
PHYSICAL REVIEW E AUGUST 2000VOLUME 62, NUMBER 2
Symbolic approach for measuring temporal ‘‘irreversibility’’
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We describe a symbolic approach for measuring temporal ‘‘irreversibility’’ in time-series measurements.
Temporal irreversibility is important because it excludes Gaussian linear dynamics and static transformations
of such dynamics from the set of possible generating processes. A symbolic method for measuring temporal
irreversibility is attractive because it is computationally efficient, robust to noise, and simplifies statistical
analysis of confidence limits. We propose a specific algorithm, called ‘‘false flipped symbols,’’ for establishing
the presence of temporal irreversibility without the need for generating surrogate data. Besides characterizing
experimental data, our results are relevant to the question of selecting alternative models. We illustrate our
points with numerical model output and experimental measurements.
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I. BACKGROUND

Temporal irreversibility ~TI! has become important in
characterizing natural phenomena and observed time s
@1–11#. By temporal irreversibility, we refer to statistica
properties which differ depending on whether one obser
the behavior as time proceeds in its natural direction o
reverse. Confirmation of TI is important because it impl
the influence of nonlinear dynamics, non-Gaussian noise
both @8#. In dissipative nonlinear dynamics, for instance, t
positive and negative Lyapunov exponents differ in mag
tude, not just in sign, as the physical origin of instability
the forward direction is distinct from dissipation~which ap-
pears as a virtual instability under temporal reversal!. Sig-
nificant TI automatically excludes Gaussian linear proces
~or static nonlinear transformations of such processes! as
possible models for the generating dynamics. All linear s
rogate data sets produced via the Fourier-transform meth
fall in the class of statistically reversible data, thus reject
temporal reversibility precludes this entire class. In t
present context of stochastic processes, temporal reversib
means that any sequence of measurements is exact
likely as its time reverse to be observed from a given sou

We quantify TI via symbolization of time-series measu
ments. Symbolization converts continuous-valued tim
series measurements into a stream of discrete symbols. T
cally, the range of the observed variable is partitioned int
finite number of bins, such that all measurements fall
within a given bin are transformed into the same symbo
value. The objective in making such a transformation is
faithfully preserve dominant dynamical features while si
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plifying and speeding up subsequent computations. Emp
cal symbolic techniques are known to be useful for chao
and/or turbulent data and for reconciling noisy data w
nonlinear models, among other applications@11–22#.

In the following discussion, we describe our general a
proach for symbolizing data and then identifying and qua
tifying temporally irreversible portions of the symbol stream
We also describe techniques for evaluating confidence in
vals that appear to give good discrimination for known da
Finally, we illustrate how TI can be used to detect noi
bifurcations and characteristic dynamical transitions.

II. SYMBOLIZATION

Figure 1 illustrates how symbolization is achieved by p
titioning the data range and assigning a symbol to each m
surement based on the region into which it falls. Here we
a single partition line to simplify the discussion. The numb
of partitions defines the symbol set, often called an alpha
~in this case0 or 1). When using more than two symbol
our usual convention is to define symbols as integer
throughn21, wheren is the size of the alphabet.

Theoretically, there is a generating partition for each d
terministic process that provides a unique, one-to-one m
ping of trajectories into symbol sequences@12,13#. However,
generating partitions do not generally exist for realistic e
perimental data because of the effects of noise. As Cru
field and Packard observed@12#, generating partitions do no
exist for noisy systems, even in principle. Nevertheless, l
of a generating partition does not prevent the character
tion of dynamical complexity using reasonable empiric
partition choices, as demonstrated by others@15–19#. For our
purposes, we usually define the symbolic partition bou
aries such that the scalar measurement range is divided
equiprobable regions. This choice of boundaries is not
quired for TI detection, but it is convenient because all p

e
.
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PRE 62 1913SYMBOLIC APPROACH FOR MEASURING TEMPORAL . . .
sible symbol sequences become equally probable in the
for independent, identically distributed data.

Sequences of symbols, often called words, contain
information about dynamics. One chooses the number of
quential symbols to group together~the word length! and
then observes the specific words that are formed by mov
a template of this size stepwise along the symbolized t
series. This is conceptually similar to time-delay embeddi
with discrete symbols instead of continuously valued origi
measurements. Unfortunately, there does not appear t
any obvious analogue of the geometric construction unde
ing time-delay embedding, so there is not necessarily
finite word length at which ‘‘all’’ information about the pro
cess has been retrieved, even with a generating parti
Note that the time-delay reconstruction theorems prom
faithful dynamical reconstruction only up to smooth transf
mations of the original state space; in ‘‘symbol space,’’ co
tinuity and differentiability are not useful concepts.

As with time-delay embedding, converting the origin
time-series data to symbol sequences requires specific
of transformation parameters, specifically, the number
symbols in the alphabet, the number of symbols in e
word, and the time interval between symbols in each wo
For purposes of this discussion, we assume that the da
interest are generated by discrete maps, so that the appr
ate intersymbol interval is one step or iterate.

