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In previous work@B. R. Hunt and E. Ott, Phys. Rev. Lett.76, 2254~1996!; Phys. Rev. E54, 328,~1996!#,
based on numerical experiments and analysis, it was conjectured that theoptimal orbit selected from all
possible orbits on a chaotic attractor is ‘‘typically’’ a periodic orbit of low period. By an optimal orbit we mean
the orbit that yields the largest value of a time average of a given smooth ‘‘performance’’ function of the
system state. Thus optimality is defined with respect to the given performance function.~The study of optimal
orbits is of interest in at least three contexts: controlling chaos, embedding of low-dimensional attractors of
high-dimensional dynamical systems in low-dimensional measurement spaces, and bubbling bifurcations of
synchronized chaotic systems.! Here we extend this previous work. In particular, the previous work was for
discrete time dynamical systems, and here we shall consider continuous time systems~flows!. An essential
difference for flows is that chaotic attractors can have embedded within them, not only unstable periodic orbits,
but also unstable steady states, and we find that optimality can often occur on steady states. We also shed
further light on the sense in which optimality is ‘‘typically’’ achieved at low period. In particular, we find that,
as a system parameter is tuned to be closer to a crisis of the chaotic attractor, optimality may occur at higher
period.

PACS number~s!: 05.45.2a
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I. INTRODUCTION

One strategy@1–6# for controlling chaotic systems b
means of small controls is the following: first, determi
unstable periodic orbits~UPOs! embedded in the chaotic a
tractor; then, examine the UPOs to determine which o
gives the best system performance; and finally control
system to follow that orbit. In general the system perf
mance averaged over time can be expressed as the tim
erage of some functionF(x) of the system statex. We callF
the performance function and denote its time average by^F&,

^F&5 lim
T→`

1

TE0

T

F„x~ t !…dt, ~1a!

^F&5 lim
t→`

1

T (
t51

T

F~xt!, ~1b!

where t denotes time and is either continuous@Eq. ~1a!# or
discrete@Eq. ~1b!#. Thus the best, or optimal, orbit is the on
yielding the largest value of̂F& @7#.

In this paper we shall be interested in the ‘‘typical’’ pro
erties of optimal orbits. In previous work@8,9# this question
was examined for the case of discrete time systems~maps!,
using a one-parameter family of performance functions,
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considering typicality with respect to this parameter. He
we extend these considerations to continuous time syst
~flows!. In the previous work, numerical evidence for th
following conjectures was presented using numerical exp
ments on one- and two-dimensional maps.

~i! The set of parameter values for which the optimal or
is not periodic has Lebesgue measure zero; that is, the o
mal orbit is periodic for almost every set of parameter v
ues.

~ii ! The Lebesgue measure of the set of parameter va
for which the optimal orbit is periodic with a period equal
or larger than some valuep decreases exponentially asp
→`. In this sense it was stated that optimality typically o
curs at low period.~In the rest of the paper, whenever w
refer to low periodas beingtypical, it will be in this sense.!

~iii ! Even when optimality occurs at very high perio
there are usually fairly low-period orbits whose performan
is only slightly less than that achieved by the optimal hig
period orbit.

In the past, experimentalists working on controlling cha
have often experimentally determined only low-period u
stable periodic orbits contained in the chaotic attractor. T
is partly because the determination of many high-period
stable periodic orbits can be very demanding and in m
cases is not feasible. The work of Refs.@8,9# indicates that
there will usually be little gain, and often none, by going
the considerable effort of determining many more unsta
periodic orbits.

Another possible motivation for consideration of optim
periodic orbits comes from the theory of embedding. Emb
1950 ©2000 The American Physical Society
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ding is of particular interest for the analysis of experimen
data from high-~including infinite-! dimensional dynamica
systems. In particular, it has been shown@10,11# that, if DL
denotes the largest Lyapunov dimension of any orbit c
tained within an attractor andn is an integer greater tha
2DL , then a generic embedding into ann-dimensional Eu-
clidean space gives a one-to-one representation of the at
tor. The Lyapunov dimension of an orbit is a function of
Lyapunov exponents, which are time averages in a m
generalized sense than we consider in this paper. Thus
results described abovesuggestthat the largest~optimal!
Lyapunov dimension is typically attained on a periodic or
with low period. Still another motivation for consideration
optimal periodic orbits is that they play a crucial role in t
stability of synchronization of chaotic systems. In particul
they determine the onset of the ‘‘bubbling transition’’~see
Refs.@12#!.

