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Frequency and width crossing of two interacting resonances in a microwave cavity
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Frequency and width crossing have been observed for two coupled resonances in a microwave cavity. The
cavity consisted of two nearly identical rectangular boxes. The boxes were coupled by a slit of variable width.
The data are well described by a non-Hermit&matrix leading to a X2 non-Hermitean effective Hamil-
tonian. The values of the interaction strenfzthfor which width crossing and frequency crossing, respectively,
were observed, are above and below a critical védyg for which one expects a joint frequency and width
crossing.

PACS numbes): 05.45.Mt, 02.60.Cb, 03.65.Ge, 24.60.Lz

I. INTRODUCTION frequencies become equal, i.e4(\g) = vo(\g). One speaks
of frequency anticrossing if for all values of the paramaeter
Two level mixing is a fruitful concept and simple lan- the two frequencies differ, i.er;(\) # vo(\) for all . This
guage in physicfl,2]. In the case of bound states the under-language is also used for the two widthig(\) and y,(\).
lying Hamiltonian is Hermitean and owing to this property The language comes from atomic physics, where such cross-
an off-diagonal coupling between both states causes the leviglgs and anticrossings are observed as a function of the mag-
energies to repel each other. For this reason a frequenayetic field. At this point we want to mention a very early
crossing is only possible, if the off-diagonal coupling is zeropaper on coupled decaying electronic states of molecules by
[1-3]. The extension of two level mixing from bound to Estradaet al.[12], which contains a discussion of the cross-
unbound, i.e., decaying states is very natural. The decayingg phenomena. In this paper we will give experimental evi-
unbound states have complex energigand are described dence for this theoretical result, by performing experiments
by a non-Hermitean Hamiltoniaf8—11], however. The de- on microwave cavities, which have recently been shown very
composition of the complex energieginto the real energies useful in a study of quantum chaos and general resonance
E, and frequencies, and the widthd", and v, is given in  phenomen&13-18§.
Eq. (1), where we have put=1:

i i Il. EXPERIMENTAL DATA
=B ahEnmT 3% @) The experiment was performed with a double box micro-
wave cavity. It consisted of two nearly identical rectangular
We will refer to thee in the paper alternatively as complex boxes made of copper. These resonators were coupled by a
energies or complex eigenfrequencies. The fact that the emarrow slit in the partition wall, which allowed the two sub-
ergies of the decaying states are complex opens a rich sceystems to interact, see Fig. 1. The two antermamd b

nario of crossings and anticrossings of energies or frequerprovided an inductive coupling of the resonator with the
cies and width for the unbound two level system. Intransmission cables. Microwaves in the frequency range of
particular it has been suggested that whereas energies 992 to 994 MHz excited the first TM-mode of each box. In
bound states can cross only for a vanishing interadtidn  order to obtain two nearly equal complex eigenfrequencies
the complex energies of unboufdecaying states can cross the two boxes were made nearly identical. In addition there
at a nonvanishing interaction strength[5—11]. A rather  were two tools, which allowed to vary the parameters of the
surprising theoretical result is given in REE1]. It states that  cavity: A small block of plastid?, of variable positiory in

in the two unbound level system a real purely off-diagonalthe first box allowed to vary the eigenfrequeng/ of the
interaction implies that either there is a joint crossing of bothfirst box, a slit of variable size& in the wall separating the

the unperturbed frequencies and the perturbed widths or

there is a joint crossing of the unperturbed frequencies and of
the perturbed frequencies. ,i |_V

The terms frequency crossing or anticrossing refer to the 1 X 2
situation that two frequencies or widths are measured as a L |£| |_A A
function of a slowly varying parametex. One speaks of oV L

frequency crossing if there is a valug for which the two

FIG. 1. Sketch of the twin microwave cavity. The antenaas
andb are coupled to the generator and to the detector, respectively.
*Permanent address: Institut fidernphysik, Technische Univer- The wall between the two cavities has an opening of wigtithich
sitad Darmstadt, Schlossgartenstr. 9, D—64289 Darmstadt, Gereouples them. The body depicts a small block of plastics, which
many. can be moved inside cavity 1 by an amoyrftom the wall.
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two cavities allowed to vary the coupling strengthof the  corresponding unperturbed complex eigenfrequencies
two cavities. €2, € of HO. As is well known[1-3] the ¢, are related to

