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Leading Ruelle resonances of chaotic maps
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The leading Ruelle resonances of typical chaotic maps, the perturbed cat map and the standard map, are
calculated by variation. It is found that, excluding the resonance associated with the invariant density, the next
subleading resonances are, approximately, the roots of the equationz45g, whereg is a positive number that
characterizes the amount of stochasticity of the map. The results are verified by numerical computations, and
the implications to the form factor of the corresponding quantum maps are discussed.

PACS number~s!: 05.45.Ac, 05.45.Mt, 03.65.Sq
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The statistical characteristics of the quantum-mechan
spectrum of a system, which has a classical analog, are
lated to its underlying classical dynamics. For example,
chaotic systems, this relation is revealed by Gutzwille
trace formula@1# that expresses the density of states in ter
of a sum over the classical periodic orbits of the system
disordered systems, spectral properties of the quantum
tem are expressed in terms of the diffusions and the Co
eron diagrams associated with the classical diffusive mo
of the system@2#.

There is, however, a difference between the periodic o
picture and the diagrammatical approach of disordered
tems. The first uses the individual trajectories of the syste
as the basic ingredients for the semiclassical expansi
whereas the second approach employs spectral properti
the evolution operator of classical distribution functions. T
latter approach is, therefore, more suitable for a fie
theoretic treatment.

Recently, an extension of the field-theoretic formalis
from disordered systems to general chaotic ones, has
proposed@3#. The analog of classical diffusion, in the gene
alized case, is the coarse-grained Liouville dynamics of d
tribution functions@4# in the limit of zero coarse graining@5#.
The corresponding evolution operator is the Frobeni
Perron operator, and its eigenvalues are the Ruelle r
nances@6#. These eigenvalues describe the decay of class
correlation functions of smooth observables.

The association of spectral properties of quantum cha
systems with their classical spectra calls for a study of
Ruelle resonances of general chaotic systems. The ce
question is whether chaotic systems can be classified
equivalence classes according to their classical spectrum
obvious example of such a class is systems where the e
tive dynamics is diffusive. For instance, the kicked rotor m
exhibits diffusion in momentum space@7#, and the stadium
billiard, in the limit of small distance between the sem
circles, is diffusive in the angular momentum space@8#.

Are there other universality classes? In principle, th
should be. Diffusion is not the only type of universal dyna
ics of chaotic systems where correlations are rapidly lo
Other possibilities can be, for instance, various types of L
flights @9#.

Yet, the lack of approximation schemes for calculati
Ruelle resonances obstructs the characterization of the e
PRE 621063-651X/2000/62~2!/1977~6!/$15.00
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tive dynamics of general chaotic systems. The physical
proach for calculating Ruelle resonances is to project
dynamics, from the full phase space, down to the manif
on which the dynamics is slow, and to construct an equa
for the probability density on this manifold. For example,
disordered systems, the fast and the slow manifolds are
momentum and the real space, respectively. Projecting
dynamics down to real space yields the diffusion equati
whose eigenvalues constitute the leading Ruelle resona
of the system. In trying to apply a similar procedure f
general chaotic systems, one encounters the problem of i
tifying the slow and the fast manifolds. These can be co
plicated functions in phase space.

In this paper, we choose a different approach. We w
construct a simple variational method for calculating t
leading resonances, and apply it to two generic maps:
perturbed cat map@10# and the standard map@7#. The results
indicate that, indeed, the leading Ruelle resonances of th
maps share some universal features~different from diffu-
sion!. Namely, the configuration of the leading resonances
the complex plain is similar. Excluding the eigenvalue as
ciated with the invariant densityz051, the next subleading
resonances are, approximately, the roots of the equationz4

5g, whereg is a real positive number, smaller than unit
which decreases as the map becomes more stochastic. I
be shown that this configuration of resonances is signific
for the spectral statistics of the corresponding quantum m
For example, in the form factor, it leads to a suppression
the nonuniversal corrections to the results of random ma
theory @11# ~RMT!.

