 20 m

As it stands, this equation is not simpler to solve than the Det T 0 -z 0 =0.
original problem. However, it can be considerably simplified 5 )

if the matricegm|n) and(m|n+sgn()) can be truncated to T3—zT, T, O |Ts|

a small size. As we show below this is indeed the situation. )

For this purpose, it is instructive to notice a few properties of! €€ zeros can be calculated exactly, but, having only trun-

the matrix elementém|n). The first one is that cated matrices, it is sensible to evaluate them only to the
leading orders irk. The results are:

(m|n)={(m—sgnm)|n+sgn(n)), (10
k k2 _k 2

where|m|>1. This is an immediate consequence(ofin) 210~ iﬁ_ g Ba—F B 8 (14
=(m|U~tUn), and the relationg8). The second property of

the matrix elements comes from the definition of the phases In Table 1, we present the numericétbp ling) and the

: e LLR_ _ 4LR. )
with negative indicesp~'= — ¢! variational resultgbottom line for the Ruelle resonances of
(—=m|—ny=(m[ny* and  (m|—n)=(—mln)*. the perturbed cat map at various values of the perturbation

11) parametek. The numerical calculation is performed by pro-
jecting the equation$l) onto a grid of 990 sites, and
From Eg. (10) it follows that all matrix elementg =m calculating the eigenvalues st 0 by extrapolation from the
|in> can be reduced to integrals of the form interval 0.00%&s=<0.005. It has been checked that the re-
sults are independent of the grid, provided the lattice con-
stant is sufficiently small. Comparing the results of Ety)
to the exact numerical values shows that the variational ap-
proach provides the order of magnitude and the correct con-
wherel=|m|+|n|—1. Notice that the above integrals de- figuration of the leading Ruelle resonances.
crease rapidly with. This follows from the nature of the  To check the generality of this variational approach we
phasesp(x,y). Namely, ad increases, the phases acquire aturn now to consider the standard mgf] as our second
stronger dependence onandy, see, e.g., Eq(6). Thus example. The standard map is defined by

(1] =1)= J dxdy@mil=x= o],
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TABLE I. The leading Ruelle resonances of the perturbed cat map at various values of the perturbation
parametek. In each case, the top line is the exact numerical value, while the bottom line is the result of the
variational calculatior{14). The eigenvaluez,=1, associated with the invariant density is omitted.

k Z Z; Z34 Zs6
0.1 0.035 —0.037 —0.003+0.050 0.002+0.034
0.034 —0.036 —0.001+0.035
0.2 0.070 —0.080 —0.009+0.098 0.011+0.064
0.066 —0.076 —0.005-0.071
0.3 0.109 —-0.134 —0.015:0.144 0.030+0.088
0.094 —-0.12 —0.01+0.11
0.4 0.153 —0.196 —0.018+0.188 0.066+0.113
0.12 —0.16 —0.02+0.14
0.5 0.208 —0.266 —0.023+0.229 0.111+0.152
0.14 -0.21 —0.03+0.14
Xns1=Xn+Yn tic is the map, the smaller ig. In particular, for the per-
B (mod 1) (15  turbed cat mapy=k?*/64, while for the standard mapy
Ynr1=Yn+0(Xn+ 1), =J5(K). It is suggestive that this behavior is generic to a
where wide class of chaotic maps.

In Fig. 2, we depict the positions, in the complex plain, of
K the leading 24 resonances of the perturbed cat map and the
9(x)= 5_sin(2mx), standard map with a finite coarse grainirsgs 0.005. This
figure suggests that the similarity between the classical spec-
andK is the stochasticity parameter. The map is integrabldr@! properties of the map may extend beyond the four sub-
when K=0, and it becomes increasingly chaotic lgsis  '@ading resonances. However, at this stage we do not know
turned on to a large value. The route into chaos follows thd1oW to quantify this similarity. -~
Kolmogorov-Arnold-Moser scenario of breaking of resonant !t iS natural to ask what the implication are of the above
tori. Therefore, the standard map represents a generic mixdgsults for the spectral statistics of the corresponding quan-

system. Yet, for larg&, the islands of stability are tiny and tUm maps. To give a partial answer to this question, we
have negligible influence on correlation functions of suffi- consider the form factor, which is the Fourier transform of

ciently smooth observables. the spectral two-point correlation function. Assuming the

Applying the same procedure described above, we obtaif’@P to. belc_)ng to the orthogonal ensemble, the semiclassical
that, as before, Eq¢12) are satisfied, but the other relevant @PProximation to the form factor gt
matrix elements are(1|—3)=(2|—2)=J,(K), (2|—3)
=J3(K), and (2|3)=J3(K), where J,(K) is the Bessel ”
. . . . n
function of integer order. Inserting these results into the trun- S(n)=2n 20 Zys 17
cated eigenvalue equation and calculating its zeros we obtain “

