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Inverse cascade avalanche model with limit cycle exhibiting period doubling, intermittency,
and self-similarity

S. C. Chapman*
Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom

~Received 16 November 1999; revised manuscript received 29 February 2000!

A one-dimensional avalanche ‘‘sandpile’’ algorithm is presented for transport in a driven dissipative con-
finement system. Sand is added at the closed inflow boundary and redistributed when the local gradient
exceeds a threshold. The redistribution rule is conservative, nonlocal, and linear and is chosen to mimic fluid
flow. Potential energy is dissipated by avalanches that also expel matter at the open outflow boundary. The
system then evolves through an inverse cascade. A ‘‘fluidization’’ parameterL f specifies the length scale over
which the algorithm operates. The limiting case ofL f51 cell andL f5N, the system size, are analytically
soluble. For other values ofL f the emergent, large-scale dynamics of the system shows a variety of behavior
including a limit cycle that has a period-doubling sequence, intermittency, and a random walk.

PACS number~s!: 05.45.Ra, 05.10.2a, 45.70.Ht, 05.70.Ln
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I. INTRODUCTION

A ubiquitous class of behavior in driven dissipative co
finement systems is the absence of intrinsic scales in
statistics and the power spectra of the time evolution of s
variables~such as energy! that characterize the dynamics@1#.
Currently, distinct theoretical frameworks exist for burs
scale-free energy dissipation; intermittency in a chaotic s
tem caused by a phase space trajectory approaching the
cal region of a tangent bifurcation@2# and avalanche~‘‘sand-
pile’’ ! models that may in addition exhibit self-organize
criticality @3–5#. The former corresponds to a range of valu
of a control parameter in the underlying dynamical equati
for the system; for other values the phase space trajec
may follow a limit cycle. In the latter case, the underlyin
equations are not known, instead, simple algorithms that
scribe fuelling, redistribution, and thresholds~e.g., a critical
value of the local gradient of sand that triggers redistribut
only when it is exceeded! are postulated. Importantly in con
trast to deterministic chaos these systems are robust: the
namics is bursty~that is, apparently intermittent! and has
scale-free statistics for a broad range of threshold and re
tribution algorithms@5#.

Coupled map lattices~CML! provide an intermediate
class of dynamical system in that continuous equations
first decomposed into a discrete map that is then applied
by site across a grid. For systems of interest the map
nonlinear and local and leads to dynamics across the
that are self-organizing, and can show the full range of p
nomenology associated with chaos~for a review, see@6#!.
Unlike the avalanche model to be discussed here, CML
not generally include critical thresholds.

Here we present a simple sandpile algorithm that i
generalization of the original Bak, Tang, and Wiesenf
~BTW! algorithm @3#. In the BTW algorithm, redistribution
is ‘‘local,’’ involving nearest-neighbor sites; here we exam
ine redistribution that moves sand over an extended ‘‘flu
zation’’ region. The edge-driven model essentially evolv
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via an inverse cascade from short to long spatial scales.
redistribution rule is nonlocal and linear so that the larg
scale dynamics is a consequence of the interaction of m
sites across the sandpile and occurs over many avalanc
This dynamics over the long scales exhibits a range of
haviors reminiscent of deterministic dissipative chaos;
crucially is the emergent phenomenology of a driven dis
pative system that is thresholded and as a consequenc
leases energy by means of avalanches. The model hence
vides an important link between the framework of dissipat
chaos and self-organization in ‘‘sandpile’’ models.

The model also has physical motivation. Avalanche mo
els with local redistribution rules of which the BTW algo
rithm is an example, have been associated with diffus
driven transport in astrophysical plasmas~see@7,8# and ref-
erences therein!. We wish to allow the possibility of convec
tive transport in addition to that resulting from threshold
diffusion. A simplified physical example of such a syste
may be provided by the dynamics of waterdrops on a til
pane of glass. The fluid forms drops that are at rest u
surface tension is exceeded at the leading edge of a d
drops then reconfigure by fluid flow rather than diffusio
alone. The algorithm discussed here then introduces a ‘‘
idization region’’ such that exceeding the critical thresho
prompts redistribution over a region of the sandpile rat
than locally. This approach has already had success
plasma confinement systems@9#, in particular with the
earth’s magnetosphere@10,11# where both diffusion and
convection-dominated transport are expected to occur.