In introducing our ideas it will be instructive to consider
specific example. We begin with the perturbed cat map@10#,
which is an area preserving map from the unit torus to its

xn1152xn1yn

yn1153xn12yn1 f ~xn11!
~mod 1!. ~1!

Here, (xn ,yn) are the phase-space coordinates at disc
time n, and

f ~x!5
k

2p
@cos~2px!2cos~4px!#
1977 ©2000 The American Physical Society
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1978 PRE 62GALYA BLUM AND ODED AGAM
is a perturbation function. This function is smooth and pe
odic on the torus, therefore, the map is continuous, and
ferentiable. Atk50, the map, known as Arnold’s cat ma
@12#, is highly chaotic@13#. Namely, time correlation func
tions decay faster than exponential. This behavior is rela
to the presence of hidden symmetries of number theore
origin @14#. The role off (x) is to break these symmetries. A
a result, at finite values ofk, relaxation is exponential. It ha
been also proved that fork,0.11, all the fixed points of Eq
~1! are in one-to-one correspondence with the original
map. Consequently, all orbits are unstable and the sys
can be characterized as ‘‘hard chaotic’’@10#.

The classical propagator of the map, for one time step

^x8,y8uUux,y&5dp@x822x2y#dp@y823x22y2 f ~x8!#,
~2!

wheredp(x) is a periodicd function on the torus. Due to
Liouville’s theorem, the above propagator is unitary wh
acting on Hilbert space of square-integrable functio
Within this space the dynamics is reversible; however,
soon as the dynamics is coarse grained, it becomes irrev
ible and phase-space densities relax to the invariant den

A simple way of coarse graining the dynamics is to gi
the d functions in Eq.~2! a finite width, for instance, by the
replacement

dp~x!→(
n

1

Aps
e2(x2n)2/s,

wheres is the coarse graining parameter. The Ruelle re
nances of the map are obtained by diagonalizing the pro
gator at a finite value ofs, and takings to zero after the
diagonalization. It can be shown that this procedure
equivalent to the introduction of noise into the equations
motion ~1!, calculation of the eigenvalues averaged over
noise, and finally taking the limit of noise to zero@15#. The
resulting resonances have absolute values smaller than u
except for the resonance associates with the invariant de
z051.

Since the coarse-grained evolution operator is not unit
the left eigenfunctions ofU are not the complex conjugate
of the right eigenfunctions. Instead they can be viewed as
right eigenfunctions of the propagator associated with
inverse map~i.e., the propagator taking the system one tim
step backward!. Thus the eigenvalue equations are

Uuca
R&5zauca

R&, ^ca
L uU5^ca

L uza , ~3!

whereuca
R& and^ca

L u are the right and the left eigenfunction
associated with the resonanceza . According to Ruelle’s
theorem@6#, these eigenfunctions become distributions in
limit of zero coarse graining. The distributions associa
with the left and the right eigenfunctions follow the stab
and the unstable manifolds, respectively. Nevertheless,
satisfy the normalization condition

^ca
L ucb

R&5da,b .

In the left panel of Fig. 1, we show an example of t
right eigenfunctionc1

R of the perturbed cat map fork50.5
ands50.001. As can be seen, this eigenfunction follows
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unstable manifold depicted on the right panel. As the coa
graining parameters reduces, the eigenfunction becom
more singular, in accordance with Ruelle’s theorem.

In what follows, we shall calculate the leading Rue
resonances of the map~1! using a variational approach tha
takes into account the structure of the eigenfunctions ill
trated in Fig. 1. For this purpose we construct the functio

F5^LuUuR&2z^LuR&, ~4!

where uR& and ^Lu are the right and the corresponding le
trail functions. The leading Ruelle resonances are obtai
by variation@16# of F with respect tô Lu.

The success of a variational calculation depends on
extent to which the variational wave functions capture
physics of the problem. In our case, one should construct
and right trail functions that follow the stable and the u
stable manifolds, respectively. We will use the dynamics
self to generate these functions by repeated application
the map on a smooth initial state. Thus, our right trail fun
tion takes the form

uR&5 (
n52`

`8

Anun&, with un&5e2p ifn
R(x,y), ~5!

whereAn are amplitudes to be determined by variation, a
the phasesfn

R(x,y) are defined by the recursion equation

fn
R~x,y!5fn21

R
„2x2y1 f ~x!,2y23x22 f ~x!…

with the initial phasef1
R(x,y)5x. We definef2n

R to be
2fn

R , and the prime indicates that the sum does not inclu
the n50 term.

