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Stochastic resonance in a bistable system subject to multiplicative and additive noise
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The stochastic resonan¢8R) phenomenon in a bistable system under the simultaneous action of multipli-
cative and additive noise and periodic signal is studied by using the theory of signal-to-noig€X&)an the
adiabatic limit. Two cases have been considered: the case of no correlations between multiplicative and
additive noise and the case of correlations between two noises. The expressions of the SNR for both cases are
obtained. The effects of intensity of multiplicative and additive noise and the intensity of the correlations
between noises on the SNR are discussed for both cases, respectively. It is found that the existence of a
maximum in the SNR is the identifying characteristic of the SR phenomenon. In the case of no correlations
between multiplicative and additive noise, the SNR is independent of the initial condition of the system.
However, the SNR is not only dependent on the intensity of correlations between noises, but also on the initial
condition of the system in the presence of correlations between two noises.

PACS numbd(s): 05.40—a

[. INTRODUCTION additive white noise. It was concluded that nonlinearity is an
essential ingredient of SR since in a linear system the input
Since Benziet al. [1] and Nicoliset al. [2] discovered a additive white noise leads to only a trivial decrease in the
phenomenon that they termetbchastic resonancéSR), a  output SNR.
wealth of theoretical and experimental papers has followed, Recently, it has been showf21-24 that “stochastic
extending the notion of SR and discovering new applicationgsesonance” also can be found in a linear system subject to
(for extensive reviews sg@-5] and for a collection of pa- multiplicative rather than to additive noise. Note that the
pers sed6,7]). Now the SR paradigm has drawn consider-term ‘“stochastic resonance” here has been applied to the
able attention in such diverse fields as climatology, chemisnonmonotonic behavior of the output signal amplitude rather
try, laser physics, neuroscien@acluding single-neuron and than to the usually considered SNR mentioned above. It
many-neuron models biophysics and physiology, particle turned out that “stochastic resonance” takes place only for
accelerators, solid-state physi@acluding superconducting multiplicative colored noisée.g., the dichotomous noise or
quantum interference devices, bistable magnetic systemghe O-U noisg but disappears for white noise. Noise multi-
electron paramagnetic resonance, ferroelectrics, ferromagnaeglicativity and time correlation are the necessary conditions
ics, fluorescence, Ising systems, Josephson junctions, etcfor the “stochastic resonance” to occur in a linear system.
and even sociology. The largest amount of work regarding fluctuations has
There have been many theoretical developments of SR ibeen on the consideration of systems with just one noise
conventional bistable systeni8—19. In order to describe source. However, many physical systems require considering
SR, McNamara, Wiesenfeld, and R§8,9] introduced the various noise sources. Moreover, in certain situations noises
signal-to-noise rati¢SNR) to quantify SR, a quantity used in may be correlated with each othg#5—34. More recently,
engineering to describe the quality of a signal within a noiseconsidered to be the quadratic-in-field SNR, SR in a linear
background. While both quantities, the response amplitudsystem subject to multiplicative noise and additive noise has
and the SNR, undergo a resonancelike curve as a function d#feen studied in Ref.35]. It was shown that, in the linear
the noise level, the maxima are located at different values ofystem, SR is absent for Gaussian white noise, but when the
the noise intensity. Other measures of SR, based on thaultiplicative noise has the form of an asymmetric dichoto-
residence-time distribution of a bistable, periodically drivenmous noise, the SNR becomes a nonmonotonic function of
system, had been introduced to characterize SR. Zhou, Mosthe correlation time and the asymmetry of noise, and the
and Jund14] studied the heights of peaks in the residence-SNR strongly depends on the strength of the cross correla-
time distribution at odd multiples of the half-period of the tions between multiplicative noise and additive noise. How-
driving. They go through maxima as a function of the noise.ever, it is well known that more realistic models of physical
Gammaitoni, Marchesoni, and Santu¢20] introduced the systems are nonlinear. Therefore, it is very important to
area under the peak of the residence-time distribution at thstudy the effects of correlations between multiplicative and
half-period of the driving as a measure for SR. They showeddditive noise on the SR phenomenon of the nonlinear sys-
that this area goes through a maximum as a function of theems. The nonlinear systems with correlations between mul-
noise or the driving frequency and concluded that SR is aiplicative and additive noise have attracted extensive inves-
bona fide resonance. So far, the majority of the theoreticaligations [25-34. Some of these investigations were
studies in this area have focused on nonlinear systems wittoncerned with the steady-state statistical properties of non-
linear systems; others were concerned with the transient
problems of nonlinear systems.
*Electronic address: jiay@phy.ccnu.edu.cn In this paper, we will use the theory of SNR proposed by
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McNamara and Wiesenfe[®] to study the SR phenomenon sition rate. It is stressed that the expression for the transition
in conventional bistable systems under the simultaneous acate would be valid only in thadiabatic limit so the theory
tion of a multiplicative noise and an additive noise and aof SNR proposed by McNamara and Wiesenfgdlis also
periodic signal. According to the theory of Rg®], the called the adiabatic approximation. In order to keep our re-
bistable case is reduced to a two-state system, characterizedlts valid, throughout this paper we will also restrict our-
by the occupation probabilities. =prob(x=x..) of both  selves in the case of trediabatic limit The purpose of this
stable statex.. . The master equation for these occupationpaper is twofold. First of all, in Sec. Il we will study SR in a
probabilities is conventional bistable system under the simultaneous action
of multiplicative and additive noise, and periodic forcing. In
- : this section, the multiplicative noise is independent of the
ne=-n_=W_(O)n_—W.(H)n, additive noise(i.e., thefe is no correlation begNeen the two
=W_(t)—[W_(t)+W_(t)]n,, ) noises. The effects of varying intensity of the multiplicative
noise or the additive noise on the SNR will be studied, re-
where W.. is the transition rate out of stable states spectively. Our second goal is to study the effects of corre-
= *c. The general solution of Ed1) is lations between multiplicative and additive noise on the SR
in the bistable system in Sec. lll. We end with conclusions in
Sec. IV.