Alphabet size and word length combine to determine
total possible number of sequencesNseq that can be repre
sented. In general,

Nseq5nL, ~1!

FIG. 1. Diagram illustrating data symbolization~a! and symbol-
sequence histogram~b!. Data are symbolized based on their val
relative to boundaries that partition the data range to produc
symbol series. Words are formed by defining a finite-length te
plate to group consecutive symbols, and this template is shi
along the symbol series. Each word is encoded into its deci
~base-10! equivalent to form a code series. A symbol-sequence
togram is a tally of the absolute counts or relative frequencies
each word.
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wheren is the number of symbols andL is the fixed word
length. With finite data, there is a tradeoff between us
large n and L, which improve resolution of the state spa
and dynamical evolution, and smalln and L, which reduce
statistical fluctuations in any word bin. Each word represe
a unique permutation of symbols and can be represented
specific number in basen. This convention for designating
words makes it possible to display frequency patterns as
picted in Fig. 1~b!, which we refer to as a symbol-sequen
histogram~SSH!.

III. SYMBOL-SEQUENCE IRREVERSIBILITY

We quantify TI by comparing the observed number
occurrences of particular symbol words to the frequencie
their counterparts in reverse time. An important caveat is t
for our purposes TI is meaningful only in the context
stationarity: nonstationary dynamics are trivially irreversib
linear or not. Thus one should verify statistical stationarity
addition to TI ~e.g., see Refs.@23–25#!.

The choice of symbolization parameters affects the abi
to distinguish irreversible patterns. For example, a bin
alphabet combined into two-symbol words has the followi
possibilities:0 0, 0 1, 1 0, and1 1. The words0 0 and1 1
are symmetric and cannot contribute to a TI statistic. T
relative fraction of symmetric words for any givenn andL is

fsym5nm2L, ~2!

where fsym is the fraction of the total possible words whic
are symmetric andm5 b(L11)/2c, where the floor function
b• c evaluates the next lowest integer. The fraction of asy
metric words which can contribute to detecting TI is thus
2fsym. The fraction of words able to reveal TI increas
significantly with bothn and L. Consequently, we find it
desirable to use larger alphabet sizes~e.g., 4<n<10), in
contrast to the usual binary alphabets used by other inve
gators such as Tanget al. @15# and Kurthset al. @17#. We
illustrate the impact of larger alphabet sizes in our examp
below.

Temporal irreversibility becomes visible by comparin
the symbol-sequence histograms for forward and backw
realizations of the observed data. A simple example is ill
trated in Fig. 2, which depicts the forward and backwa
histograms for 3000 observations ofx from the Hénon map:

x@ i 11#5y@ i #112ax@ i #2, ~3!

y@ i 11#5bx@ i #. ~4!

The selected parameter values area51.4 andb50.3, which
produce chaos. The symbolization parameters are$n54, L
53%. Differences between the two histograms~forward real-
ization frequency minus backward realization frequency
each word! reveals that a few specific words contribute mo
to irreversibility, as illustrated in Fig. 2~b!. Note that both
positive and negative versions of each difference appea
each histogram accounts for every word and its time inve
For statistical analyses shown later, we avoid this dou
counting.

Figure 2~b! also shows the difference results for a temp
rally symmetric surrogate of the He´non example. The surro
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gate is constructed by adding~in the continuous scalar ob
servable space! independent orbit segments read in forwa
and reverse time, as suggested by Dikset al. @6#. A station-
ary linear stochastic Gaussian source is invariant under s
transformation. Other standard Fourier-transform surrog
generation methods such as those suggested by Theileret al.
@26# and Schreiber and Schmitz@27# work equally well since
they also force temporal symmetry. The small differences
Fig. 2~b! for the surrogate are due to finite-sample statist

One may quantify forward-reverse differences w
simple statistics such as

Tfb5A(
i

~Pf, i2Pb,i !
2 ~5!

and

x fb
2 5(

i

N~Pf, i2Pb,i !
2

Pf, i1Pb,i
. ~6!

In Eq. ~5!, Tfb is the Euclidean norm between the forwa
and backward histograms and is analogous to the comp
tive statistic used by Tanget al. for fitting nonlinear models
to observed data@15#. In Eq. ~6!, x fb

2 is a similar chi-square
statistic applied to the two symbol-sequence histograms.