The above sequence of phases, where the first few
them are

f1
R5x,

f2
R52x2y1 f ~x!,

~6!
f3

R57x24y14 f ~x!1 f ~f2
R!,

f4
R526x215y115f ~x!14 f ~f2

R!1 f ~f3
R!,

is constructed by application of the map~1! on the initial

FIG. 1. Left panel: The absolute value of the right eigenfunct
c1

R of the perturbed cat map atk50.5 and coarse grainings
50.001. The dark and the bright regions correspond to the min
and maxima ofuc1

Ru, respectively. This function follows the un
stable manifold of the map that is shown on the right panel.
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PRE 62 1979LEADING RUELLE RESONANCES OF CHAOTIC MAPS
smooth state,ei2px. Therefore,u2&,u3&, . . . become increas
ingly smooth along the unstable manifold and singular alo
the stable one.

In the same manner, we construct the left function
repeated application of the inverse map, namely,

^Lu5 (
m52`

`

8 Am* ^mu with ^mu5e22p ifm
L (x,y), ~7!

where the left phases are defined by the recursion relati

fm
L ~x,y!5fm21

L
„2x1y,3x12y1 f ~2x1y!…

andf1
L(x,y)5x.

There are two simplifying features characterizinguR& and
^Lu. First, the operation of the propagatorU on these func-
tions is simple since, by construction,

Uun&5un1sgn~n!& and ^muU5^m1sgn~m!u. ~8!

The second feature is that^Lu and uR& are orthogonal to a
constant function. This way we eliminate the leading Rue
resonancez051 from our problem, since the invariant dis
tribution is constant in phase space. The proof for this
thogonality is straightforward. Letu0&5^0u51 denote the
invariant distribution. Then̂0un&5^0uUn21u1&5^0u1&50,
where we have used the definition of the invariant distrib
tion: ^0uU5^0u, and thatu1&5e2p ix, is orthogonal to a con-
stant. Now, from Eq.~5! it immediately follows that̂ 0uR&
50. Similarly it is straightforward to prove that also^Lu0&
50.

Variation of F, given by Eqs.~4!, ~5!, and ~7!, with re-
spect toAm* yields the eigenvalue equation

Det@^mun1sgn~n!&2z^mun&#50. ~9!

As it stands, this equation is not simpler to solve than
original problem. However, it can be considerably simplifi
if the matriceŝ mun& and^mun1sgn(n)& can be truncated to
a small size. As we show below this is indeed the situati
For this purpose, it is instructive to notice a few properties
the matrix elementŝmun&. The first one is that

^mun&5^m2sgn~m!un1sgn~n!&, ~10!

whereumu.1. This is an immediate consequence of^mun&
5^muU21Un&, and the relations~8!. The second property o
the matrix elements comes from the definition of the pha
with negative indicesf2n

L,R52fn
L,R :

^2mu2n&5^mun&* and ^mu2n&5^2mun&* .
~11!

From Eq. ~10! it follows that all matrix elementŝ 6m
u6n& can be reduced to integrals of the form

^61u6 l &5E dxdye2p i [ 7x6f l
R(x,y)] ,

where l 5umu1unu21. Notice that the above integrals d
crease rapidly withl. This follows from the nature of the
phasesf l

R(x,y). Namely, asl increases, the phases acquire
stronger dependence onx and y, see, e.g., Eq.~6!. Thus
g

y

e

r-

-

e

.
f

s

^mun& is small for largeunu1umu, and the significant part o
the eigenvalue equation~9! is associated only with a sma
submatrix.

With this observation, we turn now to calculate the ma
matrix elements of Eq.~9!. First, it is straightforward to see
that

^1u1&51,
~12!

^1u21&5^1u62&5^1u3&5^2u2&50.

