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In previous workB. R. Hunt and E. Ott, Phys. Rev. Left6, 2254(1996); Phys. Rev. B4, 328,(1996],
based on numerical experiments and analysis, it was conjectured thaptingal orbit selected from all
possible orbits on a chaotic attractor is “typically” a periodic orbit of low period. By an optimal orbit we mean
the orbit that yields the largest value of a time average of a given smooth “performance” function of the
system state. Thus optimality is defined with respect to the given performance furi¢tienstudy of optimal
orbits is of interest in at least three contexts: controlling chaos, embedding of low-dimensional attractors of
high-dimensional dynamical systems in low-dimensional measurement spaces, and bubbling bifurcations of
synchronized chaotic systemsiere we extend this previous work. In particular, the previous work was for
discrete time dynamical systems, and here we shall consider continuous time s{fsigargls An essential
difference for flows is that chaotic attractors can have embedded within them, not only unstable periodic orbits,
but also unstable steady states, and we find that optimality can often occur on steady states. We also shed
further light on the sense in which optimality is “typically” achieved at low period. In particular, we find that,
as a system parameter is tuned to be closer to a crisis of the chaotic attractor, optimality may occur at higher
period.

PACS numbegs): 05.45—-a

[. INTRODUCTION considering typicality with respect to this parameter. Here

we extend these considerations to continuous time systems
One strategy{1—6] for controlling chaotic systems by (flows). In th(_a previous work, numericgal evidenc_e for the.
means of small controls is the following: first, determine following conjectures was presented using numerical experi-
unstable periodic orbitdtUPO9 embedded in the chaotic at- Ments on one- and two-dimensional maps. _ _
tractor: then, examine the UPOs to determine which one (i) The setof parameter values for which the optimal orbit
gives the best system performance: and finally control théS Not periodic has Lebesgue measure zero; that is, the opti-
system to follow that orbit. In general the system perfor-mal orbit is periodic for almost every set of parameter val-
mance averaged over time can be expressed as the time d{fS:
erage of some functioRi(x) of the system state We callF (i) The Lebesgue measure of the set of parameter values

. N for which the optimal orbit is periodic with a period equal to
the performance function and denote its time averag@y or larger than psome valup dpecreases expopnentiall;/q s

—o0, In this sense it was stated that optimality typically oc-

(F)= lim EJ’TF(x(t))dt, (13  curs at low period(In the rest of the paper, whenever we
T—xlJo refer tolow periodas beingtypical, it will be in this sense.
(i) Even when optimality occurs at very high period,
1T there are usually fairly low-period orbits whose performance
(F)= |imT tEI F(xy), (1b) is only slightly less than that achieved by the optimal high-
O =

period orbit.

In the past, experimentalists working on controlling chaos
have often experimentally determined only low-period un-
discreteEq. (1b)]. Thus the best, or optimal, orbit is the one stable periodic orbits contained in the chaotic attractor. This
yielding the largest value gfF) [7]. is partly because the determination of many high-period un-

In this paper we shall be interested in the “typical” prop- stable periodic orbits can be very demanding and in many
erties of optimal orbits. In previous wofl8,9] this question cases is not feasible. The work of Reff8,9] indicates that
was examined for the case of discrete time systemeps,  there will usually be little gain, and often none, by going to
using a one-parameter family of performance functions, anthe considerable effort of determining many more unstable
periodic orbits.

