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Variational theory of activated rate processes for an arbitrary barrier

Alexander N. Drozdo¥
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The thermally activated escape of a Brownian particle over a smooth barrier of arbitrary shape and height is
considered as an eigenproblem of the Fokker—Planck equation. For the case of moderate and large friction, the
least nonzero eigenvalue of this equation is found via a Rayleigh-quotient-based perturbation method. A
comparison with existing variational approaches and from numerical simulations for bistable potentials with
parabolic and quartic barriers shows that the proposed expression gives unprecedentedly accurate results at all
barrier heights including the limit of vanishingly low barrier.

PACS numbgs): 05.40—a, 82.20.Db, 82.20.Fd

[. INTRODUCTION ciple, provide very accurate results for the rate in a potential
with an arbitrarily shaped barrier of any height. However, the
The phenomenon of thermally activated escape of a clagequired computational effort may be substantial, as the nu-
sical system over a potential barrier arises in a multitude ofnerical methods suffer from various different shortcomings.
scientific contexts, but the main motivation to study it stemsin particular, the utility of basis set expansions and finite-
from its connection to chemical reactiofis—4]. Since the difference schemes is strongly limited by the storage require-
fundamental contribution of Kramef4], much work in this  ments and execution time that both grow exponentially with
field has been devoted to a simple stochastic model. Ththe number of coupled degrees of freedom. For a finite-
model consists of a single mechanical particle moving on alifference representation, the requirement of numerical sta-
bistable potentialJ(x), such that it may switch from one bility severely restricts the permitted time step. This is also
metastableX<0) state to anothemx{0) by crossing over a true for trajectory simulation methods, which are less restric-
potential barrier ak=0 of heightE. The energy necessary to tive with respect to the dimensionality than the above men-
cross the barrier is supplied by the surrounding heat bathjoned schemes. A disadvantage of these methods is that they
which causes a velocity proportional friction force and a ran-suffer from statistical errors. Usually, one has to generate a
dom force. The rat&" at which the system approaches equi-huge number of trajectories to reach an accuracy of 1%. The
librium is given by the least nonvanishing eigenvalueof  path integral formulation of the Fokker—Planck equation pro-
the corresponding Fokker—Planck operd@p), I'=\, [9].  vides a numerically stable solution, which is free of statisti-
Kramers showed that for low friction this rate is limited by cal errors and requires a computational effort that increases
the slow diffusion of energy to the particle from the the bathonly slowly with the dimensionality of the system. Its effi-
and so is proportional to the friction. In the present paper wecacy, however, depends crucially on the accuracy of the
will only consider the case of moderate and large frictionshort time propagator used.

(also known as the spatial diffusion regimahen the pro- A second approach was to replace rigor with reasonable
cess is limited by the spatial rate of diffusion of the particleapproximations. The enormous theoretical literature has
across the barrier. evolved Kramers’ theory in many directions that include

A wide variety of different methods have been used dur-generalizations to systems with many degrees of freedom
ing the past 2 decades to solve Kramers’ probléror the  [17], cases without detailed balan¢é,18—21, and non-
history of their development up until a decade ago, see thilarkovian dissipation mode[22-25, extensions to the full
book by Risken5] as well as Ref[6]. The present state of damping range[24-31, improvements of the Kramers
the art may be found in Reff7] and[8].) Despite the great method in the weak24—-28,30—-3B8and moderate-to-strong
diversity of these methods, one could broadly subdividg5,12,20,25,26,29—-31,34—}8Biction regimes. The apparent
them into two general approaches. One is to recognize thadvantage of having analytical formulas for the rate as com-
difficulty of obtaining exact analytical expressions exceptingpared to numerical results of numerical methods is in the
some special cases, such as a purely parabolic barrier, as@nplicity of analyzing such formulas with respect to the
proceed to find the exact result computed numerically. Avariation of parameters. It is often the case that having an
number of efficient methods for numerically integrating analytical formula gives more information about the system
Brownian motion on a grid have been devised, such as finitestudied than just numbers. On the other hand, it is clear that
difference schemdd.0], basis set expansiofis,11-13, tra-  approximate methods could be accurate only if the specific
jectory simulation methodd4], and path integral techniques assumptions on which they are based are satisfied. Thus for
[15,16. An obvious advantage of this approach is its univer-instance, most of the existing rate theories are strongly de-
sal applicability. The afore-mentioned methods can, in prinpendent on garabolic approximation for the barrier. How-

ever, this assumption is not always met in experimental situ-

ations. Another common disadvantage is that the barrier

*Permanent address: Institute for High Temperatures, 13/1®eight E is assumed to be much larger than the energy of
Izhorskaya Street, 127412 Moscow, Russia. thermal motionBE>1. Of course, the presence of a rela-
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tively high barrier is vital for the notion of metastability. For whereU’(x)=dU(x)/dx, y is the friction coefficient, ang
this purpose, however, a barrier of already orllgl will the inverse energy available from the thermal bagh!
suffice to separate the interwell equilibration timgefE =kgT. For simplicity the potential is assumed to be bounded
from the fast time scale; on which the intrawell relaxation from below[ U (x)=U ;> —] and unbounded from above
takes place. In the above-mentioned asymptotic theorieldJ(x— *=«)— +], such that the stationargequilibrium
(BE) " itself, rather thare™#F, enters as a small parameter; solution of the Fokker—Planck equationPe,=0, which is
accordingly, the theories do not cover the entire range ofust the Maxwell-Boltzmann distribution

parameters. Several studies have addressed the interesting

problem of generalizing the Kramers rate formula to arbi- - 11 Lo

trary barriers in the strong frictioiSmoluchowski limit. PedX,v)=(BI2m) L™ "exp{— Blzv°+U(X)]} (2.3
Closed-form expressions for the rate have been derived from

exact solutions of the Smoluchowski equatigh5,34 and  ¢an be normalized

by means of eigenmode expansions of particular bistable po-

tentials [35,36. A great deal of effort has been made to

extend these strong-friction results to the spatial diffusion 7= fx dxexg — BU(X)]. (2.4)
regime[25,26,29-31,37—48However, the accuracy of the —w

proposed formulas is still not satisfactory for barriers of or-

der keT which are important in physics and. chemistry In the spatial diffusion regime, for a potential with a para-