n (t)=g (1) , (2)

t
n+(t0)g(t0)+Jt W_(t")g(t")dt’
0

II. BISTABLE SYSTEM WITH NO CORRELATIONS
where g(t)=exF){fEO[W+(t’)+W_(t’)]dt’}_ It is assumed BETWEEN MULTIPLICATIVE AND ADDITIVE NOISE

that the transition rat®V.. is of the form We consider the overdamped motion of a Brownian par-
ticle in a symmetric bistable potential under the simultaneous
W.(t)=f(a=x B cosQt). 3 action of multiplicative and additive noise and periodic sig-

nal (or periodic forcing. The dimensionless form of the
Note thatW_(t) is time periodic due to the periodic signal. Langevin equation for this model reads

The transition rate can be expanded in the small parameter
B= B cost:

x=ax—bx3+x&(t) + A cosQt+ 5(t), (8)
W, =%(w0: W, 8 cosQt+ W, 32080t s - --), (4 With
where (&(1))=0, (&(t)é(s))=2Dés(t—s), 9
— 1. (=1)"d"'f(a) (n(1))=0, (n(t)n(s))=2ed(t—s), (10
sWo="f(a), ZWp=—0 T (5

whereD and e describe the intensity of multiplicative and
wheref(«) is essentially given by the inverse of the Kram- additive noise, respectivelf is the amplitude, an€l is the
ers time. It should be pointed out that the Kramers time igrequency of the periodic signal. The deterministic potential
independent of the initial conditiox(t=0) in the symmetric ~ Of the bistable system

bistable system driven by an additive white noj9é The
power spectrum of the system is given by

a b
Uo(x)=—§x2+ ZX4 (11)
S(w)=Sy(w)+Sy(w)

has two stable states_= —\/a/b, x,.=+a/b, and an un-

2\\/2 22 2 02 2
c°W! W .
= 7-r2—1,85(w_0)+ 1- 21'8 2(2: Wo , stable statex,=0. Here we assume that there is no correla-
2(W5+Q?) 2(W5+ Q%) | Wi+ w? tion between multiplicative and additive noise:
(6)

