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Symbolic approach for measuring temporal “irreversibility”
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We describe a symbolic approach for measuring temporal “irreversibility” in time-series measurements.
Temporal irreversibility is important because it excludes Gaussian linear dynamics and static transformations
of such dynamics from the set of possible generating processes. A symbolic method for measuring temporal
irreversibility is attractive because it is computationally efficient, robust to noise, and simplifies statistical
analysis of confidence limits. We propose a specific algorithm, called “false flipped symbols,” for establishing
the presence of temporal irreversibility without the need for generating surrogate data. Besides characterizing
experimental data, our results are relevant to the question of selecting alternative models. We illustrate our
points with numerical model output and experimental measurements.

PACS numbes): 05.45.Tp

I. BACKGROUND plifying and speeding up subsequent computations. Empiri-
cal symbolic techniques are known to be useful for chaotic
Temporal irreversibility (TI) has become important in and/or turbulent data and for reconciling noisy data with
characterizing natural phenomena and observed time seri@nlinear models, among other applicati¢ts—22.
[1-11. By temporal irreversibility, we refer to statistical ~ In the following discussion, we describe our general ap-
properties which differ depending on whether one observeBroach for symbolizing data and then identifying and quan-
the behavior as time proceeds in its natural direction or irfifying temporally irreversible portions of the symbol stream.
reverse. Confirmation of Tl is important because it impliesWe also describe techniques for evaluating confidence inter-
the influence of nonlinear dynamics, non-Gaussian noise, ofals that appear to give good discrimination for known data.
both[8]. In dissipative nonlinear dynamics, for instance, theFinally, we illustrate how TI can be used to detect noisy
positive and negative Lyapunov exponents differ in magniblfurcatlons and characteristic dynamlcal transitions.
tude, not just in sign, as the physical origin of instability in
the forward direction is distinct from dissipatigwhich ap-
pears as a virtual instability under temporal reversalg-
nificant Tl automatically excludes Gaussian linear processes Figure 1 illustrates how symbolization is achieved by par-
(or static nonlinear transformations of such processes titioning the data range and assigning a symbol to each mea-
possible models for the generating dynamics. All linear sursurement based on the region into which it falls. Here we use
rogate data sets produced via the Fourier-transform methodssingle partition line to simplify the discussion. The number
fall in the class of statistically reversible data, thus rejectingof partitions defines the symbol set, often called an alphabet
temporal reversibility precludes this entire class. In the(in this case0 or 1). When using more than two symbols,
present context of stochastic processes, temporal reversibiliyur usual convention is to define symbols as integers 0
means that any sequence of measurements is exactly #woughn—1, wheren is the size of the alphabet.
likely as its time reverse to be observed from a given source. Theoretically, there is a generating partition for each de-
We quantify Tl via symbolization of time-series measure-terministic process that provides a unique, one-to-one map-
ments. Symbolization converts continuous-valued timeping of trajectories into symbol sequen¢&®,13. However,
series measurements into a stream of discrete symbols. Tygienerating partitions do not generally exist for realistic ex-
cally, the range of the observed variable is partitioned into gerimental data because of the effects of noise. As Crutch-
finite number of bins, such that all measurements fallingfield and Packard observéii2], generating partitions do not
within a given bin are transformed into the same symbolicexist for noisy systems, even in principle. Nevertheless, lack
value. The objective in making such a transformation is toof a generating partition does not prevent the characteriza-
faithfully preserve dominant dynamical features while sim-tion of dynamical complexity using reasonable empirical
partition choices, as demonstrated by othé&-19. For our
purposes, we usually define the symbolic partition bound-
*Present address: Engineering Technology Division, Oak Ridgaries such that the scalar measurement range is divided into
National Laboratory, P.O. Box 2009, Oak Ridge, TN 37831-8088.equiprobable regions. This choice of boundaries is not re-
Electronic address: dawcs@ornl.gov quired for TI detection, but it is convenient because all pos-

II. SYMBOLIZATION
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(a)Data ° wheren is the number of symbols and is the fixed word
series ° 4 e length. With finite data, there is a tradeoff between using
Partition = 1 = o ° o % o largen and L, which improve resolution of the state space
o o o o ° o o o and dynamical evolution, and smailand L, which reduce
° o ° statistical fluctuations in any word bin. Each word represents
------------------ Symbolization based an partition a unique permutation of symbols and can be represented as a
Sysglr‘fgsl E 011011010110100010100 specific number in base. This convention for designating
Yoo e e 3-step template words makes it possible to display frequency patterns as de-
) ooe Xﬁmﬁgﬁ"‘gmﬂm p!cted in Fig. 1b), which we refer to as a symbol-sequence
e Decimal encoding histogram(SSH.
;’g‘:‘; 53653652536524012524
Ill. SYMBOL-SEQUENCE IRREVERSIBILITY
®) g We quantify Tl by comparing the observed number of
Symbol- 5 ¢ occurrences of pa_rticular sym_bol worqls to the frequenc_ies of
sequence 8 ; I their counterparts in reverse time. An important caveat is that
histogram 1 | | I for our purposes Tl is meaningful only in the context of
ot LLLLLA.. stationarity: nonstationary dynamics are trivially irreversible,
Code 0 1 2 3 4 35 67 linear or not. Thus one should verify statistical stationarity in
Sequence 000001 0100117100201 110111 addition to Tl(e.g., see Ref§23-25).