[31.48. bolic barrier
In this paper we propose a perturbation method for esti- '

mating the least nonvanishing eigenvalue of the Fokker—

Planck equation, which combines the principal advantages of ~ U(x)=U(0)— $w2x?+0(x%), wg=-U"(0), (2.5
the two afore-mentioned approaches. This new method al-

lows one to solve the pertinent eigenvalue problem syste
atically for any barrier heighBE by taking into account both
algebraic[ O(1/8E)] and exponentia[ O(e #F)] correc-
tions. The reminder of the paper is organized as follows. In IN'ke=«l'1s7, (2.6)
Sec. Il, the Kramers problem is briefly outlined together with

some preliminary results. A variational solution of this prob—Where I~ follows from one-dimensional transition state
lem is presented in Sec. Ill. The solution is based on a Rayﬂweory(TTSS'Tl’)

leigh quotient method, in which one varies the trial func-

tions. An improved trial function is constructed from a

Mhe major Kramers result for the rate redd$

perturbation theory that gives the Kramers trial function as Ze PUO)
zeroth-order approximation. The resulting rate formula, Eq. FTST:—WZ 7 2.7
&4

(3.20, whose derivation is given in Appendix A, involves an

effective barrier frequency which is used as the variational

parameter. A simple procedure to fix this parameter in the 0 %

entire friction range is suggested in Sec. IV. The accuracy on,:J' dxexd —BU(X)], Z+=J dxexd —BU(X)],

our theoretical predictions is tested in Sec. V by comparing it o 0

with estimates of the rate from numerical calculations. The

comparison also includes results from other variational rateind x=+/1+ 72/(4%2)_ v/(2wy) is a transmission factor
expressions that are briefly reviewed in Appendix B. Sectiorjescribing deviations from TST. It should be noted that Eq.

VI contains some final remarks. (2.6) is asymptotic in the reduced barrier height, which is
assumed to be larg@BE>1. In fact, this formula is nothing
Il. PRELIMINARIES but the steepest-descent estimate to the rate;I'y,

+O[(BE) 1], identical to approximating the full potential
Although conceptually the Kramers problem may be for-p,y jts parabolic barrier part.

mulated in terms of the Langevin descriptiph,14] or its The problem of finite-barrier corrections to the Kramers
Hamiltonian equivalenit7,49), for the present purpose it will gt has been actively studied in recent years and many dif-
be convenient to employ the Fokker—Planck equatiod, 5l ferent methods have been suggested for their evaluation
(also called the Klein—Kramers equatjdior the probability [5,20,21,26,28—31,33-36,39,42—49,48\ particular ad-
density P(x,v,t) of finding the particle at the phase spaceyance in this area can be attributed to Talkj%5]. Expand-
pointXx,v ing the potential in powers of as

dP(x,v,t)=LP(x,v,1). (2.7
t U(X)=U(0)— 2p®+3U"3+£UVX (2.8
For a particle of unit mass the Fokker—Planck operator

reads and combining a Rayleigh quotient method with a perturba-

tion theory of Klosek, Matkowsky, and Schyss3], Talkner
derived explicit expressions for first- and second-order finite-

d d d d
— ' _ — -1
L="v X U (X) dv * You (v *h ) (22 barrier corrections which read

Jd Jv
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prse_p, [, Y7 (12K 2 L* O U - o]+ Y i 2.14
= — =—v— - Y|+ —. .
2 K SBwé 1+ K2 IX 4 v B gp?
1 (U”’> 21— KZ) 210k*+ 41k + 10 SinceL, L™, andL* have the same spectrum of eigenvalues
T 248\ 3 > 2 > [5,19], —TI' also is the smallest nonvanishing eigenvalue of
Plog) 1+« 217D+ 2 both adjoint operators ™ andL* with corresponding eigen-
1 (U2 1-.2\* functionsh* andh, i.e.,
+_ —_
384(,8&)3 1+ K2 L*h*=-Tht,
(2.15
16(30k%+ 103«*+ 70x2+ 12) ] L*h=—Th,
(1-x?)(3k%+ 13"+ 13k2+3) | || where h™ is the time-reversed function of, h*(x,v)
(2.9 =h(x,—v), andP(x,v) =h(X,v) Pe{X,0).
Clearly, Egs(2.6) and(2.9) are applicable only to poten- . RAYLEIGH QUOTIENT METHOD

tials with parabolic barriers. Yet another common drawback
is the neglect of “exponentially small”’ corrections, Since the Fokker—Planck operator is not self-adjoint, it is
O(e™PE), that are glossed over in the derivation of E@s6)  not obvious how a Rayleigh quotient identity for the perti-
and(2.9). While these neglected corrections are indeed smalhent eigenvalue has to be defined. Two different versions are
for BE>1, they do not differ much in magnitude from the currently used in the literatufd 2,2€. The starting point of
“leading” algebraic corrections in the opposite low-barrier our approach is the definition suggested by Moro and Poli-
limit. A rough estimate telling when this neglect is adequatemeno[12] (see also Refd.39,45)
can be obtained by noting that the neglected exponential o
terms have to be smaller th@ar at most of the same order I[h]=— (h™,L*h) 3.0
as the largest algebraic term, which here is the one of sec- (h*,h) ’
ond order. This estimate givegBE=6. For lower barriers,
one cannot expect that the algebraic corrections alone, Edlnlike the standard formulation of Rayleigh’s quotient Eq.
(2.9), will necessarily improve the rate. (B1), which is based on eigenfunctionslofindL* with the
A strategy that will allow us to overcome the above- scalar product Eq(2.11), the above definition, Eq(3.1),
mentioned drawbacks is to combine a variatiofidyleigh-  involves eigenfunctions of the adjoint operattrs andL*.
quotient-basedmethod with a perturbation theory. For this These two operators act on the same space of phase-space
purpose, we convert E@2.1) to an eigenvalue problem by (x,v) functions with finite second equilibrium moments.
making the substitutio®(x,v,t)=P(x,v)e” " which gives  This is a much more general class of functions than those
operated on by the original Fokker—Planck operatorhich
LP(x,v)=—-TP(x,v). (2.10 must be absolutely integrable. It is therefore more convenient
to deal withL™* andL* with the equilibrium weighted scalar
The Fokker—Planck operator is not selfadjoint. Therefore, irproduct, Eq.(2.13 rather than with. andL*. Additionally,
order to derive a variational expression from which the ratean attractive feature of the Rayleigh quotient E311) is that
I' can be calculated, we also need an eigenfunction of thi provides a variational formula in the entire friction range.
adjoint operator. With respect to the scalar product An excellent exposition of this property may be found in our
previous papef50]. Note also that extensive use of the du-
ality betweenL™ andL* has been made by Rytft9] and
(flg)=f dxdvf(x,v)g(x,v), (2.1 Tal)l/mer [39,45 in order to calculate tra)rllsitiyon rates in
bistable and metastable systems.
the adjoint operator coincides with the backward operator

Perturbation theory

y & Clearly, Eq.(3.1) is an identity, i.e., given the true eigen-

J J
+_ ’ L
L7=v X [V e+ yv]av * B ov?’ 212 function it yields the true eigenvalue. However, simge,v)
is not known exactly, we have to solve EQ.15 by ap-
When one defines a scalar product weighted by the equilibProximate methods to obtain a trial eigenfunctigx,v).
rium distributionPe, Before proceeding two comments concerni{g,v) are in
order. First, the desired trial function must be orthogonal on
h0= 1, |e,
(f,g):f dxdv P x,0)f(X,0)g(X,v), (2.13
(£,1)=0, (3.2

the adjoint operatoL* of L is related toL by the expres- becauseh,=1 is an eigenfunction of.* associated with
sionL* =P.;'LP,. From detailed balance which holds for eigenvaluex,=0. Second, almost all rate theories available
Brownian motion[4,5], L* coincides with the backward op- for Fokker—Planck processell,17—-30,32,33,35—47are
erator of the time-reversed process based on the remark that the barrier crossing Faig expo-
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nentially small and therefore may be neglected in the eigen- B
value problem, Eq(2.15), i.e., y(X,v)= m(,uv—wzx), (3.11
L* &(x,v)=0. (3.3

However, neglect of the right hand side in E§.3) throws

out exponential corrections to the rate which may be impor

tant for low barriers.

