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Variational theory of activated rate processes for an arbitrary barrier

Alexander N. Drozdov*
Department of Chemistry, University of California, Davis, California 95616

~Received 10 February 2000!

The thermally activated escape of a Brownian particle over a smooth barrier of arbitrary shape and height is
considered as an eigenproblem of the Fokker–Planck equation. For the case of moderate and large friction, the
least nonzero eigenvalue of this equation is found via a Rayleigh-quotient-based perturbation method. A
comparison with existing variational approaches and from numerical simulations for bistable potentials with
parabolic and quartic barriers shows that the proposed expression gives unprecedentedly accurate results at all
barrier heights including the limit of vanishingly low barrier.

PACS number~s!: 05.40.2a, 82.20.Db, 82.20.Fd
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I. INTRODUCTION

The phenomenon of thermally activated escape of a c
sical system over a potential barrier arises in a multitude
scientific contexts, but the main motivation to study it ste
from its connection to chemical reactions@1–4#. Since the
fundamental contribution of Kramers@1#, much work in this
field has been devoted to a simple stochastic model.
model consists of a single mechanical particle moving o
bistable potentialU(x), such that it may switch from one
metastable (x,0) state to another (x.0) by crossing over a
potential barrier atx50 of heightE. The energy necessary t
cross the barrier is supplied by the surrounding heat b
which causes a velocity proportional friction force and a ra
dom force. The rateG at which the system approaches eq
librium is given by the least nonvanishing eigenvaluel1 of
the corresponding Fokker–Planck operator~2.2!, G5l1 @9#.
Kramers showed that for low friction this rate is limited b
the slow diffusion of energy to the particle from the the ba
and so is proportional to the friction. In the present paper
will only consider the case of moderate and large fricti
~also known as the spatial diffusion regime!, when the pro-
cess is limited by the spatial rate of diffusion of the partic
across the barrier.

A wide variety of different methods have been used d
ing the past 2 decades to solve Kramers’ problem.~For the
history of their development up until a decade ago, see
book by Risken@5# as well as Ref.@6#. The present state o
the art may be found in Refs.@7# and@8#.! Despite the grea
diversity of these methods, one could broadly subdiv
them into two general approaches. One is to recognize
difficulty of obtaining exact analytical expressions except
some special cases, such as a purely parabolic barrier,
proceed to find the exact result computed numerically
number of efficient methods for numerically integratin
Brownian motion on a grid have been devised, such as fin
difference schemes@10#, basis set expansions@5,11–13#, tra-
jectory simulation methods@14#, and path integral technique
@15,16#. An obvious advantage of this approach is its univ
sal applicability. The afore-mentioned methods can, in p
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ciple, provide very accurate results for the rate in a poten
with an arbitrarily shaped barrier of any height. However, t
required computational effort may be substantial, as the
merical methods suffer from various different shortcomin
In particular, the utility of basis set expansions and fini
difference schemes is strongly limited by the storage requ
ments and execution time that both grow exponentially w
the number of coupled degrees of freedom. For a fin
difference representation, the requirement of numerical
bility severely restricts the permitted time step. This is a
true for trajectory simulation methods, which are less rest
tive with respect to the dimensionality than the above m
tioned schemes. A disadvantage of these methods is that
suffer from statistical errors. Usually, one has to generat
huge number of trajectories to reach an accuracy of 1%.
path integral formulation of the Fokker–Planck equation p
vides a numerically stable solution, which is free of statis
cal errors and requires a computational effort that increa
only slowly with the dimensionality of the system. Its effi
cacy, however, depends crucially on the accuracy of
short time propagator used.

A second approach was to replace rigor with reasona
approximations. The enormous theoretical literature
evolved Kramers’ theory in many directions that inclu
generalizations to systems with many degrees of freed
@17#, cases without detailed balance@4,18–21#, and non-
Markovian dissipation models@22–25#, extensions to the full
damping range@24–31#, improvements of the Kramer
method in the weak@24–28,30–33# and moderate-to-strong
@5,12,20,25,26,29–31,34–48# friction regimes. The apparen
advantage of having analytical formulas for the rate as co
pared to numerical results of numerical methods is in
simplicity of analyzing such formulas with respect to th
variation of parameters. It is often the case that having
analytical formula gives more information about the syst
studied than just numbers. On the other hand, it is clear
approximate methods could be accurate only if the spec
assumptions on which they are based are satisfied. Thu
instance, most of the existing rate theories are strongly
pendent on aparabolic approximation for the barrier. How
ever, this assumption is not always met in experimental s
ations. Another common disadvantage is that the bar
height E is assumed to be much larger than the energy
thermal motionbE@1. Of course, the presence of a rel
9
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1880 PRE 62ALEXANDER N. DROZDOV
tively high barrier is vital for the notion of metastability. Fo
this purpose, however, a barrier of already orderkBT will
suffice to separate the interwell equilibration timet fe

bE

from the fast time scalet f on which the intrawell relaxation
takes place. In the above-mentioned asymptotic theo
(bE)21 itself, rather thane2bE, enters as a small paramete
accordingly, the theories do not cover the entire range
parameters. Several studies have addressed the intere
problem of generalizing the Kramers rate formula to ar
trary barriers in the strong friction~Smoluchowski! limit.
Closed-form expressions for the rate have been derived f
exact solutions of the Smoluchowski equation@4,5,34# and
by means of eigenmode expansions of particular bistable
tentials @35,36#. A great deal of effort has been made
extend these strong-friction results to the spatial diffus
regime@25,26,29–31,37–48#. However, the accuracy of th
proposed formulas is still not satisfactory for barriers of
der kBT which are important in physics and chemist
@31,48#.

In this paper we propose a perturbation method for e
mating the least nonvanishing eigenvalue of the Fokk
Planck equation, which combines the principal advantage
the two afore-mentioned approaches. This new method
lows one to solve the pertinent eigenvalue problem syst
atically for any barrier heightbE by taking into account both
algebraic @O(1/bE)# and exponential@O(e2bE)# correc-
tions. The reminder of the paper is organized as follows
Sec. II, the Kramers problem is briefly outlined together w
some preliminary results. A variational solution of this pro
lem is presented in Sec. III. The solution is based on a R
leigh quotient method, in which one varies the trial fun
tions. An improved trial function is constructed from
perturbation theory that gives the Kramers trial function
zeroth-order approximation. The resulting rate formula, E
~3.20!, whose derivation is given in Appendix A, involves a
effective barrier frequencyv which is used as the variationa
parameter. A simple procedure to fix this parameter in
entire friction range is suggested in Sec. IV. The accurac
our theoretical predictions is tested in Sec. V by comparin
with estimates of the rate from numerical calculations. T
comparison also includes results from other variational r
expressions that are briefly reviewed in Appendix B. Sect
VI contains some final remarks.

II. PRELIMINARIES

Although conceptually the Kramers problem may be f
mulated in terms of the Langevin description@1,14# or its
Hamiltonian equivalent@7,49#, for the present purpose it wil
be convenient to employ the Fokker–Planck equation@1,4,5#
~also called the Klein–Kramers equation! for the probability
density P(x,v,t) of finding the particle at the phase spa
point x,v

] tP~x,v,t !5LP~x,v,t !. ~2.1!

For a particle of unit mass the Fokker–Planck operatoL
reads

L52v
]

]x
1U8~x!

]

]v
1g

]

]v S v1b21
]

]v D , ~2.2!
es
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whereU8(x)5dU(x)/dx,g is the friction coefficient, andb
the inverse energy available from the thermal bath,b21

5kBT. For simplicity the potential is assumed to be bound
from below@U(x)>Umin.2`# and unbounded from abov
@U(x→6`)→1`#, such that the stationary~equilibrium!
solution of the Fokker–Planck equation,LPeq50, which is
just the Maxwell–Boltzmann distribution

Peq~x,v !5~b/2p!1/2Z21exp$2b@ 1
2 v21U~x!#% ~2.3!

can be normalized

Z5E
2`

`

dx exp@2bU~x!#. ~2.4!

In the spatial diffusion regime, for a potential with a par
bolic barrier,

U~x!5U~0!2 1
2 vb

2x21O~x3!, vb
252U9~0!, ~2.5!

the major Kramers result for the rate reads@1#

GKr5kGTST, ~2.6!

where GTST follows from one-dimensional transition sta
theory ~TST!

GTST5
Ze2bU(0)

A2pbZ2Z1

, ~2.7!