Another possible motivation for consideration of optimal

wheret denotes time and is either continudusy. (1a)] or
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periodic orbits comes from the theory of embedding. Embed-
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ding is of particular interest for the analysis of experimentalsteady states. In Sec. lll, we use the same maps but allow
data from hlgh-(lﬂdudlng |nf|n|te) dimensional dynamical T(X)—>°° asx approaches SOITEtO model the presence of a
systems. In particular, it has been sho0,11 that, if D, steady state in the flow.
denotes the largest Lyapunov dimension of any orbit con- |n Sec. IV, we consider the Lorenz equatidis,14 as
tained within an attractor and is an integer greater than an example of a continuous time system with an embedded
2D, then a generic embedding into ardimensional Eu-  steady state. In this context, an interesting fact was recently
clidean space gives a one-to-one representation of the attragointed out by Zoldi and Greensidd5]: if one uses the
tor. The Lyapunov dimension of an orbit is a function of its parameters originally investigated by Lorenz, then, for the
Lyapunov exponents, which are time averages in a morgerformance function Zoldi and Greenside studied, optimal-
generalized sense than we consider in this paper. Thus thg occurs at a rather large period. This motivates us to ex-
results described abovsuggestthat the largestoptima)  amine the sense of the word “typically” in the statement
Lyapunov dimension is typically attained on a periodic orbitthat optimal orbits typically occur at low period. We find
with low period. Still another motivation for consideration of that, by enlarging the meaning of typicality to be with re-
optimal periodic orbits is that they play a crucial role in the spect to both variation of system parameters and perfor-
stability of synchronization of chaotic systems. In particular,mance function parameters, it is still the case that optimality
they determine the onset of the “bubbling transitiofee  typically occurs at low periodor on a steady state
Refs.[12]).

Is there any change in the results of the previous work on |, piSCRETE MAPS WITH BOUNDED RETURN TIME
optimal periodic orbits if we consider a continuous time sys-
tem? Although the trajectories of continuous systems can be In [8,9] the discrete time averagéb) was considered for
reduced to discrete mappings by a Poincsueface of sec- two one-dimensional maps, the doubling transformation and
tion, the interval of continuous time between successive erthe tent map, using the one-parameter family of performance
counters with the surface of section varies with the startingunctions,
point x on the surface of section. For sughlet T(x) denote
the time for the orbit fromx to next intersect the surface of Fy(x)=cog2m(x=7)], (4)

section; we callT(x) thereturn timeof x. Let F(x) denote  \here 0<y=<1. The average thus considered is equivalent to
the time average of the performance functibnover this the average3) with  replaced byF, and T(x)=1. In this

time interval, section we will explore the effect of a nonconstant return
time T(x) on the averagé€3) using the smoothly varying
- 1 T o i
F0= 10|, P (p  functon
0 T,(X)=1+s sin 2mx, (5)
wherex(0)=x. We can then express Efla) as for variouse between 0 and 1. As described in the Introduc-
tion, this type of return time function mimics the case of a
n Poincaresection of a continuous time attractor with no em-
> T F (%) bedded steady states.
= The average we consider in this section is thus
(F)=lim —f——, (3
n—oo n
T(X
m§=:l ( m) m§=:1 Ta(xm)F‘y(Xm)
(F,)s=lim 5 , (6)
V\{herg the integer indem enumerates the surface of section n— 2 T, (X
piercings. m=1

These considerations are complete as long as there are no i
steady states embedded in the attractor. If there are stea¥jth F, andT, defined above.
states, then it is possible to have initial conditions on the

surface of section that generate orbits that go to the steady A. Doubling transformation

state(assumed to lie off the surface of sectiamithout ever The first map we consider is the doubling transformation,
returning to the surface of section. In this cabgx) tends to

infinity asx approaches an initial condition going to a steady Xni1=2Xp(mod ). (7)
state.

When steady states are present, we find that conjecturdr each of the values=0,0.1,0.2...,1.0 weperformed
(i)—(iii ), stated above for the case of maps, need to be modthe following numerical experiment. For each of kvenly
fied. In particular, we conjecture that for continuous timespaced values of between 0 and 1, we calculated the maxi-
systems, optimality typically occurs either on an unstablemum value of(F ). among all the periodic orbits of E¢7)
periodic orbit with low period or on an unstable steady statewith periods 1 to 24. Figure 1 shows the period of the opti-
(if one exists in the chaotic attractor under consideration mal orbit as a function of the parametgfor e =0.1 and 0.5.