Here we present a systematic strategy how to go beyon

this commonly used approximation, E®.3), and explicitly

p=3(Ndo*+y*—7y),

where the constant of integratidty is determined from Eq.
.2). Using this lowest order approximatigg(x,v) we find
or the ratel’;

include exponential corrections to the rate into consideration.

To this end, we split the full operatdc* into a leading
contributionL§ and a correctio.} readingL* =L§+L7,
where

d gy &
e ——(0X+ ) —+ = — .
Lo v (0°X ‘yv)av B a? (3.9

2u [y +2p (=
Fl[“’]:wZDOV » f_wdx

2
(ut7) xz}. (3.12

XGXF{ —BUX)— Bu

The free parameteaw involved in Eq.(3.12 is fixed by mini-

describes the linear dynamics near the barrier, with an effeamizing I';[ ].

tive barrier frequencyw to be determined according to a
variational principle, and

J
L¥ :[U’(x)+w2x]% (3.5

the anharmonic correction. Based on this decomposition of
the adjoint operator, a perturbation theory for the trial func-
tion can be performed leading to the series representatioﬁ

[33] (see also Refd45] and[21,30,34)

f(X,U):go(X,U)+§l(X,U)+§2(X,U)+' ) (36)

whereé(x,v) are determined recursively from the hierarchy

of inhomogeneous equations
Lo ék(Xv)=— (LT +T)é-1(x,0), k=0, (3.7)

with I'y=0 and¢_,=0. The resulf’, contains all contribu-
tions to the rate up to ordéein the perturbatiorL? . It is

obtained from a recurrence relation whose explicit form is

found by insertion of Eq(3.6) into Eq.(3.1) to be
1 k—2
Per1=g| [Pt (60 6 DIt 2 2060 60T

—(& L& D (&LTE) - (3.9

Here, Dy denotes the denominator of the Rayleigh quotient

Di=(& +- - +& &gt + &) 3.9

The leading order term in the series, E8}.6), satisfies the
unperturbedharmoni¢ problem

5 £=0. (310

It is nothing but the Kramers’ error function

£(X,0)=Ng+erfy(x,0)]=N +ify(x'u)dzexp(—z2)
ol X,v 0 y(X,v 0 \/; o )

Further corrections to the rate follow from the Rayleigh
quotient when one uses the trial function including the first
correction,£(x,v) = &y(X,v) + €1(X,v). This latter correction
is obtained from the equation

ngl(x,v)z—(L’f+F1)§o(x,v). (313

plitting off a Gaussian function frorg,,

2
£1000) =\ o e -y (x0)IQ0x0), (314

and using explicit expressions fdr; and &, brings Eq.
(3.19 to the form

J 2+ u? \ o 52
pvo wx— 2 E 0)5 %E Q(x,v)
=—w’x—U"(x)— \/%Flexqf(x,v)]go(x,v).
(3.15

Since it is the barrier region that makes the dominant contri-
bution to the integral in the numerator of the Rayleigh quo-
tient Eq. (3.2), Eq. (3.15 can be solved systematically by
expanding its right hand side in powers»éandv as

n
U'(x)~ 2 (M+1)Up. X",
m=1

(3.16

n
exply?) €9~ mZO Yoy™.

Here,  u,=UM(0)/m!, Yom=Ng/m!, Yom-1
=2m/[\/;(2m—1)!!], andy is defined in Eq(3.11). Then,

it is not difficult to show that the exact solution to the result-
ing equation
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J
—p—v—+
K700

ot 8 307 O

2 2 2
z_w-l-,u, )(9 yﬁ_
WX

n
=—w®— Y, (M+ 1)Uy, X"
m=1

IMw)/T2]

n m/2
Ty B
—\/=—7T E Yol =— —w2x)M
2Bu o m(ZW) (ho= ™)

(3.17
is just a polynomial of degree
QX,v)= 2 7m(x)0™, 3
m=0 T~
(3.18
n—m
()= 2, 7m ¥
whose coefficientsy, ; follow from Eq. (3.17) by comparing FIG. 1. RatiosI'j[w]/T'1[Q], Eq. (3.12, and I';[ 0]/T5[Q],

like powers ofx andv_ Note that when act|ng on a polyno_ Eq (329, as fUnCtiOn-s O.f the free parametﬁrfor a dOUb|e-We||
mial in x andv the differential operator on the right hand Potential, Eq.4.1). Solid lines,BE=2 andy/Q}=1; dashed lines,

side of Eq.(3.17) either reduces the degree of the polynomial 5E =2 andy/Q=10; dotted linespE =5 andy/Q1=1; dot-dashed
by two or keeps it constant. Therefore, it is convenient tgines:SE=5 andy/Q=10.

split %, ; into two subsets corresponding to evep(; with L .
P 77, P 9 O In closing it is important to note that any approach involv-

m+j=2i) and odd fpm, with m+j=2i 1) coefficients ing the Kramers trial function as zeroth-order approximation
which can then be evaluated separately. High efficiency idhg the mramers trial tunct S zeroth- pproximat
implicitly implies that the equilibration process is mainly

achieved by making use of computer algebra manipulators. ; . . S !
Hence, in first-order perturbation theory the trial function determined by the immediate vicinity of the barrier top. The

latter is a valid assumption as long as the rate of energy

reads diffusion in the well is faster than the spatial diffusion rate
5 across the barrier. In other words, both rate formulas ob-
E(x,0)=N;+erfy(x,v)]+ /ﬂ tained above, Eq43.12 and (3.20, as well as those pre-

Ty sented in Appendix B, are expected to work well only in the

n n-m regime of moderate and large frictior= (). Hereby we in-

X ext — y2(x,v)] > 2 nm'jxjvm, troduced an effective barrier frequengy;
m=0 j=0
Q:B(Zfa)IZaal/a, (321)