A sinusoidal electrical signal from a generator of variablethe eﬂ and the interaction strength by
frequencyv and amplitudel ,(v) was fed into the cavity
through the input antennaand a signal of complex ampli- 1 45 o
tude Op(v) was observed from the output antenndy a (61,2— §(€1+62)
detector. Both, amplitude and relative phase of the output

signal Oy(v) was measured. The ratio of complex _ampli— In the following we study the relation between theand the
tudesS,p(v) =Op()/1a(v) was measured as a function of (0 iy the neighborhood of the crossing point of the unper-

the generator frequenpy It was analyzed using a‘hmqtrix. turbed frequencies~»3. In the experiment we measured
The form of theSmatrix was taken from nuclear physics and complex numbes, (v) = Oy(¥)/l ,(») as a function of

I[Sl_gdéaculisiicggfnﬂvgilgs kt)ze g??eiunxaeazgrrz\éelgﬁgm?s ththe generator frequency. The data far from the crossing

cha’nnéls which arg dyenot@d ¢’ there[16,21] Tr?e form %oint showed two strong resonances cprresponding to the

fthe S ’ ix i e two fundamental complex eigenfrequencigsand e, of the

ot the s matrix 1S cavity. The data can in principle be analyzed directly with
the S matrix of Eq.(2). Instead of applying this description

;nlch'n' e'%c.  (2) we used a special form E@6) of the S matrix, which is
numerically stable in the vicinity of the complex energy
crossing point é;=¢,), however. We give only th& matrix

Here the propagatoD,, defines an effective symmetrical elementS,, between the input antenna a and the output an-
non-Hermitean Hamiltoniahl,,,, by the relation tenna b:

2

1
= 7 (- +v? (5)

SCC’( V) = ei be 50()’ —i 2 chD
nn’

Dnnr:V6nn/_Hnn/ . (3) (@4 )v
a b

oWh [ 1 1
14

Say(v)=—ie

. (6)

€17 € — €1 V— €y

The amplitudedV,,,, W, describe the coupling of chan-
nel ¢, respectivelyc’, to the resonance. As the walls ab-
sorb energythe quality factorQ of the cavity has been of the
order of 1¢) the Smatrix is nonunitary. Thus the parameters
by dery Wen, Wern will be complex in general.

where®, and®,, are defined as in E¢2). The interactiorv

is defined in Eq.(4) and W2, and W2, are the amplitudes
W,, andW,,, respectively, which are appropriate to the un-
é)erturbed systemu(=0). In deriving Eq.(6) from Eqg.(2) we

In the experiment we investigated the neighborhood of th : . .
two nearly degenerate fundamental modes of the two bogSsume that in the unperturbed system there is no direct cou-
ling from the antenna a to box 1 and from antenna b to box

cavity €;, €,. These two eigenmodes are well separated ilg _
frequency from the other eigenmodes of higher order and - W€ as;umﬂ/g1=vv82=0. , _
thus the data can be accurately described by taking onl From_the flts.to the data far away from the crossing point
these two modes into account. Therefore the effective Hamil?Ve OPtained unique values of the two complex eigenfrequen-
tonianH becomes a complex symmetricak2 matrix. The ~ Cl€S€1 ande,. Theeq, €, were obtained fo_r several values
respective complex eigenvalues and e, of this effective of the p_arameterx andy of the_ two perturbing elements of
Hamiltonian matrix are identical with the poles of the corre-the cavity, namely, the coupling strengti=v(x) and the
spondingS matrix. Strictly speaking resonance states do nof0Sitiony of the blockP. We measured, ande; at 9 values
have complex energies which are constants. The resonancés®f ¥ @nd for 2 values;; of x: x=2.1 andx=1.3 cm. Thus
which we are considering are however extremely narrow'V€ Obtained 18 complex eigenfrequencigx,y), €x(X,y).