FIG. 2. ~a! Forward- and backward-time symbol-sequence h
tograms for chaotic output from the discrete He´non model. Symbol-
ization parameters are$n54, L53%. ~b! Differences between the
forward and backward symbol sequences for the chaotic He´non
map. Large peaks~positive or negative! indicate a strong contribu
tion to irreversibility. The dashed line illustrates the result for
temporally reversible surrogate.
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Direct estimation of confidence limits using the abo
simple statistics is problematic because of correlations
tween word frequencies. However, when such statistics
repeatedly evaluated for many temporally reversible su
gates, it is possible to develop confidence estimates by c
paring the distribution of the surrogate statistics with t
statistics for the original data. Such comparisons are furt
strengthened if many realizations of the original data~re-
peated observations! are also available. As we discuss later
more preferable situation would be to define a statistic
which confidence limits are availablea priori, thus avoiding
the effort of constructing surrogates.

We typically determine ‘‘optimal’’ symbolization param
eters for a given data set through systematic evaluation
irreversibility statistics as alphabet size and word length
varied. Figure 3 illustrates this process for the He´non-map
data described earlier. Symbolization parameters chosen
way are not in any sense universal because they reflect c
specific factors such as noise level, the symbol partition
scheme, the dominant dynamical features present, and d
set size. With the same data, other features such as en
may be most effectively revealed with different choices
parameters. Thus, to a great extent, the choice of symbo
tion parameters depends on one’s specific needs and
straints. Because selection of a generating partition is
possible, we do not expect any direct connection with g
metric properties of the time-delay phase space~e.g., mini-
mum embedding dimension!.

IV. FALSE FLIPPED SYMBOLS—DIRECT ESTIMATION
OF SIGNIFICANCE

Although surrogates can be useful for relative compa
sons ofTfb andx fb

2 , it is desirable to have statistics that d

-

FIG. 3. Variation of observed irreversibility (Tfb) with ~a! al-
phabet size~for fixed L53) and~b! word length~for fixed n52)
for the Hénon-map data.
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PRE 62 1915SYMBOLIC APPROACH FOR MEASURING TEMPORAL . . .
not require generation of surrogates to evaluate significa
There may be technical issues in generating truly faith
surrogates or, equivalently, questions about the actual
hypothesis represented by the surrogate generator. More
a direct test, especially in symbol space, is computation
simpler and could be embedded in an online instrumen
control system.

Here we propose ana priori statistic@referred to hereafte
as false flipped symbols~FFS!#. Our statistic is constructed
using a classical binomial model to find the likelihood
obtaining the observed distribution of words under the n
hypothesis that the forward and backward realizations
each word are equally probable. If then we find that
observed distribution is highly unlikely, we can reject t
null that the original data are temporally reversible.

For the moment we concentrate on a single word cla
the class encompasses the word and its time inverse.
count the frequency that this word was observed in the
ward directioncf and the backward directioncb . Intrinsi-
cally reversible symbol words~e.g.,1 0 0 1) trivially main-
tain cf5cb and are excluded from further calculation. F
the rest, under the null hypothesis of reversibility, it is
likely to observe any given word in the forward as in t
backward direction. This suggests using the classical t
sample binomial test to provide the likelihood of seeing
observed values ofcf andcb given that each event is equ
probable.

Given N total draws with probability of an eventu, the
binomial probability of seeing exactlyk events is

b~k,N,u!5
N!

k! ~N2k!!
uk~12u!N2k. ~7!

For our purposes, we are interested in the tail probabilitie
observing extreme cases, i.e., where the number of forw
or backward observations of one or more words is unexp
edly high or low. Given the null, the likelihood of observin
k or fewer occurrences of a word~or N2k or more occur-
rences of its time inverse! is

B~k,N,u!5(
j 50

k

b~ j ,N,u!1 (
j 5N2k

N

b~ j ,N,u!. ~8!

Thus the likelihoodL of accepting the null when it is actuall
true is

B~cf21,N,0.5!<L<B~cf ,N,0.5!, ~9!

with N5cf1cb . The inequality is on account of the discre
nature of the distribution. If one were simulating the acc
racy of the null by generating reversible time series a
evaluatingL for each, one would select a particular value
L randomly and uniformly between the limits above. In t
limit of many reversible time series, the distribution of the
L ’s converges to uniform (0,1), as expected. Given bu
single test on a single data set, it is conventional to be c
servative against rejecting the null by using the upper bou
though one should recognize this would not converge t
uniform distribution under the null distribution, and is a he
ristic bias.
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The binomial test described above assumes that the ev
occur independently of one another. With realistic data, t
assumption is unlikely always to be valid because of tem
ral correlations between successive observations. If temp
correlations exist, the actual degrees of freedom for eval
ing the significance are unknown. Thus, we perform anot
test, looking for sequential correlations in the occurrences
forward and backward versions of a given word. If the
exist statistically significant correlations here, the result
the reversibility test is deemed to be unfaithful. Thus, a d
ignation that an observed time series is irreversible requ
that the reversibility test reject its null and also that the
quential independence test accept its null.