II. ALGORITHM

The sandpile is represented by a one-dimensional grid
N equally spaced cells one unit apart, each with sand
height hj , and local gradientshj2hj 61. A repose gradient
zR is specified below which the sandpile is always stable~the
heightshj and the local gradients are measured relative
this!. A critical gradientzc is also specified and if the loca
gradient exceedszc the sand is redistributed to neighborin
cells and iteration produces an avalanche. The critical gr
ent zc can be single valued or drawn randomly from a d
1905 ©2000 The American Physical Society
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1906 PRE 62S. C. CHAPMAN
tribution; both cases will be considered here. The magnitu
of ^zc& and zR simply scale the total amount of sand a
energy in the system.

Sand is added to this edge-driven sandpile at the clo
boundary cell 1 at a constant rateg51 ~to which we have
normalized thehj and time!. The inflow rate is slow com-
pared to the interavalanche time, i.e.,zc /g@1 and the dy-
namics is found to be insensitive tog provided that this
condition holds; here we will show results for^zc&/g5100.
As soon as the critical gradient is exceeded, the sand is
distributed. The redistribution rule is conservative and
stantaneous: avalanches are evolved until at all cells the l
gradient is below the critical gradient and only then is furth
sand added. At each iteration within an ongoing avalan
the height of sand behind the unstable site is reduced so
flatten a fluidized regionL<L f back to the angle of repose
this sand is relocated to the next cell. The flowing reg
includes all sites behind the unstable site up to either
sandpile boundary or to maximum valueL f , whichever is
smaller;L f is then the fixed control parameter for a give
sandpile model of lengthN. The edge of an ongoing ava
lanche then propagates forwards from one cell~k! to the next
(k11) if

hk2hk11.zc . ~2.1!

This results in a quantity of sandD being deposited on the
next cell ~where * indicates intermediate steps in the rela
ation!:

hk11* 5hk111D ~2.2!

such that the gradient at cellsk2 i , i 50, L21 relaxes to the
angle of repose~here normalized to zero!,

hk2 i* 2hk112 i* 5zR50, i 50, L21 ~2.3!

by conservatively removing sand,

hk2 i* 5hk2 i2
D

L
, i 50, L21. ~2.4!

Equations~2.2!–~2.4! uniquely specifyD. Here we consider
an edge-driven sandpile so that avalanches are forw
propagating~i.e., with increasingk). Random or central fu-
elling could also drive backwards propagation of the a
lanche edge~from k to k21) which would then occur ifhk
2hk21.zc and would be achieved by the same redistrib
tion rule, that is, by adding sandD to cell k21 that has been
removed conservatively from cellsk1 i , i 50, L21.

An avalanche may be entirely an internal rearrangem
of sand or may continue until it spreads across allN cells of
the pile ~a systemwide discharge! in which case we apply
open boundary conditionshN* 5hN50. A state variable of
the system is the total potential energye(t j )5(k51

N hk
2(t j ).

The total energy dissipated by an avalanche~internal or sys-
temwide! de is then just the difference in the potential e
ergy in the entire sandpile before and after an avalanche

A major feature of this relaxation rule is that it enforces
minimum length scaleL f for propagation of information
~correlation!. The model combines the dynamics of av
lanching through the inclusion of a critical gradient with
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flowing region where importantly, sand is redistributed
though the local gradient is less than critical.

The boundary conditions effectively drive the system
short spatial scales and remove fluctuations at the lar
spatial scales; instability~triggering of a new avalanche! will
always first occur at cell 1 and then can extend over a reg
of between 1 andN cells in length, whereas only avalanch
of the lengthN of the system will interact with the outflow
boundary.

III. BEHAVIOR OF THE SYSTEM

The system with single valuedzc has two well-understood
limiting cases. In the limiting caseL f51 the behavior is just
that of the traditional BTW@3# sandpile edge driven in on
dimension; in this case the sandpile reaches a unique e
librium configuration in which the gradients at all cells a
just at critical. All avalanches areN cells in length and con-
sist of each added ‘‘grain’’ of sand propagating from the t
to the bottom of the pile. In the other limit,L f5N, the be-
havior is solvable analytically@12#. In this case, an initially
empty sandpile can be shown to fill by establishing a hei
profile that is composed of ‘‘slabs’’ at the repose angle. T
arises since~i! the redistribution ruleL f5N ‘‘flattens’’ the
region within an avalanche back to the angle of repose
~ii ! the start of an avalanche~the first cell to become un
stable! in the edge-driven sandpile will always be cell 1
that avalanches of lengthL create ‘‘flat’’ regions of sand, i.e.
with all cells between 1 andL at the repose angle. An ava
lanche that is smaller than the preceding avalanche
therefore encounter a flat region of sand in the same wa
an avalanche that expands into unoccupied sites; resultin
self-similar dynamics while the sandpile is growing. On
the sandpile encounters the outflow boundary, the en
sandpile empties~i.e., is flattened to the repose angle! and
the filling cycle repeats. The time series for energy releas
exactly periodic and, on time scales shorter than the per
self-similar. The avalanches are self similar with lengthsj ,
j 50,1, . . . , up to thesystem size, and their statistics fo
lengths and energy dissipation are inverse power law.