Is there any change in the results of the previous work
optimal periodic orbits if we consider a continuous time s
tem? Although the trajectories of continuous systems can
reduced to discrete mappings by a Poincare´ surface of sec-
tion, the interval of continuous time between successive
counters with the surface of section varies with the start
point x on the surface of section. For suchx, let T(x) denote
the time for the orbit fromx to next intersect the surface o
section; we callT(x) the return timeof x. Let F̃(x) denote
the time average of the performance functionF over this
time interval,

F̃~x!5
1

T~x!
E

0

T(x)

F„x̃~ t !…dt, ~2!

wherex̃(0)5x. We can then express Eq.~1a! as

^F&5 lim
n→`

(
m51

n

T~xm!F̃~xm!

(
m51

n

T~xm!

, ~3!

where the integer indexm enumerates the surface of secti
piercings.

These considerations are complete as long as there a
steady states embedded in the attractor. If there are st
states, then it is possible to have initial conditions on
surface of section that generate orbits that go to the ste
state~assumed to lie off the surface of section! without ever
returning to the surface of section. In this case,T(x) tends to
infinity asx approaches an initial condition going to a stea
state.

When steady states are present, we find that conject
~i!–~iii !, stated above for the case of maps, need to be m
fied. In particular, we conjecture that for continuous tim
systems, optimality typically occurs either on an unsta
periodic orbit with low period or on an unstable steady st
~if one exists in the chaotic attractor under consideration!.

In Sec. II, we use map models to consider the case wh
T(x) is finite for all x. This corresponds to the case where t
attractor of the continuous time system has no embed
l
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steady states. In Sec. III, we use the same maps but a
T(x)→` asx approaches somex̄ to model the presence of
steady state in the flow.

In Sec. IV, we consider the Lorenz equations@13,14# as
an example of a continuous time system with an embed
steady state. In this context, an interesting fact was rece
pointed out by Zoldi and Greenside@15#: if one uses the
parameters originally investigated by Lorenz, then, for
performance function Zoldi and Greenside studied, optim
ity occurs at a rather large period. This motivates us to
amine the sense of the word ‘‘typically’’ in the stateme
that optimal orbits typically occur at low period. We fin
that, by enlarging the meaning of typicality to be with r
spect to both variation of system parameters and per
mance function parameters, it is still the case that optima
typically occurs at low period~or on a steady state!.

II. DISCRETE MAPS WITH BOUNDED RETURN TIME

In @8,9# the discrete time average~1b! was considered for
two one-dimensional maps, the doubling transformation a
the tent map, using the one-parameter family of performa
functions,

Fg~x!5cos@2p~x2g!#, ~4!

where 0<g<1. The average thus considered is equivalen
the average~3! with F̃ replaced byFg andT(x)[1. In this
section we will explore the effect of a nonconstant retu
time T(x) on the average~3! using the smoothly varying
function,

T«~x!511« sin 2px, ~5!

for various« between 0 and 1. As described in the Introdu
tion, this type of return time function mimics the case of
Poincare´ section of a continuous time attractor with no em
bedded steady states.

The average we consider in this section is thus

^Fg&«5 lim
n→`

(
m51

n

T«~xm!Fg~xm!

(
m51

n

T«~xm!

, ~6!

with Fg andT« defined above.

A. Doubling transformation

The first map we consider is the doubling transformatio

xn1152xn~mod 1!. ~7!