We see if forward and backward events appear to oc
without sequential correlation. Specifically, whenever an
gible target word class occurs, we recall the immediat
previously observed orientation of that same word and inc
ment countscs and cd , depending on whether that wor
occurred in the same~s! or different ~d! orientation from its
predecessor. By construction,cs1cd115cf1cb for any
word class. If the relative frequency of forward words isu f
5cf /(cf1cb), then under sequential independence the
pected proportion of same-to-same transitions isus5u f

2

1(12u f)
2. We thus find the likelihoodLc , under the null of

no correlation, of observing this particularcs andcd as

B~cs21,cs1cd ,us!<Lc<B~cs ,cs1cd ,us!. ~10!

Thus we require thatLc not reject its null.
What if it does reject? Our approach to this problem

selectively to down-sample the total set of events so t
correlations are minimized. We have considered two me
ods for implementing selective sampling.

~1! Random subsampling of all events with increasi
sparseness, e.g., randomly subsample a fractionp,1 of the
words in the symbolized time series to qualify for any stat
tic.

~2! Given any word class, ignore subsequent occurren
of that class which occur sufficiently closely in time. Th
decorrelation-interval approach is common in many non
ear time-series algorithms.

For both approaches, one excludes more data until
correlation indicator statistic indicates the null of indepe
dence is sufficiently likely, and then examines the result
the reversibility test.

V. TARGETED FALSE FLIPPED SYMBOLS

We have described the detection of TI for a single wo
class. We want to produce a statistic for the whole data
as seen in Fig. 2~a!, some words much more strongly ind
cate irreversibility than others. We give two alternative
combining the result of many tests of different words,
selection of a particular word which best demonstrates i
versibility.

Assume we have computed likelihoodsLi regarding re-
versibility for the various word classes enumerated byi, with
particularLi selected uniformly between the bounds sho
above. WithNw independent tests of a null hypothesis, t
quantity
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X25(
i 51

Nw

22lnLi ~11!

is x2 distributed, which with standard algorithms we com
pute our finalL, again uniform in (0,1) under the null. Es
pecially small values ofL imply a small likelihood that this
apparent level of irreversibility would have been observ
had the symbol stream been generated by a reversible
namical process. SmallL signals irreversibility.

This sort of full implementation of FFS is potentially ver
powerful because it can reflect the cumulative indication
TI in all symbol words. However, a general scheme for c
lecting representative uncorrelated samples of all sym
words is difficult to implement using the fixed-word-leng
symbolization approach described here, because not al
events entering counts corresponding todifferent word
classes are independent. We are developing a version o
sort of FFS using a more sophisticated state-selecting a
rithm, an adaptive variable-order ‘‘context tree’’ model su
gested by data-compression methods, which does in fact
duce nearly independent counts. This construction
already been used for a symbolic stationarity test by one
the authors@28#.

At present, we discuss a modified FFS method, which
call ‘‘targeted FFS’’ ~TFFS!. Initially we divide the time
series into two equal halves. In the front half of the data
we note which symbol word occurs most frequently relat
to its time inverse, the word class for which the differen
cf2cb is largest, where for each word classcf.cb . This
word then serves as our first target. Note that it emphas
words which are both asymmetric and occur frequen
Other choices, such as maximizing (cf2cb)2/(cf1cb) are
reasonable.

We then notecf ,1 andcb,1 for this same symbol word in
the second half of the data set. For this second counting
eliminate from consideration any repeated occurrences o
word class within a specified decorrelation interval. To b
gin, we estimate this interval from the autocorrelation fun
tion for the data. Later, we apply our correlation indica
statistic~described below! to confirm that our decorrelation
interval is sufficient.

We next identify a second target word class using
second half of the data in a manner analogous to our in
step. In some cases this second target word may be the
as the first target sequence, or it may be different on acco
of random fluctuation. The latter is typically true for temp
rally reversible data.

We now notecf ,2 and cb,2 for this second target word
class when it occurs in the first half of the data. As befo
we eliminate any repeated occurrences within the decorr
tion interval.

A coin analogy helps to explain the rationale behind
above procedure. Suppose one has a collection of coins
wishes to test the null hypothesis that all the coins are
anced~corresponding to reversible data!. One could begin
with a trial run in which all of the coins were initially flipped
a number of times. A good candidate for testing the null i
second flipping session would be that coin which produ
the greatest difference between the numbers of heads
tails. If the selected coin still acts unbalanced in this sec
set of trials, we can confidently reject the null.
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With thecf andcb results for both target words, it is the
possible to evaluate the case for TI by considering the li
lihood that the observed number of forward and backw
counts would be seen under a time-symmetric null. Note t
for complete temporal symmetry, the probability of obse
ing the forward occurrence of both target words is 0.5. U
likely counts for either or both targets are grounds for rej
tion of the null. We consider both the counts for the front a
back targets separately and then the combined counts.
cifically, we evaluate the likelihoodL1 of observing the for-
ward target count in the front half of the data as

B~cf ,121,N1 ,0.5!<L1<B~cf ,1 ,N1 ,0.5!, ~12!

whereN15cf ,11cb,1 , this time with the one-sidedB,

B~k,N,u!5 (
j 5N2k

N

b~ j ,N,u!. ~13!