Z25E
2`

0

dx exp@2bU~x!#, Z15E
0

`

dx exp@2bU~x!#,

and k5A11g2/(4vb
2)2g/(2vb) is a transmission facto

describing deviations from TST. It should be noted that E
~2.6! is asymptotic in the reduced barrier height, which
assumed to be large,bE@1. In fact, this formula is nothing
but the steepest-descent estimate to the rate,G5GKr
1O@(bE)21#, identical to approximating the full potentia
by its parabolic barrier part.

The problem of finite-barrier corrections to the Krame
rate has been actively studied in recent years and many
ferent methods have been suggested for their evalua
@5,20,21,26,28–31,33–36,39,42–45,48#. A particular ad-
vance in this area can be attributed to Talkner@45#. Expand-
ing the potential in powers ofx as

U~x!'U~0!2 1
2 vb

2x21 1
6 U-x31 1

24 UIVx4 ~2.8!

and combining a Rayleigh quotient method with a pertur
tion theory of Klosek, Matkowsky, and Schuss@33#, Talkner
derived explicit expressions for first- and second-order fin
barrier corrections which read
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G2
FBC5GKrH 12

UIV

8bvb
4 S 12k2

11k2D 2

2
1

24b S U-

vb
3 D 2S 12k2

11k2D 2
10k4141k2110

2k415k212

1
1

384S UIV

bvb
4D 2S 12k2

11k2D 4

3F352
16~30k61103k4170k2112!

~12k2!~3k6113k4113k213!
G J .

~2.9!

Clearly, Eqs.~2.6! and~2.9! are applicable only to poten
tials with parabolic barriers. Yet another common drawba
is the neglect of ‘‘exponentially small’’ corrections
O(e2bE), that are glossed over in the derivation of Eqs.~2.6!
and~2.9!. While these neglected corrections are indeed sm
for bE@1, they do not differ much in magnitude from th
‘‘leading’’ algebraic corrections in the opposite low-barri
limit. A rough estimate telling when this neglect is adequ
can be obtained by noting that the neglected exponen
terms have to be smaller than~or at most of the same orde
as! the largest algebraic term, which here is the one of s
ond order. This estimate givesbE56. For lower barriers,
one cannot expect that the algebraic corrections alone,
~2.9!, will necessarily improve the rate.

A strategy that will allow us to overcome the abov
mentioned drawbacks is to combine a variational~Rayleigh-
quotient-based! method with a perturbation theory. For th
purpose, we convert Eq.~2.1! to an eigenvalue problem b
making the substitutionP(x,v,t)5P(x,v)e2Gt which gives

LP~x,v !52GP~x,v !. ~2.10!

The Fokker–Planck operator is not selfadjoint. Therefore
order to derive a variational expression from which the r
G can be calculated, we also need an eigenfunction of
adjoint operator. With respect to the scalar product

^ f ug&5E dxdv f ~x,v !g~x,v !, ~2.11!

the adjoint operator coincides with the backward operato

L15v
]

]x
2@U8~x!1gv#

]

]v
1

g

b

]2

]v2
. ~2.12!

When one defines a scalar product weighted by the equ
rium distributionPeq

~ f ,g!5E dxdvPeq~x,v ! f ~x,v !g~x,v !, ~2.13!

the adjoint operatorL* of L1 is related toL by the expres-
sion L* 5Peq

21LPeq. From detailed balance which holds fo
Brownian motion@4,5#, L* coincides with the backward op
erator of the time-reversed process
k

ll

e
al

c-

q.

n
e
e

b-

L* 52v
]

]x
1@U8~x!2gv#

]

]v
1

g

b

]2

]v2
. ~2.14!

SinceL, L1, andL* have the same spectrum of eigenvalu
@5,19#, 2G also is the smallest nonvanishing eigenvalue
both adjoint operatorsL1 andL* with corresponding eigen
functionsh1 andh, i.e.,

L1h152Gh1,
~2.15!

L* h52Gh,

where h1 is the time-reversed function ofh, h1(x,v)
5h(x,2v), andP(x,v)5h(x,v)Peq(x,v).

III. RAYLEIGH QUOTIENT METHOD

Since the Fokker–Planck operator is not self-adjoint, i
not obvious how a Rayleigh quotient identity for the per
nent eigenvalue has to be defined. Two different versions
currently used in the literature@12,26#. The starting point of
our approach is the definition suggested by Moro and P
meno@12# ~see also Refs.@39,45#!

G@h#52
~h1,L* h!

~h1,h!
. ~3.1!

Unlike the standard formulation of Rayleigh’s quotient E
~B1!, which is based on eigenfunctions ofL andL1 with the
scalar product Eq.~2.11!, the above definition, Eq.~3.1!,
involves eigenfunctions of the adjoint operatorsL1 andL* .
These two operators act on the same space of phase-s
(x,v) functions with finite second equilibrium moment
This is a much more general class of functions than th
operated on by the original Fokker–Planck operatorL, which
must be absolutely integrable. It is therefore more conven
to deal withL1 andL* with the equilibrium weighted scala
product, Eq.~2.13! rather than withL andL1. Additionally,
an attractive feature of the Rayleigh quotient Eq.~3.1! is that
it provides a variational formula in the entire friction rang
An excellent exposition of this property may be found in o
previous paper@50#. Note also that extensive use of the d
ality betweenL1 andL* has been made by Ryter@19# and
Talkner @39,45# in order to calculate transition rates i
bistable and metastable systems.

Perturbation theory

Clearly, Eq.~3.1! is an identity, i.e., given the true eigen
function it yields the true eigenvalue. However, sinceh(x,v)
is not known exactly, we have to solve Eq.~2.15! by ap-
proximate methods to obtain a trial eigenfunctionj(x,v).
Before proceeding two comments concerningj(x,v) are in
order. First, the desired trial function must be orthogonal
h051, i.e.,

~j,1!50, ~3.2!

becauseh051 is an eigenfunction ofL* associated with
eigenvaluel050. Second, almost all rate theories availab
for Fokker–Planck processes@1,17–30,32,33,35–47# are
based on the remark that the barrier crossing rateG is expo-
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1882 PRE 62ALEXANDER N. DROZDOV
nentially small and therefore may be neglected in the eig
value problem, Eq.~2.15!, i.e.,

L* j~x,v !50. ~3.3!

However, neglect of the right hand side in Eq.~3.3! throws
out exponential corrections to the rate which may be imp
tant for low barriers.

Here we present a systematic strategy how to go bey
this commonly used approximation, Eq.~3.3!, and explicitly
include exponential corrections to the rate into considerat
To this end, we split the full operatorL* into a leading
contributionL0* and a correctionL1* readingL* 5L0* 1L1* ,
where

L0* 52v
]

]x
2~v2x1gv !

]

]v
1

g

b

]2

]v2
~3.4!

describes the linear dynamics near the barrier, with an ef
tive barrier frequencyv to be determined according to
variational principle, and

L1* 5@U8~x!1v2x#
]

]v
~3.5!

the anharmonic correction. Based on this decomposition
the adjoint operator, a perturbation theory for the trial fun
tion can be performed leading to the series representa
@33# ~see also Refs.@45# and @21,30,36#!

j~x,v !5j0~x,v !1j1~x,v !1j2~x,v !1•••, ~3.6!

wherejk(x,v) are determined recursively from the hierarc
of inhomogeneous equations

L0* jk~x,v !52~L1* 1Gk!jk21~x,v !, k>0, ~3.7!

with G050 andj2150. The resultGk contains all contribu-
tions to the rate up to orderk in the perturbationL1* . It is
obtained from a recurrence relation whose explicit form
found by insertion of Eq.~3.6! into Eq. ~3.1! to be

Gk115
1

Dk
H @Dk211~jk

1 ,jk21!#Gk1 (
i 50

k22

2~jk
1 ,j i !G i 11

2~jk ,L1
1jk21

1 !2~jk
1 ,L1* jk!J . ~3.8!

Here,Dk denotes the denominator of the Rayleigh quotie

Dk5~j0
11•••1jk

1 ,j01•••1jk!. ~3.9!

The leading order term in the series, Eq.~3.6!, satisfies the
unperturbed~harmonic! problem

L0* j050. ~3.10!

