PHYSICAL REVIEW E VOLUME 62, NUMBER 2 AUGUST 2000

Inverse cascade avalanche model with limit cycle exhibiting period doubling, intermittency,
and self-similarity

S. C. Chapmah
Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
(Received 16 November 1999; revised manuscript received 29 February 2000

A one-dimensional avalanche “sandpile” algorithm is presented for transport in a driven dissipative con-
finement system. Sand is added at the closed inflow boundary and redistributed when the local gradient
exceeds a threshold. The redistribution rule is conservative, nonlocal, and linear and is chosen to mimic fluid
flow. Potential energy is dissipated by avalanches that also expel matter at the open outflow boundary. The
system then evolves through an inverse cascade. A “fluidization” pararhetggecifies the length scale over
which the algorithm operates. The limiting caselgf=1 cell andL;=N, the system size, are analytically
soluble. For other values &f; the emergent, large-scale dynamics of the system shows a variety of behavior
including a limit cycle that has a period-doubling sequence, intermittency, and a random walk.

PACS numbd(s): 05.45.Ra, 05.10:a, 45.70.Ht, 05.70.Ln

I. INTRODUCTION via an inverse cascade from short to long spatial scales. The
redistribution rule is nonlocal and linear so that the large-

A ubiquitous class of behavior in driven dissipative con-scale dynamics is a consequence of the interaction of many
finement systems is the absence of intrinsic scales in thsites across the sandpile and occurs over many avalanches.
statistics and the power spectra of the time evolution of stat@his dynamics over the long scales exhibits a range of be-
variables(such as energythat characterize the dynamilcd|. haviors reminiscent of deterministic dissipative chaos; but
Currently, distinct theoretical frameworks exist for bursty crucially is the emergent phenomenology of a driven dissi-
scale-free energy dissipation; intermittency in a chaotic syspative system that is thresholded and as a consequence re-
tem caused by a phase space trajectory approaching the crilgases energy by means of avalanches. The model hence pro-
cal region of a tangent bifurcatid] and avalanché‘sand-  vides an important link between the framework of dissipative
pile”) models that may in addition exhibit self-organized chaos and self-organization in “sandpile” models.
criticality [3—5]. The former corresponds to a range of values The model also has physical motivation. Avalanche mod-
of a control parameter in the underlying dynamical equationgls with local redistribution rules of which the BTW algo-
for the system; for other values the phase space trajectomthm is an example, have been associated with diffusion
may follow a limit cycle. In the latter case, the underlying driven transport in astrophysical plasmase[7,8] and ref-
equations are not known, instead, simple algorithms that preerences therejnWe wish to allow the possibility of convec-
scribe fuelling, redistribution, and threshol@sg., a critical tive transport in addition to that resulting from thresholded
value of the local gradient of sand that triggers redistributiordiffusion. A simplified physical example of such a system
only when it is exceedadare postulated. Importantly in con- may be provided by the dynamics of waterdrops on a tilted
trast to deterministic chaos these systems are robust: the dgane of glass. The fluid forms drops that are at rest until
namics is bursty(that is, apparently intermittenand has surface tension is exceeded at the leading edge of a drop;
scale-free statistics for a broad range of threshold and redistrops then reconfigure by fluid flow rather than diffusion
tribution algorithmg5]. alone. The algorithm discussed here then introduces a “flu-

Coupled map latticeSCML) provide an intermediate idization region” such that exceeding the critical threshold
class of dynamical system in that continuous equations arprompts redistribution over a region of the sandpile rather
first decomposed into a discrete map that is then applied sitdan locally. This approach has already had success with
by site across a grid. For systems of interest the map iplasma confinement systeni®], in particular with the
nonlinear and local and leads to dynamics across the gridarth’s magnetosphergl0,11] where both diffusion and
that are self-organizing, and can show the full range of pheeonvection-dominated transport are expected to occur.
nomenology associated with chadsr a review, sed6]).

Unlike the avglanche quel to be discussed here, CML do Il. ALGORITHM
not generally include critical thresholds.