Other matrix elements are given by

^1u23&5^2u22&5T452
k2

8
2 i

k3

16
1O~k4!,

^2u23&5T3
25

k4

3072
1O~k5!, ~13!

^2u3&5uT5u25
k6

256
1O~k8!,

where

Tn5E
0

1

dxe22p i [nx1 f (x)] .

The above results demonstrate the strong dependence o
matrix elementŝmun& on unu1umu, whenk,1.

If we truncate the matrices in Eq.~9! to 434 matrices,
the leading Ruelle resonances are the zeros of the chara
istic polynomial

DetS uT5u2 0 T4* ~T3
2!* 2zT4*

0 2z 0 T4*

T4 0 2z 0

T3
22zT4 T4 0 uT5u2

D 50.

These zeros can be calculated exactly, but, having only t
cated matrices, it is sensible to evaluate them only to
leading orders ink. The results are:

z1,2.6
k

A8
2

k2

8
, z3,4.6 i

k

A8
2

k2

8
. ~14!

In Table I, we present the numerical~top line! and the
variational results~bottom line! for the Ruelle resonances o
the perturbed cat map at various values of the perturba
parameterk. The numerical calculation is performed by pr
jecting the equations~1! onto a grid of 90390 sites, and
calculating the eigenvalues ats50 by extrapolation from the
interval 0.001<s<0.005. It has been checked that the r
sults are independent of the grid, provided the lattice c
stant is sufficiently small. Comparing the results of Eq.~14!
to the exact numerical values shows that the variational
proach provides the order of magnitude and the correct c
figuration of the leading Ruelle resonances.

To check the generality of this variational approach
turn now to consider the standard map@7# as our second
example. The standard map is defined by
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TABLE I. The leading Ruelle resonances of the perturbed cat map at various values of the pertu
parameterk. In each case, the top line is the exact numerical value, while the bottom line is the result
variational calculation~14!. The eigenvalue,z051, associated with the invariant density is omitted.

k z1 z2 z3,4 z5,6

0.1 0.035 20.037 20.00360.050i 0.00260.034i
0.034 20.036 20.00160.035i

0.2 0.070 20.080 20.00960.098i 0.01160.064i
0.066 20.076 20.00560.071i

0.3 0.109 20.134 20.01560.144i 0.03060.088i
0.094 20.12 20.0160.11i

0.4 0.153 20.196 20.01860.188i 0.06660.113i
0.12 20.16 20.0260.14i

0.5 0.208 20.266 20.02360.229i 0.11160.152i
0.14 20.21 20.0360.18i
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xn115xn1yn

yn115yn1g~xn11!,
~mod 1! ~15!

where

g~x!5
K

2p
sin~2px!,

and K is the stochasticity parameter. The map is integra
when K50, and it becomes increasingly chaotic asK is
turned on to a large value. The route into chaos follows
Kolmogorov-Arnold-Moser scenario of breaking of resona
tori. Therefore, the standard map represents a generic m
system. Yet, for largeK, the islands of stability are tiny an
have negligible influence on correlation functions of su
ciently smooth observables.

Applying the same procedure described above, we ob
that, as before, Eqs.~12! are satisfied, but the other releva
matrix elements are^1u23&5^2u22&5J2(K), ^2u23&
5J1

2(K), and ^2u3&5J3
2(K), where Jn(K) is the Bessel

function of integer order. Inserting these results into the tr
cated eigenvalue equation and calculating its zeros we ob

z1,25h1~K !6Ah1
2 ~K !1J2~K !,

z3,45h2~K !6Ah2
2 ~K !2J2~K !, ~16!

where

h6~K !5
J1

2~K !6J3
2~K !

2J2~K !
.