(3.19
which is determined by the temperature and the order of the
where the integration constal is again determined from maximum and local strength of the potential in the vicinity
Eq. (3.2. With this trial function, Eq.(3.19, the Rayleigh of the top of the barrier
quotient yields in a straightforward wafor more details see

i a
Appendix A U(x)=U(0)— ;x"+ higher order terms. (3.22

2p [y+2p ([
Polw]=—5 5 f dxR(x) This frequency is given by the ratio between the thermal
! o length scale of the potentialg&) ¢, and the thermal ve-
locity 8~ 2. One can see that for a parabolic barrier it coin-

(uty)?
|, (320  cides with the barrier frequend) = w, .

xex;{—ﬁU(x)—,B,uTx

whereR(x) is a known function, whose particular form de- V- OPTIMAL CHOICE OF THE FREE PARAMETER

pends on the truncation numbey Egs. (A10) and (A14). As already noted, an attractive feature of the Rayleigh
Note that the above expression contains both exponential angeniity Eq.(3.1), is that it is variational in the entire range of
algebraic corrections to the rate because we have neglect%qjomem parameters. The latter is seen from Fig. 1 which
neither the ”g,ht hand side of E¢2.19 nor LT, respec-  ghows the rate expressiolig| »] andT',[ w] as functions of
tively. Sincel'\’s are determined recursively from Ed8.7)  the free parametew for different values ofy/Q and BE.

and(3.8), w in Eq.(3.12 is fixed by minimization of's[ ], The calculation is performed for a symmetric potential
andTI'; is then kept constant while the free parameters

reevaluated to minimiz&,[ ], Eq. (3.20. U(x)=E[2(x/1)®—3(x/1)*], 4.2
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which has two wells ak= *1| separated by a quartic barrier coefficienty (see Fig. 1. From this finding it immediately
of height E and effective frequency=1"1(12E/8)¥*  follows that the free parameter may be fixed in the entire
Since the characteristic lengtiof the potential can always friction range at once by setting= w5 where

be absorbed inta, we setl=1 from here on. As evidenced

by Fig. 1, the rate functional§; andI', show a similar wy=wy(y—%,B,{Un}). (4.9

dependence on the variational parameieBoth vary from o .
The same method of fixing is also applicable to the lowest

Fk[O]Z(,37<X2|Peo>—1/7)7l, k=1,2, 4.2 order approximatiod’;[ w]. That is, in our calculations of
I[w;] we set I'y'=Tfw;], where oI=ow(y

through global minima, to the TST ralggr, EQ.(2.7). This  —,8,{u,}).
holds true agll barrier heights in thentire spatial diffusion Equations(3.20 and (4.4) constitute the principal result
regime,y/Q)=1 [51]. The only qualitative difference in the of this paper. The necessary calculation is easily performed
behavior of I';[w] and I',[ w] is that besides the global by noting that in the strong friction limity—o, the Ray-
minimum nearw =) the rate functional',[ »] also exhibits  leigh quotient reduces to
a local minimum at low frequenciesy<(.

It is thus seen that the free parameatecan be determined - dxé'2(x)e AU
by minimization of the corresponding rate functional. When —w
applied to Egs.(3.12 and (3.20, this results in self- I'[é]= - : (4.9
consistent integral equations which must be solved numeri- B'yf dx&2(x)e UM

cally for o at each value of the friction coefficient.
Clearly, such a procedure will give the best approximation toFor a sixth-order polynomial potential, EGA11), within the
the rate only if the Rayleigh quotient possesses a rigorouﬁerturbation theory with respect to ’the non,IinearilMx)
upper bound property. Otherwise, it will give a variational + w?x, the trial function(up to and including the first-order
estimate, not an upper bound. Bounding properties of Eqéorrec,tior) reads P 9

(3.1) have been studied in a previous pap&®d]. We have

found that asufficientcondition for the Rayleigh quotient to

provide an upper bound to the exact rate, i.e. ITp§]=T", is EX)=v2Bw?lm
that the spectrum of the Fokker—Planck operatordat The

latter is unconditionally valid in the limit of strong friction, -
y>Q, where Eq.(2.2) reduces to a selfadjoint Smolu- + (1o X+ 10X+ 1o ex®)e A2 (4.6)
chowski operator. Unfortunately, outside of this strong fric-
tion (Smoluchowski limit, there is no simple criterion for

X 2,2
d e—Bwy/Z
fo y

determining whether or not the spectrum of the Fokker—Where

Planck operator is real. Therefore some approximation must 1 11y u 3u 150
be invoked to evaluate the differenE¢&]— ;. An explicit Nor=— =+ - e A _6,
expression for this difference is given by H§.30 in Ref. ' 2 120? w? Bo* pZw°

[50]. Since the main contribution to the series on the right-

hand side of this equation comes from low lying eigenstates, 5 Us Sug
one may writeI'[£]— A1~ (£7,h)?(Ao—\4), where), is 035~ 3P Y1 5~ —,
the second nonzero eigenvalue with associated eigenfunction o po
h,. Hence, a rough estimate for the valueyobelow which

the bounding properties of the Rayleigh quotient may be
violated can be deduced just by studying the second nonzero
eigenvaluex,. The latter is readily evaluated by making use
of the harmonic approximation of the potentld(x) near Note that for a symmetric potential the constant of integra-
one of its minimum values, say, at=1, U(x)~U(1) tion is equal to zero independent of the order of approxima-
+2w2(x—1)?, wherew?=U"(1)=24E is the frequency at tion, i.e.,Ng=0 andN;=0.

(4.7)

1 Ug
-~ p2 2_
o5~ 90,3 e w2

the bottom of the well. This yields In Table I and Fig. 2 we compare our theoretical predic-
tions with the least nonvanishing eigenvalue computed nu-
A2~%(7_1/72_4Q,W7), 4.3 merically by using an improved reactive flux formyla0]

and a high-accuracy path integral schefié]. As antici-

from which it immediately follows that the Rayleigh quotient pated, the present method of fixiag(I",[ @, ) gives results
may lose its upper bound property fors2w,,. that are almost indistinguishable from those obtained with

Proceeding further we note that the location of the global 2[ @,]. This holds true for all barrier heights and all values
minimum of the rate functional, Eq3.20), is a function of  of the friction coefficienty. Even in the worst caseGE
all problem parametersy,= w,(y,8,{u,}), where{u,} de- =125 and y~(, the deviation betweerl ,[w5] and
notes the set of coefficients entering Kramers’ probleml’,[ w,] is on the order of 1%.
through the potential(x). Therefore, ideally, one has to It is also worth noticing that there is a rigorous upper
determinew, by minimizingI',[ w] for each particular set of bound property inherent to the Rayleigh quotient method
parameters ¥,8,{u,}). We have found, however, that the throughout the moderate to strong friction range; 2w,, .
function w,(y,B.,{u,}) is rather insensitive to the friction We find that unlike the simplified rate formul&s[ »7;] and
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TABLE I. Comparison between the Rayleigh quotiéhf w,] obtained by minimization of Eq3.20 at each value of, the Rayleigh
quotientI’,[ w5 ] evaluated with the variational parameterfixed in the strong friction limifEgs.(3.20 and(4.4)], and the numerically
exact resultd” for the least nonzero eigenvalue of the Fokker—Planck opdiats.(2.2) and(4.1)]. Exponential notatiop—k] means that
the number preceding is to be multiplied by 10