Typically, we reject the null ifL<5%.
WhenN1 is large~e.g.,.100), the normal approximation

for the binomial distribution can be used, and we estim
the normal deviate statistic

Zirr,15
cf ,12~1/2!N1

A~1/4!N1

. ~14!

In this case, we define our confidence level based on
one-tailed, normal-deviate probabilities and reject the n
hypothesis whenZirr,1 exceeds some limit~e.g., 1.645!.

Because an unlikely value forcf ,2 is also grounds for
rejection of the null, we repeat the previous evaluation
estimateL2 andZirr,2 , wherecf ,1 is replaced bycf ,2 , cb,1 is
replaced bycb,2 , andN1 is replaced byN25cf ,21cb,2 . We
again reject the null ifL2 is small orZirr,2 exceeds the speci
fied limit.

One possible approach for combining the separate ta
word counts into a single test would be to apply Eq.~11! to
the results of the front and back target tests above. T
would produce a chi-square statistic that could be evalua
to decide on rejection of the null. Another approach we ha
found to be very effective is to consider the total number
forward target events, regardless of which target word is
volved. Using this constraint, the expected value for the s
of both forward target counts isNf ,t5

1
2 (N11N2) and the

variance of this sum isNt/4 when the null is true. If we can
establish that the observed total forward count is unexp
edly high, we can also reject the null. Thus we evaluate

B~Nf ,t21,Nt ,0.5!<Lt<B~Nf ,t ,Nt ,0.5!, ~15!

whereNf ,t5cf ,11cf ,2 andNt5N11N2, and

Zirr, t5
Nf ,t2~1/2!Nt

A~1/4!Nt

. ~16!

We find that the combined count statisticsLt andZirr, t typi-
cally give the strongest rejection of the null for truly irrever
ible data due to the larger number of target data points
cluded.
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PRE 62 1917SYMBOLIC APPROACH FOR MEASURING TEMPORAL . . .
We confirm sufficient decorrelation for the samples us
to estimate the above statistics by considering the transit
in sample orientation~runs test! in a similar fashion to the
single-target tests. That is, we evaluate

B~cs,121,Nc,1 ,0.5!<Lc,1<B~cs,1 ,Nc,1 ,0.5! ~17!

whereNc,15cs,11cd,1 and

B~cs,221,Nc,2 ,0.5!<Lc,2<B~cs,2 ,Nc,2 ,0.5!, ~18!

whereNc,25cs,21cd,2 . If either Lc,1 or Lc,2 are sufficiently
small, the hypothesis of decorrelation is rejected, the de
relation interval is increased, the targets are resampled,
the runs test is repeated.

To summarize, we choose particular word classes fr
each half of the data, measure the occurrences of forw
and backward words in the other half, apply the appropr
decorrelation interval, and combine into irreversibility tes
@Eqs. ~15!,~16!# and runs tests@Eqs. ~17!,~18!#. Significant
irreversibility requires smallL1 , L2, andLt and sufficiently
largeLc to validate the test.

If one preselected a particular target word class to ex
ine, this algorithm could be easily implemented as an on
measurement, as it only needs to accumulate specific w
counts. With a small word buffer, one could sequentia
discard the most distant previous observation, providing
easily updated measurement of irreversibility for the rec
past.

VI. A NUMERICAL EXAMPLE

We next illustrate the usefulness of TFFS using a m
challenging model, the Ikeda ring laser~IRL! @29#. Briefly,
this model is a discrete time map coupled to a differen
equation, producing a delay differential system. The res
ing time-asymptotic dynamics is chaotic~with multiple posi-
tive Lyapunov exponents! and has sufficiently high dimen
sion that standard time-series analysis tools such
correlation dimension and false nearest neighbors fail to g
useful results@29#.

The IRL model output consists of a complex electric-fie
amplitudez(t) and a spatially averaged population inversi
w(t), coupled according to

z~ t1tR!5EIe
i (v I2v0)t1Beikz~ t !e(b1 ia)w(t), ~19!

dw~ t !

dt
5Q22g$w~ t !111uz~ t !u2~eGw(t)21!/G%,

~20!

wheret is time andtR is propagation time around the optic
ring. Definitions ofa, b, g, k, v, G andQ may be found in
Ref. @29#. For illustration purposes, we choose the canon
parameter values (EI51, B50.9, k50.4, b50, a56, and
v I5v0) @29#.