Here we present a simple sandpile algorithm that is a The sandpile is represented by a one-dimensional grid of
generalization of the original Bak, Tang, and WiesenfeldN equally spaced cells one unit apart, each with sand at
(BTW) algorithm[3]. In the BTW algorithm, redistribution heighth;, and local gradients;—h;. ;. A repose gradient
is “local,” involving nearest-neighbor sites; here we exam- zg is specified below which the sandpile is always stdtile
ine redistribution that moves sand over an extended “fluidi-heightsh; and the local gradients are measured relative to
zation” region. The edge-driven model essentially evolvesthis). A critical gradientz; is also specified and if the local

gradient exceeds, the sand is redistributed to neighboring
cells and iteration produces an avalanche. The critical gradi-
*Electronic address: sandrac@astro.warwick.ac.uk ent z. can be single valued or drawn randomly from a dis-
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tribution; both cases will be considered here. The magnitudefowing region where importantly, sand is redistributed al-
of (z.) and zg simply scale the total amount of sand andthough the local gradient is less than critical.
energy in the system. The boundary conditions effectively drive the system at

Sand is added to this edge-driven sandpile at the closeshort spatial scales and remove fluctuations at the largest
boundary cell 1 at a constant rage=1 (to which we have spatial scales; instabilitftriggering of a new avalanchevill
normalized theh; and timg. The inflow rate is slow com- always first occur at cell 1 and then can extend over a region
pared to the interavalanche time, i.2./g>1 and the dy- of between 1 and\ cells in length, whereas only avalanches
namics is found to be insensitive ® provided that this of the lengthN of the system will interact with the outflow
condition holds; here we will show results fée.)/g=100.  boundary.
As soon as the critical gradient is exceeded, the sand is re-
distributed. The redistribution rule is conservative and in-
stantaneous: avalanches are evolved until at all cells the local
gradient is below the critical gradient and only then is further  The system with single valueg} has two well-understood
sand added. At each iteration within an ongoing avalanch@miting cases. In the limiting casie;= 1 the behavior is just
the height of sand behind the unstable site is reduced so as tat of the traditional BTW3] sandpile edge driven in one
flatten a fluidized regioh. <L ; back to the angle of repose; dimension; in this case the sandpile reaches a unique equi-
this sand is relocated to the next cell. The flowing regionlibrium configuration in which the gradients at all cells are
includes all sites behind the unstable site up to either thgust at critical. All avalanches amd cells in length and con-
sandpile boundary or to maximum vallg, whichever is  sist of each added “grain” of sand propagating from the top
smaller; L is then the fixed control parameter for a given to the bottom of the pile. In the other limit,;=N, the be-
sandpile model of lengtiN. The edge of an ongoing ava- havior is solvable analyticallj12]. In this case, an initially
lanche then propagates forwards from one @¢lto the next ~ empty sandpile can be shown to fill by establishing a height
(k+1) if profile that is composed of “slabs” at the repose angle. This

arises sincdi) the redistribution ruleL;=N “flattens” the
he= P 1>7c. (2.1) region within an avalanche back to the angle of repose and

(i) the start of an avalanchghe first cell to become un-
stablg in the edge-driven sandpile will always be cell 1 so
that avalanches of lengthcreate “flat” regions of sand, i.e.,

Ill. BEHAVIOR OF THE SYSTEM

This results in a quantity of santl being deposited on the
next cell(where * indicates intermediate steps in the relax-

ation: with all cells between 1 and at the repose angle. An ava-
*x  _ lanche that is smaller than the preceding avalanche will
hi.1=h1tA (2.2 . :
therefore encounter a flat region of sand in the same way as
such that the gradient at cels-i, i=0, L—1 relaxes to the an avalanche that expands into unoccupied sites; resulting in
angle of reposéhere normalized to zeyp self-similar dynamics while the sandpile is growing. Once
the sandpile encounters the outflow boundary, the entire
¥ . —h* , .=zz=0, i=0, L—-1 (2.3 sandp_ile emptiesi.e., is flattened to Fhe repose angand .
the filling cycle repeats. The time series for energy release is
by conservatively removing sand, exactly periodic and, on time scales shorter than the period,
self-similar. The avalanches are self similar with lengths 2
x _h A j=0,1,..., up to thesystem size, and their statistics for
k—i— k_i__, |—0, L_l (24) . . . .
L lengths and energy dissipation are inverse power law.