For narrow resonances one can use, however, effective eH? f|tt|n_g the resonances in the vicinity of the crossing some
ergy independent parameters. According to the zipé the numerical stability problems were _er!countered even for the
coupling slit in the microwave cavity one can decompose thdom ©of E. (6) for the S matrix. This is not surprising, be-
effective HamiltonianH into an unperturbeduncoupleg ~ cause in the vicinity of the crossing poinf~ 15 the data
part H(y), which depends on the positignof the plastic ~Show only one resonance structure|8} and a smooth be-
block P, and a purely nondiagonal interactivifx), which is ~ havior of the phase; of the S,, defined byS=e'®(S|. In

a function of the slit sizex only: order to get unique fit parametees and €, also in the vi-
cinity of the crossing point we used two extra constraints.
H=H(x,y) First it was assumed that the sum of the two complex ener-
giese; + €5 is at most a quadratic polynomial in
=H%y)+V(x)
_ 0, 0_ ; 2
_( edy) 0 ) +( 0 v(x)) " €1+ €,=€;te;=a+ib+cy+dy, (7)
0 € v(x) 0 ) where the real coefficienta, b, ¢, d may depend omw,

respectivelyx but not ony. Furthermore it was assumed that
Here we have assumed further that only the eigenm@dﬁ the producl\/vgzvvgl is independent of. These assumptions
box 1 in which the plastid® is moved is affected by the were tested for the data far away from the crossing point,
movement. Thus we assuneg=e)(y) and eg=const. The which gave unique fitted values fer, and e,. Then these
decompositionH=H%+V allows us to define besides the assumptions were used to get unique valuesefornd e,
perturbed complex eigenfrequencies, e, of H also the also in the vicinity of the crossing.
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From the perturbed complex frequenciesand e, one

. 993.0 | 4 Y. )
can calculate the two unperturbed complex frequencies 992.0 | ] o040 T2 |
eﬂ(x,y) from the perturbed complex frequenciegx,y) us- Songt VS : § 038 1 7
ing Eq. (5). In doing this we note first thatd(x,y) = ea(x) S 9927t 1S g'gi: ]
because the plastie moves only in box 1. Thus from mea- 926 1 o3t ]
surements at the two positiogsandy’ at a constank one gzi‘i: | o030
obtains eight real parameters from the following four com- ) 05 00 02
plex quantities: €1(x,y), €1(X,y'), €(X)y), exx,y'). 7 T Al oamf
From these eight real parameters one can determine the gg;'g | 1 o040
quantities €9(x,y), €3(x,y'), ea(x,y)=ea(x,y’) and v, S o025 [.V2 é\ 0.38
which contain also eight real parameters, if we allowo be & 9927 1S g-gi I
complex. Actually the measurements were performed at 9 9926 | 1% o3
different values of the distancg of the block P from the 9925 1 1 030
wall. Thus the parameters andv are overdetermined. As gAr___. ] s
. i . . . : 02 00 02 02 00 02
v=uv(X) is thus fixed we will use instead ofx (Fig. 1) in v ° v ®
the further discussion. In a similar way we replace the dis- ' '
tancey (Fig. 1) by the more physical parametérfl) which is FIG. 2. Frequency anticrossing left-hand si@&iS) and width
the difference between the unperturbed frequencies: crossing right-hand sidgRHS). The frequencies?, v and widths
¥3, 93 of the unperturbed system €0) and the corresponding
S1r(x,y)=v(X,y) — v3(X,y). (8)  frequencies);, v, and widthsy;, 7y, of the perturbed system are

shown in dependence of the paramedef=19—19. 4{ and 3
One finds, thatsv) depends essentially only oy and is  denote the states of the isolated cavities 1 and 2. This is the strong
nearly independent of. Thus we will use&v‘f instead of the coupling case 0.063 Mhz|v|>v.=0.037 Mhz. The lines
distancey in the following. through the data points are calculated from E§5(9) in the main
It follows from Eq. (5), that the labeling of the two com- text.
plex eigenfrequencies as and e, is arbitrary at each fre-

quencys»®. To get a unique labeling af, , we note, that far by an essentially real interaction strengti e'“¢|v|. Ideally
to the left of the crossing, i.e. f05,}(1)<0 and for|5v‘1’| the unperturbed complex frequencies should be independent

<|v|. The perturbed and unperturbed complex eigenfrequenQf the interaction strength. This is_, es_sentia[ly true although
cies must be approximately equal, i.e., thoere are some smal(! discrepancies in part|.cular in the widths
v1(v=0.063) and y;(v=0.015), which differ by about
e~er, ke{l,2. 9)  10%.