(&M n(s))=(n(t)&(s))=0. (12

which contains two part$$; () is the signal output which is
a ¢ function at the signal frequency, aSd( ) is the broad-

band noise output which is a Lorentzian bump centered
Q=0. Then, the SNR is defined by

he Fokker-Planck equation corresponding to the Langevin
quation(8) with Egs.(9), (10), and(12) can be written as

P * el 0 [ax—bx3+Acost+DX]P(x.t
- S = =— —[ax—bx cos xX]P(X,
QSNR Sz(w:Q) ’ PS JO Sl(U))d(l) (7) ot X
2
To obtain the expression of SNR in terms of the output sig- + ’9_[sz+ €]P(x,t). (13
nal power spectrum, the key problem is to calculate the tran- ax?
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FIG. 1. SNR for the case of no correlations between multiplica- FIG. 2. SNR for the case of no correlations between multiplica-
tive and additive noise, as a function of the multiplicative noisetive and additive noise, as a function of the multiplicative noise
intensity D, for different values of the additive noise intensiy intensity D, for different values of the amplitude of the periodic

with A=0.08 and()=0.001. signal A with e=0.05 and(2=0.001.

In the absence of a periodic signah€0), it is well  multiplicative and additive noise. In other words, the system
known that the particle will spend most of its time near, “forgets” its initial position, which is just like that in the
and its steady-state distribution functi®y(x) is bistable system driven by only one additive white ndi8g

In the presence of the periodic sigmatos()t, the poten-
tial of the system is modulated by the periodic signal. How-
, (14)  ever, here we assume that the signal amplitude is small
enough(i.e., A<1) that, in the absence of any noise, it is
. N A insufficient to force a particle to move from one well to the
with the modified potentiall (x), other, and it can be considered that=+ \a/b andx,=0
are still the stable states and unstable state of the system. On
) the other hand, we also assume that the variation of the pe-
In|DX*+ €. (19 riodic signal is slow enoughi.e., Q<1 or the adiabatic limit
[9]) that there is enough time to make the system reach local
One can easily show that the extremaltfix) coincide with ~ €quilibrium in the period of 12. Therefore, the quasi-
those of the deterministic potenti&ly(x). On the other Steady-state distribution functioRy(x,t) corresponding to
hand, under the action of noises, the particle will make ocEd- (13 can be written as
casional transitions over the barrier in the center. In order to

Ps(x)=N|Dx?+ e|1/2exp{ - %X)}

- b,
U(x)=§x -

€
2720

calculate the transition rat&y. out of thex.. states, we can T d(X,t)
first calculate the mean first passage tit=PT) 7. of the Ps(X,1)=N|[Dx*+ €| “exp — 5 | (18
processx(t) to reach the statg. with initial condition x(t )
=0)=x. , which is given by the Kramers tin{&6] with
) " b a eb
, P U(xy) —U(x2) =224 = 2
r. =271 Ug(x2 ) U3(x,)| ”exp{—“ —|. HXD=5x | 37 5p DX+ el
(16) D
Note that the above result is valid only when the intensity of —A\Earctani VD/e x)cosQt. (19

two types of noises, measured Byande, is small in com-
parison with the energy barrier heighAU=|U(x,)
—0(x.)|, that ise,D<1. Thus

The modified MFPT is given by

(Xy,t) — p(X- 1)

T+= 277| US(X+)U6(XU)|_1/26X[{

., a 1 a [a be aD D
W,=71.=—=exp —=|—z+|z+==|In-—+1{|;, (20)