We create a discretized measurement by recording
real portion of the field amplitude each time the populat
inversion changes from negative to positive; we denote
strobed measurementz8. A first return map of 10 000 points
from the resulting sampled time series is illustrated in the
left corner of Fig. 4. Note that in a low-dimensional proje
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tion of this type, most of the high-dimensional dynamics
obscured, and the map is visually almost featureless. Furt
there is no obvious asymmetry about the diagonal to indic
TI. It is clear, however, that TI is present for the IRL mod
output when we apply TFFS to the sampled data. For a s
bolization of$n54, L53%, we obtainZirr, t59.07, indicating
a very strong rejection of the reversible null. We obtain sim
larly strong rejections of the null even for other reasona
choices of symbolization parameters such as$n58, L52%,
$n57, L53%, and$n53, L54%. We can also use the IRL
model to illustrate the robustness of TFFS to the effects
additive noise. In Fig. 4, we have plotted theZirr, t statistic for
the above IRL data after adding successively higher level
Gaussian measurement noise~with zero mean!. The noise
levels indicated on the horizontal axis represent the ratio
the additive noise variance to the variance of the model o
put. Results for 25 noise replicates are shown at each lev
illustrate the variability inZirr, t due to sampling variations in
the noise. The solid line indicates the averageZirr, t value for
the 25 replicates. Note that rejection of the reversible n
continues to be strong up to noise levels of 40%. We
tribute the noise robustness of TFFS to the fact that
statistic is based on the most frequent irreversible wo
which we expect to be one of the last dynamical features
be obscured as noise is increased.

VII. AN EXPERIMENTAL EXAMPLE

We now illustrate the application of our symbolic metho
for TI detection to a physical problem involving noisy dy
namics. Specifically, there can be significant variations in
combustion output of an internal combustion engine fro
one cycle to the next. This combustion variation is partic

FIG. 4. TFFS results for strobed output from the Ikeda ring la
with 25 realizations of additive noise. Model parameters were se
the canonical values~see text!. Noise levels are expressed as t
dimensionless ratio, denotedr, of the noise variance to the mode
output variance. Symbolization parameters are$n54, L53% with a
decorrelation interval of three iterates. Each return-map scale
been adjusted for maximal visibility.
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larly important for advanced, low-emission, high-efficien
engines that are designed to operate under lean-fueling
ditions ~i.e., with an excess of air relative to the amount
fuel injected!. Experimentally, such variations are measur
in terms of the amount of combustion energy released
each successive power stroke in the engine. As describe
Daw et al. @21#, the observed combustion variations@Fig.
5~a!# can be described in terms of a noisy, nonlinear m
@Fig. 5~c!#. A key feature of the map is that high-energ
combustion events tend to be followed by low-energy co
bustion events, and vice versa. The fuzzy appearance o
map is conjectured to arise from noise in both engine par
eters and combustion measurements.

Two leading physical models have been proposed to
plain the noisy map behavior. The first model explains

FIG. 5. Typical return maps for engine combustion variations
observed experimentally~a! and predicted by two alternative ma
models, the ACO model~b!, and the NND model~c!. The plotted
data represent standardized~dimensionless! combustion heat releas
~Q! for 2800 consecutive engine cycles.
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origin of combustion variations as the result of linear, an
correlated oscillations~ACO! in the fueling system. It is hy-
pothesized that Gaussian-distributed flow noise in the air
take is amplified by the linear acoustical characteristics
the intake system to produce anticorrelated pressure wa
These pressure waves subsequently entrain alternately
and less fuel from the injector into the cylinder on succe
ing intake strokes. Under this model, the observed comb
tion changes are then the result of the in-cylinder combus
responding to the fueling variations. The nonlinear appe
ance of the map@Fig. 5~b!# is due to the~static! nonlinear
variation of combustion with fuel level.

The ACO model can be written explicity in terms of th
amount of fuel that is injected into the cylinder on each cy
i:

Q@ i #}C@ i #m@ i #, ~21!

whereQ@ i # is amount of combustion heat release in cyclei,
m@ i # is the amount of fuel present in the cylinder in th
cycle, andC@ i # is the efficiency of the combustion proce
~i.e., the fraction of fuel burned!. Combustion efficiencyC is
a function off, the ratio of injected fuelm to injected aira:

f@ i #5R
m@ i #

a@ i #
, ~22!

where the proportionalityR defines the stoichiometric
equivalence of air to fuel.

A key feature is thatC depends in a highly nonlinear wa
on f because of the large effect of fuel-air ratio on flam
speed as the so-called lean limit of combustion is approac
@21#. This nonlinearity can be approximated by a sigmoid
function of the form

C@ i #5C~f@ i # !5Cmax@111002(f[ i ] 2fm)/(fu2f l)#21,
~23!

whereCmax is the maximal combustion efficiency achieve
when fuel and air are stoichiometrically balanced~in this
notation, whenf51). The quantitiesfu and f l are fitting
parameters for the sigmoidal function andfm5(fu1f l)/2.
The quantityC thus varies betweenCmax ~typically close to
1! and 0, depending onf.