For each of the values«50,0.1,0.2, . . . ,1.0 weperformed
the following numerical experiment. For each of 105 evenly
spaced values ofg between 0 and 1, we calculated the ma
mum value of̂ Fg&« among all the periodic orbits of Eq.~7!
with periods 1 to 24. Figure 1 shows the period of the op
mal orbit as a function of the parameterg for «50.1 and 0.5.
The results are very similar to those in@8,9#, which corre-
spond to«50. As « increases, the figure becomes less sy
metric, but there is little qualitative change.
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To be more precise, letr (p) be the fraction ofg values
for which periodp or larger is optimal. Figure 2 shows, fo
various«, a test of the asymptotic prediction@8,9#

r ~p!<Kp222p,

whereK is a fitting constant. Specifically, Fig. 2 shows plo
of log10@r (p)/p2# versusp, which are to be compared to th
dotted plot of log10(2

2p) versusp. The two agree well. We
conclude that the conjecture thatr (p) decays exponentially
asp increases is demonstrated by our results for all value
« between 0 and 1.

FIG. 1. Periods that optimizêFg&« for the doubling transfor-
mation with bounded return timeT(xn)511« sin 2pxn , for ~a! «
50.1 and~b! «50.5.

FIG. 2. Comparison ofr (p)/p2 with 22p, where r (p) is the
fraction of g values for which periodp or larger optimizeŝ Fg&«

for the doubling transformation with bounded return timeT(xn)
511« sin 2pxn .
of

B. Tent map

Next, we consider the tent map on@0,1#,

xn115H 2xn , xn<
1

2

2~12xn!, xn.
1

2
,

~8!

with the same time function~5! and performance function
~4!. We performed the same numerical experiment for va
ous values of«: for each of 105 evenly spaced values ofg
between 0 and 1, we maximized the average~6! over all
periodic orbits of Eq.~8! with period at most 24. For«
50.1 and«50.5, the optimal period as a function ofg is
shown in Fig. 3. Again, the results differ very little from
those in@8,9# («50). The precise values ofg for which a
given period is optimal shift slightly as« increases, but the
proportion f (p) of g values for which periodp is optimal
changes little except for the smallest values ofp. Figure 4
shows the dependence ofr (p) on p for «50,0.2, . . . ,1.0.
Again, the values and the exponential decay ofr (p) across
the intermediate values ofp are consistent as« changes.

III. DISCRETE MAPS WITH UNBOUNDED RETURN
TIME

In this section, we explore the effect of unbounded retu
time on the problem of optimizing the average~6!, using the
maps~7! and ~8! and performance function~4! from Sec. II
together with a new family of return time functionsT«(x)
that have a singularityT«(x)→` asx approaches a pointx̄.

FIG. 3. Periods that optimizêFg&« for the tent map with
bounded return timeT(xn)511« sin 2pxn , for ~a! «50.1 and~b!
«50.5.
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PRE 62 1953OPTIMAL PERIODIC ORBITS OF CONTINUOUS TIME . . .
As discussed in the Introduction, this type of singularity
T(x) occurs in continuous time systems when the orbit o

point x̄ on a Poincare´ surface of sectionP approaches a
steady statex* embedded in the attractor but located offP.

The pointx̄ represents the intersection of the stable manif
of x* with P; if the stable manifold is more than one dime
sional, the intersection will be a curve or a highe
dimensional subsurface ofP.

In order to determine the appropriate form ofT(x) as x

→ x̄, we consider in more detail the dynamics of such
continuous time system. Consider a trajectoryx̃(t) where
x̃(0)5x is a point on the Poincare´ sectionP near x̄. Fix a
small neighborhoodN of the steady statex* . The amount of
time taken byx̃(t) to reachN is bounded asx approachesx̄,
as is the time taken to return from the boundary ofN back to
P. Thus the growth ofT(x) toward infinity asx→ x̄ is due
entirely to the amount of time spent byx̃(t) in N.