We now first consider all other 1,L f,N for the simplest
case, that is, single valuedzc . In this case we may expect fo
the edge-driven sandpile that, within a distanceL f of the
inflow boundary, the evolution will essentially proceed in
manner similar to the analyticL f5N system discussed
above. This permits the possibility of different dynamics d
pending on whetherL f is small or of order the system size

A sandpile in a box of lengthN540965212 has been
evolved for each of the redistribution rulesL f51,N. In all
cases the system evolves to a state that is not in equilibr
but is such that the energyE(t) has bounded fluctuation
about a mean; this state is independent of the initial con
tion of the sandpile. The lengths of the avalanches that oc
in this ‘‘steady’’ state of the sandpile are shown in Fig. 1 f
all 4096 runs. This plot provides a phase space portrait of
entire parameter space in the sense that the configura
available to a given sandpile are constrained by the num
of different length avalanches that can occur for a givenL f
and N. The system is scaling in that a similar plot for
system of lengthN5512 has the same appearance, coa
grained; this is shown in Fig. 2. From the similarity of the
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plots we expect the control parameter for the dynamics to
L f /N, and we shall see that the exceptions to this areL f
51,2.

In constructing Figs. 1 and 2 sample time series for d
ferent values ofL f were first examined to determine the tim
after which the quasisteady state~with constant mean! had
been reached; this time varies withL f . In order to ensure
that theL f versus avalanche length phase space has b
adequately explored, the interval of the time series for e
value ofL f spanned.1072108 avalanches.

FIG. 1. Lengths of avalanches~abscissa! occurring in the steady
state of the sandpile of length 4096 run for all values of the flu
zation lengthL f ~ordinate!. The critical gradient is single valued.

FIG. 2. Lengths of avalanches~abscissa! occurring in the steady
state of the sandpile of length 512 run for all values of the flui
zation lengthL f ~ordinate!. The critical gradient is single valued.
e
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In the BTW L f51 limit all avalanches are of lengthN
and appear as a single dot in the bottom left corner of Fig
and 2. This forms a singular point for the intersection of t
curves that appear for the casesL f,N/4 approximately. On
the right-hand side~rhs! of the plots theL f5N limit has
avalanches of lengths 2j ; traces of these stretch across t
plot as the family of horizontal lines. As we consider san
piles with smallerL f , these avalanches of length 2j are no
longer present for successively smallerj. Considerable com-
plexity is evident in the plot and is indicative of a range
dynamical behaviors.

The immediate vicinity of this singular point,L f52, has
a time series that follows a quasirandom walk as shown
Fig. 3. Here we show the system reaching its quasi-stea
state from an initial condition of zero sand in the sandp
As we increaseL f beyond 2 the dynamics becomes regul
Figures 4–6 show time series for values ofL f550, 1024,
and 2000. These time series show a transition from qu

-

-

FIG. 3. Time seriesE(t) of the sandpile with single valued
critical gradient of length 4096 run withL f52 approaching steady
state from the initial condition of an empty sandpile.

FIG. 4. Time seriesE(t) of the sandpile with single valued
critical gradient of length 4096 run withL f550 at steady state.
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1908 PRE 62S. C. CHAPMAN
periodic oscillation (L f550) through a period doubling (L f
51024) to sawtooth (L f52000). The latterL f52000;N
time series is reminiscent of the analytic@12# L f5N results
in that it is, except on scales of order the system size, c
posed of self-similar avalanches.

We anticipate that this oscillatory behavior has a cor
sponding limit cycle, and this can be obtained by phase sp
reconstruction: plotting the energy change in an avalan
dE versus energyE sincedE is equivalent to a time deriva
tive here as all avalanches are equally spaced in time. Th
shown in Fig. 7 for theL f550 case. The limit cycle corre
sponds on the large scale to a roughly parabolic geom
and on the small scale to discrete values ofdE on thedE
versusE plot. A dE versusE plot for the analytically soluble
L f5N case would be just comprised of lines of discrete v
ues ofdE corresponding to discrete avalanches of lengthj .
Here, on spatial scales smaller thanL f the algorithm has

FIG. 5. Time seriesE(t) of the sandpile with single valued
critical gradient of length 4096 run withL f51024 at steady state.