The remaining aspect of the ACO model is that the
jected fuel-air ratio is assumed to vary according to

f@ i #5f01f8@ i #, ~24!

wheref0 is a nominal average fuel-air ratio andf8@ i # is a
perturbation in the inlet system. The fuel-air perturbation o
curring in each cycle is given by

f8@ i #5~12a!f8@ i 21#1aN~0,c2!, ~25!

wherea is a linear filter constant andN(0,c2) is a random
Gaussian deviate of zero mean and standard deviationc.
Physically, Eqs.~24! and~25! mean that the combustion os
cillations are caused directly by variations in the air-fuel
tio, which in turn come from the effects of linearly filtere
flow noise in the engine intake system. The filter constana
characterizes the linear response, and the magnitude o

s
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driving noise is characterized byc. Becausef8@ i # is pro-
portional tof8@ i 21#, the combustion oscillates alternate
high and low.

Because the nonlinear combustion response describe
Eq. ~23! is static~i.e., depends only on the present!, there can
be no onset of bifurcations or chaos. This is a physical
ample of the general class of processes described
Schreiber and Schmitz@27#, and thus is well represented b
Fourier-transform surrogates. From the earlier discussion
also expect that the ACO process should not exhibit sign
cant TI.

The second leading model is based on the hypothesis
the dominant physical process is associated with resid
fuel effects in the cylinder~see Dawet al. @21#!. Specifically,
it is hypothesized that low-energy combustion events le
residual fuel behind in the cylinder, which then contribut
to the net fuel charge supplied to the next power stroke. S
a residual-fuel effect creates a nonlinear ‘‘memory,’’ whi
also produces a nonlinear return map@Fig. 5~c!#. When dy-
namic and measurement noise are suppressed, this ma
hibits classical nonlinear dynamics including the onset
period-2 bifurcations as fueling is leaned~i.e., fuel-to-air ra-
tio is reduced!. Ultimately, the period-2 bifurcation proces
recapitulates to a fixed point as fueling is dropped to
point that no combustion occurs. Even when noise is add
the global structure of the fuzzy map is controlled by t
noisy bifurcation. The combustion oscillations are thus
plained as the result of a noisy bifurcation, and the mode
referred to as the noisy nonlinear dynamics~NND! model.
As with other bifurcating nonlinear maps, we expect t
NND model to exhibit TI.

The fuel and air variation for the NND model can b
written explicitly as

m@ i #5~12F !m01F~12C@ i 21# !m@ i 21#, ~26!

a@ i #5~12F !a01F~12RC@ i 21# !m@ i 21#, ~27!

where F is a residual fraction of unburned gas left in th
cylinder after each cycle, andm0 and a0 are the nominal
masses of fuel and air, respectively, injected each cycle
for the ACO model, combustion heat release is as in
~21!, and combustion efficiency depends onf according to
Eq. ~23!. The difference here is thatm@ i # anda@ i # depend in
a nonlinear way on past combustion events. Thus, nonlin
memory is introduced, and bifurcations and chaos are p
sible. Noisy inputs can be introduced into the NND mod
through Gaussian random perturbations to the injectedf and
residual-gas fraction, for example,

f@ i #5f01N~0,sf
2 !, ~28!

F@ i #5F01N~0,sF
2 !. ~29!

The ACO and NND models represent fundamentally d
ferent kinds of physical processes. It is important to ver
which of these processes dominates actual engine beh
because it could totally change our approach to underst
ing and dealing with the combustion-variation problem. S
cifically, the optimal engineering approaches for controllin
damping linear oscillations versus stabilizing bifurcatio
and chaos are likely to be very different.
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As shown in Fig. 5, it is not possible to readily distinguis
the models from return maps alone. Also, binary-alpha
symbolization such as that used by Tanget al. @15# is inad-
equate to distinguish between the models. This inadequa
illustrated in Fig. 6, which is a comparison symbol-sequen
histograms ($n52, L56%) for typical realizations of the
ACO ~b! and NND ~c! models fitted with the data~a! de-
picted in Fig. 5~a!. By adjusting the fitting parameters, bo
models can be made to agree with the experiment within
sample-to-sample error band.

On the other hand, with a choice of symbolization para
eters that strongly discriminates TI, we can readily dist
guish differences between the models. In Fig. 6, we obse
clear differences in the symbol-sequence histograms for
same ACO~e! and NND ~f! model outputs compared with
the experimental data~d! with symbolization parameters$n
58, L52%. The biggest differences show up in the relati
frequencies of the sequences0 7 ~sequence code 7! and7 0
~sequence code 56!. The sequence0 7 represents a

FIG. 6. Comparison of symbol-sequence histograms from
experimental and the ACO and NND model data representing c
bustion heat release for 2800 consecutive engine cycles. For s
bolization with parameters$n52, L56%, both the ACO~b! and
NND ~c! models are nearly indistinguishable from experiment~a!.
For symbolization with parameters$n58, L52%, the discrimina-
tion of temporal irreversibility allows better comparison of th
ACO ~e! and NND~f! models with experiment~d!. Within sample-
to-sample variability, the ACO model SSH is symmetric, where
the NND model and experimental SSHs have similar asymme
features~most notably sequences 7 and 56!.
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misfire followed by an excessive burn, while7 0 represents
the reverse. For the ACO model, both events occur w
equal frequency~within sample variations!, but for the NND
model, sequence0 7 is much more likely than7 0 ~revealing
a clear temporal bias!.