FIG. 1. Di ilustrating dat bolizati q bol The choice of symbolization parameters affects the ability
- 1. Diagram illustrating data symbolizatié and symbol- =, igsinquish irreversible patterns. For example, a binary

sequence h'Stogra'('.b)' Data are .S.ymbOI'zed based on their value alphabet combined into two-symbol words has the following
relative to boundaries that partition the data range to produce a

symbol series. Words are formed by defining a finite-length temPOSS'b'“tleS'q 0,01,10, andl 1'. The words0 0 an.dll 1
plate to group consecutive symbols, and this template is shifte§"® §ymmetrlc and CannOt. contribute to a TI Statls“?' The
along the symbol series. Each word is encoded into its decimarlel""'['ve fraction of symmetric words for any giverandL is
(base-10equivalent to form a code series. A symbol-sequence his-
togram is a tally of the absolute counts or relative frequencies of
each word.

foym=n""", 2

wherefg,, is the fraction of the total possible words which

. . ._are symmetric andn=|(L +1)/2|, where the floor function
S'ble symbol sequences becqmg equally probable in the I'mft'J evaluates the next lowest integer. The fraction of asym-
forslndependent,f|dent|gallly d'f?t”bmel? gata. d tain th metric words which can contribute to detecting Tl is thus 1
___>equences of symbols, often cailed words, contain e—fsym. The fraction of words able to reveal TI increases
mforrr_latlon about dynamics. One chooses the number of Sesignificantly with bothn and L. Consequently, we find it
quential symbols to group togethéhe word length and ._desirable to use larger alphabet siZesy., 4<n<10), in

then observes the specific words that are formed by MOVING ) ntrast to the usual binary alphabets used by other investi-

a tgmplatg qf this size stepvyisg along the symbolized t.im%ators such as Tanet al. [15] and Kurthset al. [17]. We
SEres. This is concep'gually similar to time-delay embeqd.mgillustrate the impact of larger alphabet sizes in our examples
with discrete symbols instead of continuously valued orlglnalbeIOW

measurements. Unfortunately, there does not appear to be Temporal irreversibility becomes visible by comparing

any obvious analogue of the geometric construction underlyfhe symbol-sequence histograms for forward and backward

ing time-delay embedding, so there is not necessarily aMYealizations of the observed data. A simple example is illus-

finite word length at which “all” information about the Pro- 4 -ted in Fig. 2, which depicts the forward and backward

Nistograms for 3000 observations ofrom the Haon map:
Note that the time-delay reconstruction theorems promiseI g vad P

faithful dynamical reconstruction only up to smooth transfor- x[i+1]=y[i]+1—axi]? @)
mations of the original state space; in “symbol space,” con-
tinuity and differentiability are not useful concepts. yli+1]=bx{i]. @)

As with time-delay embedding, converting the original
time-series data to symbol sequences requires specificatiothe selected parameter values arel.4 andb= 0.3, which
of transformation parameters, specifically, the number Of)roduce chaos. The symbolization parameters{are4, L
symbols in the alphabet, the number of symbols in each-g3y pifferences between the two histograffsrward real-
word, and the time interval between symbols in each wordization frequency minus backward realization frequency for
For purposes of this discussion, we assume that the data @hch word reveals that a few specific words contribute most
interest are generated by discrete maps, so that the appropfs jrreversibility, as illustrated in Fig. (8). Note that both
ate intersymbol interval is one step or iterate. _ positive and negative versions of each difference appear, as
Alphabet size and word length combine to determine thgach histogram accounts for every word and its time inverse.
total possible number of sequendes.q that can be repre- o statistical analyses shown later, we avoid this double
sented. In general, counting.
Figure Zb) also shows the difference results for a tempo-
Nseq= nt, (1) rally symmetric surrogate of the Hen example. The surro-
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FIG. 2. (a) Forward- and backward-time symbol-sequence his-g; the Henon-map data.

tograms for chaotic output from the discretértda model. Symbol-
ization parameters afn=4, L=3}. (b) Differences between the
forward and backward symbol sequences for the chaoficorle simple statistics is problematic because of correlations be-
map. Large peak&ositive or negativeindicate a strong contribu- tween word frequencies. However, when such statistics are
tion to irreversibility. The dashed line illustrates the result for arepeatedly evaluated for many temporally reversible surro-
temporally reversible surrogate. gates, it is possible to develop confidence estimates by com-
paring the distribution of the surrogate statistics with the
gate is constructed by addir(n the continuous scalar ob- Statistics for the original dqta. 'Such comparifsqns are further
servable spageindependent orbit segments read in forwardstrengthened if many realizations of the original dére
and reverse time, as suggested by Déksl. [6]. A station- peated observatlo))are.also available. As we discuss .Iat.er, a
ary linear stochastic Gaussian source is invariant under sudRore preferable situation would be to define a statistic for
transformation. Other standard Fourier-transform surrogaté’-"h'Ch confidence I|m|t_s are availabéepriori, thus avoiding
generation methods such as those suggested by Tee#gr the effort of constructing surrogates. o
[26] and Schreiber and Schmit27] work equally well since We typically determine “optimal” symbolization param-