It is nothing but the Kramers’ error function

j0~x,v !5N01erf@y~x,v !#5N01
2

Ap
E

0

y(x,v)

dzexp~2z2!,
n-

r-

d

n.

c-

of
-
on

s

t

y~x,v !5A b

2gm
~mv2v2x!, ~3.11!

m5 1
2 ~A4v21g22g!,

where the constant of integrationN0 is determined from Eq.
~3.2!. Using this lowest order approximationj0(x,v) we find
for the rateG1

G1@v#5
2m

pZD0
Ag12m

g E
2`

`

dx

3expF2bU~x!2bm
~m1g!2

g
x2G . ~3.12!

The free parameterv involved in Eq.~3.12! is fixed by mini-
mizing G1@v#.

Further corrections to the rate follow from the Rayleig
quotient when one uses the trial function including the fi
correction,j(x,v)5j0(x,v)1j1(x,v). This latter correction
is obtained from the equation

L0* j1~x,v !52~L1* 1G1!j0~x,v !. ~3.13!

Splitting off a Gaussian function fromj1,

j1~x,v !5A2bm

pg
exp@2y2~x,v !#Q~x,v !, ~3.14!

and using explicit expressions forL1* and j0 brings Eq.
~3.14! to the form

F2m2v
]

]x
1S v2x2

v21m2

m
v D ]

]v
1

g

b

]2

]v2GQ~x,v !

52v2x2U8~x!2A pg

2bm
G1exp@y2~x,v !#j0~x,v !.

~3.15!

Since it is the barrier region that makes the dominant con
bution to the integral in the numerator of the Rayleigh qu
tient Eq. ~3.1!, Eq. ~3.15! can be solved systematically b
expanding its right hand side in powers ofx andv as

U8~x!' (
m51

n

~m11!um11xm,

~3.16!

exp~y2!j0' (
m50

n

Ymym.

Here, um5U (m)(0)/m!, Y2m5N0 /m!, Y2m21

52m/@Ap(2m21)!! #, andy is defined in Eq.~3.11!. Then,
it is not difficult to show that the exact solution to the resu
ing equation
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F2m2v
]

]x
1S v2x2

v21m2

m
v D ]

]v
1

g

b

]2

]v2GQ~x,v !

52v2x2 (
m51

n

~m11!um11xm

2A pg

2bm
G1 (

m50

n

YmS b

2gm D m/2

~mv2v2x!m

~3.17!

is just a polynomial of degreen

Q~x,v !5 (
m50

n

hm~x!vm,

~3.18!

hm~x!5 (
j 50

n2m

hm, j x
j ,

whose coefficientshm, j follow from Eq. ~3.17! by comparing
like powers ofx andv. Note that when acting on a polyno
mial in x and v the differential operator on the right han
side of Eq.~3.17! either reduces the degree of the polynom
by two or keeps it constant. Therefore, it is convenient
split hm, j into two subsets corresponding to even (hm, j with
m1 j 52i ) and odd (hm, j with m1 j 52i 21) coefficients
which can then be evaluated separately. High efficienc
achieved by making use of computer algebra manipulato

Hence, in first-order perturbation theory the trial functi
reads

j~x,v !5N11erf@y~x,v !#1A2bm

pg

3exp@2y2~x,v !# (
m50

n

(
j 50

n2m

hm, j x
jvm,

~3.19!

where the integration constantN1 is again determined from
Eq. ~3.2!. With this trial function, Eq.~3.19!, the Rayleigh
quotient yields in a straightforward way~for more details see
Appendix A!

G2@v#5
2m

pZD1
Ag12m

g E
2`

`

dxR~x!

3expF2bU~x!2bm
~m1g!2

g
x2G , ~3.20!

whereR(x) is a known function, whose particular form de
pends on the truncation numbern, Eqs. ~A10! and ~A14!.
Note that the above expression contains both exponential
algebraic corrections to the rate because we have negle
neither the right hand side of Eq.~2.15! nor L1* , respec-
tively. SinceGk’s are determined recursively from Eqs.~3.7!
and~3.8!, v in Eq. ~3.12! is fixed by minimization ofG1@v#,
and G1 is then kept constant while the free parameterv is
reevaluated to minimizeG2@v#, Eq. ~3.20!.
l
o

is
.

nd
ted

In closing it is important to note that any approach invo
ing the Kramers trial function as zeroth-order approximat
implicitly implies that the equilibration process is main
determined by the immediate vicinity of the barrier top. T
latter is a valid assumption as long as the rate of ene
diffusion in the well is faster than the spatial diffusion ra
across the barrier. In other words, both rate formulas
tained above, Eqs.~3.12! and ~3.20!, as well as those pre
sented in Appendix B, are expected to work well only in t
regime of moderate and large frictiong*V. Hereby we in-
troduced an effective barrier frequencyV,

V5b (22a)/2aa1/a, ~3.21!

which is determined by the temperature and the order of
maximum and local strength of the potential in the vicin
of the top of the barrier

U~x!5U~0!2
a

a
xa1higher order terms. ~3.22!

This frequency is given by the ratio between the therm
length scale of the potential, (ba)21/a, and the thermal ve-
locity b21/2. One can see that for a parabolic barrier it co
cides with the barrier frequencyV5vb .

IV. OPTIMAL CHOICE OF THE FREE PARAMETER

As already noted, an attractive feature of the Rayle
identity Eq.~3.1!, is that it is variational in the entire range o
problem parameters. The latter is seen from Fig. 1 wh
shows the rate expressionsG1@v# andG2@v# as functions of
the free parameterv for different values ofg/V and bE.
The calculation is performed for a symmetric potential

U~x!5E@2~x/ l !623~x/ l !4#, ~4.1!

FIG. 1. RatiosG1@v#/G1@V#, Eq. ~3.12!, and G2@v#/G2@V#,
Eq. ~3.20!, as functions of the free parameterv for a double-well
potential, Eq.~4.1!. Solid lines,bE52 andg/V51; dashed lines,
bE52 andg/V510; dotted lines,bE55 andg/V51; dot-dashed
lines,bE55 andg/V510.
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1884 PRE 62ALEXANDER N. DROZDOV
which has two wells atx56 l separated by a quartic barrie
of height E and effective frequencyV5 l 21(12E/b)1/4.
Since the characteristic lengthl of the potential can always
be absorbed intox, we setl 51 from here on. As evidence
by Fig. 1, the rate functionalsG1 and G2 show a similar
dependence on the variational parameterv. Both vary from

Gk@0#5~bg^x2uPeq&21/g!21, k51,2, ~4.2!

through global minima, to the TST rateGTST, Eq. ~2.7!. This
holds true atall barrier heights in theentirespatial diffusion
regime,g/V*1 @51#. The only qualitative difference in the
behavior of G1@v# and G2@v# is that besides the globa
minimum nearv5V the rate functionalG2@v# also exhibits
a local minimum at low frequencies,v,V.

It is thus seen that the free parameterv can be determined
by minimization of the corresponding rate functional. Wh
applied to Eqs.~3.12! and ~3.20!, this results in self-
consistent integral equations which must be solved num
cally for v at each value of the friction coefficientg.
Clearly, such a procedure will give the best approximation
the rate only if the Rayleigh quotient possesses a rigor
upper bound property. Otherwise, it will give a variation
estimate, not an upper bound. Bounding properties of
~3.1! have been studied in a previous paper@50#. We have
found that asufficientcondition for the Rayleigh quotient to
provide an upper bound to the exact rate, i.e., forG@j#>G, is
that the spectrum of the Fokker–Planck operator bereal. The
latter is unconditionally valid in the limit of strong friction
g@V, where Eq. ~2.2! reduces to a selfadjoint Smolu
chowski operator. Unfortunately, outside of this strong fr
tion ~Smoluchowski! limit, there is no simple criterion for
determining whether or not the spectrum of the Fokke
Planck operator is real. Therefore some approximation m
be invoked to evaluate the differenceG@j#2l1. An explicit
expression for this difference is given by Eq.~2.30! in Ref.
@50#. Since the main contribution to the series on the rig
hand side of this equation comes from low lying eigensta
one may writeG@j#2l1'(j1,h2)2(l22l1), wherel2 is
the second nonzero eigenvalue with associated eigenfun
h2. Hence, a rough estimate for the value ofg below which
the bounding properties of the Rayleigh quotient may
violated can be deduced just by studying the second non
eigenvaluel2. The latter is readily evaluated by making u
of the harmonic approximation of the potentialU(x) near
one of its minimum values, say, atx51, U(x)'U(1)
1 1

2 vw
2 (x21)2, wherevw

2 5U9(1)524E is the frequency at
the bottom of the well. This yields

l2' 1
2 ~g2Ag224vw

2 !, ~4.3!

from which it immediately follows that the Rayleigh quotie
may lose its upper bound property forg&2vw .