In Sec. Il, we use map models to consider the case wher€he results are very similar to those [i8,9], which corre-
T(x) is finite for allx. This corresponds to the case where thespond toe =0. As ¢ increases, the figure becomes less sym-
attractor of the continuous time system has no embeddeghetric, but there is little qualitative change.



1952 TSUNG-HSUN YANG, BRIAN R. HUNT, AND EDWARD OTT PRE 62

p u
1.0
p u
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Y Y
FIG. 1. Periods that optimizgF ), for the doubling transfor- FIG. 3. Periods that optimiz¢F ), for the tent map with
mation with bounded return tim&(x,) =1+ ¢ sin 2mx,, for () ¢ bounded return tim& (x,) =1+ ¢ sin 2mx,, for (a) e=0.1 and(b)
=0.1 and(b) £e=0.5. £=0.5.
To be more precise, let(p) be the fraction ofy values B. Tent map
for which periodp or larger is optimal. Figure 2 shows, for ~ Next, we consider the tent map 68,1],
variouse, a test of the asymptotic predicti¢8,9]
1
2%n Xn< =
r(p)<kKp?2=P 2
’ Xn+1= 1 8
2(1_Xn): Xn>51

whereK is a fitting constant. Specifically, Fig. 2 shows plots
of log;{ r(p)/p?] versusp, which are to be compared to the
dotted plot of logo(2~P) versusp. The two agree well. We

conclude that the conjecture thap) decays exponentially

asp increases is demonstrated by our results for all values
e between 0 and 1.

with the same time functiori5) and performance function
(4). We performed the same numerical experiment for vari-
qus values ok: for each of 18 evenly spaced values of
qt)etween 0 and 1, we maximized the averd@g over all
periodic orbits of Eq.(8) with period at most 24. Foe
=0.1 ande=0.5, the optimal period as a function ofis

10° +§# ' ' ' ' ; shown in Fig. 3. Again, the results differ very little from
s ‘ﬂ. e=00< 1 those in[8,9] (¢=0). The precise values af for which a
10-2 F é-.. e=020 ] given period is optimal shift slightly as increases, but the
[ @ e e= 8%1 % ] proportion f(p) of y values for which periog is optimal
, ﬂnf&,. Z; 08 o ] changes little except for the smallest valuespofrigure 4
%5210‘4 E Bge. e=10 * I shows the dependence ofp) on p for £=0,0.2...,1.0.
L ﬁﬁé.. 27P o Again, the values and the exponential decay (@) across
106 [ &y .. ] the intermediate values @f are consistent as changes.
L0 . . . °3 éﬁi IIl. DISCRETE MAPS WITH UNBOUNDED RETURN
0 5 10 15 20 25 TIME
p In this section, we explore the effect of unbounded return

FIG. 2. Comparison of (p)/p2 with 2~P, wherer(p) is the time on the problem of optimizing the ayera@e), using the
fraction of y values for which periog or larger optimizegF ), maps(7) and(8) and performance functio) from Sec. I
for the doubling transformation with bounded return tifiex,)  (°9ether with a new family of return time functiofis,(x)
=1+¢ sin 27X, . that have a singularity ,(x) —« asx approaches a point
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10° *ﬁ . . . . respect to the dynamics dt) we treatx as a special “period
L A, . e=009C 13 0" orbit, corresponding to the steady statexat, to be com-
10-2 | 3@ Ce, =020 j pared with the orbits of period 1,2,3. . that return toP.
R .. e=044 7
L ﬂﬁ ., . e = 82 g 5
rp) a4l ‘e, £= k A. Doubling transformation
ip?z]'o4 ﬂnﬁ .0' €=1.0* 1 A i g . i .
L By e, 2P« ] We consider again the doubling transformati@ with
10-5 | lﬁ ‘e 1 the average given by Ed4) and Eq.(6), but with a new
ﬁg Te., ] family of return time functions which we choose based on
3 E the discussion above:
10—8 I I I @ﬁﬁmm ]
0 5 10 15 20 25
=l+elnie—--7r.
p Te00 =1t eI 1) ©

FIG. 4. Comparison of (p)/p? with 2P, wherer(p) is the
fraction of y values for which periog or larger optimizegF ).
for tent map with bounded return timgx,) =1+ & sin 27x,.