E=1.25 E=25 E=5

Y Iyl w,] I'y[w;] r [yl w;] 5[ 03] r Iyl w,] Iyl w;] r

1 0.3538 0.4194 0.2640 0.1416 0.1439 0.4975 0.1616—1] 0.168%—1] 0.1145%-1]
1.5 0.3202 0.3479 0.2802 0.1247 0.1258 0.9871 0.1490—1] 0.1513—-1] 0.1246-1]
2 0.2823 0.2965 0.2674 0.1109 0.1116 0.9805 0.1363—1] 0.1372—-1] 0.1237—-1]
3 0.2219 0.2270 0.2210 0.89971] 0.9040—-1] 0.866§—1] 0.1150—1] 0.1152-—-1] 0.1117-1]
4 0.1802 0.1824 0.1807 0.79321] 0.7541—-1] 0.7417-1] 0.988(0—2] 0.9886—2] 0.9770—2]
5 0.1506 0.1516 0.1510 0.64151] 0.6433—-1] 0.6381—1] 0.861%—2] 0.8617—2] 0.8571-2]
6 0.1289 0.1294 0.1290 0.59761] 0.5586—1] 0.5559—1] 0.7610—2] 0.7611—2] 0.7589—-2]
7 0.1123 0.1126 0.1123 0.49181] 0.4923—-1] 0.4907—1] 0.6797—2] 0.679§—2] 0.6786—2]
8 0.994%5—1] 0.9959—-1] 0.9937—-1] 0.4390—1] 0.4393—-1] 0.4381—1] 0.6129-2] 0.6130—2] 0.6122-2]
9 0.8910—1] 0.8919—-1] 0.8898—-1] 0.3959—1] 0.3961—-1] 0.3952—1] 0.5573—-2] 0.5574—2] 0.5568—-2]
10 0.8065—1] 0.8072—-1] 0.8051—1] 0.3602—1] 0.3603—1] 0.3596—1] 0.5103—2] 0.5104-2] 0.5100-2]
15 0.5451—1] 0.5453-1] 0.5438—1] 0.2467—1] 0.2467—1] 0.2464—1] 0.3564—2] 0.3564—-2] 0.3562—2]
20 0.4107—-1] 0.4109—-1] 0.4098—1] 0.1869—1] 0.1869—1] 0.1867—1] 0.2723—-2] 0.2723-2] 0.2721-2]
30 0.2747—-1] 0.2747—-1] 0.2741-1] 0.125%-1] 0.125%—-1] 0.1254-—1] 0.1841—-2] 0.1841—-2] 0.1840-2]
60 0.137%5-1] 0.137%—-1] 0.1373—-1] 0.6307—2] 0.6307—2] 0.6300—2] 0.9291—-3] 0.9291-3] 0.9284-3]

80  0.103p—1] 0.1032—1] 0.1030—1] 0.4733—2] 0.4733—2] 0.4728—2] 0.6977—3] 0.6977—3] 0.6972—3]
100  0.8256-2] 0.8256-2] 0.8246-2] 0.3787-2] 0.3787—2] 0.3784-2] 0.5585-3] 0.5585—3] 0.5581—3]
1000 0.825§-3] 0.8254—3] 0.824§—3]2 0.3789—3] 0.3789-3] 0.3786—3]% 0.5591—-4] 0.5591—4] 0.5587—4]2

8Exact estimate of the eigenvalue calculated from the respective Smoluchowski equation.

I',[ 5] which usually overestimate the exact rate in the enbust to variations in the barrier height. One would expect the
tire friction range, the true Rayleigh quotient estimatesaccuracy of Eq(3.20 to fall off quickly as BE went down
I';[ w,] andI',[ w,] may drop below for y<2w,, (see Fig. andI'—O(1), but infact going from a potential withBE
2). This result is in full agreement with our previous obser-=5 to one abouBE=1.25, there was almost no decay in the
vation that the Rayleigh quotient may lose its upper boundiccuracy of the results over a broad rangeyoEven at the
property when the spectrum of the Fokker—Planck operatosmallest value of3E the proposed rate formulB,[ w3] is
becomes complejsee Eq(4.3) and the discussion abové.it seen to provide an accuracy of 0.3% fpe3 (. Larger
With further decreasing, however, Eqs(3.12 and (3.20 deviations are observed foy values on the ordef) and
rapidly restore their bounding properties despite the fact thabwer. These deviations arise because the slow energy diffu-
the spectrum is no longer real. This is because the trudrate sion process, which causes the rate to fall off with decreasing
falls off with the friction coefficient wheny<<(Q), while the v, is not accounted for by the present splitting of the adjoint
Rayleigh quotient estimates, E¢8.12 and(3.20, approach operator, Eqs(3.4) and (3.5). This splitting results in the
in the limit of weak friction the TST raté'rs7, Eq.(2.7). Kramers-like trial function, Eqg3.11) and(3.19, which is a
Most importantly, however, is the result that the range ofpoor approximation to the true eigenfunctibix,v) when
applicability of the present perturbation method is quite ro-energy-diffusion effects appear.

0.4 V. COMPARISON WITH OTHER VARIATIONAL
APPROACHES

0.2
S In this section we compare the efficacy of our method
E‘g (U with that of two other variational approaches commonly used
o in the literature. One is based on the standard definition of

02 F ] Rayleigh’s quotient suggested by Larson and Ko$ff].

04 \ The other is variational TSTVTST) [2,7,40-42,44,4b

Both approaches are briefly outlined in Appendix B. The
corresponding rate expressioﬁ#"[w] and I'yrs1{ @] are

FIG. 2. Percentage errors, 10Qapproximate-exact)/exact, in ~ 9iven by Eqs(B2) and(B3), respectively. .
the least nonvanishing eigenvalue of the Fokker—Planck operator, 10 begin with, we show in Fig. 3 these expressions as
Egs.(2.2) and(4.1), made by usind ,[ w3 ], Egs.(3.20 and(4.4). functions of the variational parameter. The calculation is
Solid, dashed, and dot-dashed lines ared&r=1.25, 2.5, and 5, performed for the symmetric double-well potential, E41).
respectively. Dotted lines are for results obtained Wighw,] [that ~ One sees that both approaches fail to provide a variational
is, by minimization of Eq(3.20 at each value of]. formula in the entire parameter space. The standard Rayleigh