Proceeding further we note that the location of the glo
minimum of the rate functional, Eq.~3.20!, is a function of
all problem parameters,v25v2(g,b,$un%), where$un% de-
notes the set of coefficients entering Kramers’ probl
through the potentialU(x). Therefore, ideally, one has t
determinev2 by minimizingG2@v# for each particular set o
parameters (g,b,$un%). We have found, however, that th
function v2(g,b,$un%) is rather insensitive to the friction
ri-

o
s

l
q.

-

–
st

-
s,

ion

e
ro

l

coefficientg ~see Fig. 1!. From this finding it immediately
follows that the free parameterv may be fixed in the entire
friction range at once by settingv5v2

` where

v2
`5v2~g→`,b,$un%!. ~4.4!

The same method of fixingv is also applicable to the lowes
order approximationG1@v#. That is, in our calculations o
G2@v2

`# we set G15G1@v1
`#, where v1

`5v1(g
→`,b,$un%).

Equations~3.20! and ~4.4! constitute the principal resul
of this paper. The necessary calculation is easily perform
by noting that in the strong friction limit,g→`, the Ray-
leigh quotient reduces to

G@j#5

E
2`

`

dxj82~x!e2bU(x)

bgE
2`

`

dxj2~x!e2bU(x)

. ~4.5!

For a sixth-order polynomial potential, Eq.~A11!, within the
perturbation theory with respect to the nonlinearityU(x)
1v2x, the trial function~up to and including the first-orde
correction! reads

j~x!5A2bv2/pF E
0

x

dye2bv2y2/2

1~h0,1x1h0,3x
31h0,5x

5!e2bv2x2/2G , ~4.6!

where

h0,152
1

2
1

11g

12v2
G12

u2

v2
2

3u4

bv4
2

15u6

b2v6
,

h0,35
5

36
bgG12

u4

v2
2

5u6

bv4
, ~4.7!

h0,55
1

90
b2gG1v22

u6

v2
.

Note that for a symmetric potential the constant of integ
tion is equal to zero independent of the order of approxim
tion, i.e.,N050 andN150.

In Table I and Fig. 2 we compare our theoretical pred
tions with the least nonvanishing eigenvalue computed
merically by using an improved reactive flux formula@50#
and a high-accuracy path integral scheme@16#. As antici-
pated, the present method of fixingv (G2@v2

`#) gives results
that are almost indistinguishable from those obtained w
G2@v2#. This holds true for all barrier heights and all valu
of the friction coefficientg. Even in the worst case,bE
51.25 and g;V, the deviation betweenG2@v2

`# and
G2@v2# is on the order of 1%.

It is also worth noticing that there is a rigorous upp
bound property inherent to the Rayleigh quotient meth
throughout the moderate to strong friction range,g.2vw .
We find that unlike the simplified rate formulasG1@v1

`# and
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TABLE I. Comparison between the Rayleigh quotientG2@v2# obtained by minimization of Eq.~3.20! at each value ofg, the Rayleigh
quotientG2@v2

`# evaluated with the variational parameterv fixed in the strong friction limit@Eqs. ~3.20! and ~4.4!#, and the numerically
exact resultsG for the least nonzero eigenvalue of the Fokker–Planck operator@Eqs.~2.2! and~4.1!#. Exponential notation@2k# means that
the number preceding is to be multiplied by 102k.

E51.25 E52.5 E55
g G2@v2# G2@v2

`# G G2@v2# G2@v2
`# G G2@v2# G2@v2

`# G

1 0.3538 0.4194 0.2640 0.1416 0.1439 0.8976@21# 0.1616@21# 0.1685@21# 0.1145@21#

1.5 0.3202 0.3479 0.2802 0.1247 0.1258 0.9877@21# 0.1490@21# 0.1513@21# 0.1246@21#

2 0.2823 0.2965 0.2674 0.1109 0.1116 0.9805@21# 0.1363@21# 0.1372@21# 0.1237@21#

3 0.2219 0.2270 0.2210 0.8997@21# 0.9040@21# 0.8668@21# 0.1150@21# 0.1152@21# 0.1117@21#

4 0.1802 0.1824 0.1807 0.7512@21# 0.7541@21# 0.7417@21# 0.9880@22# 0.9886@22# 0.9770@22#

5 0.1506 0.1516 0.1510 0.6415@21# 0.6433@21# 0.6381@21# 0.8615@22# 0.8617@22# 0.8571@22#

6 0.1289 0.1294 0.1290 0.5576@21# 0.5586@21# 0.5559@21# 0.7610@22# 0.7611@22# 0.7589@22#

7 0.1123 0.1126 0.1123 0.4918@21# 0.4923@21# 0.4907@21# 0.6797@22# 0.6798@22# 0.6786@22#

8 0.9945@21# 0.9959@21# 0.9937@21# 0.4390@21# 0.4393@21# 0.4381@21# 0.6129@22# 0.6130@22# 0.6122@22#

9 0.8910@21# 0.8919@21# 0.8898@21# 0.3959@21# 0.3961@21# 0.3952@21# 0.5573@22# 0.5574@22# 0.5568@22#

10 0.8065@21# 0.8072@21# 0.8051@21# 0.3602@21# 0.3603@21# 0.3596@21# 0.5103@22# 0.5104@22# 0.5100@22#

15 0.5451@21# 0.5453@21# 0.5438@21# 0.2467@21# 0.2467@21# 0.2464@21# 0.3564@22# 0.3564@22# 0.3562@22#

20 0.4107@21# 0.4109@21# 0.4098@21# 0.1869@21# 0.1869@21# 0.1867@21# 0.2723@22# 0.2723@22# 0.2721@22#

30 0.2747@21# 0.2747@21# 0.2741@21# 0.1255@21# 0.1255@21# 0.1254@21# 0.1841@22# 0.1841@22# 0.1840@22#

60 0.1375@21# 0.1375@21# 0.1373@21# 0.6307@22# 0.6307@22# 0.6300@22# 0.9291@23# 0.9291@23# 0.9284@23#

80 0.1032@21# 0.1032@21# 0.1030@21# 0.4733@22# 0.4733@22# 0.4728@22# 0.6977@23# 0.6977@23# 0.6972@23#

100 0.8256@22# 0.8256@22# 0.8246@22# 0.3787@22# 0.3787@22# 0.3784@22# 0.5585@23# 0.5585@23# 0.5581@23#

1000 0.8254@23# 0.8254@23# 0.8248@23# a 0.3789@23# 0.3789@23# 0.3786@23# a 0.5591@24# 0.5591@24# 0.5587@24# a

aExact estimate of the eigenvalue calculated from the respective Smoluchowski equation.
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G2@v2
`# which usually overestimate the exact rate in the

tire friction range, the true Rayleigh quotient estima
G1@v1# andG2@v2# may drop belowG for g&2vw ~see Fig.
2!. This result is in full agreement with our previous obse
vation that the Rayleigh quotient may lose its upper bou
property when the spectrum of the Fokker–Planck oper
becomes complex@see Eq.~4.3! and the discussion above it#.
With further decreasingg, however, Eqs.~3.12! and ~3.20!
rapidly restore their bounding properties despite the fact
the spectrum is no longer real. This is because the true raG
falls off with the friction coefficient wheng,V, while the
Rayleigh quotient estimates, Eqs.~3.12! and~3.20!, approach
in the limit of weak friction the TST rateGTST, Eq. ~2.7!.

Most importantly, however, is the result that the range
applicability of the present perturbation method is quite

FIG. 2. Percentage errors, 1003(approximate2exact)/exact, in
the least nonvanishing eigenvalue of the Fokker–Planck oper
Eqs.~2.2! and~4.1!, made by usingG2@v2

`#, Eqs.~3.20! and~4.4!.
Solid, dashed, and dot-dashed lines are forbE51.25, 2.5, and 5,
respectively. Dotted lines are for results obtained withG2@v2# @that
is, by minimization of Eq.~3.20! at each value ofg#.
-
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d
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bust to variations in the barrier height. One would expect
accuracy of Eq.~3.20! to fall off quickly asbE went down
and G→O(1), but in fact going from a potential withbE
55 to one aboutbE51.25, there was almost no decay in th
accuracy of the results over a broad range ofg. Even at the
smallest value ofbE the proposed rate formulaG2@v2

`# is
seen to provide an accuracy of 0.3% forg*3 V. Larger
deviations are observed forg values on the orderV and
lower. These deviations arise because the slow energy d
sion process, which causes the rate to fall off with decreas
g, is not accounted for by the present splitting of the adjo
operator, Eqs.~3.4! and ~3.5!. This splitting results in the
Kramers-like trial function, Eqs.~3.11! and~3.19!, which is a
poor approximation to the true eigenfunctionh(x,v) when
energy-diffusion effects appear.