We will now try to understand the observed crossings and
By requiring continuity we obtain unique values of bath  anticrossings from the basic relatiéh). We follow here the
ande, as a function ob»! for given valuess) andel. Inthe  theoretical results and the presentation of Héfl]. The
Figs. 2 and 3 we have plotted the values of the unperturbedariation of the squared differences of the eigenfrequencies
frequencies’?, »9 and widthsy?, 93 and of the perturbed is obtained from Eq(5):
frequenciesv,, v, and widthsy,;, v, as a function of the

diﬁerenceév‘f of the unperturbed frequencies for two values 993.0
of the coupling strength. < 992.9 7]
In Fig. 2 the coupling strength has a value| € 9928
=0.063 MHz and one observes width crossing and fre- = 9927 1
quency anticrossing. In Fig. 3 the interaction strengthas 992.6 9
the smaller valudv|=0.015 MHz and one observes fre- 9925 ]
quency crossing and width anticrossing. 924 05 00 07 o2 o0 05
The curves in the upper part of Figs. 3 and 2 show the A a2 . ]
unperturbed frequencies and widths as a functiorﬁmﬁ. Aggg'g | 040 ‘ﬁJ‘X\HTH
These curves are obtained from the relations 992.8 ] g-g*é B Y21
2.7 ]
(v)=ev)+ 613, (10) %926 | el 1
992.5 030 7 E
es(v)=eXv), (11) 99244 V1, | o
02 00 02 02 00 02
wherer{%(v) =12%v) is assumed to maké»{° well defined. v v
In Table I we give two sets of parametm%)(x), 620()()’ FIG. 3. Frequency crossingLHS) and width anticrossing

ando (x) obtained attwo values ef(x) andx. The curves in - (RHS): The frequencies?, »3 and widthsy?, 3 of the unper-
the lower part of Figs. 2 and 3 were calculated with ).  tyrbed system«=0) and the corresponding frequencies, v,
from the unperturbed complex frequencies, the interactiolng widthsy,, v, of the perturbed system are shown as a function
strengthv obtained from Table | and the relatiof®0),(11).  of the parameters»? (see caption to Fig.)2 This is the weak
We note that the perturbed frequencies and widths are welloupling case 0.015 Mhz|v|<v,=0.037 Mhz. The lines
reproduced by the corresponding unperturbed quantities artrough the data points result from E@S),(9) in the main text.
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TABLE |. Calculated unperturbed resonance parameters and interaction strengths

x (mm) |v| (MHz) argv (deg) +¥° (MHz) % (MHz) 9 (MHz)  ¥3° (MHz)

21 0.0632) 2(2) 992.7472) 0.2854) 992.7471) 0.4243)
13 0.01%6) 7(23 992.76%2) 0.321(4) 992.76%1) 0.4223)
(€1— €)%= (€— €3)°+4v?2. (12) We now compare the data in Figs. 2 and 3 with the the-

oretical expectations. One finds, 0.063 MHz|>|v ]|
In general the interaction is complex. But in our special =0.037 MHz for the data of Fig. 2. This is the overcritical
experimental case is real within the error bars. Therefore coupling case. And indeed frequency anti-crossing and width
we restrict our considerations to a real crossing is observed. For the data in Fig. 3 one has
In order to simplify the calculations one decomposes the).015 Mhz=|v|<|v,|=0.025 MHz this is the undercritical

differences of the complex eigenfrequencies into real an@oupling case and indeed one finds frequency crossing and
Imaginary parts width anticrossing. We note the small difference|of| in