We now first consider all other<L{<N for the simplest

Equations(2.2)—(2.4) uniquely specifyA. Here we consider case, that is, single valueg. In this case we may expect for
an edge-driven sandpile so that avalanches are forwanthe edge-driven sandpile that, within a distariceof the
propagating(i.e., with increasing). Random or central fu- inflow boundary, the evolution will essentially proceed in a
elling could also drive backwards propagation of the avamanner similar to the analytit;=N system discussed
lanche edgéfrom k to k—1) which would then occur ifi,  above. This permits the possibility of different dynamics de-
—hy 1>z and would be achieved by the same redistribu-pending on whethet  is small or of order the system size.
tion rule, that is, by adding sankl to cellk—1 that has been A sandpile in a box of lengtiN=4096=2' has been
removed conservatively from cellsti, i=0, L—1. evolved for each of the redistribution rulés=1N. In all

An avalanche may be entirely an internal rearrangemengases the system evolves to a state that is not in equilibrium
of sand or may continue until it spreads acrosf\Nadlells of  put is such that the energ(t) has bounded fluctuations
the pile (a systemwide dischargén which case we apply about a mean; this state is independent of the initial condi-
open boundary conditionsy=hy=0. A state variable of tion of the sandpile. The lengths of the avalanches that occur
the system is the total potential energ@tj)=2,’2':1h§(tj). in this “steady” state of the sandpile are shown in Fig. 1 for
The total energy dissipated by an avalan@hernal or sys-  all 4096 runs. This plot provides a phase space portrait of the
temwide de is then just the difference in the potential en- entire parameter space in the sense that the configurations
ergy in the entire sandpile before and after an avalanche. available to a given sandpile are constrained by the number

A major feature of this relaxation rule is that it enforces aof different length avalanches that can occur for a gilgn
minimum length scaleL; for propagation of information and N. The system is scaling in that a similar plot for a
(correlation. The model combines the dynamics of ava-system of lengtiN=512 has the same appearance, coarse
lanching through the inclusion of a critical gradient with a grained; this is shown in Fig. 2. From the similarity of these
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FIG. 1. Lengths of avalanchéabscisspoccurring in the steady

state of the sandpile of length 4096 run for all values of the fluidi-

zation lengthL; (ordinate. The critical gradient is single valued.
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FIG. 3. Time serieE(t) of the sandpile with single valued
critical gradient of length 4096 run with;=2 approaching steady
state from the initial condition of an empty sandpile.

In the BTW L;=1 limit all avalanches are of lengtN
and appear as a single dot in the bottom left corner of Figs. 1
and 2. This forms a singular point for the intersection of the

plots we expect the control parameter for the dynamics to bUrves that appear for the cades<N/4 approximately. On

L:/N, and we shall see that the exceptions to this lare
=1,2.

the right-hand sidgrhs) of the plots theL;=N limit has
avalanches of lengths! 2traces of these stretch across the

In constructing Figs. 1 and 2 sample time series for dif-plot as the family of horizontal lines. As we consider sand-

ferent values of ; were first examined to determine the time
after which the quasisteady staisith constant megnhad

piles with smallerL;, these avalanches of length &re no
longer present for successively smalile€Considerable com-

been reached: this time varies with. In order to ensure plexity _is evident_in the plot and is indicative of a range of
that theL, versus avalanche length phase space has be&lynamical behaviors. o _
adequately explored, the interval of the time series for each |he immediate vicinity of this singular poinit,;=2, has

value ofL; spanned>10’—10® avalanches.
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FIG. 2. Lengths of avalanchéabscisspoccurring in the steady
state of the sandpile of length 512 run for all values of the fluidi-
zation lengthL; (ordinatg. The critical gradient is single valued.

a time series that follows a quasirandom walk as shown in
Fig. 3. Here we show the system reaching its quasi-steady-
state from an initial condition of zero sand in the sandpile.
As we increase.; beyond 2 the dynamics becomes regular.
Figures 4—6 show time series for valueslgf=50, 1024,
and 2000. These time series show a transition from quasi-
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FIG. 4. Time seriesE(t) of the sandpile with single valued
critical gradient of length 4096 run with;=50 at steady state.
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FIG. 7. Phase space porta@iE versusk for the sandpile run
with L;=50 at steady state. Th#E axis is plotted on a semiloga-
rithmic scale.