. . eters for a given data set through systematic evaluation of
they also force temporal symmetry. The_ small d|fferenc_:e§ Ir]rreversibility statistics as alphabet size and word length are
Fig. 2(b) for the surrogate are due to finite-sample statistics, iaq. Figure 3 illustrates this process for thensie-map

_One may quantify forward-reverse differences With 4o, gescribed earlier. Symbolization parameters chosen this
simple statistics such as way are not in any sense universal because they reflect case-

specific factors such as noise level, the symbol partitioning
Ti=1/ E. (Pi—Pp)?

Direct estimation of confidence limits using the above

scheme, the dominant dynamical features present, and data-
set size. With the same data, other features such as entropy
may be most effectively revealed with different choices of
parameters. Thus, to a great extent, the choice of symboliza-
tion parameters depends on one’s specific needs and con-
straints. Because selection of a generating partition is not
possible, we do not expect any direct connection with geo-
metric properties of the time-delay phase spéxg., mini-
mum embedding dimensign

)
and

N(Ps;—Pyp;)?
Xah=2 ——2

6
i Piit+ Py ©

In Eq. (5), Ty, is the Euclidean norm between the forward |, ' s¢ £ |ppED SYMBOLS—DIRECT ESTIMATION
and backward histograms and is analogous to the compara- OF SIGNIFICANCE

tive statistic used by Tanet al. for fitting nonlinear models
to observed datgl5]. In Eq. (6), x3 is a similar chi-square Although surrogates can be useful for relative compari-
statistic applied to the two symbol-sequence histograms. sons ofTy, and x4, it is desirable to have statistics that do
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not require generation of surrogates to evaluate significance. The binomial test described above assumes that the events
There may be technical issues in generating truly faithfuloccur independently of one another. With realistic data, this
surrogates or, equivalently, questions about the actual nuissumption is unlikely always to be valid because of tempo-
hypothesis represented by the surrogate generator. Moreovea| correlations between successive observations. If temporal
a direct test, especially in symbol space, is computationallgorrelations exist, the actual degrees of freedom for evaluat-
simpler and could be embedded in an online instrument oing the significance are unknown. Thus, we perform another
control system. test, looking for sequential correlations in the occurrences of
Here we propose aa priori statistic[referred to hereafter forward and backward versions of a given word. If there
as false flipped symbold=FS]. Our statistic is constructed exist statistically significant correlations here, the result of
using a classical binomial model to find the likelihood of the reversibility test is deemed to be unfaithful. Thus, a des-
obtaining the observed distribution of words under the nullignation that an observed time series is irreversible requires
hypothesis that the forward and backward realizations othat the reversibility test reject its null and also that the se-
each word are equally probable. If then we find that thequential independence test accept its null.
observed distribution is highly unlikely, we can reject the We see if forward and backward events appear to occur
null that the original data are temporally reversible. without sequential correlation. Specifically, whenever an eli-
For the moment we concentrate on a single word clasggible target word class occurs, we recall the immediately
the class encompasses the word and its time inverse. Wweviously observed orientation of that same word and incre-
count the frequency that this word was observed in the forment countscg and ¢y, depending on whether that word
ward directionc; and the backward directiog,. Intrinsi- occurred in the sames) or different(d) orientation from its
cally reversible symbol wordg.g.,1 0 0 1) trivially main-  predecessor. By constructiogg+cy+1=c;+c, for any
tain c;=c, and are excluded from further calculation. For word class. If the relative frequency of forward wordsdis
the rest, under the null hypothesis of reversibility, it is as=c¢/(c;+cp), then under sequential independence the ex-
likely to observe any given word in the forward as in the pected proportion of same-to-same transitions6is= 67
backward direction. This suggests using the classical two+ (1— #;)2. We thus find the likelihoodl ., under the null of

sample binomial test to provide the likelihood of seeing theno correlation, of observing this particule andcy as
observed values af; andc, given that each event is equi-

probable.
Given N total draws with probability of an ever#t, the
binomial probability of seeing exactly events is

B(Cs—1cstCq,0s)<Lc=<B(Cs,CstCq,05). (10

Thus we require that . not reject its null.
N! ‘ N_k Wh_at if it does reject? Our approach to this problem is
k!(N——k)!a (1-6)" " (7)) selectively to down-sample the total set of events so that
correlations are minimized. We have considered two meth-

For our purposes, we are interested in the tail probabilities o?ds for implementing selelctlve sampling. I .
(1) Random subsampling of all events with increasing

observing extreme cases, i.e., where the number of forward doml b le a fractiod of th
or backward observations of one or more words is unexpects_parse_ness, €.g., randomly subsampie a rf”‘m“’ otthe
edly high or low. Given the null, the likelihood of observing WOrds in the symbolized time series to qualify for any statis-
k or fewer occurrences of a wor@r N—k or more occur-

rences of its time invergas

b(k,N,0)=

(2) Given any word class, ignore subsequent occurrences
of that class which occur sufficiently closely in time. This
K N decorrelation-interval approach is common in many nonlin-

_ ; ; ear time-series algorithms.