Here we imagin97= 1/2, the point of discontinuity for Eq.
(7), to represent a point on a Poincasarface of section
whose trajectory approaches an unstable fixed pajnoff

As discussed in the Introduction, this type of singularity ofthe surface of section. Larger values ofcorrespond to
T(x) occurs in continuous time systems when the orbit of darger amounts of time spent negy, i.e., smaller values of

point X on a Poincaresurface of sectiorP approaches a the unstable eigenval(g for x, .

steady statex, embedded in the attractor but located Bff

The point;represents the intersection of the stable manifold®

of x,. with P; if the stable manifold is more than one dimen-
sional, the intersection will be a curve or a higher-
dimensional subsurface &f.

In order to determine the appropriate form ofx) asx

—X, we consider in more detail the dynamics of such
continuous time system. Consider a trajecta(y) where

X(0)=x is a point on the PoincarsectionP nearx. Fix a
small neighborhood\ of the steady state, . The amount of

time taken byx(t) to reachN is bounded as approacheg,
as is the time taken to return from the boundaryNdfack to

P. Thus the growth off (x) toward infinity asx—x is due

entirely to the amount of time spent byt) in N.
Now since the steady statg is embedded in a chaotic
attractor, it must be a saddle point, whose stable manfold

intersectsP at x (and perhaps at some curve or higher-
dimensional subsurface through. If X(0)=x is close tox,

then it is close toS and the distance of(t) from S grows
approximately exponentiallywith growth rate independent

a

For a given value ok, our numerical experiment is the
ame as in the previous section; for each of ¥enly
spaced values of, we find the maximum ofF ). defined
by Eq. (6) over all periodic orbits of Eq(7) with period at
most 24, including now the period 0 poirt The optimal
period as a function of is shown fore=0.1, e=0.5, and
£=10 in Fig. 5. The solid line represents the optimal period
excluding period 0, and the dotted line includes period O.
Notice that when the values @&f are large, for a substantial
set of y values near 0.5, the optimal period excluding O is
24. However, when we include the period O point, we see
that the optimum is as before achieved at low period for most
values ofy. We observe a similar effect in the next section
for the Lorenz system.

Furthermore, we findas in the case of bounded return
time) that, regardless of the value of the fractionr (p) of y
values with optimal period at leaptdecreases g2 P asp
increases. The graph o{p)/p? versusp for variouse is
shown in Fig. 6.

B. Tent Map

of [x—x|) as long as this distance remains small. In order for Next we show the analogous results for the tent rt@&p

X(t) to exit the neighborhoodl of X, , Its distance frons
must grow to be approximately the radiushfSince at time

0 this distance i$x—x|, the time at whicix(t) exitsN is (to
first orde) proportional to In(lk—x|). Therefore, T(x)
grows asC In(1/|x—x|) asx—x.

again with the family of performance functiofs, given by
Eqg. (4), but with a slightly different family of return time
functions,

=1+
T.(x)=1 sln2

—1 10
x—12" (10

Another complication introduced by the existence of the

embedded steady statg is that the optimal performance
average may occur at, rather than on a trajectory that
returns to the PoincarsectionP. Based on the discussion
above of the dynamics near the stable manifold,,of notice
that the fraction of the return tinig(x) thatx(t) spends i\

approaches 1 as—x. It follows that the averag (x), de-
fined by Eq.(2), of the performance functioR over this time

period converges t&(x,) asx—x. Thus we definé=(x)
=F(x,), and, in computing the optimal average Pfwith

In Fig. 7 we show the periods of the orbits that maximize
(F,).. as defined in Eq(6), as a function ofy for e=0.1,
£=0.5, ande =10. As for the doubling transformation, the
period O point is optimal for an interval of values that does

not change dramatically for differing values of And for
larger values ofs we see again that for many of these
values the optimum among the positive values of the period
p is the largest period 24, representing an orbit that spends as

much time as possible near the critical poist 1/2.
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FIG. 6. Comparison of (p)/p? with 27P, wherer(p) is the
fraction of y values for which periog or larger optimizegF ).
for the doubling transformation with unbounded return tif(e,,)