FIG. 5. Time seriesE(t) of the sandpile with single valued
critical gradient of length 4096 run with;=1024 at steady state.

periodic oscillation [;=50) through a period doublind_¢
=1024) to sawtooth L(;=2000). The latteiL;=2000~N
time series is reminiscent of the analyf2] L;=N results

in that it is, except on scales of order the system size, ConTength 3 that occur on length scales smaller thian This

posed of self-similar avalanches. underlying small-scale self-similar structure is found in
We anticipate that this oscillatory behavior has a corre- ying

sponding limit cycle, and this can be obtained by phase spac%hase space portraits for all valueslof and provides the

reconstruction: plotting the energy change in an avalanchéigepotrig:;rl_th_elrlzonggggg”;nndaigrteh;;éggnigifstﬁgejh d-g;_e
dE versus energ¥ sincedE is equivalent to a time deriva- P f - P

tive here as all avalanches are equally spaced in time. This Iglng self-similar st'ructure. :
shown in Fig. 7 for theL;=50 case. The limit cycle corre- We can now discuss the more physically relevant case

sponds on the large scale to a roughly parabolic geometrﬁ’here. the values df, are not |d9nt|cal. The above numerical
and on the small scale to discrete valued& on thedE xperiments were repeated with the same mean valug of

versusE plot. A dE versusE plot for the analytically soluble (normalized to thg inflow ratg) but with a fluctuation about

L;=N case would be just comprised of lines of discrete val-the mean. Following an avala_nch_e, the valuezobn each

ues ofdE corresponding to discrete avalanches of lengdth 2 site within the avalanching region is reset befc_)r_e further sand

Here on spatial scales smaller them the algorithm has 'S added. The results are found to be insensitive to both the
' P i 9 distribution of the fluctuations oz, and to its amplitude

with respect to the mean; here we show results with a fluc-

approximately the same structure so that on the small scale
we can seéon the semilogarithmic plptequally spaced dis-
crete values oflE that correspond to discrete avalanches of

)

a0 , . , , , , , , tuation amplitude of 1% about the mean which is “top hat”
(that is, nonzero and constant in some rafa®| and zero
4r 1 elsewherg distributed. A summary of the change in the dy-

namics with fluctuatingz; is apparent from a plot of the

ser entire parameter space, which is shown in Fig. 8. This has

sl been constructed in the same way as Figs. 1 and 2; here we
show the result for a system of length 512 but the basic

25| 1 structure again is found to scale to larger systems. From Fig.

w 8 we see that the essential structure of the plot is preserved

for L;/N<1/4 approximately, with some broadening of the
features seen on Figs. 1 and 2. For larger valuds; 6 the
parameter space is radically different, and avalanches of a far
1t 1 wider range of lengths are occurring. The transition in be-
havior withL¢ /N is shown in individual time series taken for
osf 1 the N=4096 system; these are shown in Figs. 9—-11Lfpr
=50, 1024, and 2000, respectively. The time series for
o o5 1 sz 25 3 35 4 45 S L:/N<1/4 (L{>2) essentially have quasiperiodic dynamics
that is robust against fluctuations in the normalized critical
FIG. 6. Time seriesE(t) of the sandpile with single valued gradient; the example shown in Fig. 9 has a corresponding
critical gradient of length 4096 run with;=2000 approaching limit cycle structure inE, dE space that has the same fea-
steady state from the initial condition of an empty sandpile. tures as Fig. 7. Once we approach/N=1/4 (Fig. 10 the
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& FIG. 10. Time serie€(t) of the sandpile with fluctuating criti-
o 50 100 150 200 2;0 300 350 400 450 500 cal gradient of length 4096 run with;=1024 approaching steady
fluidization length state from the initial condition of an empty sandpile.

FIG. 8. Lengths of avalanchéabscisspoccurring in the steady . o
state of the sandpile of length 512 run for all values of the fluidi- 1he probability distributions of avalanche lengtR¢L)
zation lengthL; (ordinate. The critical gradient has 1% fluctuation. for Ly=2, 50, 1024, and 2000n a system of length 4096
are shown in Figs. 12—-15. These show a transition from
statistics dominated by a region of approximately power-law
slope +1 (“random” casel;=2) to statistics with small
events of length<L; that are power law of slope-1 and

time series become irreguléfintermittent” ); time series for
larger values ot ; such ad {=2000(Fig. 11 all show this

sensitivity to fluctuations iz, compared to the single valued large events of length>N—L; of power-law slope+1

case. : > ~ . Al
An insight into the underlying behavior of these systems(quas’" periodic casé=50) through finally to statistics

is provided by the avalanche statistics. The probability disdominated by power-law slope-1 (iregular casesl

L - =1024, 2000). This is consistent with the system becoming
tributions for avalanche lengths and energy dissipatéd 7 ;
. . ! close to theL;=N case, which has been shown to possess a
have essentially the same morphology for lajl; we will

therefore focus on avalanche length statistics. Despite thféxed point associated with the large avalanches which have

differences in the time series for single valued and ﬂuctuatpov_l\_lﬁg I?:nvasl:?sieaielta[\}:i'ts of len L. occur on or close
ing z., the avalanche length distributions shown here are oL