Now since the steady statex* is embedded in a chaoti
attractor, it must be a saddle point, whose stable manifoS

intersectsP at x̄ ~and perhaps at some curve or highe
dimensional subsurface throughx̄). If x̃(0)5x is close tox̄,
then it is close toS and the distance ofx̃(t) from S grows
approximately exponentially~with growth rate independen
of ux2 x̄u) as long as this distance remains small. In order
x̃(t) to exit the neighborhoodN of x* , its distance fromS
must grow to be approximately the radius ofN. Since at time
0 this distance isux2 x̄u, the time at whichx̃(t) exitsN is ~to
first order! proportional to ln(1/ux2 x̄u). Therefore, T(x)
grows asC ln(1/ux2 x̄u) asx→ x̄.

Another complication introduced by the existence of t
embedded steady statex* is that the optimal performanc
average may occur atx* rather than on a trajectory tha
returns to the Poincare´ sectionP. Based on the discussio
above of the dynamics near the stable manifold ofx* , notice
that the fraction of the return timeT(x) that x̃(t) spends inN
approaches 1 asx→ x̄. It follows that the averageF̃(x), de-
fined by Eq.~2!, of the performance functionF over this time
period converges toF(x* ) as x→ x̄. Thus we defineF̃( x̄)
5F(x* ), and, in computing the optimal average ofF̃ with

FIG. 4. Comparison ofr (p)/p2 with 22p, where r (p) is the
fraction of g values for which periodp or larger optimizeŝ Fg&«

for tent map with bounded return timeT(xn)511« sin 2pxn .
f
a

d

a

-

r

respect to the dynamics onP, we treatx̄ as a special ‘‘period
0’’ orbit, corresponding to the steady state atx* , to be com-
pared with the orbits of period 1,2,3, . . . that return toP.

A. Doubling transformation

We consider again the doubling transformation~7! with
the average given by Eq.~4! and Eq.~6!, but with a new
family of return time functions which we choose based
the discussion above:

T«~x!511« ln
1

usinp~x21/2!u
. ~9!

Here we imaginex̄51/2, the point of discontinuity for Eq
~7!, to represent a point on a Poincare´ surface of section
whose trajectory approaches an unstable fixed pointx* off
the surface of section. Larger values of« correspond to
larger amounts of time spent nearx* , i.e., smaller values of
the unstable eigenvalue~s! for x* .

For a given value of«, our numerical experiment is th
same as in the previous section; for each of 105 evenly
spaced values ofg, we find the maximum of̂Fg&« defined
by Eq. ~6! over all periodic orbits of Eq.~7! with period at
most 24, including now the period 0 pointx̄. The optimal
period as a function ofg is shown for«50.1, «50.5, and
«510 in Fig. 5. The solid line represents the optimal peri
excluding period 0, and the dotted line includes period
Notice that when the values of« are large, for a substantia
set of g values near 0.5, the optimal period excluding 0
24. However, when we include the period 0 point, we s
that the optimum is as before achieved at low period for m
values ofg. We observe a similar effect in the next sectio
for the Lorenz system.

Furthermore, we find~as in the case of bounded retu
time! that, regardless of the value of«, the fractionr (p) of g
values with optimal period at leastp decreases asp222p asp
increases. The graph ofr (p)/p2 versusp for various « is
shown in Fig. 6.

B. Tent Map

Next we show the analogous results for the tent map~8!,
again with the family of performance functionsFg given by
Eq. ~4!, but with a slightly different family of return time
functions,

T«~x!511« ln
1

2ux21/2u
. ~10!

In Fig. 7 we show the periods of the orbits that maximi
^Fg&« , as defined in Eq.~6!, as a function ofg for «50.1,
«50.5, and«510. As for the doubling transformation, th
period 0 point is optimal for an interval ofg values that does
not change dramatically for differing values of«. And for
larger values of« we see again that for many of theseg
values the optimum among the positive values of the per
p is the largest period 24, representing an orbit that spend
much time as possible near the critical pointx̄51/2.
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IV. CONTINUOUS TIME SYSTEM: LORENZ EQUATIONS

Finally, we consider the Lorenz equations@13,14#,

dx

dt
52sx1sy,

dy

dt
52xz1Rx2y, ~11!

dz

dt
5xy2bz,

wheres, R, andb are dimensionless parameters, which
set to the original values used by Lorenz,s510, R528, and
b58/3.