V. COMPARISON WITH OTHER VARIATIONAL
APPROACHES

In this section we compare the efficacy of our meth
with that of two other variational approaches commonly us
in the literature. One is based on the standard definition
Rayleigh’s quotient suggested by Larson and Kostin@26#.
The other is variational TST~VTST! @2,7,40–42,44,46#.
Both approaches are briefly outlined in Appendix B. T
corresponding rate expressionsG1

LK@v# and GVTST@v# are
given by Eqs.~B2! and ~B3!, respectively.

To begin with, we show in Fig. 3 these expressions
functions of the variational parameterv. The calculation is
performed for the symmetric double-well potential, Eq.~4.1!.
One sees that both approaches fail to provide a variatio
formula in the entire parameter space. The standard Rayl

r,
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quotientG1
LK@v# shows a minimum forg@V, in which case

it reduces toG1@v#. Outside of this strong friction limit, the
rate functionalG1

LK@v# doesnot necessarily exhibit a non
trivial minimum and may be a monotonic function ofv.
Analogously, the VTST rate functional Eq.~B3!, is in gen-
eral variational only for moderate and high barriers,bE*3.
As seen from Fig. 3, when the variational parameter
creases,GVTST@v# increases to a local maximum followed b
a local minimum if the barrier is high, whereas it increas
only monotonically for low barriers. This low-barrier prob
lem may in principle be resolved by making use of curv
dividing surfaces that are computed numerically from Ham
ton’s equations of motion for an effective two degrees
freedom Hamiltonian@41#. In such a case, the VTST metho
reduces to running classical trajectories and looking for t
orbit whose classical action is minimal with the addition
constraint that the configuration space path of the orbit
‘‘good’’ dividing surface. Since the required numerical pr
cedure is rather arduous, we will not do so here.

In Fig. 4 we compare the relative errors made by
various approximations for the least nonvanishing eig
value discussed in this paper. It is immediately apparent
the best agreement with exact rates is obtained with
present formulaG2@v2

`#, Eq.~3.20!. Its accuracy deteriorate
only slowly varying from 0.01% forbE50.1 to 0.1% for
bE510. This seemingly surprising result that the error
creases with increasing barrier height is actually not surp
ing. Recall that the Kramers-like trial function@Eq. ~3.19!#
underlying Eq.~3.20! is based on a harmonic approximatio
of the potential, Eq.~3.4!. The latter leads to a poor approx
mation to the true eigenfunctionh(x,v) when the anharmo
nicity of the potential near the barrier top becomes strong
is noteworthy that the other rate formulas show the sa
kind of behavior in the sense that their accuracy also d
riorates with increasing barrier height. However, the cor
sponding errors are larger by orders of magnitude than
error made by using Eq.~3.20!. As anticipated, the first-orde
approximationsG1 and G1

LK based on two different Ray

FIG. 3. Same as in Fig. 1 but forGVTST , Eq.~B3!, andG1
LK , Eq.

~B2!.
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leigh’s identities@Eqs.~3.1! and~B1!, respectively# coincide
in the limit of strong friction,g*10 V. For moderate fric-
tion the situation becomes different. In this case, the stand
Rayleigh quotientG1

LK gives results that abruptly drop belo
the true rate forg,2vw . In contrast, the accuracy ofG1
remains almost constant in the spatial diffusion regime. T
VTST rate expression, Eq.~B3!, is seen to be the least accu
rate. In fact, we find thatGVTST does not give satisfactory
results for the quartic-barrier potential Eq.~4.1! anywhere
exceptbE'5 when it happens to coincide with the true ra
In the limit of large barriers,bE*10, the VTST rate expres
sion overestimates the true rate by the same amount aG1

and G1
LK , while for moderate and low barriers,bE,4, it

underestimates the exact result by more than 10%.
As a second example, we consider a potential with asy

metric nonlinearity about the barrier which reads

U~x!5
E

312a
@3x414ax326~11a!x2#. ~5.1!

Here, we set the characteristic lengthl 51, anda is an asym-
metry parameter. The potential has two wells atx511 and
212a of depth U(1)52E and U(212a)52E(3
1a)(11a)3/(312a), respectively, separated by a par
bolic barrier at x50 of frequency vb

2512E(11a)/(3
12a).

First we tackle the symmetric casea50. The correspond-
ing results are shown in Fig. 5. The logarithmic plot clea
demonstrates that the present theory substantially impro
the first-order Rayleigh quotient estimateG1, Eq. ~3.12!, sys-
tematicallyreducing the error by 1 order of magnitude. W
again find that the errors are rather insensitive to the frict
coefficientg, being nearly constant across the spatial dif
sion regime, i.e., for allg*2vw5A8vb . However, unlike

FIG. 4. Percentage errors in the least nonvanishing eigenv
of the Fokker–Planck operator, Eqs.~2.2! and~4.1!, made by using
different rate formulas. Solid lines are for the present express
G2@v2

`#, Eqs.~3.20! and~4.4!. Circles, dashed, and dot-dashed lin
are for results obtained by minimization ofG1 @Eq. ~3.12!#, G1

LK

@Eq. ~B2!#, andGVTST @Eq. ~B3!#, respectively.
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PRE 62 1887VARIATIONAL THEORY OF ACTIVATED RAT E . . .
the case of quartic barrier considered above, for a parab
barrier the theory works well at all values of the reduc
barrier height including both limits of high (bE→0) and
vanishing (bE→`) temperature. Note that in the latter lim
it becomes exact. With the present rate formulaG2@v2

`#, a
maximal error of 0.04% is attained in the spatial diffusi
regime forbE52.5. This is in contrast to the second-ord
finite-barrier expansionG2

FBC, Eq. ~2.9!, which considerably
underestimates the rate forbE,5. As seen in Fig. 5, its
relative error increasesexponentiallywith decreasing barrie
height and very soon grows out of the scale of the figure
clear indication of the importance of the neglected expon
tial corrections. The same holds true for VTST, whose er
is large compared to those of the other approaches.

Finally, we consider an asymmetric double-well potent
Eq. ~5.1! with aÞ0. The corresponding relative errors
functions ofa andbE are shown in Fig. 6 forg/vb530. It
is seen that the present rate formulaG2@v2

`# is in good agree-
ment with the exact numerical results. However, this agr
ment is somewhat worse than in the symmetric case.
discrepancy is most pronounced fora50.2 andbE'1.5 in
which case the first- and second-order Rayleigh quotient
mulas (G1 and G2) overestimate the true rate by the sam
amount of 0.5%. Away from this region the second-ord
formula is considerably better thanG1. The VTST rateGVTST

@Eq. ~B3!# and second-order finite-barrier expansionG2
FBC

@Eq. ~2.9!# are again much less accurate. Indeed, their r
tive errors are by orders of magnitude larger than the e
made by using Eq.~3.20!. This holds true at all values of th
problem parametersa, bE, andg except whenGVTST and
G2

FBC happen to coincide with the true rate.

VI. CONCLUSIONS

This paper was written with three objectives in mind. Fi
we have compared the relative abilities of different var
tional methods to precisely predict the rate of thermally
tivated barrier crossing processes in condensed media. T

FIG. 5. Same as in Fig. 4 but for the potential, Eq.~5.1!, with
a50. Dotted lines are forG2

FBC, Eq. ~2.9!.
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abilities have already been examined in a number of stu
@43,46–48#. However, the corresponding analyses have b
restricted either to the extreme limit of high barriers@46,47#
or to one ~either VTST or Rayleigh quotient! method
@12,26,43,48#. Here we have compared different variation
expressions for the rate in different kinds of potentials ove
broad range of problem parameters. The second purpos
this work was to point out an approximation that has be
almost universally made in all known rate theories. The
proximation consists of neglecting exponentially small co
tributions to the rate. We showed that the neglect of th
exponential corrections may introduce large errors in
limit of moderate and low barriers.