=1+ In|sina(x,—x)| "%

A. Finding periodic orbits by symbolic dynamics

To facilitate the determination of periodic orbits of Eq.
(12) we utilize symbolic dynamics and a convenient choice
of the surface of section. In particular, the surface of section
is chosen as the strip

{z=R-1, —2JB(R—1)<x+y<2JB(R-1)}. (12

There are two unstable fixed points on the edges of this strip.
One,C,, is located afy8(R—1), VB(R—1), R—1) and
the other, C,, is located at (—{B(R—1),
—+B(R—1), R—1). All trajectories on the attractor pass
through this strip going downwarddz/dt<0. Figure 8
shows the attractofdark solid line$ in the surface of sec-
tion. The attractor in the surface of section appears to be
approximately one dimensionéwo arcg, and in what fol-
0.0 0.2 0.4 0.6 0.8 1.0 lows we make use of this approximate one-dimensionality.
v (Actually, of course, there is some small thickness to these
arcs inside which fractal structure is present. We neglect this
FIG. 5. Periods that optimizéF ), for the doubling transfor-  in what follows)
mation with unbounded return timB(x,) =1+ & In|sin mr(x,—x)| * There are two particular pointsnarkeda andd in Fig. 8)
for (a) e=0.1, (b) e=0.5, and(c) e=10. The graph is based on on the attractor, such that the trajectories through them go to
computations using fOevenly spaced values of and orbits of  the other fixed pointC, located at the origin (0,0,0). We
periods from O to 24dotted ling or from 1 to 24(solid line). For  pick two directionsg; at 45° to thex axis, ande, along the
most of the values of, the solid line and the dotted line coincide. line ad in Fig. 8. Transforming to a coordinate system where
e, ande, are perpendicular, and defining the angtet2from
IV. CONTINUOUS TIME SYSTEM: LORENZ EQUATIONS g, in that system, we arrive at a one-dimensional m&p,;
versusé,, by recording data from a long orbit on the attrac-
tor (see Fig. 9. This map takes the interval (0,1) to itself,
dx and this interval is conveniently divided into four pa#ss
a=—0x+ ay, =(0,1/4), B=(1/4,1/2), C=(1/2,3/4), D=(3/4,1). The
possible transitions of an orbit visiting these intervals are
shown in Fig. 10.

Finally, we consider the Lorenz equatiois3,14),

d_y = —xz+Rx—Y, (12) We wish to find the periodic orbits of the one-dimensional
dt map in Fig. 9. For this purpose we use cubic spline fits of the
numerical data in Fig. 9. Because all the periodic points em-
dz_ bedded in the Lorenz chaotic attractor are unstable, a conve-
E_Xy pz. nient way of finding them is via backward iteration of the

map. However, since the map is noninvertible, to iterate the
whereo, R, andg are dimensionless parameters, which wemap backward we need to choose, at each iteration, the
set to the original values used by Lorenz 10, R=28, and  branch of the inverse in an appropriate way. To do this, we
B=28/3. use the symbolic dynamical rules shown in Fig. 10. Given a
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Y -8.00 f |‘ T
-8.00 0.00 8.00
T T T T xn
wor (bye=05 1 FIG. 8. The Poincarsection of the Lorenz attractor. Poirds

L . andd are two critical points on the section. Any trajectories going
through pointsa or d will approach the fixed point at (0,0,0). We
D 10 7 construct an approximate one-dimensiofieD) return map using
the angular coordinates26. This angle is measured from the posi-

4|—\_—\—\_\ 1 tive e; direction after a change of variables that makesande,

0F OO PITITY m perpendicular.