4 10
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o LK FIG. 4. Percentage errors in the least nonvanishing eigenvalue
FIG. 3. Same as in Fig. 1 but fékrst, EQ.(B3), andl';™, EQ. o the Fokker—Planck operator, Eq2.2) and(4.1), made by using
(B2). different rate formulas. Solid lines are for the present expression

. LK . N . . I',[ w5], Egs.(3.20 and(4.4). Circles, dashed, and dot-dashed lines
quotientl ;[ w] shows a minimum fory>{}, in which case are for results obtained by minimization &%, [Eq. (3.12], I'}¥

it reduces td" ;[ w]. Outside of this strong friction limit, the [Eq. (B2)], andTyrsr [EQ. (B3)], respectively.
rate functionalFiK[w] doesnot necessarily exhibit a non-

trivial minimum and may be a monotonic function ef.  |gjgh’s identitieg Egs.(3.1) and(B1), respectively coincide
Analogously, the VTST rate functional EB3), is in gen-  in the limit of strong friction,y=10 Q. For moderate fric-
eral variational only for moderate and high barrig&=3.  {jon the situation becomes different. In this case, the standard
As seen from Fig. 3, when the variational parameter inRayjeigh quotien’}¥ gives results that abruptly drop below
creasesl'yrsi ] increases to a local maximum followed by {he trye rate fory<2w,,. In contrast, the accuracy df,

a local minimum if the barrier is high, whereas it increasesemains almost constant in the spatial diffusion regime. The
only monotonically for low barriers. This low-barrier prob- \/ T rate expression, E@B3), is seen to be the least accu-
lem may in principle be resolved by making use of curved e |y fact, we find thal'yrs; does not give satisfactory
dividing surfaces that are computed numerically from Hamil- ¢ its for t'he quartic-barrier potential E6f.1) anywhere
ton’s equations of motion for an effective two degrees OfexceptBE~5 when it happens to coincide with the true rate.
freedom Hamiltoniari41]. In such a case, the VIST method |, yhe jimit of large barriersBE= 10, the VTST rate expres-

reg_L:ceﬁ to rurlmlng c:ass:_cal t_rajegu_)nels aqg L?]Ok'ndg df?r thl ion overestimates the true rate by the same amouiht; as
orbit whose classical action IS minimal with the additional ,, pLk = \hije for moderate and low barrier§E<4, it

constraint that the configuration space path of the orbit is a .
“ .o ; ' . underestimates the exact result by more than 10%.
good” dividing surface. Since the required numerical pro- A d : :
cedure is rather arduous, we will not do so here. S a second example, we consider a potential with asym-
. ' X metric nonlinearity about the barrier which reads
In Fig. 4 we compare the relative errors made by the
various approximations for the least nonvanishing eigen-
value discussed in this paper. It is immediately apparent that U(x)=
the best agreement with exact rates is obtained with the 3+2a
present formuld’,[ w5 ], Eq.(3.20. Its accuracy deteriorates o )
only slowly varying from 0.01% forBE=0.1 to 0.1% for Here, we set the charactensup lengthl, and« is an asym-
BE=10. This seemingly surprising result that the error in-Metry parameter. The potential has two wellsxat+1 and
creases with increasing barrier height is actually not surpris—1—a of depth U(1)=—E and U(-1-a)=—-E(3
ing. Recall that the Kramers-like trial functidigq. (3.19]  +@)(1+a)%(3+2a), respectively, separated by a para-
underlying Eq.(3.20 is based on a harmonic approximation bolic barrier atx=0 of frequency wp=12E(1+a)/(3
of the potential, Eq(3.4). The latter leads to a poor approxi- +2a).
mation to the true eigenfunctidm(x,v) when the anharmo-  First we tackle the symmetric case=0. The correspond-
nicity of the potential near the barrier top becomes strong. ltng results are shown in Fig. 5. The logarithmic plot clearly
is noteworthy that the other rate formulas show the sameemonstrates that the present theory substantially improves
kind of behavior in the sense that their accuracy also detethe first-order Rayleigh quotient estimdte, Eq.(3.12), sys-
riorates with increasing barrier height. However, the corretematicallyreducing the error by 1 order of magnitude. We
sponding errors are larger by orders of magnitude than thagain find that the errors are rather insensitive to the friction
error made by using E@3.20. As anticipated, the first-order coefficienty, being nearly constant across the spatial diffu-
approximationsI’; and F&K based on two different Ray- sion regime, i.e., for aly=2w,,= V8w, . However, unlike

[3x*+4ax®—6(1+a)x?]. (5.
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- . : FIG. 6. Same as in Fig. 5 but for an asymmetric double-well
. 5. . tential, £5.1), with . .
FIG. 5. Same as in Fig. 4 but for the potential, E5.1), wi potential, Eq.(5.1) with a+0.

a=0. Dotted lines are foF55¢, Eq. (2.9).

the case of quartic barrier considered above, for a paraboligbilities have already been examined in a number of studies
barrier the theory works well at all values of the reduced[43,46—48. However, the corresponding analyses have been
barrier height including both limits of highE—0) and restricted either to the extreme limit of high barri¢4$,47]
vanishing (BE— ) temperature. Note that in the latter limit or to one (either VTST or Rayleigh quotientmethod
it becomes exact. With the present rate formlljw;], a [12,26,43,48 Here we have compared different variational
maximal error of 0.04% is attained in the spatial diffusionexpressions for the rate in different kinds of potentials over a
regime for BE=2.5. This is in contrast to the second-order broad range of problem parameters. The second purpose of
finite-barrier expansiolr55¢, Eq. (2.9), which considerably this work was to point out an approximation that has been
underestimates the rate f@#E<<5. As seen in Fig. 5, its almost universally made in all known rate theories. The ap-
relative error increasesxponentiallywith decreasing barrier proximation consists of neglecting exponentially small con-
height and very soon grows out of the scale of the figure, aributions to the rate. We showed that the neglect of these
clear indication of the importance of the neglected exponenexponential corrections may introduce large errors in the
tial corrections. The same holds true for VTST, whose errolimit of moderate and low barriers.
is large compared to those of the other approaches. The final and primary goal of this paper was to develop a
Finally, we consider an asymmetric double-well potential, e rrhation method whickystematicallyaccounts fotboth
Eq. (5.1) with «#0. The corresponding relative errors as e gjgebraic and the exponential corrections. The resulting
functions ofa and BE are shown in Fig. 6 fory/wp=30. 1t 4te expression produces unprecedentedly accurate results at
is seen that the present rate formlild w, ] is in good agree- g parrier heights and for the whole friction range in the
ment with the exact numerical results. However, this agreegnaiia| diffusion regime. For potentials with nonparabolic
”?e”t IS somfawhat worse than in the symmetric case. Th arriers the accuracy of the method can be further improved
dls_crepancy IS most pronounced iet=0.2 and_ﬂE~1.5_ N if one employs as zeroth-order approximation, instead of Eq.
which case the first- and sgcond-order Rayleigh quotient for(3.1])' a non-Kramers trial function suggested in Ref].
mulas 'y and(}“z) overe?Umat(re].the tr_ue r?]te by the SameAIthough we restricted our consideration to the spatial diffu-
?moulnt of 0.5% Avt\)/layb rom L IS r?r%'orql_lt_s‘?rsecd‘znd'ordersion regime of a Markovian one-dimensional activated rate
ormula is considerably better tf ih— € rat VISL  process, the methods can be applied to the case of memory
[Eq. (B3)] and sepond-order finite-barrier expansﬁﬁ friction, as well as to systems with more than one degree of
[Eq. (2.9] are again much less accurate. Indeed, their relageeqom. A similar method can also be developed for the
tive errors are by orders of magnitude larger than the errof i+ o underdamped Brownian motiof83], in which case
made by using Eq3.20. This holds true at all values of the {nite_parrier corrections to the rate are known to be larger
problem parametera, SE, and y except wherl'yrst and  hap i the spatial diffusion reginfd.2,13,25,30,3]L
I'5B€ happen to coincide with the true rate. T
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APPENDIX A Analogously,