FIG. 6. Time seriesE(t) of the sandpile with single valued
critical gradient of length 4096 run withL f52000 approaching
steady state from the initial condition of an empty sandpile.
-
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approximately the same structure so that on the small s
we can see~on the semilogarithmic plot! equally spaced dis-
crete values ofdE that correspond to discrete avalanches
length 2j that occur on length scales smaller thanL f . This
underlying small-scale self-similar structure is found
phase space portraits for all values ofL f and provides the
support for the nonrandom nature of the time series. T
exceptions,L f51,2, correspond to the absence of this und
lying self-similar structure.

We can now discuss the more physically relevant c
where the values ofzc are not identical. The above numeric
experiments were repeated with the same mean value ozc
~normalized to the inflow rateg) but with a fluctuation about
the mean. Following an avalanche, the value ofzc on each
site within the avalanching region is reset before further s
is added. The results are found to be insensitive to both
distribution of the fluctuations onzc and to its amplitude
with respect to the mean; here we show results with a fl
tuation amplitude of 1% about the mean which is ‘‘top ha
~that is, nonzero and constant in some range@a,b# and zero
elsewhere! distributed. A summary of the change in the d
namics with fluctuatingzc is apparent from a plot of the
entire parameter space, which is shown in Fig. 8. This
been constructed in the same way as Figs. 1 and 2; here
show the result for a system of length 512 but the ba
structure again is found to scale to larger systems. From
8 we see that the essential structure of the plot is prese
for L f /N,1/4 approximately, with some broadening of th
features seen on Figs. 1 and 2. For larger values ofL f /N the
parameter space is radically different, and avalanches of a
wider range of lengths are occurring. The transition in b
havior withL f /N is shown in individual time series taken fo
the N54096 system; these are shown in Figs. 9–11 forL f
550, 1024, and 2000, respectively. The time series
L f /N!1/4 (L f.2) essentially have quasiperiodic dynami
that is robust against fluctuations in the normalized criti
gradient; the example shown in Fig. 9 has a correspond
limit cycle structure inE, dE space that has the same fe
tures as Fig. 7. Once we approachL f /N51/4 ~Fig. 10! the

FIG. 7. Phase space portaitdE versusE for the sandpile run
with L f550 at steady state. ThedE axis is plotted on a semiloga
rithmic scale.
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PRE 62 1909INVERSE CASCADE AVALANCHE MODEL WITH LIMIT . . .
time series become irregular~‘‘intermittent’’ !; time series for
larger values ofL f such asL f52000~Fig. 11! all show this
sensitivity to fluctuations inzc compared to the single value
case.

An insight into the underlying behavior of these syste
is provided by the avalanche statistics. The probability d
tributions for avalanche lengths and energy dissipateddE
have essentially the same morphology for allL f ; we will
therefore focus on avalanche length statistics. Despite
differences in the time series for single valued and fluctu
ing zc , the avalanche length distributions shown here
essentially unchanged by adding fluctuations tozc and we
will show examples for the fluctuating case only.

FIG. 8. Lengths of avalanches~abscissa! occurring in the steady
state of the sandpile of length 512 run for all values of the flui
zation lengthL f ~ordinate!. The critical gradient has 1% fluctuation

FIG. 9. Time seriesE(t) of the sandpile with fluctuating critica
gradient of length 4096 run withL f550 approaching steady sta
from the initial condition of an empty sandpile.
s
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he
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The probability distributions of avalanche lengthsP(L)
for L f52, 50, 1024, and 2000~in a system of length 4096!
are shown in Figs. 12–15. These show a transition fr
statistics dominated by a region of approximately power-l
slope 11 ~‘‘random’’ case L f52) to statistics with small
events of length,L f that are power law of slope21 and
large events of length.N2L f of power-law slope11
~quasi- periodic caseL f550) through finally to statistics
dominated by power-law slope21 ~irregular casesL f
51024, 2000). This is consistent with the system becom
close to theL f5N case, which has been shown to posses
fixed point associated with the large avalanches which h
power law slope21 @13#.