! ! : : B. Optimal invariant sets

¥ After detecting the locations of the periodic orbits embed-
ded in the Lorenz attractor, the optimal average performance
. . . . function is evaluated. Here, the definition of the average per-

formance function is as given in Eq®) and (3), which we
0 (c)e=10 i rewrite below in slightly different notatiofin Egs.(2) and
L 4 (3), xis a vector, while below, y, andz are scalars, as in Eq.
1D)].
P 101 .
N
e l 2 T Yn)F (X0 Yr)
oF eceresecsensd m <F7>E lim . , (133
N— oo
0.0 0.2 0.4 0.6 0.8 1.0 ngl T Yn)
Y
-~ 1 T(Xn ¥n)
FIG. 7. Periods that optimiz¢F.), for the tent map with un- F o (Xn,Yn)= ﬁf F(x(1),y(t),z(t))dt,
bounded return time fof@) ¢=0.1, (b) £=0.5, and(c) e=10. The n:Yn)Jo (13b)

dotted line represents the maximum fraw 0 to 24, and the solid

line represents the maximum frop=1 to 24. wherex,=x(0), y,=Yy(0), andz,=z(0) are, respectively,
the x, y, and z coordinates of the points on the Poincare

periodic Symbo"c sequence NS, B’s, C's, andD’s that is section. The performance function is chosen to be

allowed by Fig. 10, we start with an arbitrary initial condi- 1.00

tion in one of the intervals and follow the symbolic sequence

backward to choose successive branches of the inverse map.

Because of the forward instability, this procedure converges .

to the unique periodic orbit with the given symbol sequence,

if one exists. Thus we can efficiently locate all periodic or- 6,,, 0.50—

bits of the map with a given period by searching the possible +1

symbol sequences with that perioNot all symbol se-

guences allowed by the transition diagram Fig. 10 actually 7

occur as orbits of the map Fig. 9. For example although it is

hard to tell from Fig. 9, the return map does not quite touch 0.00

the diagonal, and thus it has no fixed points corresponding to

the symbol sequenceBBBB... andDDDD ..., which 0.00 0.50 1.00
are allowed by Fig. 10. Further, as we will show later, peri- 9,
odic orbits with a consecutive string of more thanE2's or FIG. 9. The approximate 1D return map obtained from the Lo-

D’s do not occun. renz system.
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FIG. 10. Symbolic diagram for the 1D return map shown in
Fig. 9. OF = Ressscssscscrsssscnnanes 4

F(x(1),y(1),z(t))=(cos 2ry)z(t) + (sin 2my)y(1), 0.0 02 04 06 0.8 1.0
(14) Y

FIG. 11. The optimal periods for the Lorenz system that maxi-
where y is a parameter ifi0,1]. Figure 11 shows a plot of mize the average performance function Ety). The dotted line is
the optimal periods that maximize E@.38 as a function of  the result when the period 0 fixed point (0,0,0) is included, while
the parametery. The plot was obtained using 4@venly  the solid line shows the result of not considering the fixed point.
spaced values of in [0,1], and all the periodic orbits of the
Lorenz equation§l1) with return map periods from 1 to 16. tractor that will be optimal for a large class of performance
In the range 0.44 y<<0.56, a Farey tree structure similar to functions. To get an idea of the period of these orbits, and
that found in the previous cases can be discerned. Outsidew their period depends on system parameters, we consider
this y range, among the periods tested, the highest periothe symbolic dynamics of the Lorenz attractor as a function
(p=16) is optimal. Thus the optimal orbit hgs==16. A  of the system paramet&.
similar tendency toward high optimal period for the Lorenz  To define the symbolic coding for a trajectory, consider
equations has been found by Zoldi and Greenglé¢with a  the sign ofx whenz reaches a local maximum. ¥<0, we
different performance functiorjiNote, however, that if the record a 0, whereas ¥>0, we record a 1. Becaugehas a
unstable fixed point at (0,0,0) is considered, it dominates théocal maximum exactly once between any two consecutive
Farey tree structure and is optimal for about 8:28<0.71  piercings of the Poincarsurface of section, we record one
(dotted line in Fig.11] symbol for each iteration of the Poincareturn map. For