In this Appendix we outline the derivation of the central 28
result of this paper as given in E(.20. With Eq.(3.8) the L} &, (x,v)= W—:[U’(X)-szx]

Rayleigh quotientl’,, which includes second- and higher-
: ; ; Sy 2
order corrections in the nonlinearity’ (x) + w°x, reads . F{ B — 02X)? %1 oo (a8
exg—————— em(X)v™,
r (Eomy 0T 1~ (& LT é0) —(&1,L1 &) — (&1 LT &) 2yp =
2_ ’
D

(A1) where the functiong,(x) are expressed in terms @f,(x),
Eq. (3.18), by the relation

where we have usedéfy.&1)=(&g().£1). The function

o) appearing in Eq(A1) is an approximation to the Kram-

B
. ) T . =(m+1 + — (X ny— _1), 0=m=n+1,
ers function¢, obtained by truncating its series representa-(‘Dm ( ) hm1 y(w ™ K 7m-1)

tion according to Eq(3.16), i.e., (AB)
e y? n+1)2] omy2m-1 with n_1=7n+1=7n+2=0. Then, the Gaussian integrals
§o~E&omy=No+ W mz,l aZm=Di (A2)  overv in the numerator of Eq(Al) are easily performed

analytically to yield Eq.(3.20, where the functiorR(x) is
determined in terms of,(X), ¥m(X), and ¢, (X). Its par-
ticular form depends on the potentidl(x), or more pre-
isely, on the degree of its polynomial approximation, Eq.
3.16.
In our subsequent calculation we will be more specific,

In the above,[(n+1)/2] denotes the integer part &f(n
+1). Thev integrals in the numerator of E4A1) can be
eliminated by noting that the corresponding integrands ar
just a product of a polynomial in with a Gaussian function
that has a zero medifv))=0 and variancé(v?))=o,

cover both applications in Secs. IV and V, E¢4.1) and
(A3) (5.1). First, we tackle an asymmetric cubic-quartic potential
of the form

o= —Y
B(y+2u)’

Therefore, it is convenient to write dovmf(n) in the form

N | 283 B(uv + 0?x)?
gO(n)(va):_ 7T’)/,LLeX - 27#

U(X)=uyX%+uzx3+ugx?, (A7)

this context(see, e.g., Ref$26,28-30,35,39,44,4p In that

2[(n+1)/2]-1 event, the exact solution to E(B.17) reads
X2 (™, (Ad)
m=0 " Q(X,0)= 1o g+ Mo X+ M@ + 70 X2+ 11 WX+ 7o 2
+1)/2]—[m/2 . . o + 3+ X2+ 7, w2x+ 3 A8
(D22 o0 gy g1 m( ,2)2~1-m 70,3+ 71,0 X"+ 775 1 N3 (A8)

X)= —,
() =1 mi(2j—1—m)!(2j— D! (yu) 1 where the coefficientsy,,; are found to be

| my 2y
=\/ ——Nol'1+ 5 ,
70,0 281° 01T g, 72,0

7B _
No2= — _327M(3w2+ 2p®) Nl 1+ ™ (0t + F0?u?+3u*) 1,0,
TR _
N11= _87/ Nol'1— 1(2w2+3#«2)772,oa

Wﬂ 2U3,LL
=\/ Nol' 1+ ,
20 2y 0t 20415022+ 2ut

— B(3w*+ 0?u?—A4u*)T1+3Bu(w?+2uy) (02 +2u?) —6y(30*+ Twu?+8u*) 730
681 (w*+ pu?)

701=

B(Bw?+ u?)T 1= 3Bu(w?+2uy) +6y(3w’+7u?) 130
68w+ u?)

71,0~

considering two explicit cases of polynomial potentials that

which has been extensively studied by many authors within
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_ B(l1o*+170%u?+ 6% . 3w8+220* 2+ 34w+ 12u®
70,3~ 18yu 1 34° 73,00

B(5w%+3u?) _— 3w+ 10w’ u?+6u*

M12= — 6y 1 2 773,01
Bu r 3w?+4u?
72,1 3y ! “ 773,05
B Bugu®

T J . A9
70T 12y Y 3064 130  u2 4 13024t + 348 (A9)

With this particular solution the functioR(x) is found to be
R=1-(B%y)o{(U’+ 0*X)[ 70(1+ o)
T o (72t 7200~ 7101+ M0¢2)
+30%(— 7301+ 7202~ 1193
+ 70¢a) + 150 (— 1303+ 75¢4) ]
—(Lilw)[mopot o( 20+ mahs+ noiha)
+302(n3ih1t mathot+ m1ihs) + 150> 3y ]} (A10)
As a second example, we consider the case of a symmetric potential
U(X) =Uyx%+ Ugx*+ ugx®, (A11)
which results in
Q(X,0)= 1o X+ N1, + 70X+ 11 WX+ 75 07X