5 2 Dl 2 \2 2D be . )

and the transition rate is
17
where W.. is the transition rate out of thg. state. It is 1 b b
shown that the transition rad/_ is equal to the transition — a _r_a, (a, Dbey 1ab
i W.. ex +| =+ In +1

rate W, when the systemic parametera &nd b) and the T \2x Dl 2 \2 2D) |be
intensities of noisesl and ) are given, which means that 5
the transition rat&V.. is independent of the initial condition N \ﬁ N~y
X(t=0) of the system in the case of no correlations between A Garctam abibejcost . (21)
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FIG. 4. SNR for the case of no correlations between multiplica-
FIG. 3. SNR for the case of no correlations between multiplica-tive and additive noise, as a function of the additive noise intensity
tive and additive noise, as a function of the multiplicative noisee, for different values of the multiplicative noise intensibywith
intensity D, for different values of the frequency of the periodic A=0.01 andQ=0.001.
signal Q) with A=0.085 ande=0.05.

L _A=0.05) at a value of, and the peak is broad and low.
Within the framework of the theory of SR presented by Mc However, when the value of the amplitude of the input signal

Namara and Wiesenfe[@], the SNR takes the standard form . increased. a second peak appears at a smaller valae of

for the bistable system with independent noises in terms ofe the cas’e A—0 055p) As tﬁgvalue of the amplitude of

the output signal power spectrum, \€.g., th e . P .
input signal continues increasing, the second peak rapidly

becomes high and narro{g.g., the case A=0.06), and the

AW, aD\? first peak will disappear wheA is larger. A similar phenom-

SNR="z.p | aretamy/ = enon has been shown in Réf], where this phenomenon
appears for sufficiently low frequency of the input signal, but
WSAZ[arctarq vaD/be)]? -t for the increasing amplitude of the input signal here. From
1- 2D (W21 02 , (22 Fig. 6, we can see that the effect of frequency of the input
eD(Wo ) signal on the signal-to-noise ratio is so little that there is

where almost no variation for different values 6f.
2a 1 a a be aD lll. BISTABLE SYSTEM WITH CORRELATIONS
Wo=—exp{ “5l 32 5 + 2D In E_|_ 1 BETWEEN MULTIPLICATIVE AND ADDITIVE NOISE

(23 In this section, consider the bistable system &).with
correlations between multiplicative and additive noise, and
By virtue of the expression E22) of SNR, the effects of the correlation form between two noises is assumed as fol-
the multiplicative and additive noise on the SNR can be dis{ows [26—31]:
cussed by numerical computation. For simplicity, we take
a=b=1 in our computation. In Figs. 1-3 we present the
signal-to-noise ratio as a function of the multiplicative noise (£ n(s))=(n()&(s))=2\\eDd(t—s), |N|<1,
intensity D, for different values of the additive noise inten- (24)
sity €, the amplitudeA, and the frequency) of the periodic  where\ is the cross-correlation intensity. The Fokker-Planck
signal, respectively. The existence of a maximum in thesequation corresponding to E¢8) with Egs. (9), (10), and
curves is the identifying characteristic of the SR phenom-24) can be written as
enon. It is shown that the peak is decreased as the additive
noise intensity is increased. When the additive noise inten-
. o ! : . . dP(xt) d
sity € is fixed, the maximum of the signal-to-noise ratio is = — —[ax—bx3+AcosQt+Dx+\eD]P(x,t)
increased as the amplitude of the input signal is increased, 9t IX

but decreased as the frequency of the input signal is in-

(3,2
creased. , , _ + —[Dx2+2\eD X+ €]P(x,1). (25)
In Figs. 4—6 we present the signal-to-noise ratio as a func- ax?
tion of the additive noise intensity, for different values of
the multiplicative noise intensitlp and the amplitudé and In the absence of a periodic signah€0), the steady-

the frequency() of the input signal, respectively. It is shown state distribution functiodP4(x) of Eq. (25) is
that the peak of the SNR is increased as the multiplicative
noise intensity is increased. When the multiplicative noise Gx\)
intensity D is fixed, as shown in Fig. 5, the interesting point _ 2 = 12 Y,
here is that there is only one peéhke first peakfor a small Ps(X)=NIDx*+2\JeD x+e|~ex D
value of the amplitude of the input sign@.g., the case of (26)
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with the modified potential (x,\),