The final and primary goal of this paper was to develop
perturbation method whichsystematicallyaccounts forboth
the algebraic and the exponential corrections. The resul
rate expression produces unprecedentedly accurate resu
all barrier heights and for the whole friction range in th
spatial diffusion regime. For potentials with nonparabo
barriers the accuracy of the method can be further impro
if one employs as zeroth-order approximation, instead of
~3.11!, a non-Kramers trial function suggested in Ref.@25#.
Although we restricted our consideration to the spatial dif
sion regime of a Markovian one-dimensional activated r
process, the methods can be applied to the case of mem
friction, as well as to systems with more than one degree
freedom. A similar method can also be developed for
limit of underdamped Brownian motion@33#, in which case
finite-barrier corrections to the rate are known to be lar
than in the spatial diffusion regime@12,13,25,30,31#.
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FIG. 6. Same as in Fig. 5 but for an asymmetric double-w
potential, Eq.~5.1! with a5” 0.
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APPENDIX A

In this Appendix we outline the derivation of the centr
result of this paper as given in Eq.~3.20!. With Eq. ~3.8! the
Rayleigh quotientG2, which includes second- and highe
order corrections in the nonlinearityU8(x)1v2x, reads

G25
~j0(n)

1 ,j1!G12~j0
1 ,L1* j0!2~j1 ,L1

1j0
1!2~j1

1 ,L1* j1!

D1
,

~A1!

where we have used (j0(n) ,j1
1)5(j0(n)

1 ,j1). The function
j0(n) appearing in Eq.~A1! is an approximation to the Kram
ers functionj0 obtained by truncating its series represen
tion according to Eq.~3.16!, i.e.,

j0'j0(n)5N01
e2y2

Ap
(

m51

[(n11)/2]
2my2m21

~2m21!!!
. ~A2!

In the above,@(n11)/2# denotes the integer part of12 (n
11). The v integrals in the numerator of Eq.~A1! can be
eliminated by noting that the corresponding integrands
just a product of a polynomial inv with a Gaussian function
that has a zero mean̂̂v&&50 and variancê^v2&&5s,

s5
g

b~g12m!
. ~A3!

Therefore, it is convenient to write downj0(n)
1 in the form

j0(n)
1 ~x,v !52A 2b

pgm
expF2

b~mv1v2x!2

2gm G
3 (

m50

2[(n11)/2]21

cm~x!vm, ~A4!

cm~x!5 (
j 51

[(n11)/2]2[m/2]
~2 j 21!!b j 21mm~v2x!2 j 212m

m! ~2 j 212m!! ~2 j 21!!! ~gm! j 21
.

-

re

Analogously,

L1* j1~x,v !5A2bm

pg
@U8~x!1v2x#

3expF2
b~mv2v2x!2

2gm G (
m50

n11

wm~x!vm, ~A5!

where the functionswm(x) are expressed in terms ofhm(x),
Eq. ~3.18!, by the relation

wm5~m11!hm111
b

g
~v2xhm2mhm21!, 0<m<n11,

~A6!

with h215hn115hn1250. Then, the Gaussian integra
over v in the numerator of Eq.~A1! are easily performed
analytically to yield Eq.~3.20!, where the functionR(x) is
determined in terms ofhm(x), cm(x), and wm(x). Its par-
ticular form depends on the potentialU(x), or more pre-
cisely, on the degreen of its polynomial approximation, Eq
~3.16!.

In our subsequent calculation we will be more specifi
considering two explicit cases of polynomial potentials th
cover both applications in Secs. IV and V, Eqs.~4.1! and
~5.1!. First, we tackle an asymmetric cubic-quartic potent
of the form

U~x!5u2x21u3x31u4x4, ~A7!

which has been extensively studied by many authors wit
this context~see, e.g., Refs.@26,28–30,35,39,44,45#!. In that
event, the exact solution to Eq.~3.17! reads

Q~x,v !5h0,01h0,1x1h1,0v1h0,2x
21h1,1vx1h2,0v

2

1h0,3x
31h1,2vx21h2,1v

2x1h3,0v
3, ~A8!

where the coefficientshm, j are found to be
h0,05A pg

2bm3
N0G11

2g

bm
h2,0,

h0,252A pb

32gm
~3v212m2!N0G11m22~v41 9

2 v2m213m4!h2,0,

h1,15Apbm

8g
N0G12m21~2v213m2!h2,0,

h2,05A pb

72gm
N0G11

2u3m

2v415v2m212m4
,

h0,15
2b~3v41v2m224m4!G113bm~v212u2!~v212m2!26g~3v417v2m218m4!h3,0

6bm2~v21m2!
,

h1,05
b~3v21m2!G123bm~v212u2!16g~3v217m2!h3,0

6bm~v21m2!
,
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h0,35
b~11v4117v2m216m4!

18gm
G12

3v6122v4m2134v2m4112m6

3m3
h3,0,

h1,252
b~5v213m2!

6g
G11

3v4110v2m216m4

m2
h3,0,

h2,15
bm

3g
G12

3v214m2

m
h3,0,

h3,05
b

12g
G12

3u4m2

3v6113v4m2113v2m413m6
. ~A9!

With this particular solution the functionR(x) is found to be

R512~b2/g!s$~U81v2x!@h0~11w0!

1s~h21h2w02h1w11h0w2!

13s2~2h3w11h2w22h1w3

1h0w4!115s3~2h3w31h2w4!#

2~G1 /m!@h0c01s~h2c01h1c11h0c2!

13s2~h3c11h2c21h1c3!115s3h3c3#%. ~A10!

As a second example, we consider the case of a symmetric potential

U~x!5u2x21u4x41u6x6, ~A11!

which results in

Q~x,v !5h0,1x1h1,0v1h0,3x
31h1,2vx21h2,1v

2x

1h3,0v
31h0,5x

51h1,4vx41h2,3v
2x3

1h3,2v
3x21h4,1v

4x1h5,0v
5, ~A12!

with the coefficients given by

h0,152
3v41v2m224m4

6m2~v21m2!
G12

g~3v417v2m218m4!

bm2~v21m2!
h3,01

20g2~v212m2!

b2m~v21m2!
h5,01

~2u21v2!~v212m2!

2m~v21m2!
,

h1,05
3v21m2

6m~v21m2!
G11

g~3v217m2!

bm~v21m2!
h3,02

20g2

b2~v21m2!
h5,02

2u21v2

2~v21m2!
,

h0,35
b

90gm
~55v4119v2m2224m4!G12

1

3m3
~3v6122v4m2134v2m4112m6!h3,0

1
g

3bm2
~110v41368v2m21222m4!h5,0,

h1,252
b

30g
~25v213m2!G11

1

m2
~3v4110v2m216m4!h3,02

g

bm
~50v2166m2!h5,0,

h2,15
bm

3g
G12

1

m
~3v214m2!h3,0120

g

b
h5,0,

h3,05
b~30v6136v4m2290v2m4264m6!

120g~3v6113v4m2113v2m413m6!
G11

g~30v61271v4m21460v2m41171m6!h5,026bu4m3

2bm~3v6113v4m2113v2m413m6!
,
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h0,55
b2

900g2m2
~137v81512v6m21707v4m41372v2m6160m8!G1

2
1

10m5
~10v101137v8m21512v6m41707v4m61372v2m8160m10!h5,0,

h1,452
b2

180g2m
~77v61170v4m21131v2m4130m6!G11

1

2m4
~10v8177v6m21170v4m41131v2m6130m8!h5,0,

h2,35
b2

90g2
~47v4159v2m2120m4!G12

1

m3
~10v6147v4m2159v2m4120m6!h5,0,

h3,252
b2m

30g2
~9v215m2!G11

1

m2
~10v4127v2m2115m4!h5,0,

h4,15
b2m2

15g2
G12

1

m
~5v216m2!h5,0,

h5,05
b2m

90g2
G12

10u6m4

10v10187v8m21227v6m41227v4m6187v2m8110m10
. ~A13!

In this case, the functionR(x) takes the form

R512~b2/g!s$~U81v2x!@h0~11w0!1s~h21h2w02h1w11h0w2!13s2~h41h4w02h3w11h2w22h1w31h0w4!