+ 303+ 10X+ 1 X 7y 0 2X3

+ 13032+ 40X+ 75 0°, (A12)
with the coefficients given by
- 3w4+w2,u,2—4,u,41_‘ 'y(3w4+7w2,u,2+8,u,4)77 +20’yz(w2+2,u2)77 +(2u2+w2)(w2+2,u,2)
01— 1™ 307 T 5 5 5. 750
6w+ u?) Bu(w*+ pu?) B w?+ u?) 2u(w®+ u?)
B 3w+ u? Y(Bw?+7u?) 20y? 2U,+ w?
T 0 ud) N puettud) 0 Bt tud) 0 200t tud)]
4 2. 2 4 1 6 4 2 2 4 6
+ Lz(llow“vL 368021+ 222u*) 75 0,
3Bu
M1~ 5 (2507 3BT s+ (B0 10027+ 6u) o e (5064 664 7
' 30y w? T Bu -
B 1 Y
=——T1— —(3w?+4u?) n; 5+ 205 75,0,
721 3y 1 M( M )773,0 ﬂﬂs,o
- B(30w°+ 360m* u?— 90w?u*— 64u°) ¥(300°%+ 271w u?+ 46002 u* + 171u°) 15 o— 6 Busp®
3,0

+
120y(300+ 130 w2+ 1302u*+3u8) 2B8(3w8+ 130* 12+ 13w+ 3u)
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,82
B 900}’2M2

1
- 5

705 (137wB+512w8 2+ 7070w* u*+ 372w 8+ 60u®)T";

10 (100%+ 13708 12+ 51208 1+ 7070* u8+ 372028+ 60u0) 75 o,
o

2

1
Nia=— (77084 1700* u?+ 131w?u*+ 30u8) T + F(10w84r 770812+ 1700w+ 1310218+ 30u®) 75 0,
o

180y°u

2

1
Nos= (470*+ 59w u?+20u")T; — — (100°+ 47w* u? + 59w? u* +20u°) 75 0,
o

90y?
Bu 2 2 1 4 2 2 4
N32=— 2(9w +5u)+ —2(1Ow + 27w u"+15u") 75 0,
30y M
132/“(‘2
= I'1— —(5w0?+6u2) 75,
41 15,2 1 M( M) 750
2 10ugu*
75,0~ b ry o (A13)

90y? 10010+ 87w8 12+ 22708 1+ 2270 18+ 87w2u 8+ 10p 10

In this case, the functioR(x) takes the form

R=1-(B%y)o{(U’+ &’ X)[ 10(1+ o) + 0 ( 72+ 7200~ 1101+ 7092) + 302( 74+ 7400~ 1301+ 17202~ 1193+ 70¢4)
+150°%(— 751+ 7402~ M3P3t+ 7204~ M1@5+ M0¢e) + 1050 (— W53t M40~ M3PsT N206) + 9450°(— N5@s
+7406) — (T 1/ w)[ motho+ o (m2tbo+ mupa+ notha) + 30X (nathot nathrt Mmoo+ muha+ notpa) +150°(sihs+ mathz
+ natat mothat mitps) + 1050 (st mathst Maths) +9450° 5]} (A14)

APPENDIX B Another very different variational approach is based on

In this Aopendix. we briefly outline two other variational the transformation of the original Fokker—Planck dynamics
bp ’ ) y to an equivalent infinite dimensional Hamiltonian system
problem that have been frequentl

used in the past to calculate rates in the spatial diffusionﬁﬁg]' Within the Hamiltonian formulation the forwarack-

regime. An expression for the least nonvanishing eigenvalu%vard) rate constant’y (I'y) may be estimated, by means of

of the Fokker—Planck equation. which is a strai htforwardmUItidimenSional TST, as a ratio of the equilibrium unidirec-
e que . - g tional flux through some chosen dividing surface to the
generalization of the Rayleigh—Ritz quotient for the ground opulation of the reactariproducy well [2,3.23. The qual-
state of a selfadjoint operator, was proposed by Larson anayp f such . fth d d e h d hoice of
Kostin [26] (see also Refg20,38) ity of such an estimate of the rate depends upon the choice o
oD the dividing surfacg2,7]. An attractive feature of this ap-
Jh oh proach is that TST provides an upper bound to the plateau
Z(__) value I' ¢ of the standard reactive flux method. This latter
(h[LP) _Bldv v (81  Quantity is commonly believed to coincide with the true rate,
(h|P) (h,h) I're=T", such that a variational principle may be used to find
the optimal dividing surface and the most accurate estimate
We uged the subscript LK in the above definition to di_stin-of the rate[2]. In the resulting methodology, known as
guish it from that of Moro and Polimeno, E3.1). Substi-  VTST, the dividing surface is varied to find the one which

tution of the Kramers trial function, E¢3.11), into Eq.(B1)  yields the smallest crossing rate, and this rate is then taken to

I*h]=

yields the following expression for the rate: be the best approximation to the true rate constant,40—
42,44.48. When restricted to planar dividing surfaces, VTST
2u |y o gives for the full ratel'=T";+1", [42]
LK _ " _
I'Mlowl= — 7+2Mf_mdxexp{ BU(X)
(uty)? Bly+2u) (=
—Bu - x2 (&,&p)- (B2) Fyrslw]=T1sr T 2my _wdxex —BU(X)
+ 2
In Secs. IV and V, we refer to EqB1) as the standard —BM(M Y) (x—s)z}, (B3)

Rayleigh quotient method.
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other methods in the literature to calculate rate constants in
potentials with nonparabolic barriers. Specifically we men-
tion a heuristic method of Calef and Wolyng&¥] who sug-
gested that we replace the actual potential by a parabolic
barrier with an effective frequency, and use the standard
(B4) Kramers result, Eq(2.6) for this parabolic barrier. Dekker
[38] applied Rayleigh’s quotient, E¢B1), to potentials with
cusped and parabolic barriers using differérdth Kramers’
and non-Kramerg’ approximations for the pertinent eigen-
function. Two straightforward extensions of these Dekker’s
results to an arbitrary algebraic barrier, £8.22, have been
proposed by Berezhkovskii, Talkner, Emmerich, and Zitser-
H1an[47] and Drozdo\ 25]. Finally, a different method con-

wherel ;57 is defined by Eq(2.7), and the shifts is deter-
mined from the integral equation

(u+7)?
planis

ﬁo dx(x—s)exp{—BU(x)—B (x—s)?|=0.

The variational parametes [related tou by Eq.(3.11] is to
be fixed by minimization of'\s1] @]. Yet, we have recently
proven that the reactive flux raléyr is not a well defined
mathematical objed0]. Depending on the dividing surface
used, this quantity varies in the interva@ re<1I", where
the upper limitl'gre=T" is achieved only for the perfect di-

viding surface. As a consequence, the afore-mentioned "'\ X ) i - )
bounding property of TSTT'yrsr=T, is not rigorous and sists in using accurate interpolation techniques to bridge ex-

may be violated under some conditiofs0,52. In such &ct solutions of the Kramers problem available in the limits

cases, VTST will not necessarily yield the most accurate®f weak and strong frictiofi31,48. However, since none of
result for the rate, just a variational estimate. the above-mentioned methods is variational, we will not con-

Besides these two variational approaches, there are margjder them here.
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