Wi —1)= a 1 a 2b ae
(=5 &P ~5| "2 Vpp
o) b, ZbA\F a be(4)\2—1))
X,\N)==X"— — X— |z 3b abD
2 D 2 2D (8P )il A/2R
D be
A
XIN|Dx?+2\eD X+ €|+ —— D-—
| | W N be/ a @31
1—bel/(aD)
be(3—4\?) JD/e Xx+\
xja+ D arcta iz for \.=%1, and
(27)
for [\|<1, and Wi +1)= a L2 2b ac
' (Xiv— )—EGX _5 _E“F E
A b € 3be 3be aD
U(X,)\:il)zixzizb\fa X+ T—a _(T_a In E-ﬁ-l
(be/D—a) e be/D—a
v [+ f—_ 32
XD e el = JD x+e 1+ bel/(aD) (32

(28) forA==x1.

It can also be shown that the extrema of the modified poten- Itis very important that,_ when we assume t_he multiplica-
oA - . L . tive noise and additive noise are correlated with each other,
tial U(x,\) coincide with those of the deterministic potential the transition rate out of the_ state is not equal to the
Uo(x). The MFPTr. of the procesx(t) to reach the state y4nsition rate out of the,, state when the systemic param-
X+ with |n_|t|al condition x(t=0)=x.. is also given by the eters @& andb) and the parameters of noises, (D, and )
Kramers time{30] are given. The transition rate is now dependent on the initial
conditionx(t=0) of the system because of the correlations
Otx, )= 0(xe \) between multiplicative and additive noise. In other words,
u =2 the correlations between two noises cause the system to “re-
D member” its initial position, which differs from that in the
no-correlations casé€Sec. I) and that in the only additive
(29 white noise cas¢9]. On the other hand, we find that the

Note that the above result is valid only when the intensity ofiransition rate out of thet_ state forA=+1 is equal 1o the
two types of noises, measured Byande, is small in com- transition rate_ .OUt of the. state forx=—1 [see E_q.(31)],

, ) . A A and the transition rate out of the state forh=+1 is equal
parison with the energy barrier heightU=|U(xy,\)  tg the transition rate out of the for A= — 1 [see Eq(32)].
—U(x= ,\)|. It provides the restriction on the noise intensi-  |n the presence of a small periodic signal with very slow
ties, which had been discussed in our previous pgBe}  frequency (i.e., A,Q1<1), the potential of the system is
Then we can obtain the transition raté(x(t=0)=X.,\)  modulated by the periodic signal. However, we assume that
out of thex.. states: the signal amplitude is small enougte., A<1) that, in the

absence of any noise, it is insufficient to force a particle to
move from one well to the other, and it can be considered
LT that x. = *\/a/b and x,=0 are still the stable states and
2 bD unstable state of the system. Moreover, we also assume that
the variation of the periodic signal is slow enougle.,
ab N /ab 1 <1 or the adiabatic limif9]) that there is enough time to
be — be make the system reach local equilibrium in the period of
1/Q. Then, the quasi-steady-state distribution function

Te=2| ug(xi)ug(xu)rl@exp[

a 1
W(XJ_r A)= EGXD{ - 5

(b(4)\2—1)e a
- —= In

2D 2

A N b(3—4N?)e Ps(x,t) of the system can be written as
1l ® D
A= \aD/(b A - H(X,\ 1)
x| arctar———— abit 6)—arctan— Py(x,t)=N|Dx?+ 2\ \eD x+¢| Y%exg — ———|,
D
V1-\? V1-22
(30) (33

for [\|<1, with
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FIG. 5. SNR for the case of no correlations between multiplica- FIG. 7. SNR[Eq. (40)] for the case of correlations between
tive and additive noise, as a function of the additive noise IntenSItymultiplicative and additive noise, as a function of the multiplicative

e, for different values of the amplitude of the periodic sigAakith noise intensityD, for different values of the correlated intensity
D =0.05 and(2=0.001. Note the second peak appears as the valug, the initial conditionx(t=0)=x, . A=0.0002, Q=0.0001,
of A increasing. ande=1.5D