The small-scale events of lengthL,L f occur on or close
to L52 j and have a power-law index21 and hence sugges
dynamics reminiscent of the analytic@12# system. All sys-

-

FIG. 10. Time seriesE(t) of the sandpile with fluctuating criti-
cal gradient of length 4096 run withL f51024 approaching stead
state from the initial condition of an empty sandpile.

FIG. 11. Time seriesE(t) of the sandpile with fluctuating criti-
cal gradient of length 4096 run withL f52000 approaching stead
state from the initial condition of an empty sandpile.
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1910 PRE 62S. C. CHAPMAN
tems that exhibit limit cycles, such asL f550 shown in Fig.
13, are in the range 2,L f,N/4 approximately, i.e., they ar
examples of systems whereL f and system lengthN are such
as to accommodate avalanches of lengthL!L f and N.L
.L f . Intermittent systems such asL f52000 are found in the
rangeN.L f.N/4 approximately and hence avalanches
lengthL@L f cannot occur; these systems then can only
hibit power-law index21 events whereL!L f , which are
disrupted aroundL;L f . The ‘‘random’’ systemL f52 is the
only configuration where all structure in avalanches of len
L;2 j is disrupted up toj 51, as in this case there is n
possibility of L!L f . This suggests that the existence of u
derlying self-similar structure of avalanches onL;2 j is a
necessary condition for nonrandom dynamics, and if in
dition the system can accommodate avalanches on scaL
@L f the characteristic dynamics is limit cycle. It is intrigu
ing to note that this stable limit cycle dynamics correspon
to (L f.2) systems with the regions within a distanceL f of

FIG. 12. Probability distribution of avalanche lengths forL f

52 in a length 4096 sandpile with fluctuating critical gradient.

FIG. 13. Probability distribution of avalanche lengths forL f

550 in a length 4096 sandpile with fluctuating critical gradient.
line P;L21 is shown for comparison.
f
-

h

-

-

s

the boundaries being well separated in the pile. Essentia
the stable regular 2,L f,N/4 systems, and the unstableL f
;N systems may correspond to weak and strong couplin
the boundary regions, respectively.

IV. SUMMARY

In conclusion we have generalized the original BT
sandpile algorithm@3# to produce an algorithm for a driven
dissipative system that releases energy by means of~thresh-
olded! avalanches but that exhibits a range of dynamics ch
acteristic of deterministic chaos. The edge-driven syst
evolves via an inverse cascade from small to large sca
and independent of initial condition evolves to a ‘‘steady
state where the total energy fluctuates about some con
mean. The redistribution rule is nonlocal, conservative, a
linear, and a single parameterL f effectively specifies the
degree of nonlocality. On the small scale 2,L!L f , ava-

FIG. 14. Probability distribution of avalanche lengths forL f

51024 in a length 4096 sandpile with fluctuating critical gradie
A line P;L21 is shown for comparison.

FIG. 15. Probability distribution of avalanche lengths forL f

52000 in a length 4096 sandpile with fluctuating critical gradie
A line P;L21 is shown for comparison.
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PRE 62 1911INVERSE CASCADE AVALANCHE MODEL WITH LIMIT . . .
lanches of lengthL can have a self-similar structureL;2 j

with probability distribution that is power law with inde
21, which may be understood in terms of the analytic lim
@12#. On the large scaleL@L f the probability distribution is
again power law but with index11. If the system lengthN
is such as to accommodate both theseL!L f andL@L f re-
gimes~with L f.2) then the large-scale dynamics follows
limit cycle that is robust against fluctuations in the critic
gradient. For largerL f /N systems,L@L f avalanches canno
occur and the large-scale dynamics is no longer rob
against fluctuations in the critical gradient; fluctuations at
1% level are sufficient to give irregular~‘‘intermittent’’ ! dy-
namics. The corresponding self-similar scaling in an inve
cascade model may be of significance to turbulent phys
systems and will be explored in future work. The casesL f
51 and 2 do not permit the supporting structure of se
similar avalanches and are equilibrium~see@3#! and a quasi-
random-walk, respectively.
ed
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In this model the emergent large-scale dynamics is a c
sequence of the interaction of many sites across the san
and occurs over many avalanches. This dynamics over
long scales exhibits a range of behaviors reminiscent of
sipative chaos; but crucially is the phenomenology of
driven dissipative system that is thresholded and as a co
quence releases energy by means of avalanches. This
provide insight into a large class of driven dissipative co
finement systems, which exhibit self-similarity, emerge
and robust global behavior reminiscent of chaotic syste
but on the microscale evolve via avalanches as a co
quence of thresholds for transport and energy release.
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