Perhaps the most effective comparison of the models
data is produced by applying TFFS to repeated engine
puts as the fuel-air ratio is reduced in a stepwise fashion@30#.
As discussed above, the NND model predicts the onset
noisy period-doubling bifurcation sequence~with an inherent
temporal bias!, while the ACO model predicts noisy oscilla
tions with no temporal bias. Figure 7 illustrates a dire
evaluation of temporal irreversibility using TFFS for expe
mental engine data and realizations of each of the mod
Parameter values for the ACO model were:fu50.70, f l
50.68, c50.03, anda50.275; for the NND model:fu
50.685,f l50.665,c50.007, andF50.14.

As we observe, the TI in the NND model output rises a
falls as fuel-air ratio is reduced, closely tracking the expe
mental engine data. Because we know that the NND mo
exhibits this variation as the result of noisy bifurcations,
infer that the experimental engine is undergoing this sa
type of transition. As expected, the ACO model produces
significant TI at any fueling level.

The usefulness of TFFS for delineating the noisy bifur
tion process in experimental engine data is further illustra
in Fig. 8. Here we observe a more complex variation in
produced with fuel-air ratio reductions in an engine oper

FIG. 7. Temporal irreversibility in engine combustion heat
lease as the mixture is made more lean. The lower plot was ex
mentally measured by adjusting the fuel-air equivalent ratio
small increments and recording combustion heat releases for se
hundred cycles at each ratio. Corresponding TFFS statistics
plotted for the experimental data as well as corresponding ou
from the ACO and NND models~see text for parameters!. Symbol-
ization parameters are$n54, L53%. The broken line atZirr, t

51.645 marks 0.05 significance~the 95% confidence limit!.
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FIG. 8. Temporal irreversibility in combustion heat release
the fuel-air ratio is reduced. The experimental procedure was
same as for Fig. 7 except that the engine was adjusted to ha
higher residual gas fraction. The increased level of TI implies
higher degree of bifurcation. Symbolization parameters are$n58,
L52%. The broken line atZirr, t51.645 marks 0.05 significance~the
95% confidence limit!.

FIG. 9. TFFS results for 25 realizations of the NLD engi
model with varying levels of dynamic noise onf ~as-injected fuel-
air ratio!, denotedc. Other model parameters were set as defined
the text. Symbolization parameters are$n58, L52% with a de-
correlation interval of two iterates. Each return-map scale has b
adjusted for maximal visibility. All units are dimensionless.
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ing at a higher residual fraction~externally imposed by the
experimenter!. In particular, we see multiple peaks in TI, an
the second peak is significantly larger than the peak obse
at the lower residual fraction in Fig. 7. The TFFS statist
which focuses on only the most irreversible word, follow
the same trend as theTirr metric, which evaluates all words
so TFFS quantifies the same changes in TI, with the stat
cal confidence bound not directly attainable withTirr .

Based on simulations with the NND model at the high
residual fraction, we infer that the larger TI peak results fro
transitions to higher-order periodicities and chaos. O
might generally expect such a trend when nonlinear mem
is increased.

Because of the potential importance of parametric pe
bations ~such as in injected fuel!, it is also interesting to
observe the impact of increasing dynamic noise levels on
TFFS statistic. Results of numerical experiments in wh
increasing levels of parametric noise are added to the N
model are illustrated in Fig. 9. In this case, the noise level
the horizontal axis represents the magnitude of the stan
deviation in the as-injected fuel parameter relative to
nominal value. At selected noise levels, we have plotted
resulting value ofZirr, t for 25 different realizations of mode
output~2800 engine cycles for each realization!. The plotted
solid line represents the mean for the 25 realizations.
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We observe that the dynamic noise can reach rather h
levels before there is significant attenuation in TI. This im
plies that one should be able to observe TI in engine co
bustion experiments even when engine parameters are h
noisy, such as one might expect for realistic driving con
tions. We attribute this dynamic noise insensitivity to the fa
that dynamic noise is being amplified by the same nonline
ity that generates the important dynamics.

VIII. SUMMARY AND CONCLUSIONS

Our results indicate that detection of temporal irreve
ibilities in time-series data can be accomplished effectiv
and efficiently using symbolization. The TFFS statistic
particular appears to be useful for evaluating a tim
reversible null hypothesis without the need for generat
surrogates.
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