(be(4)\2—1) a'
\T2p 72

¢>(X,)\,t)=gx2—2b)\ \/S X ¢(Xu,>\,t)¢(x+,>\,t)}

In|DX? T+—2wlus<x+)us<xu>|1’2exr{

D
36
FOANTD xh e+ — ( LGS N
€D X+te a Then we can obtain the transition rafé(x(t=0)=x. ,\

out of thex.. states:

Woe A= P exgl — L
(34) (X+,N)= \/Ewex D

_(b(4)\2—1)e

a b ae

27" Ngp

I —aD+2)\\/—aD+l
nbe be

A ( b(3—4\?)e

A D
— —1\/—cos(t
A €

for [\|<1, and _
N=+10)= 2_2b\/6
d(X A== ,t)—ix x D X

) ’(\/D/e X+\
arctan ————
V12?2

a
2D 2

3b _ N e

+ Fe—a In|yD x= e Vi-a D
_ A |D N+ +aD/(be)

be D — —1\/— cosOt arctaﬁi2
+|—=——a* \/—AcosQt A Ve NAEY

D €
y Ve (35) arctan)\iz) J (37)

TN J1-2\2

for [\|<1,

The modified MFPT is given by
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FIG. 6. SNR for the case of no correlations between multiplica- FIG. 8. SNR[Eq. (40)] for the case of correlations between
tive and additive noise, as a function of the additive noise intensitymultiplicative and additive noise, as a function of the correlated
e, for different values of the frequency of the periodic sigfalvith intensity \, for different values of the amplitude of the periodic
A=0.01 andD =0.05. Note that there is almost no distinction for signal A with the initial condition x(t=0)=x, . D=0.08,
different values of). =0.0001, ande=0.16.
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Wi F1) a a - ae Qe N) wAZWy (X~ ,\)
Xe,Fl)=—exp —=|—5— \/ = Xs \)=—
* N D| 2 bD SHR= 4eD(1-2\2)
(Sbe i [aD ) 5 t)\t\/aD/(be) A 2
I T~ arctar————=—— —alClalr—=
D be N N

be/D—a—+D/e Acos(Qt A2W2(x+ \)
+ \/7 (39 «|1- ol X+,
1-bel/(aD) 2eD(1—NA)[WE(X. \) + 02
forA=%*1, and
« . N*++aD/(be)
arctan————
\/1—)\z

a b ae
27" Npp

a 1
W(x.,+1)= p{_ﬁ

——ex
V2

(40)

(Bbe laD N
—|—=——alln|\/-—+1
D be where
—a+
. be/D—a \/D_/e A cos(t 39 \/Ea 1 X \/a
1+ bel/(aD) Wo(xi,)\)—Tex D _E_ZD)\ bD
forn==*1.

From Eqgs.(37)—(39), it can be seen that, in the case of b(4\>-1)e a\ |aD aD
correlations between multiplicative and additive noise, the _(T_E In Eizx V E”Ll
transition rate is not only dependent on the intensitiear{d
D) of noises and the cross-correlation intensitgf the cor- Y b(3—4N?)e
relations between multiplicative noise and additive noise, but - Tox a+ D )
also on the initial conditiorx(t=0) of the system. Within
the framework of the theory of SR presented by McNamara + AR
and Wiesenfeld9], we can obtain the standard form of the X arctar?il(bf)—arctan)\—) ] .
SNR for the bistable system with correlations between mul- V1-\? V1-\?
tiplicative noise and additive noise in terms of the output (41)
signal power spectrum in different cases.