B(k.N.9) jZO b(],Nle)—i_j:%fk b(J.N.9). ® For both approaches, one excludes more data until the
correlation indicator statistic indicates the null of indepen-

Thus the likelihood. of accepting the null when it is actually dence is sufficiently likely, and then examines the result of

true is the reversibility test.

B(¢i—1N.,0.9<L=B(c.N,0.5), ©) V. TARGETED FALSE FLIPPED SYMBOLS

with N=c;+cy, . The inequality is on account of the discrete  We have described the detection of TI for a single word
nature of the distribution. If one were simulating the accu-class. We want to produce a statistic for the whole data set:
racy of the null by generating reversible time series andas seen in Fig. @), some words much more strongly indi-
evaluatingL for each, one would select a particular value of cate irreversibility than others. We give two alternatives:
L randomly and uniformly between the limits above. In thecombining the result of many tests of different words, or
limit of many reversible time series, the distribution of theseselection of a particular word which best demonstrates irre-
L’s converges to uniform (0,1), as expected. Given but aversibility.

single test on a single data set, it is conventional to be con- Assume we have computed likelihoots regarding re-
servative against rejecting the null by using the upper boundyersibility for the various word classes enumerated,lwith
though one should recognize this would not converge to garticularL; selected uniformly between the bounds shown
uniform distribution under the null distribution, and is a heu-above. WithN,, independent tests of a null hypothesis, the
ristic bias. quantity
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Ny With the c; andc, results for both target words, it is then
x2:2 —2InL; (11 possible to evaluate the case for Tl by considering the like-
=1 lihood that the observed number of forward and backward

is XZ distributed, which with standard algorithms we com- counts would be seen under a time-symmetric null. Note that
pute our finalZ, again uniform in (0,1) under the null. Es- for complete temporal symmetry, the probability of observ-
pecially small values of. imply a small likelihood that this N9 the forward occurrence of both target words is 0.5. Un-

apparent level of irreversibility would have been observediK€ly counts for either or both targets are grounds for rejec-
had the symbol stream been generated by a reversible d jon of the null. We consider both the counts for the front and

namical process. Small signals irreversibility. ack targets separately and then the combined counts. Spe-

This sort of full implementation of FFS is potentially very Cifically, we evaluate the likelihood, of observing the for-
powerful because it can reflect the cumulative indication ofVard target count in the front half of the data as
Tl in all symbol words. However, a general scheme for col-
lecting representative uncorrelated samples of all symbol B(Cr1=1N1,0.59<L1=<B(Cr1,N1,0.9, (12
words is difficult to implement using the fixed-word-length

symbolization approach described here, because not all thereN;=cya+Cp,y, this time with the one-sideB,

events entering counts corresponding ddferent word N
classes are independent. We are developing a version of this B(k,N, )= 2 b(j,N,8). (13)
sort of FFS using a more sophisticated state-selecting algo- B e

rithm, an adaptive variable-order “context tree” model sug-

gested by data-compression methods, which does in fact prdypically, we reject the null iL<5%.

duce nearly independent counts. This construction has WhenN; is large(e.g.,>100), the normal approximation
already been used for a symbolic stationarity test by one ofor the binomial distribution can be used, and we estimate

the authorg28]. the normal deviate statistic
At present, we discuss a modified FFS method, which we
call “targeted FFS” (TFFS. Initially we divide the time ¢t 1—(1/2)N; 149
ies | 1= ———. 14
series into two equal halves. In the front half of the data set, irr,1 AN,

we note which symbol word occurs most frequently relative
to its time inverse, the word class for which the difference . ' ,
e —c is largest. where for each word class>c. . This In this case, we define our confidence level based on the
f~b gest, ) B Cp. ._ one-tailed, normal-deviate probabilities and reject the null
word then serves as our first target. Note that it emphasizes ! o
. . ypothesis wherZ;,, ; exceeds some limite.g., 1.64%.
words which are both asymmetric and occur frequently. i .
: L 2 Because an unlikely value for;, is also grounds for
Other choices, such as maximizing; - c,)“/(cs+cp) are L , ; :
reasonable rejection of the null, we repeat the previous evaluation to

We then notec; ; andc, ; for this same symbol word in f;tllr;égzl‘é andzg?lz d,kazgrre:figézéegﬁce:dcb&é ’ Cb'\l/\;se
the second half of the data set. For this second counting, we F;in re'ec)tptbhzé nul if_l ic sn?all ey éxcefézds ttr)w’ze.s oG-
eliminate from consideration any repeated occurrences of th J ) 2 irr,2 P

word class within a specified decorrelation interval. To be- Ie(z)lr:rgltlossible aporoach for combining the separate target
gin, we estimate this interval from the autocorrelation func- P bp g P 9

tion for the data. Later, we apply our correlation indicator WO'd COUNts into a single test would be to apply Bt to

statistic (described belowto confirm that our decorrelation the results of the front and bagk_target tests above. This
interval is sufficient. would produce a chi-square statistic that could be evaluated