115s3~2h5w11h4w22h3w31h2w42h1w51h0w6!1105s4~2h5w31h4w42h3w51h2w6!1945s5~2h5w5

1h4w6!2~G1 /m!@h0c01s~h2c01h1c11h0c2!13s2~h4c01h3c11h2c21h1c31h0c4!115s3~h5c11h4c2

1h3c31h2c41h1c5!1105s4~h5c31h4c41h3c5!1945s5h5c5#%. ~A14!
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APPENDIX B

In this Appendix, we briefly outline two other variationa
approaches to Kramers’ problem that have been freque
used in the past to calculate rates in the spatial diffus
regime. An expression for the least nonvanishing eigenva
of the Fokker–Planck equation, which is a straightforwa
generalization of the Rayleigh–Ritz quotient for the grou
state of a selfadjoint operator, was proposed by Larson
Kostin @26# ~see also Refs.@20,38#!,

GLK@h#52
^huLP&

^huP&
5

g

b S ]h

]v
,
]h

]v D
~h,h!

. ~B1!

We used the subscript LK in the above definition to dist
guish it from that of Moro and Polimeno, Eq.~3.1!. Substi-
tution of the Kramers trial function, Eq.~3.11!, into Eq.~B1!
yields the following expression for the rate:

G1
LK@v#5

2m

pZ
A g

g12mE2`

`

dx expF2bU~x!

2bm
~m1g!2

g12m
x2G Y ~j0 ,j0!. ~B2!

In Secs. IV and V, we refer to Eq.~B1! as the standard
Rayleigh quotient method.
tly
n
e

d

nd

-

Another very different variational approach is based
the transformation of the original Fokker–Planck dynam
to an equivalent infinite dimensional Hamiltonian syste
@49#. Within the Hamiltonian formulation the forward~back-
ward! rate constantG f (Gb) may be estimated, by means o
multidimensional TST, as a ratio of the equilibrium unidire
tional flux through some chosen dividing surface to t
population of the reactant~product! well @2,3,23#. The qual-
ity of such an estimate of the rate depends upon the choic
the dividing surface@2,7#. An attractive feature of this ap
proach is that TST provides an upper bound to the plat
value GRF of the standard reactive flux method. This latt
quantity is commonly believed to coincide with the true ra
GRF5G, such that a variational principle may be used to fi
the optimal dividing surface and the most accurate estim
of the rate @2#. In the resulting methodology, known a
VTST, the dividing surface is varied to find the one whic
yields the smallest crossing rate, and this rate is then take
be the best approximation to the true rate constant@2,7,40–
42,44,46#. When restricted to planar dividing surfaces, VTS
gives for the full rateG5G f1Gb @42#

GVTST@v#5GTSTAb~g12m!

2pg E
2`

`

dx expF2bU~x!

2bm
~m1g!2

g
~x2s!2G , ~B3!
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whereGTST is defined by Eq.~2.7!, and the shifts is deter-
mined from the integral equation

E
2`

`

dx~x2s!expF2bU~x!2bm
~m1g!2

g
~x2s!2G50.

~B4!

The variational parameterv @related tom by Eq.~3.11!# is to
be fixed by minimization ofGVTST@v#. Yet, we have recently
proven that the reactive flux rateGRF is not a well defined
mathematical object@50#. Depending on the dividing surfac
used, this quantity varies in the interval 0<GRF<G, where
the upper limitGRF5G is achieved only for the perfect di
viding surface. As a consequence, the afore-mentio
bounding property of TST,GVTST>G, is not rigorous and
may be violated under some conditions@50,52#. In such
cases, VTST will not necessarily yield the most accur
result for the rate, just a variational estimate.

Besides these two variational approaches, there are m
n

J
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.
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-
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e
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other methods in the literature to calculate rate constant
potentials with nonparabolic barriers. Specifically we me
tion a heuristic method of Calef and Wolynes@37# who sug-
gested that we replace the actual potential by a parab
barrier with an effective frequencyve and use the standar
Kramers result, Eq.~2.6! for this parabolic barrier. Dekke
@38# applied Rayleigh’s quotient, Eq.~B1!, to potentials with
cusped and parabolic barriers using different~both Kramers’
and non-Kramers’! approximations for the pertinent eigen
function. Two straightforward extensions of these Dekke
results to an arbitrary algebraic barrier, Eq.~3.22!, have been
proposed by Berezhkovskii, Talkner, Emmerich, and Zits
man@47# and Drozdov@25#. Finally, a different method con
sists in using accurate interpolation techniques to bridge
act solutions of the Kramers problem available in the lim
of weak and strong friction@31,48#. However, since none o
the above-mentioned methods is variational, we will not co
sider them here.
. A

E.

d

d

.

@1# H. Kramers, Physica~Utrecht! 7, 284 ~1940!.
@2# J. C. Keck, Adv. Chem. Phys.13, 85 ~1967!.
@3# K. J. Laidler,Theories of Chemical Reaction Rates~McGraw-

Hill, New York, 1969!; P. Pechukas, inDynamics of Molecu-
lar Collisions, Part B, edited by W. H. Miller~Plenum, New
York, 1976!, p. 269; Annu. Rev. Phys. Chem.32, 159 ~1981!.

@4# C. Gardiner,Handbook of Stochastic Methods~Springer, Ber-
lin, 1983!.

@5# H. Risken,The Fokker–Planck Equation, Methods of Solutio
and Applications~Springer, New York, 1989!.

@6# J. T. Hynes, inTheory of Chemical Reaction Dynamics, edited
by M. Baer~CRC, Boca Raton, 1985!, Vol. IV, p. 171; A. M.
Berezhkovskii, A. N. Drozdov, and V. Yu. Zitserman, Russ.
Phys. Chem.62, 1353 ~1988!; P. Hänggi, P. Talkner, and M.
Borkovec, Rev. Mod. Phys.62, 251~1990!; V. I. Mel’nikovw,
Phys. Rep.209, 1 ~1991!.

@7# S. C. Tucker, inNew Trends in Kramers’ Reaction Ra
Theory, edited by P. Talkner and P. Ha¨nggi ~Kluwer Aca-
demic, Dordrecht, 1995!, p. 5; E. Pollak, inDynamics of Mol-
ecules and Chemical Reactions, edited by R. E. Wyatt and J
Z. H. Zhang~Dekker, New York, 1996!, p. 617.

@8# Chem. Phys.235, 1 ~1998!, special issue on dynamical pro
cesses in condensed phases, edited by P. Talkner, E. Po
and A. M. Berezhkovskii.

@9# In classical theory of rate constants, the least nonvanish
eigenvalue is often identified with the phenomenological r

constantG̃ which is the sum of the forward and backwa

rates, G̃5G̃ f1G̃b , entering a phenomenological linear ra
law ~see, e.g., Ref.@50#!. One must note, however, that the
exists a principal difference between these two quantities.
least nonvanishing eigenvaluel1 is a well defined mathemati
cal object at all barrier heights including the limiting case
barrierless dynamics. By contrast, the phenomenological

constantG̃ allows for an unambiguous definition only for mod
erate and high barriers,bE*3, when there is a large gap in th
spectrum of the Fokker–Planck operator separating the l
nonvanishing eigenvalue from the rest of the spectru
l2 /l1*40.
.

ak,

g
e

e

te

st
,

@10# R. Lovett, J. Chem. Phys.84, 4602 ~1986!; B. Cartling, ibid.
87, 2638~1987!; A. N. Drozdov and M. Morillo, Phys. Rev. E
54, 931 ~1996!.

@11# P. B. Visscher, Phys. Rev. B14, 347 ~1976!; K. Voigtlaender
and H. Risken, J. Stat. Phys.40, 397~1985!; 41, 825~1985!; F.
Marchesoni, Phys. Rev. B32, 1827~1985!; G. J. Moro and A.
Polimeno, Chem. Phys.131, 281~1989!; A. N. Drozdov and P.
Talkner, J. Chem. Phys.105, 4117~1996!.

@12# G. J. Moro and A. Polimeno, Chem. Phys.131, 281 ~1989!.
@13# R. Ferrando, R. Spadacini, and G. E. Tommei, Phys. Rev

46, 699~1992!; Phys. Rev. E48, 2437~1993!; R. Ferrando, R.
Spadacini, G. E. Tommei, and V. I. Mel’nikov,ibid. 51, 1645
~1995!.