(i) When|\| <1, (i) WhenA==1 andx(t=0)=x_.,

TA2W,(X. ,F1) AWA(x. , 7 1) -t
QSNR(Xt 1I 1): 1_ 2 ) (42)
4eD[1— \bel/(aD)]? 2eD[1— Vbe/(aD) ] W5(x= ,+1)+ Q2]
where
Wox. 1) J2a 1oa [ae [3be I [aD 1’+ be/D—a 3
Xe,*l)=—=exp —=| —5— ——|—=—alln .
0= T D 2 bD D be 1—\bel/(aD)
(i) When\==*1 andx(t=0)=x_,
TA2W,(X. , 1) A2WA(x. = 1) '
Qonr(Xs , £1)= 1- > (44)
4eD[1+ \bel/(aD)]? 2eD[1+ Vbe/(aD) ][ W§(x= , 1)+ Q2]
where
Wox. 1) J2a 1 a, . [ae [3be I /aD+1’+ be/D—a 5
Xe,2l)=——=exp —=| — 5 ——|——alln|\/— —.
0= iy Dl 2 bD D be 1+bel/(aD)
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By virtue of the expressions of SNEQs.(40), (42), and the signal-to-noise ratio is not only dependent on the inten-
(44)] for the different cases, the effects of the correlationsities (€ andD) of noises and the cross-correlation intensity
between multiplicative and additive noise on the SNR can be. of the correlations between multiplicative noise and addi-
presented by the numerical computation. For simplicity, wetive noise, but also on the initial conditioa(t=0) of the
takea=b=1 in our calculations. system.

When |\|<1, the signal-to-noise ratio with the initial WhenA=—1 andx(t=0)=x, [or A=1 andx(t=0)
condition x(t=0)=x,, as a function of the multiplicative =x_], the signal-to-noise ratio, as a function of the multi-
noise intensityD for different values of the correlated inten- plicative noise intensity for different values of the ampli-
sity \, is shown in Fig. 7. The maximum of the signal-to- tude of the periodic signak and for different values of the
noise ratio for the initial conditiorx, is increased as the additive noise intensity, is shown in Fig. 10 and Fig. 11,
correlation intensity\ varies from negative value to positive respectively. The interesting point here is that the peak is
value. It can also be found that the maximum of the signal-harrow and high, and the value of the signal-to-noise ratio is
to-noise ratio for the initial condition_ is decreased as the very large in the order 0 Moreover, there is a large varia-
correlation intensityh varies from negative to positive. tion in the value of the SNR peak over a very narrow range
When the intensities of two noises are given, the signal-toin A (see Fig. 1Dand ine (see Fig. 11 However, whem
noise ratio with the initial conditio, , as a function of the =1 andx(t=0)=x, [or A=—1 and x(t=0)=x_], the
correlation intensityn for different values of the amplitude signal-to-noise ratio, as a function of the multiplicative noise
of the periodic signak, is shown in Fig. 8. We can see that intensityD for different values of the amplitude of the peri-
the height of the peak increases with the increasing of thedic signalA and for different values of the additive noise
amplitude of the periodic sign@ for both initial conditions. intensitye, is shown in Fig. 12 and Fig. 13, respectively. It is
The peak of the signal-to-noise ratio foft=0)=x_ is situ-  shown that the peak is broad and the value of the signal-to-
ated in\<0. However, because of the symmetry, the peaknoise ratio is very small in the order 10
of the signal-to-noise ratio fax(t=0)=x_ is situated in\
>0. In Fig. 9, we compare the SNR for the initial condition IV. CONCLUSION
X, with that for the initial conditiornx_ . It can be seen that
there is no distinction between the SNR for the initial con- We have studied the SR phenomenon in conventional
dition x,. and that for the initial conditiox_ when the in-  bistable systems under the simultaneous action of multipli-
tensity of the correlations between noises is zero, but théative and additive noise and periodic forcing by using the

distinction of the SNR betweer(t=0)=x, andx(t=0) theory of SNR proposed by McNamara and Wiesenféld
=x_ is clearly when\ # 0. Moreover, we also find that the Two cases have been considered: one is the case of no cor-

value of SNR with\ = — 0.5 forx(t=0)=x, is equal to that relations between multiplicative and additive noise, and the
with A = + 0.5 forx(t=0)=x_ . The above results show that Other is the case of correlations between two noises. We have