We next identify a second target word class using th%t; decide on rejection of the null. Another approach we have

second half of the data in a manner analogous to our initi Ouvcgrfjotgf Z?gvggtescur\ée ;J%ggg?'?vﬁctmgftzlt UvuoT db?; i?\f-
step. In some cases this second target word may be the sa olved Usi?] this cor;strgint the expected vaI?Je for the sum
as the first target sequence, or it may be different on accouﬁ(;tf ) 9 ’ P

. ; ; ~of both forward target counts iN; ;=3(N;+N,) and the
of random fluctuation. The latter is typically true for tempo variance of this sum i8l,/4 when the null is true. If we can

rally reversibl . . .
ally reversible data establish that the observed total forward count is unexpect-

We now notecy,, and cp,, for this second target word edly high, we can also reject the null. Thus we evaluate
class when it occurs in the first half of the data. As before, y high, ] )

l/iv:neiurtzlrr\]/z;tﬁ any repeated occurrences within the decorrela B(N; —1N,,0.5<L=B(N; N, 0.5, (15)
A coin analogy helps to explain the rationale behind th _ _
above procedure. Suppose one has a collection of coins aE:\chr'ereN”_Cf'lJr G2 andN;=Ny+ Ny, and
wishes to test the null hypothesis that all the coins are bal- N: . — (U2N
anced(corresponding to reversible dat&Dne could begin 4 =L)t
with a trial run in which all of the coins were initially flipped i V(1/4)N, '
a number of times. A good candidate for testing the null in a
second flipping session would be that coin which producedVe find that the combined count statisticsand Z;, , typi-
the greatest difference between the numbers of heads amally give the strongest rejection of the null for truly irrevers-
tails. If the selected coin still acts unbalanced in this secondble data due to the larger number of target data points in-
set of trials, we can confidently reject the null. cluded.

(16)
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We confirm sufficient decorrelation for the samples used p=0.0 p=04 _p=08
to estimate the above statistics by considering the transitions ' ; "
in sample orientatiorfruns tesk in a similar fashion to the
single-target tests. That is, we evaluate

B(Cs,l_ 11Nc,170-5)$|—c,1$ B(Cs,lvNc,lyO-S) (17)

whereN; ;=Cg;+Cq4 1 and

B(Cso—1N¢2,0.59=<L.,<B(Cs5,N.,,0.5, (18

whereN. ,=Cs,+Cq,. If eitherL.; or L, are sufficiently
small, the hypothesis of decorrelation is rejected, the decor- -
relation interval is increased, the targets are resampled, and N

the runs test is repeated. Loas 1o T '

To summarize, we choose particular word classes from 01 .
each half of the data, measure the occurrences of forward T
and backward words in the other half, apply the appropriate a4 L , , , ,
decorrelation interval, and combine into irreversibility tests 0 0.2 04 0.6 0.8
[Egs. (15),(16)] and runs test$Eqgs. (17),(18)]. Significant P

irreversibility requires smalL, L,, andL,; and sufficiently _
FIG. 4. TFFS results for strobed output from the Ikeda ring laser

large L. to validate the test. _ i . .
If one preselected a particular target word class to examw'th 25 realizations of additive noise. Model parameters were set to

ine, this algorithm could be easily implemented as an onlind"® c@nonical valuegsee text. Noise levels are expressed as the
. o c(ijmensmnless ratio, denotgd of the noise variance to the model
measurement, as it only needs to accumulate specific wor ; bolizati h ith
ts. With a small word buffer one could Sequentia”yOUtpUt variance. Symbolization parameters{fare 4, L =3} with a
cpun ; . . ! . - decorrelation interval of three iterates. Each return-map scale has
discard the most distant previous observation, providing AReen adjusted for maximal visibility
easily updated measurement of irreversibility for the recent

past. tion of this type, most of the high-dimensional dynamics is

obscured, and the map is visually almost featureless. Further,
there is no obvious asymmetry about the diagonal to indicate

We next illustrate the usefulness of TFFS using a morel l. It is clear, however, that Tl is present for the IRL model
challenging model, the Ikeda ring laséRL) [29]. Briefly, ~ output when we apply TFFS to the sampled data. For a sym-
this model is a discrete time map coupled to a differentiaolization of{n=4, L =3}, we obtainZ;, ;=9.07, indicating
equation, producing a delay differential system. The result2 Very strong rejection of the reversible null. We obtain simi-
tive Lyapunov exponentsand has sufficiently high dimen- choices of symbolization parameters sucms 8, L =2},
sion that standard time-series analysis tools such ag1=7,L=3}, and{n=3, L=4}. We can also use the IRL
correlation dimension and false nearest neighbors fail to givéhodel to illustrate the robustness of TFFS to the effects of
useful resultg29]. additive noise. In Fig. 4, we have plotted thg , statistic for