The fact that optimality occurs for the highest period example, the orbit in Figs. 1&b has symbolic coding
tested p=16) apparently brings our conjecturés—(iii) in ~ 010101Q ..., whereas the coding for the orbit in Figs.
Sec. | into question. We show below, however, that conjecd2(c,d) consist of a repeating string of 16 symbols: a 0 fol-
tures (i)—(iii ) are still expected to apply. In particular, with lowed by 15 1’s. Se¢l4] for more about the symbolic dy-
regard to conjecturéi), optimality still occurs at finite pe- namics of the Lorenz system ap@] for a discussion of the
riod, namely,p=25. We also show that the reason for this symbolic dynamics of optimal orbits.
occurrence of a relatively large optimizing period is that, for In terms of this symbolic coding, we are interested in
the standard parameter choiBe=28, the Lorenz system is describing, as a function @, the period of the orbit with the
near a crisis. Thus, with regard to conjectuiie, we will maximum proportion of 0’s in its symbolic codir{the sym-
show that for most values d@® in the range for which the metric orbit will have the maximum proportion of 2:Now,
Lorenz system is chaotic, optimality is likely to occur at low asR decreases through a critical valRg~24.06, the system
period. Furthermore, we demonstrate below that as a systemmdergoes a “crisis” at which the attractor collides with two
approaches a crisis, the optimal period approaches infinity innstable periodic orbits near the two fixed poiGtsandC,,
the following way: ifA , is the parameter range over which a and the attractor is destroyed as almost all trajectories ap-
period p orbit is optimal, then ap gets largerA , becomes  proach one of these fixed poir{ts6]. In [17] it is shown for
smaller exponentially fast, l,=—(cons) p. Thus, enlarg- the standard tent map that, near a crisis, for most parameter
ing the meaning of typicality in conjectur@) of Sec. | to  values the symbolic coding of the orbit that has the greatest
include variation of a system parametd® {n this casg as  proportion of 0’s consists of =p—1 consecutive 0's fol-
well as variation of a performance function parametegrir{  lowed by a 1, wherg is the period of the orbit, ang grows
this caseg it is still the case that optimality typically occurs to infinity as the crisis parameter value is approached. Like-
at low period(or on a steady state wise, we expect the same symbolic dynamics for the orbit

To see what the characteristics of the optimal orbits arewith the greatest proportion of 0’s in the Lorenz attractor, for
the period 2 and period 16 optimal orbits for E§4) (for y  most values oR.
near 0.5 andy near 0, respectivelyare shown in Fig. 12. In order to understand this behavior it is usefabk in
The period 16 orbit spends much of its time close to the fixed-orenz’s paperto consider the essentially one-dimensional
point C,, which is near to but not on the attract¢fhere is mapz,, versusz,, wherez, denotes theth maximum of
also a symmetric orbit that is concentrated n€an z(t); see the schematic illustration in Fig. 13. In this map

More generally, when the average performance is greatdsoth of the unstable periodic orbits encircliGg andC, are
atC, or C, than for any orbit on the attractor, we can expectrepresented by the same fixed pot z,,. Also, a periodic
the optimal orbit to be the one that spends as large a propoprbit that circlesC, (or C,) p—1 times and then circle§,
tion of time as possible near one of these fixed points. Thugor C;) one time corresponds to an orbit of this map that
we expect that at the usual Lorenz parameter values, there $pendsp—1 iterates withz<z, and one iterate witte
a symmetric pair of relatively high-period orbits on the at->z, . From Fig. 13 we see that the chaotic attractor for the
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FIG. 12. The trajectories of the optimal periods that maximize the average performance functi@d)E@) period 2, projected on the
X-Y plane,(b) period 2, projected on theé-Z plane,(c) period 16, projected on thé€-Y plane, andd) period 16, projected on thé-Z plane.