120000 50000
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80000 |
o c 30000
Z 60000 | 2
(77 0.0003 (73] 20000 |
30000 | €=0.08
=0.0002 10000
€=0.09
0 1 ] L 0 1 L
0 005 01 015 02 025 0 005 01 015 02 025
D D
FIG. 10. SNR[Eg. (42)] for the case of\=—1 andx(t=0) FIG. 11. SNR[Eq. (42)] for the case ofA=—1 andx(t=0)
=X, [orA=1 andx(t=0)=x_], as a function of the multiplica- =x, [or A\=1 andx(t=0)=x_], as a function of the multiplica-

tive intensityD, for different values of the amplitude of the periodic tive intensityD, for different values of the additive noise intensity
signalA. ¢=0.08 and()=0.0001. €. A=0.0002 and)=0.0001.
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A=0.0002

1 T 11
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FIG. 12. SNR[Eq. (44)] for the case ofA=1 and x(t=0) FIG. 13. SNR[Eq. (44)] for the case ofA=1 andx(t=0)
=X, [or A=—1 andx(t=0)=x_], as a function of the multipli- =x, [or \=—1 andx(t=0)=x_], as a function of the multipli-
cative intensityD, for different values of the amplitude of the peri- cative intensityD, for different values of the additive noise intensity
odic signalA. e=0.08 and()=0.0001. e. A=0.0002 and})=0.0001.

. . .signal A is increased, and there is no variation for different
obtained the expressions of the SNR for both cases. By V"'e?lues ofQ)

tue of the expressions of SNR and through the numerica In the case of correlations between two noises, the effects

computation, we have found that the existence of a MaxXiye the intensityh of correlations between noises have been

mhuer?\c;%g:\ir?l\llr? t'hseﬂ;;ge;t'gyéngofg?;?gtﬁsnSt;{; oéé?]emsis_tudied for different cases. Whéx| < 1, the stochastic reso-
P : : W Ylhance phenomenon can still appear when the intensiby

plicative and additive noise, the SNR is independent of thqhe correlations between two noises is varied from negative

:jn;tl?aln(c:i%rl]’l?lg?rt]hxe(t:tpazl 2g]ﬁ§tj[2§ tLinsg'oe': r;tglir;g;—ce 0}0 positive, and the appearance of the maximum in the SNR
P It ton. However, P s dependent on the initial condition of the system. When

cotelatlons between Lo noies changes e pitre. 1€ 1 anax(t=0)x. [or k=1 anax(t-0)-x ], e
b e " ne sy value of the SNR is very large. However, whar=1 and
ber” its initial position, and the SNR is now dependent on

L " . L Xx(t=0)=x, [orA=—1 andx(t=0)=x_], the value of the
the initial condition since the transition rates depend on th . - o
initial condition. eSNR is very small. In fact, whem=—1 (or A=1), the

In the case of no correlations between two noises thgrobability distribution of the Brownian patrticle is fully con-

effects of varying intensity of the multiplicativ® and the cehntrate_d aﬁ(t_o)i? [ohr x(t—l()))b—.:}_]aQnILhe.cont;arK,
additive noisee on the signal-to-noise ratio have been stud-Vhena=- [_or A=1], the proba |_|ty _'St” ution 2 the
ied, respectively. It has been shown that the effect® ahd Iirownlan particle is very little ak(t=0)=x_ (or x(t=0)
e on the change of the signal-to noise ratio are opposed tGX*)'
each other. If the SNR is a function &, there is only one
maximum when the amplitude of the periodic sigralis
increased, and the value of the maximum in SNR decreases This work is supported by the National Natural Science
when the frequency of the periodic sign@l is increased. Foundation of China under Grant No. 19805003. One of us
However, if the SNR is a function of, a second maximum (Y.J.) acknowledges support from Huo Ying-Dong Young
in the SNR can appear when the amplitude of the periodid@eacher Foundation.
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