The IRL model output consists of a complex electric-field the above IRL data after adding successively higher levels of

amplitudeZ(t) and a spatially averaged population inversionGaussian measurement noiseith zero mean The noise
w(t), coupled according to levels indicated on the horizontal axis represent the ratio of

the additive noise variance to the variance of the model out-
L(t+ 75) =E,e (@~ @ty Belx/(t)elftiom® (190  put. Results for 25 noise replicates are shown at each level to
illustrate the variability inZ;, ; due to sampling variations in
dw(t) 2 G the noise. The solid line indicates the averdge; value for
gt = Q2w + 1+t - 1)/G}, the 25 replicates. Note that rejection of the reversible null
(20) continues to be strong up to noise levels of 40%. We at-
tribute the noise robustness of TFFS to the fact that our
wheret is time andTR is propagation time around the Optica' Sta.tiStiC iS based on the most frequent irre'\/ersible WOI‘d,
ring. Definitions ofe, B, 7, , », G andQ may be found in which we expect tq be' one of the last dynamical features to
Ref.[29]. For illustration purposes, we choose the canonicaP€ obscured as noise is increased.
parameter values§;=1, B=0.9, k=0.4, =0, a=6, and
o= wq) [29].

We create a discretized measurement by recording the
real portion of the field amplitude each time the population We now illustrate the application of our symbolic method
inversion changes from negative to positive; we denote thisor Tl detection to a physical problem involving noisy dy-
strobed measuremeiit. A first return map of 10 000 points namics. Specifically, there can be significant variations in the
from the resulting sampled time series is illustrated in the togcombustion output of an internal combustion engine from
left corner of Fig. 4. Note that in a low-dimensional projec- one cycle to the next. This combustion variation is particu-

VI. A NUMERICAL EXAMPLE

VII. AN EXPERIMENTAL EXAMPLE
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origin of combustion variations as the result of linear, anti-
correlated oscillation§ACO) in the fueling system. It is hy-
pothesized that Gaussian-distributed flow noise in the air in-
take is amplified by the linear acoustical characteristics of
the intake system to produce anticorrelated pressure waves.
These pressure waves subsequently entrain alternately more
and less fuel from the injector into the cylinder on succeed-
ing intake strokes. Under this model, the observed combus-
tion changes are then the result of the in-cylinder combustion
responding to the fueling variations. The nonlinear appear-
ance of the mapFig. 5b)] is due to the(statig nonlinear
variation of combustion with fuel level.

The ACO model can be written explicity in terms of the
amount of fuel that is injected into the cylinder on each cycle
i

Qli+1]

Q[iJe<Cli]m(i], (21)

whereQ[i] is amount of combustion heat release in cyicle
m[i] is the amount of fuel present in the cylinder in that
cycle, andCJi] is the efficiency of the combustion process
(i.e., the fraction of fuel burngdCombustion efficienc is

a function of ¢, the ratio of injected fuem to injected aira:

i —R@ 22
Qi =R 22

Qli+1]

where the proportionalityR defines the stoichiometric
equivalence of air to fuel.

A key feature is tha€ depends in a highly nonlinear way
on ¢ because of the large effect of fuel-air ratio on flame
speed as the so-called lean limit of combustion is approached
[21]. This nonlinearity can be approximated by a sigmoidal
function of the form

Qli+1]

C[i]=C(¢[i])=Cpal 1+ 100 (¢l = ¢m)/(du= )] =1
(23

where C,,,.« IS the maximal combustion efficiency achieved
Qlil when fuel and air are stoichiometrically balancgéd this

FIG. 5. Typical return maps for engine combustion variations asnotatlon, wheng=1). The quantitiesp, and ¢, are fitting

observed experimentallga) and predicted by two alternative map parameter_s for the S|gm0|dal function aﬁq‘.:((b“—'— $)/2.
models, the ACO modab), and the NND mode(c). The plotted The quantityC thus varies betwee@,,,, (typically close to

data represent standardiz@limensionlesscombustion heat release 1) and 0, depe_nding Oth. . .
(Q) for 2800 consecutive engine cycles. The remaining aspect of the ACO model is that the in-

jected fuel-air ratio is assumed to vary according to

larly important for advanced, low-emission, high-efficiency d[i1= o+ d'[11, (24)

engines that are designed to operate under lean-fueling con-

ditions (i.e., with an excess of air relative to the amount ofwhere ¢, is a nominal average fuel-air ratio arl[i] is a

fuel injected. Experimentally, such variations are measuredperturbation in the inlet system. The fuel-air perturbation oc-

in terms of the amount of combustion energy released focurring in each cycle is given by

each successive power stroke in the engine. As described by

Daw et al. [21], the observed combustion variatiofisig. S'[i]=(1—a)¢'[i—1]+ aNO0,y?), (25

5(a)] can be described in terms of a noisy, nonlinear map

[Fig. 50)]. A key feature of the map is that high-energy wherea is a linear filter constant and/{0,4°) is a random

combustion events tend to be followed by low-energy com-Gaussian deviate of zero mean and standard deviagion

bustion events, and vice versa. The fuzzy appearance of tHghysically, Eqs(24) and (25 mean that the combustion os-

map is conjectured to arise from noise in both engine paraneillations are caused directly by variations in the air-fuel ra-

eters and combustion measurements. tio, which in turn come from the effects of linearly filtered
Two leading physical models have been proposed to exflow noise in the engine intake system. The filter constant

plain the noisy map behavior. The first model explains thecharacterizes the linear response, and the magnitude of the
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driving noise is characterized by. Becaused'[i] is pro- 021G o.1{@
portional to¢'[i—1], the combustion oscillates alternately
high and low. .