. . . L=21 and have a power-law index 1 and hence suggest
essentially unchanged by adding fluctuationsztoand we dynamics reminiscent of the analytiéZ] system. All sys-
will show examples for the fluctuating case only. y y y ' y
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FIG. 9. Time serie€(t) of the sandpile with fluctuating critical FIG. 11. Time serie€(t) of the sandpile with fluctuating criti-
gradient of length 4096 run with;=50 approaching steady state cal gradient of length 4096 run with;=2000 approaching steady
from the initial condition of an empty sandpile. state from the initial condition of an empty sandpile.
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FIG. 12. Probability distribution of avalanche lengths for
=2 in a length 4096 sandpile with fluctuating critical gradient.

tems that exhibit limit cycles, such &5=50 shown in Fig.
13, are in the range<2L;<<N/4 approximately, i.e., they are
examples of systems wheke and system lengtN are such
as to accommodate avalanches of lengiiL; and N>L
>L¢. Intermittent systems such h$=2000 are found in the
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FIG. 14. Probability distribution of avalanche lengths for
=1024 in a length 4096 sandpile with fluctuating critical gradient.
A line P~L "1 is shown for comparison.

the boundaries being well separated in the pile. Essentially,
the stable regular 2 L;<N/4 systems, and the unstalile

~N systems may correspond to weak and strong coupling of
the boundary regions, respectively.

rangeN>L;>N/4 approximately and hence avalanches of

lengthL>L¢ cannot occur; these systems then can only ex-

hibit power-law index—1 events wherdé.<L;, which are
disrupted arountl ~L; . The “random” systenlL ;=2 is the

only configuration where all structure in avalanches of Iengtrlj
L~2! is disrupted up toj=1, as in this case there is no
possibility of L<L;. This suggests that the existence of un-

derlying self-similar structure of avalanches br-2! is a

necessary condition for nonrandom dynamics, and if in ad
dition the system can accommodate avalanches on skcales
>L ¢ the characteristic dynamics is limit cycle. It is intrigu-

ing to note that this stable limit cycle dynamics correspondqinear' and a single parametér

to (L+>2) systems with the regions within a distariceof

PL)

FIG. 13. Probability distribution of avalanche lengths for

IV. SUMMARY

In conclusion we have generalized the original BTW
sandpile algorithnj3] to produce an algorithm for a driven,
issipative system that releases energy by mearithash-
olded avalanches but that exhibits a range of dynamics char-
acteristic of deterministic chaos. The edge-driven system
evolves via an inverse cascade from small to large scales,
and independent of initial condition evolves to a “steady”
state where the total energy fluctuates about some constant
mean. The redistribution rule is nonlocal, conservative, and
effectively specifies the
degree of nonlocality. On the small scale<RP<L;, ava-

PL)

FIG. 15. Probability distribution of avalanche lengths for

=50 in a length 4096 sandpile with fluctuating critical gradient. A =2000 in a length 4096 sandpile with fluctuating critical gradient.

line P~L~1! is shown for comparison.

A line P~L~1 is shown for comparison.
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lanches of lengti. can have a self-similar structute~ 2] In this model the emergent large-scale dynamics is a con-
with probability distribution that is power law with index sequence of the interaction of many sites across the sandpile
—1, which may be understood in terms of the analytic limitand occurs over many avalanches. This dynamics over the
[12]. On the large scale>L; the probability distribution is long scales exhibits a range of behaviors reminiscent of dis-
again power law but with index 1. If the system lengtiN  sipative chaos; but crucially is the phenomenology of a
is such as to accommodate both théselL; andL>L; re- driven dissipative system that is thresholded and as a conse-
gimes(with L;>2) then the large-scale dynamics follows a quence releases energy by means of avalanches. This may
limit cycle that is robust against fluctuations in the critical provide insight into a large class of driven dissipative con-
gradient. For largek ;/N systems|.>L; avalanches cannot finement systems, which exhibit self-similarity, emergent
occur and the large-scale dynamics is no longer robusand robust global behavior reminiscent of chaotic systems,
against fluctuations in the critical gradient; fluctuations at thédut on the microscale evolve via avalanches as a conse-
1% level are sufficient to give irregulétintermittent”) dy-  quence of thresholds for transport and energy release.
namics. The corresponding self-similar scaling in an inverse

cascade model_ may be of sigr_lificance to turbulent physical ACKNOWLEDGMENTS
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