FIG. 5. Periods that optimizêFg&« for the doubling transfor-

mation with unbounded return timeT(xn)511« lnusinp(xn2x̄)u21

for ~a! «50.1, ~b! «50.5, and~c! «510. The graph is based o
computations using 105 evenly spaced values ofg and orbits of
periods from 0 to 24~dotted line! or from 1 to 24~solid line!. For
most of the values ofg, the solid line and the dotted line coincid
A. Finding periodic orbits by symbolic dynamics

To facilitate the determination of periodic orbits of E
~11! we utilize symbolic dynamics and a convenient cho
of the surface of section. In particular, the surface of sect
is chosen as the strip

$z5R21, 22Ab~R21!,x1y,2Ab~R21!%. ~12!

There are two unstable fixed points on the edges of this s
One,C1, is located at„Ab(R21), Ab(R21), R21… and
the other, C2, is located at „2Ab(R21),
2Ab(R21), R21…. All trajectories on the attractor pas
through this strip going downward,dz/dt,0. Figure 8
shows the attractor~dark solid lines! in the surface of sec-
tion. The attractor in the surface of section appears to
approximately one dimensional~two arcs!, and in what fol-
lows we make use of this approximate one-dimensional
~Actually, of course, there is some small thickness to th
arcs inside which fractal structure is present. We neglect
in what follows.!

There are two particular points~markeda andd in Fig. 8!
on the attractor, such that the trajectories through them g
the other fixed pointC0 located at the origin (0,0,0). We
pick two directions,e1 at 45° to thex axis, ande2 along the
line ad in Fig. 8. Transforming to a coordinate system whe
e1 ande2 are perpendicular, and defining the angle 2pu from
e1 in that system, we arrive at a one-dimensional map,un11
versusun , by recording data from a long orbit on the attra
tor ~see Fig. 9!. This map takes the interval (0,1) to itsel
and this interval is conveniently divided into four partsA
5(0,1/4), B5(1/4,1/2), C5(1/2,3/4), D5(3/4,1). The
possible transitions of an orbit visiting these intervals a
shown in Fig. 10.

We wish to find the periodic orbits of the one-dimension
map in Fig. 9. For this purpose we use cubic spline fits of
numerical data in Fig. 9. Because all the periodic points e
bedded in the Lorenz chaotic attractor are unstable, a co
nient way of finding them is via backward iteration of th
map. However, since the map is noninvertible, to iterate
map backward we need to choose, at each iteration,
branch of the inverse in an appropriate way. To do this,
use the symbolic dynamical rules shown in Fig. 10. Give

FIG. 6. Comparison ofr (p)/p2 with 22p, where r (p) is the
fraction of g values for which periodp or larger optimizeŝ Fg&«

for the doubling transformation with unbounded return timeT(xn)

511« lnusinp(xn2x̄)u21.
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periodic symbolic sequence ofA’s, B’s, C’s, andD ’s that is
allowed by Fig. 10, we start with an arbitrary initial cond
tion in one of the intervals and follow the symbolic sequen
backward to choose successive branches of the inverse
Because of the forward instability, this procedure conver
to the unique periodic orbit with the given symbol sequen
if one exists. Thus we can efficiently locate all periodic o
bits of the map with a given period by searching the poss
symbol sequences with that period.~Not all symbol se-
quences allowed by the transition diagram Fig. 10 actu
occur as orbits of the map Fig. 9. For example although i
hard to tell from Fig. 9, the return map does not quite tou
the diagonal, and thus it has no fixed points correspondin
the symbol sequencesBBBB . . . and DDDD . . . , which
are allowed by Fig. 10. Further, as we will show later, pe
odic orbits with a consecutive string of more than 25B’s or
D ’s do not occur.!