Because the nonlinear combustion response described bg
Eq. (29 is static(i.e., depends only on the presgrihere can §- 0.1
be no onset of bifurcations or chaos. This is a physical ex+=
ample of the general class of processes described b
Schreiber and Schmif27], and thus is well represented by M w
Fourier-transform surrogates. From the earlier discussion, we 0810720 30 46 50 60 0 10 20 30 40 50 oo
also expect that the ACO process should not exhibit signifi- Sequence code Sequence code
cant TI. 02y T T aude ——

The second leading model is based on the hypothesis the
the dominant physical process is associated with residual
fuel effects in the cylindetsee Dawet al.[21]). Specifically, g
it is hypothesized that low-energy combustion events leaveg
residual fuel behind in the cylinder, which then contributes =
to the net fuel charge supplied to the next power stroke. Suct
a residual-fuel effect creates a nonlinear “memory,” which
also produces a nonlinear return nidgg. 5(c)]. When dy- 00 10 20 30 40 50 60 10 % 30 40 50 60
namic and measurement noise are suppressed, this map e Sequence code Sequence code
hibits classical nonlinear dynamics including the onset of 02{g™"" ' 0.1
period-2 bifurcations as fueling is leanéc., fuel-to-air ra-
tio is reducegl Ultimately, the period-2 bifurcation process
recapitulates to a fixed point as fueling is dropped to theg
point that no combustion occurs. Even when noise is addedg- 0.1
the global structure of the fuzzy map is controlled by the =
noisy bifurcation. The combustion oscillations are thus ex-
plained as the result of a noisy bifurcation, and the model is M M
referred to as the noisy nonlinear dynam{®\D) model. 0510 30 30 40 50 60 0 10 20 30 40 50 60
As with other bifurcating nonlinear maps, we expect the Sequence code Sequence code
NND model to exhibit TI.

The fuel and air variation for the NND model can be
written explicitly as

Frequency

0.1

Frequency

Frequency

FIG. 6. Comparison of symbol-sequence histograms from the
experimental and the ACO and NND model data representing com-
bustion heat release for 2800 consecutive engine cycles. For sym-

m[i]=(1—F)my+F(1-C[i—1])m[i—1], (26) bolization with parameter$n=2, L=6}, both the ACO(b) and

NND (c) models are nearly indistinguishable from experim@t

11— _ L L For symbolization with parametefs=8, L=2}, the discrimina-
ali]=(1=FatFA-RAi-1pmli-1], (27 tion of temporal irreversibility allows better comparison of the

whereF is a residual fraction of unburned gas left in the ACO (&) and NND(f) models with experimenfd). Within sample-
cylinder after each cycle, anh, and a, are the nominal to-sample variability, the ACO model SSH is symmetric, whereas

masses of fuel and air, respectively, injected each cycle. A
for the ACO model, combustion heat release is as in Eq.
(21), and combustion efficiency depends ¢naccording to o . . S
Eq.(23). The difference here is that[i] anda[i] depend in As shown in Fig. 5, it is not possible to readl'ly distinguish

a nonlinear way on past combustion events. Thus, nonlinedh€ models from return maps alone. Also, binary-alphabet

memory is introduced, and bifurcations and chaos are posiymbolization such as that used by Teetgal. [15] is inad-

sible. Noisy inputs can be introduced into the NND model€duate to distinguish between the models. This inadequacy is

through Gaussian random perturbations to the injegteahd illustrated in Fig. 6, which is a comparison symbol-sequence
residual-gas fraction, for example, histograms {n=2, L=6}) for typical realizations of the
ACO (b) and NND (c) models fitted with the datéa) de-

e NND model and experimental SSHs have similar asymmetric
eatures(most notably sequences 7 and).56

@li]= po+ MO,02) (29 picted in Fig. %a). By adjusting the fitting parameters, both
a2 . . l
models can be made to agree with the experiment within the
F[i]= F0+J\/'(O,cr§). (29) sample-to-sample error band.