21 = 7 (K) =77 (K) + J5(K), wheren denotes an integer time, assumed to be much smaller
than the Heisenberg timel8], andz, are the Ruelle reso-
— 5 (K)* \/ﬁ nances of thg correspondmg cIassma[ map. The leading reso-
Z3.4=7-(K) 7=(K) = J2(K) (16) nancez,=1 is associated with the universal result of RMT,
where while higher resonances give nonuniversal contributions. As
the map becomes more chaotic, |al}| approach zero except
J2(K)*+J3(K) for z,, therefore the nonuniversal corrections to RMT be-
7+ (K)= come small. Below we show that the configuration of the

2J,(K)

Thus, to the leading approximation inKl/ the first Ruelle TABLE II. The numerical and the variational results for the
resor;ances arkL7] lL|\]2(K)|1/2 and ii|J2(K)|l/2. As evi- Ruelle resonances of the standard maKat10 andK=13. In

. . each case, the top line is the exact numerical value, while the bot-
dent from Eqs(16), 21,2 diverge vyh(_i'neveK s a zero of tom line is the result of the variational calculatifiegs. (16)].
J>(K). At these points our variational approach breaks
down, but away from them, the results are in agreement with

the numerical diagonalization, as demonstrated in Table II. K “ 2 2

The intriguing feature of the above results is that the con- 10 0.577 —-0.526 —0.064:0.521
figuration of the leading Ruelle resonances in both examples 0.515 —0.494 —0.003+0.505
is similar. The four subleading resonances are located, ap- 13 0.617 —0.561 —0.002+0.469
proximately, at the roots of the equatiafi=y, where y 0.455 —0.478 —0.011+0.466

characterizes the stochasticity of the map. The more stochas
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) 0.2 ®
0.4
° . FIG. 2. The configuration, in
0.2 2L ¢ N complex plain, of the Ruelle reso-
ol® & o P° nances of two generic chaotic
Im z 0 - § . e 0le $ he . maps. The right panel corresponds
olg o e L the perturbed cat map &=0.5,
0.2 ° o and the left panel to the standard
. -0.1 ° . map atk=13. In both cases, the
- coarse-graining parameter is
] -0.2 . 0.005.
-0.4-0.2 0 0.2 0.4 -0.2 -0.1 0 0.1 0.2
Re z Re z

resonances also plays an important role in suppressing the To summarize, in this paper, we have studied the leading
magnitude of the nonuniversal contributions. Ruelle resonances of two maps representing typical chaotic

Let us assume that,~0 for a>4, and approximate the behaviors: the perturbed cat map, which exhibits hard chaos,
subleading resonances hyZ and =iZ, whereZ is a real and the standard map, which is a mixed system. Our analyti-

positive number smaller than unity. Substituting thege in ~ ¢al and numerical results show that, in both cases, the con-
Eq. (17) one obtains figuration of the leading Ruelle, in the complex plain, is

similar. Numerical studieg.g., Fig. 2 suggest that the simi-
larities in the classical spectrum of chaotic maps go beyond

8nz" if n is an integer the properties of the first four subleading resonances. A com-
S(n)~2n+ 4 prehensive understanding of the classical spectral properties
0 otherwise. of chaotic systems will open the possibility for understand-

ing the behavior of their quantum counterparts. In particular
the weak localization mechanisms associated with quantum
. . interference. In this paper we show that the configuration of
tT"r’]F‘S.to RMT Iappf;ear on:ly In powers drAh rather ttr;anz he Ruelle resonances may result in a suppression of nonuni-
Is Is a result of cancellations among the contributions of,gs5| contribution to the form factor. This mechanism of

the Ruelle resonances. Thus the magnitude of the nonuniveéhppression is different from that of diffusive systems in

sal contribution to the form factor is digtated.both .by Fhewhich only the magnitude of the Ruelle resonances is impor-
absolute values at,’s, as well as by their configuration in ;o

the complex plain. It is plausible that other chaotic systems

exist where the configuration of resonances lead to an even This research was supported by the Israel Science Foun-
stronger suppression of nonuniversal contribution, e.g., if thelation, founded by The Israel Academy of Science and Hu-
subleading resonances are approximately the rootg?6f manities, and by Grant No. 9800065 from the USA-Israel

From this formula, it follows that the nonuniversal correc-

=1v, wherev=3. Binational Science FoundatidiBSH.
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