FIG. 7. Periods that optimizêFg&« for the tent map with un-
bounded return time for~a! «50.1, ~b! «50.5, and~c! «510. The
dotted line represents the maximum fromp50 to 24, and the solid
line represents the maximum fromp51 to 24.
e
ap.
s
,

-
le

ly
s
h
to

-

B. Optimal invariant sets

After detecting the locations of the periodic orbits embe
ded in the Lorenz attractor, the optimal average performa
function is evaluated. Here, the definition of the average p
formance function is as given in Eqs.~2! and ~3!, which we
rewrite below in slightly different notation@in Eqs. ~2! and
~3!, x is a vector, while belowx, y, andz are scalars, as in Eq
~11!#.

^Fg&[ lim
N→`

(
n51

N

T~xn ,yn!F̃g~xn ,yn!

(
n51

N

T~xn ,yn!

, ~13a!

F̃g~xn ,yn![
1

T~xn ,yn!
E

0

T(xn ,yn)

Fg„x~ t !,y~ t !,z~ t !…dt,

~13b!

wherexn5x(0), yn5y(0), andzn5z(0) are, respectively,
the x, y, and z coordinates of the points on the Poinca´
section. The performance function is chosen to be

FIG. 8. The Poincare´ section of the Lorenz attractor. Pointsa
andd are two critical points on the section. Any trajectories goi
through pointsa or d will approach the fixed point at (0,0,0). W
construct an approximate one-dimensional~1D! return map using
the angular coordinate 2pu. This angle is measured from the pos
tive e1 direction after a change of variables that makese1 and e2

perpendicular.

FIG. 9. The approximate 1D return map obtained from the L
renz system.
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1956 PRE 62TSUNG-HSUN YANG, BRIAN R. HUNT, AND EDWARD OTT
Fg„x~ t !,y~ t !,z~ t !…5~cos 2pg!z~ t !1~sin 2pg!y~ t !,
~14!

whereg is a parameter in@0,1#. Figure 11 shows a plot o
the optimal periods that maximize Eq.~13a! as a function of
the parameterg. The plot was obtained using 104 evenly
spaced values ofg in @0,1#, and all the periodic orbits of the
Lorenz equations~11! with return map periods from 1 to 16
In the range 0.44,g,0.56, a Farey tree structure similar
that found in the previous cases can be discerned. Out
this g range, among the periods tested, the highest pe
(p516) is optimal. Thus the optimal orbit hasp>16. A
similar tendency toward high optimal period for the Lore
equations has been found by Zoldi and Greenside@15# with a
different performance function.@Note, however, that if the
unstable fixed point at (0,0,0) is considered, it dominates
Farey tree structure and is optimal for about 0.29,g,0.71
~dotted line in Fig.11!.#

The fact that optimality occurs for the highest peri
tested (p516) apparently brings our conjectures~i!–~iii ! in
Sec. I into question. We show below, however, that conj
tures~i!–~iii ! are still expected to apply. In particular, wit
regard to conjecture~i!, optimality still occurs at finite pe-
riod, namely,p>25. We also show that the reason for th
occurrence of a relatively large optimizing period is that,
the standard parameter choiceR528, the Lorenz system is
near a crisis. Thus, with regard to conjecture~ii !, we will
show that for most values ofR in the range for which the
Lorenz system is chaotic, optimality is likely to occur at lo
period. Furthermore, we demonstrate below that as a sys
approaches a crisis, the optimal period approaches infinit
the following way: ifDp is the parameter range over which
period p orbit is optimal, then asp gets largerDp becomes
smaller exponentially fast, lnDp.2(const) p. Thus, enlarg-
ing the meaning of typicality in conjecture~ii ! of Sec. I to
include variation of a system parameter (R in this case! as
well as variation of a performance function parameter (g in
this case!, it is still the case that optimality typically occur
at low period~or on a steady state!.

To see what the characteristics of the optimal orbits a
the period 2 and period 16 optimal orbits for Eq.~14! ~for g
near 0.5 andg near 0, respectively! are shown in Fig. 12.
The period 16 orbit spends much of its time close to the fix
point C2, which is near to but not on the attractor.~There is
also a symmetric orbit that is concentrated nearC1.!