map is confined to the regian=z=z,>z,. Hencepis at  fairly large, indicating that orbits with periog=/+1 are
most 1 greater than the numberof iterates starting from likely to be optimal for many performance functior(or
z,=124 that the map orbit spends &<z, . As the crisis is  the valueR=28 used by Lorenz, our results yield+1
approachedR—R,), z, increases andﬁﬂza (i.e., the at- =26, As was found in[17] for the tent map, we observe
tractor collides with the unstable period 1 ojbiiAt R that, for largep, the length of the parameter interval corre-

=R., z3=2,, and/ ==, becausez, is an unstable fixed sponding top decays exponentially gsincreases to infinity.
point of the map. Thus, as previously discussed, optimality occurs for low pe-

Thus we consider, as a function Bf the maximum num- riod in the sense that the Lebesgue measure of the set of
ber/ of consecutive 0'$or 1's) that the symbolic dynamics Parameter values for which the optimal periodpislecays
of a trajectory on the Lorenz attractor generate. This correexponentially with increasing.
sponds to the maximum number of consecutive loops a tra- As R increases, the attractor pulls away from the fixed
jectory on the attractor can make around the same fixe@0intsC; andC,, and for most values dR, shown in Fig.
point, C,; or C,, before looping closer to the other fixed 14, the maximum numbef of consecutive loops around one
point. Figure 14 shows our numerical results. Indeed, for th@f these fixed points is less than 10, indicating that high-

smaller values oR near the crisis parameter valuécan be  period orbits are unlikely to be optimal for typical perfor-
mance functions.

Zn+1
A L, C. Near crisis
Zy - Ty We now vary the parameter in the standard tent ffap
o (15)] in order to illustrate the effect that near a crisis the
X system parameter measure for which high-period orbits are
,,“ optimal decreases exponentially as the crisis is approached.
.’ Consider the tent map
/ ' YXn, o=x,<1/2
/i i Xn+1= (15
7 >~ Z, y(1—=x,), 12=x,<1,

FIG. 13. Schematic one-dimensional map,, versus z,, wherey=<2 is a real parameter. The attractor for this map is
wherez, denotes thenth maximum ofz(t) in Eq. (12). the interval
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FIG. 15. Optimal periog for (1—x) as a function of the tent

FIG. 14. The greatest number of consecutivmaxima of the
map parametey.

Lorenz system for which the sign of remains the same, as a

function of the system parametBr The solid line is the result of . . .
starting the trajectory very close to (0,0,0) and recording zhe "10d greater tharp decreases exponentially @sincreases.

maxima immediately, without dropping any transient part of theFigure 15 shows the period that maximizgs-x), among

trajectory. This line is likely to be most valid for smaller values of all orbits with period at most 24, for fGevenly spaced val-

R, when the fixed point (0,0,0) belongs to the attractSince this ~ ues of the parameter between 1.9 and 2. For most of these

fixed point is at the edge of the attractor, its unstable manifoldparameter values, the optimal periodic orbit is indeed found

passes along the outside of one lobe of the attractor and then to tlie be the orbit of perioch+1 that spends iterations be-

inside of the other lobe, so that it will remain in this lobe at least astween 0 and 1/2 followed by one iteration between 1/2 and

long as any other trajectory on the attractdihe dotted line is the 1, wheren is given by the formula in Eq(17).

result of starting from a random chosen initial point and letting the

trajectory stabilize on the chaotic attractor before recordingzthe

maxima. This line is likely to be most valid for larger valuesRyf V. CONCLUSION

v_vhen the whole attractor can be explored in a reasonaple_amount of In this paper we have considered optimal periodic orbits

time. In both cases, for each (\)lf‘luem.rom 24510 100nincre- o chaotic attractors of continuous time systems. Our main

ments of 0.1, we recorded>510" z maxima. result is that optimality is typically achieved either on a pe-

riodic orbit or on a steady state. We also find that, in some

Y(1=yl2)=x<vyl2, (16 circumstances, the optimal period becomes larger and larger

and it undergoes a crisis a@s—2, colliding with the fixed as a crisis is approached.

point x=0. The maximum numbaen of iterations for which
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