@14# J. E. Straub, M. Borkovec, and B. J. Berne, J. Chem. Phys.83,
3172 ~1985!; 84, 1788~1986!; P. Hänggi, T. J. Mroczkowski,
F. Moss, and P. V. E. McClintock, Phys. Rev. A32, 695
~1985!; S. C. Tucker, M. E. Tuckerman, B. J. Berne, and
Pollak, J. Chem. Phys.95, 5809~1991!; J. B. Straus and G. A.
Voth, ibid. 96, 5460~1992!; G. K. Schenter, R. P. McRae, an
B. C. Garrett,ibid. 97, 9116~1992!; S. Linkwitz, H. Grabert,
E. Turlot, D. Esteve, and M. H. Devoret, Phys. Rev. A45,
3369 ~1992!; M. M. Wu, K. Y. R. Billah, and M. Shinozuka,
Phys. Rev. E52, 3377~1995!; S. K. Reese, S. C. Tucker, an
G. K. Schenter, J. Chem. Phys.102, 104 ~1995!; J. S. Bader
and B. J. Berne,ibid. 102, 7953~1995!; E. Hershkovitz, Phys.
Lett. 108, 9253~1998!.

@15# A. N. Drozdov, V. Yu. Zitserman, and V. F. Baibuz, Chem
Phys.88, 81 ~1984!; B. Carmeli, V. Mujica, and A. Nitzan,
Ber. Bunsenges. Phys. Chem.95, 319 ~1991!; M. Topaler and
N. Makri, J. Chem. Phys.101, 7500 ~1994!; A. N. Drozdov,
Phys. Lett. A171, 175 ~1992!; Phys. Rev. E55, 2496~1997!;
A. N. Drozdov and J. J. Brey, Phys. Lett.237A, 119 ~1998!;
Phys. Rev. E57, 146 ~1998!; 57, 1284~1998!.

@16# A. N. Drozdov, J. Chem. Phys.107, 3505 ~1997!; A. N.
Drozdov and P. Talkner,ibid. 109, 2080~1998!.

@17# H. C. Brinkman, Physica~Utrecht! 22, 149 ~1956!; R. Land-
auer and J. A. Swanson, Phys. Rev.121, 1668 ~1961!; J. S.
Langer, Ann. Phys.~N.Y.! 54, 258 ~1969!; B. J. Matkowsky,



.

r,

J.

n

E

J.

u.

-

-
e

1892 PRE 62ALEXANDER N. DROZDOV
Z. Schuss, and E. Ben-Jacob, SIAM~Soc. Ind. Appl. Math.! J.
Appl. Math. 42, 835 ~1982!.

@18# B. J. Matkowsky and Z. Schuss, SIAM~Soc. Ind. Appl. Math.!
J. Appl. Math.33, 365 ~1977!; B. Caroli, C. Caroli, and B.
Roulet, J. Stat. Phys.28, 757~1982!; D. Ryter, Physica A130,
205 ~1985!; P. Talkner, Z. Phys. B: Condens. Matter68, 201
~1987!; R. S. Maier and D. L. Stein, J. Stat. Phys.83, 291
~1996!; Phys. Rev. Lett.77, 4860~1996!.

@19# D. Ryter, Physica A142, 103 ~1987!.
@20# A. N. Drozdov, Physica A187, 329 ~1992!.
@21# A. N. Drozdov and J. J. Brey, J. Chem. Phys.110, 7133

~1999!.
@22# R. F. Grote and J. T. Hynes, J. Chem. Phys.73, 2715~1980!;

P. Hänggi and F. Mojtabai, Phys. Rev. A26, 1168~1982!.
@23# Yu. I. Dakhnovskii and A. A. Ovchinnikov, Phys. Lett.113A,

147 ~1985!; E. Pollak, J. Chem. Phys.85, 865 ~1986!.
@24# H. Grabert, Phys. Rev. Lett.61, 1683 ~1988!; E. Pollak, H.

Grabert, and P. Ha¨nggi, J. Chem. Phys.91, 4073 ~1989!; R.
Graham, J. Stat. Phys.60, 675 ~1990!.

@25# A. N. Drozdov, Phys. Rev. E58, 2865~1998!.
@26# S. R. Larson and M. D. Kostin, J. Chem. Phys.72, 1392

~1980!.
@27# M. Büttiker, E. P. Harris, and R. Landauer, Phys. Rev. B28,

1268 ~1983!; V. I. Mel’nikov and S. V. Meshkov, J. Chem
Phys.85, 1018~1986!; A. N. Drozdov and J. J. Brey,ibid. 110,
2159 ~1999!.

@28# H. Dekker and A. Maassen van den Brink, Phys. Rev. E49,
2559 ~1994!; A. Maassen van den Brink and H. Dekke
Physica A237, 515 ~1997!.

@29# D. Ryter, J. Stat. Phys.49, 751 ~1987!.
@30# V. I. Mel’nikov, Phys. Rev. E48, 3271~1993!.
@31# A. N. Drozdov and S. Hayashi, Phys. Rev. E60, 3804~1999!.
@32# D. Borgis and M. Moreau, Mol. Phys.57, 33 ~1986!; E. Pollak

and P. Talkner, Phys. Rev. E51, 1868~1995!; S. K. Reese and
S. C. Tucker, J. Chem. Phys.105, 2263 ~1996!; Chem. Phys.
235, 171 ~1998!; A. N. Drozdov and J. J. Brey,ibid. 235, 147
~1998!; J. M. Sancho, A. H. Romero, and K. Lindenberg,
Chem. Phys.109, 9888~1998!.

@33# M. M. Klosek, B. J. Matkowsky, and Z. Schuss, Ber. Bunse
ges. Phys. Chem.95, 331 ~1991!.

@34# S. H. Northrup and J. T. Hynes, J. Chem. Phys.69, 5246
~1978!; K. Schulten, Z. Schulten, and A. Szabo,ibid. 74, 4426
-

~1981!; W. Nadler and K. Schulten,ibid. 82, 151 ~1985!.
@35# N. G. van Kampen, J. Stat. Phys.17, 71 ~1977!; R. S. Larson

and M. D. Kostin, J. Chem. Phys.69, 4821~1978!; O. Edholm
and O. Leimar, Physica A98, 313 ~1979!; W. Bez and P.
Talkner, Phys. Lett.82A, 313 ~1981!; F. Marchesoni, Adv.
Chem. Phys.63, 603 ~1985!.

@36# A. N. Drozdov and P. Talkner, Phys. Rev. E54, 6160~1996!.
@37# D. F. Calef and P. G. Wolynes, J. Phys. Chem.87, 3387

~1983!.
@38# H. Dekker, Phys. Lett.112A, 197 ~1985!; Physica A135, 80

~1986!; 136, 124 ~1986!.
@39# P. Talkner, Ber. Bunsenges. Phys. Chem.95, 327 ~1991!.
@40# E. Pollak, S. C. Tucker, and B. J. Berne, Phys. Rev. Lett.65,

1399~1990!; E. Pollak, J. Chem. Phys.93, 1116~1990!; A. M.
Frishman, A. M. Berezhkovskii, and E. Pollak, Phys. Rev.
49, 1216~1994!.

@41# E. Pollak, J. Phys. Chem.95, 10 235~1991!; A. M. Frishman
and E. Pollak, J. Chem. Phys.96, 8877~1992!.

@42# A. M. Berezhkovskii, E. Pollak, and V. Yu. Zitserman,
Chem. Phys.97, 2422~1992!.

@43# P. Talkner and E. Pollak, Phys. Rev. E47, 21 ~1993!.
@44# E. Pollak and P. Talkner, Phys. Rev. E47, 922 ~1993!; P.

Talkner and E. Pollak,ibid. 50, 2646~1994!.
@45# P. Talkner, Chem. Phys.180, 199 ~1994!.
@46# A. Starobinets, I. Rips, and E. Pollak, J. Chem. Phys.104,

6547 ~1996!.
@47# A. M. Berezhkovskii, P. Talkner, J. Emmerich, and V. Y

Zitserman, J. Chem. Phys.105, 10 890~1996!.
@48# A. N. Drozdov, J. Chem. Phys.111, 6481~1999!.
@49# R. Zwanzig, J. Stat. Phys.9, 215 ~1973!.
@50# A. N. Drozdov and S. C. Tucker, Phys. Rev. E61, 2457

~2000!.
@51# The situation is slightly different in the limit of vanishing fric

tion, g→0, in which case the denominatorsDk and thus the
rate functionalsGk @see Eq.~4.2!# may become negative asv
goes to zero. Note, however, that away from the limitv!V
such that the denominatorsDk are positive, both rate function
alsG1@v# andG2@v# have global minima which approach th
TST result~2.7! asg→0.

@52# A. N. Drozdov and S. C. Tucker, J. Chem. Phys.112, 5251
~2000!.