More generally, when the average performance is gre
at C1 or C2 than for any orbit on the attractor, we can expe
the optimal orbit to be the one that spends as large a pro
tion of time as possible near one of these fixed points. T
we expect that at the usual Lorenz parameter values, the
a symmetric pair of relatively high-period orbits on the a

FIG. 10. Symbolic diagram for the 1D return map shown
Fig. 9.
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tractor that will be optimal for a large class of performan
functions. To get an idea of the period of these orbits, a
how their period depends on system parameters, we cons
the symbolic dynamics of the Lorenz attractor as a funct
of the system parameterR.

To define the symbolic coding for a trajectory, consid
the sign ofx whenz reaches a local maximum. Ifx,0, we
record a 0, whereas ifx.0, we record a 1. Becausez has a
local maximum exactly once between any two consecu
piercings of the Poincare´ surface of section, we record on
symbol for each iteration of the Poincare´ return map. For
example, the orbit in Figs. 12~a,b! has symbolic coding
01010101 . . . , whereas the coding for the orbit in Figs
12~c,d! consist of a repeating string of 16 symbols: a 0 fo
lowed by 15 1’s. See@14# for more about the symbolic dy
namics of the Lorenz system and@9# for a discussion of the
symbolic dynamics of optimal orbits.

In terms of this symbolic coding, we are interested
describing, as a function ofR, the period of the orbit with the
maximum proportion of 0’s in its symbolic coding~the sym-
metric orbit will have the maximum proportion of 1’s!. Now,
asR decreases through a critical valueRc'24.06, the system
undergoes a ‘‘crisis’’ at which the attractor collides with tw
unstable periodic orbits near the two fixed pointsC1 andC2,
and the attractor is destroyed as almost all trajectories
proach one of these fixed points@16#. In @17# it is shown for
the standard tent map that, near a crisis, for most param
values the symbolic coding of the orbit that has the grea
proportion of 0’s consists ofl 5p21 consecutive 0’s fol-
lowed by a 1, wherep is the period of the orbit, andp grows
to infinity as the crisis parameter value is approached. Li
wise, we expect the same symbolic dynamics for the o
with the greatest proportion of 0’s in the Lorenz attractor,
most values ofR.

In order to understand this behavior it is useful~as in
Lorenz’s paper! to consider the essentially one-dimension
mapzn11 versuszn , wherezn denotes thenth maximum of
z(t); see the schematic illustration in Fig. 13. In this m
both of the unstable periodic orbits encirclingC1 andC2 are
represented by the same fixed point,z5za . Also, a periodic
orbit that circlesC1 ~or C2) p21 times and then circlesC2
~or C1) one time corresponds to an orbit of this map th
spendsp21 iterates withz,z* and one iterate withz
.z* . From Fig. 13 we see that the chaotic attractor for

FIG. 11. The optimal periods for the Lorenz system that ma
mize the average performance function Eq.~14!. The dotted line is
the result when the period 0 fixed point (0,0,0) is included, wh
the solid line shows the result of not considering the fixed poin
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FIG. 12. The trajectories of the optimal periods that maximize the average performance function Eq.~14!: ~a! period 2, projected on the
X-Y plane,~b! period 2, projected on theY-Z plane,~c! period 16, projected on theX-Y plane, and~d! period 16, projected on theY-Z plane.
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map is confined to the regionzg>z>zb.za . Hencep is at
most 1 greater than the numberl of iterates starting from
z15zb that the map orbit spends inz,z* . As the crisis is
approached (R→Rc), zg increases andzb→za ~i.e., the at-
tractor collides with the unstable period 1 orbit!. At R
5Rc , zb5za , and l 5`, becausezb is an unstable fixed
point of the map.