Thus, to the leading approximation in 1/K, the first Ruelle
resonances are@17# 6uJ2(K)u1/2 and 6 i uJ2(K)u1/2. As evi-
dent from Eqs.~16!, z1,2 diverge wheneverK is a zero of
J2(K). At these points our variational approach brea
down, but away from them, the results are in agreement w
the numerical diagonalization, as demonstrated in Table

The intriguing feature of the above results is that the c
figuration of the leading Ruelle resonances in both exam
is similar. The four subleading resonances are located,
proximately, at the roots of the equationz45g, where g
characterizes the stochasticity of the map. The more stoc
le

e
t
ed

in

-
in

s
th
.
-
s

p-

s-

tic is the map, the smaller isg. In particular, for the per-
turbed cat mapg5k4/64, while for the standard mapg
5J2

2(K). It is suggestive that this behavior is generic to
wide class of chaotic maps.

In Fig. 2, we depict the positions, in the complex plain,
the leading 24 resonances of the perturbed cat map and
standard map with a finite coarse graining,s50.005. This
figure suggests that the similarity between the classical s
tral properties of the map may extend beyond the four s
leading resonances. However, at this stage we do not k
how to quantify this similarity.

It is natural to ask what the implication are of the abo
results for the spectral statistics of the corresponding qu
tum maps. To give a partial answer to this question,
consider the form factor, which is the Fourier transform
the spectral two-point correlation function. Assuming t
map to belong to the orthogonal ensemble, the semiclass
approximation to the form factor is@4#

S~n!.2n (
a50

`

za
n , ~17!

wheren denotes an integer time, assumed to be much sma
than the Heisenberg time@18#, and za are the Ruelle reso
nances of the corresponding classical map. The leading r
nancez051 is associated with the universal result of RM
while higher resonances give nonuniversal contributions.
the map becomes more chaotic, alluzau approach zero excep
for z0, therefore the nonuniversal corrections to RMT b
come small. Below we show that the configuration of t

TABLE II. The numerical and the variational results for th
Ruelle resonances of the standard map atK510 andK513. In
each case, the top line is the exact numerical value, while the
tom line is the result of the variational calculation@Eqs.~16!#.

K z1 z2 z3,4

10 0.577 20.526 20.06460.521i
0.515 20.494 20.00360.505i

13 0.617 20.561 20.00260.469i
0.455 20.478 20.01160.466i
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FIG. 2. The configuration, in
complex plain, of the Ruelle reso
nances of two generic chaoti
maps. The right panel correspond
the perturbed cat map atk50.5,
and the left panel to the standar
map atK513. In both cases, the
coarse-graining parameter iss
50.005.
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resonances also plays an important role in suppressing
magnitude of the nonuniversal contributions.

Let us assume thatza'0 for a.4, and approximate the
subleading resonances by6Z and 6 iZ, whereZ is a real
positive number smaller than unity. Substituting theseza’s in
Eq. ~17! one obtains

S~n!'2n1H 8nZn if
n

4
is an integer

0 otherwise.

From this formula, it follows that the nonuniversal corre
tions to RMT appear only in powers ofZ4, rather thanZ.
This is a result of cancellations among the contributions
the Ruelle resonances. Thus the magnitude of the nonun
sal contribution to the form factor is dictated both by t
absolute values ofza’s, as well as by their configuration in
the complex plain. It is plausible that other chaotic syste
exist where the configuration of resonances lead to an e
stronger suppression of nonuniversal contribution, e.g., if
subleading resonances are approximately the roots ofz2n

5g, wheren>3.
cs
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To summarize, in this paper, we have studied the lead
Ruelle resonances of two maps representing typical cha
behaviors: the perturbed cat map, which exhibits hard ch
and the standard map, which is a mixed system. Our ana
cal and numerical results show that, in both cases, the c
figuration of the leading Ruelle, in the complex plain,
similar. Numerical studies~e.g., Fig. 2! suggest that the simi
larities in the classical spectrum of chaotic maps go bey
the properties of the first four subleading resonances. A c
prehensive understanding of the classical spectral prope
of chaotic systems will open the possibility for understan
ing the behavior of their quantum counterparts. In particu
the weak localization mechanisms associated with quan
interference. In this paper we show that the configuration
the Ruelle resonances may result in a suppression of non
versal contribution to the form factor. This mechanism
suppression is different from that of diffusive systems
which only the magnitude of the Ruelle resonances is imp
tant.
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