On the other hand, with a choice of symbolization param-

The ACO and NND models represent fundamentally dif-eters that strongly discriminates TI, we can readily distin-
ferent kinds of physical processes. It is important to verifyguish differences between the models. In Fig. 6, we observe
which of these processes dominates actual engine behaviolear differences in the symbol-sequence histograms for the
because it could totally change our approach to understandame ACO(e) and NND (f) model outputs compared with
ing and dealing with the combustion-variation problem. Spethe experimental datél) with symbolization parametefs
cifically, the optimal engineering approaches for controlling/=8, L=2}. The biggest differences show up in the relative
damping linear oscillations versus stabilizing bifurcationsfrequencies of the sequend@¥ (sequence code) and7 0
and chaos are likely to be very different. (sequence code 56 The sequence0 7 represents a
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FIG. 7. Temporal irreversibility in engine combustion heat re-  FIG. 8. Temporal irreversibility in combustion heat release as
lease as the mixture is made more lean. The lower plot was experihe fuel-air ratio is reduced. The experimental procedure was the
mentally measured by adjusting the fuel-air equivalent ratio insame as for Fig. 7 except that the engine was adjusted to have a
small increments and recording combustion heat releases for sevetgigher residual gas fraction. The increased level of Tl implies a
hundred cycles at each ratio. Corresponding TFFS statistics angigher degree of bifurcation. Symbolization parameters{are8,
plotted for the experimental data as well as corresponding output =2}. The broken line aZ;, ;= 1.645 marks 0.05 significan¢the
from the ACO and NND modelésee text for parametersSymbol- 95% confidence limjt
ization parameters arén=4, L=3}. The broken line atZj,
=1.645 marks 0.05 significandéhe 95% confidence limit

misfire followed by an excessive burn, whifeO represents
the reverse. For the ACO model, both events occur with
equal frequencywithin sample variations but for the NND
model, sequence 7 is much more likely tha? 0 (revealing
a clear temporal bias

Perhaps the most effective comparison of the models and
data is produced by applying TFFS to repeated engine out-
puts as the fuel-air ratio is reduced in a stepwise fasf86h
As discussed above, the NND model predicts the onset of a
noisy period-doubling bifurcation sequen@dth an inherent 10
temporal biag while the ACO model predicts noisy oscilla-
tions with no temporal bias. Figure 7 illustrates a direct
evaluation of temporal irreversibility using TFFS for experi-
mental engine data and realizations of each of the models.

Q[i+1]

Qli]

Parameter values for the ACO model weig;=0.70, ¢, [\-F
=0.68, =0.03, anda=0.275; for the NND model:¢, 1.645 1
=0.685, ¢, =0.665, »=0.007, and==0.14. 0 -
As we observe, the Tl in the NND model output rises and
falls as fuel-air ratio is reduced, closely tracking the experi-
mental engine data. Because we know that the NND model -4 - " " j " "
exhibits this variation as the result of noisy bifurcations, we 0 002 0064 006 008 01
infer that the experimental engine is undergoing this same v
type of transition. As expected, the ACO model produces N0 FG. 9. TFFS results for 25 realizations of the NLD engine
significant Tl at any fueling level. model with varying levels of dynamic noise @h(as-injected fuel-

The usefulness of TFFS for delineating the noisy bifurca-air ratio), denotedy. Other model parameters were set as defined in
tion process in experimental engine data is further illustrateghe text. Symbolization parameters gme=8, L=2} with a de-
in Fig. 8. Here we observe a more complex variation in Tlcorrelation interval of two iterates. Each return-map scale has been
produced with fuel-air ratio reductions in an engine operat-adjusted for maximal visibility. All units are dimensionless.
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ing at a higher residual fractiofexternally imposed by the We observe that the dynamic noise can reach rather high
experimenter In particular, we see multiple peaks in Tl, and levels before there is significant attenuation in TI. This im-
the second peak is significantly larger than the peak observatlies that one should be able to observe Tl in engine com-
at the lower residual fraction in Fig. 7. The TFFS statistic,bustion experiments even when engine parameters are highly
which focuses on only the most irreversible word, follows noisy, such as one might expect for realistic driving condi-
the same trend as thig,, metric, which evaluates all words, tions. We attribute this dynamic noise insensitivity to the fact
so TFFS quantifies the same changes in Tl, with the statistithat dynamic noise is being amplified by the same nonlinear-

cal confidence bound not directly attainable with . ity that generates the important dynamics.
Based on simulations with the NND model at the higher
residual fraction, we infer that the larger Tl peak results from VIl SUMMARY AND CONCLUSIONS

transitions to higher-order periodicities and chaos. One

might generally expect such a trend when nonlinear MeMoNfjilities in time-series data can be accomplished effectively

is increased. - . and efficiently using symbolization. The TFFS statistic in
Because of the potential importance of parametric pertu-

bations (such as in injected fuglit is also interesting to partmqla;r apﬁer?rs tr? pe gsheful fr(])r evalur;mng a “".‘e'
observe the impact of increasing dynamic noise levels on th(raeversme nullhypothesis without the need for generating
TFFS statistic. Results of numerical experiments in Whichsurrogates.
increasing levels of parametric noise are added to the NND ACKNOWLEDGMENTS

model are illustrated in Fig. 9. In this case, the noise level on

the horizontal axis represents the magnitude of the standard The authors thank F.T. Connolly of the Ford Motor Com-
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Our results indicate that detection of temporal irrevers-
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