Thus we consider, as a function ofR, the maximum num-
ber l of consecutive 0’s~or 1’s! that the symbolic dynamics
of a trajectory on the Lorenz attractor generate. This co
sponds to the maximum number of consecutive loops a
jectory on the attractor can make around the same fi
point, C1 or C2, before looping closer to the other fixe
point. Figure 14 shows our numerical results. Indeed, for
smaller values ofR near the crisis parameter value,l can be

FIG. 13. Schematic one-dimensional mapzn11 versus zn ,
wherezn denotes thenth maximum ofz(t) in Eq. ~11!.
-
a-
d

e

fairly large, indicating that orbits with periodp5l 11 are
likely to be optimal for many performance functions.~For
the valueR528 used by Lorenz, our results yieldl 11
526.! As was found in@17# for the tent map, we observ
that, for largep, the length of the parameter interval corr
sponding top decays exponentially asp increases to infinity.
Thus, as previously discussed, optimality occurs for low
riod in the sense that the Lebesgue measure of the se
parameter values for which the optimal period isp decays
exponentially with increasingp.

As R increases, the attractor pulls away from the fix
points C1 and C2, and for most values ofR, shown in Fig.
14, the maximum numberl of consecutive loops around on
of these fixed points is less than 10, indicating that hig
period orbits are unlikely to be optimal for typical perfo
mance functions.

C. Near crisis

We now vary the parameter in the standard tent map@Eq.
~15!# in order to illustrate the effect that near a crisis t
system parameter measure for which high-period orbits
optimal decreases exponentially as the crisis is approac
Consider the tent map

xn115H gxn , 0<xn<1/2

g~12xn!, 1/2<xn<1,
~15!

whereg<2 is a real parameter. The attractor for this map
the interval
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g~12g/2!<x<g/2, ~16!

and it undergoes a crisis asg→2, colliding with the fixed
point x50. The maximum numbern of iterations for which
an orbit within the attractor can stay between 0 and 1/2
given by

gn~12g/2!<1/2,gn11~12g/2!. ~17!

Thusn increases asg approaches the crisis value 2, and t
Lebesgue measure of parameter valuesg corresponding to a
givenn decreases exponentially as 22n. Likewise we expect
that for a performance function that is largest atx50 ~much
as ^N& in the Lorenz case is largest at a fixed point outs
the attractor@15#!, the Lebesgue measure of parameters
which the optimal periodic orbitwithin the attractorhas pe-

FIG. 14. The greatest number of consecutivez maxima of the
Lorenz system for which the sign ofx remains the same, as
function of the system parameterR. The solid line is the result of
starting the trajectory very close to (0,0,0) and recording thz
maxima immediately, without dropping any transient part of t
trajectory. This line is likely to be most valid for smaller values
R, when the fixed point (0,0,0) belongs to the attractor.~Since this
fixed point is at the edge of the attractor, its unstable manif
passes along the outside of one lobe of the attractor and then t
inside of the other lobe, so that it will remain in this lobe at least
long as any other trajectory on the attractor.! The dotted line is the
result of starting from a random chosen initial point and letting
trajectory stabilize on the chaotic attractor before recording thz
maxima. This line is likely to be most valid for larger values ofR,
when the whole attractor can be explored in a reasonable amou
time. In both cases, for each value ofR from 24.5 to 100 in incre-
ments of 0.1, we recorded 53104 z maxima.
re
is

e
r

riod greater thanp decreases exponentially asp increases.
Figure 15 shows the period that maximizes^12x&, among
all orbits with period at most 24, for 104 evenly spaced val-
ues of the parameterg between 1.9 and 2. For most of the
parameter values, the optimal periodic orbit is indeed fou
to be the orbit of periodn11 that spendsn iterations be-
tween 0 and 1/2 followed by one iteration between 1/2 a
1, wheren is given by the formula in Eq.~17!.

V. CONCLUSION

In this paper we have considered optimal periodic orb
on chaotic attractors of continuous time systems. Our m
result is that optimality is typically achieved either on a p
riodic orbit or on a steady state. We also find that, in so
circumstances, the optimal period becomes larger and la
as a crisis is approached.
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FIG. 15. Optimal periodp for ^12x& as a function of the tent
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