the experiments done at different couplingsComplex fre-

0 0_..0,:~0 . H
fm e eIgn, e emierio. (13 guency crossing is expected aroupd=0.030 MHz and
From Eqgs.(12),(13) one obtains lies thus in between the two measured interaction strengths
|v|=0.015 MHz andv|=0.063 MHz. It would be very in-
e’g’=eg, (14)  teresting to perform experiments very closgdp=|v|. To
do this requires however a much more stable setup, which
e’—(e%%=4v2—(g%%+g> (15  we are developing at present. As all data are well described

by the model we can claim to have established from these
One can classify the behavior of the perturbed complex fredata also complex frequency crossing. Clearly it would be
quencies at a point where the unperturbed real frequencigfiore convincing if data points much nearer to the complex
cross, i.e., forov)=13—v3=e°=0. One finds three cases, frequency crossing would be measured. But to perform this
which are distinguished by the value of the interactionexperiment requires a much more stable apparatus, which we

strength|v| in comparison to a critical value, : are presently designing.
We want to add a plausibility argument for width crossing
vei=319%= 10— vl (16)  at large interactions. For this we consider the statds
which are the eigenstates of the isolated cavitiesl,2 with
The three cases are as follows. unperturbed complex eigenfrequencids In analogy to the

Overcritical coupling If [v[>v,, one findsv;# v, and  pound state case we find for a larige frequency anticross-
Y1= 72, 1.€., frequency anti-crossing and width crossing.  ing, see Fig. 2. This and the requirement of continuity imply
Critical coupling If |v|=v., one findsv;=v, and y1  as explained below Eq8), that the state)? turns into the
= 72, i€, ajoint frequency and width crossing, which is alsOgiate 49 with increasingsr?. As a consequence the width

referred to as complex frequency crossing. yl(ﬁvg<0)~ y? changes int0y1(5v2>0)~y2 and vice

S;chrltilzal ffgufgﬂg Ifcr|ovs|s<invcé\n%n\?vic:lﬁsgéti:c?és:izd versa. From the continuity of, and y, one finds then that
Y1_7 72 €., Tequency 9 9, andy, must cross ifyd# y3.

The proof of these statements taken from Héfl] is
straightforward from the above. From Ed4) ande’=0 it
follows eg=0, i.e.e=0 org=0. Frome’=0 and Eq.(15)

one obtains fotv|>3|g°| the relatione?>0 and thusg=0 lil. CONCLUSION

follows from eg=0. For e®=0 and|v|<3[g°| it follows Summing up, we have investigated a doublet of two in-
from EQ-l(lfg) thatg“>0 and thuse=0. Finally, fore®=0  teracting resonances in a two box microwave cavity. We
and|v|=39" we havele|=|g|=0. have observed experimentally width and frequency crossing

The full complex energy crossin@|=|g|=0 has been gt a nonvanishing interaction strength+ 0. These experi-
discussed in detail in Ref10]. We note that width crossing  mental results have corroborated the theoretical frequency
for [v|>v. can be understood rather easily. Namely for anand width crossing and anticrossing relations proposed in
appropriately large interaction strength the two eigen-  Ref.[11]. The frequency and width crossing and anticrossing
modes are equally mixed and as a consequence the widthge obtained at an interaction strength above and below a
are equal. It is also plausible that a larger interaction strengtBritical interaction strengthy .= 1| 72— y(23|. By measuring
v is needed if ¢°)°=3(»2— ¥ is large, i.e., if the differ-  ahove and below of the critical interaction strengthwe
ence in the unperturbed width of the two eigenmodes ihave found signatures which allow to identify full complex
large. An interesting aspect is that there is no subcriticafrequency crossing, which should occur@t=v.. We note
case,[v|<v,, if the unperturbed widths are equal{=93.  that if the two widths differ from each other, one has a full
In this case there is no frequency crossing|idr=0. Thisis  complex frequency crossing at a nonvanishing interaation
a direct generalization of the von Neumann—Wigner cases0. This clearly differs from the bound state case, where a
which forbids crossing at#0 for bound states, i.e., foy;  frequency crossing is only allowed for=0. We think that
=9=0. this paper demonstrates that the study of the unbound two
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level system in two coupled microwave cavities is a very ACKNOWLEDGMENTS
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