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Universal features of the order-parameter fluctuations: Reversible and irreversible aggregation
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We discuss the universal scaling laws of order-parameter fluctuations in any system in which a second-order
critical behavior can be identified. These scaling laws can be derived rigorously for equilibrium systems when
combined with a finite-size scaling analysis. The relation between the order parameter, the criticality, and the
scaling law of fluctuations has been established, and the connection between the scaling function and the
critical exponents has been found. We give examples in out-of-equilibrium aggregation models such as the
Smoluchowski kinetic equations, or at-equilibrium Ising and percolation models.
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[. INTRODUCTION any system, both equilibrium and nonequilibrium ones, in
which the second-order critical behavior can be identified.
Fluctuations in many physical processes are difficult toThese considerations will provide an understanding of the
analyze because they develop dynamically and often retaifelation between the order parameter, the criticality, and the
the memory of initial conditions. On the other hand, strongscaling law of fluctuations. The notion ttfie relevant vari-
fluctuations are ubiquitous, as shown by examples like hadable (the relevant observablefor a discussion of critical
ronization in a strong interaction physics, polymerization,behavior in finite systems will appear from this discussion.
colloid aggregation, aerosol coalescence, or the formation of The paper is organized as follows. In Sec. Il, the order-
large scale structures in the Universe. With the advent oparameter fluctuations in statistical systems are analyzed,
recently developed advanced detection systems, the study 8hd the relation with the finite-size scaling analysis and the
large fluctuations in physical observables became accessibWidom’s hypothesis is developed in detdifs| (Sec. 11 B).
in “small systems” such as formed in ultrarelativistic colli- The generic features of the tail of the scaling function is
sions of hadrons, leptons, and nuclei, in heavy-ion collisiongddressed in Sec. IIC. In Secs. IIE — Il H, the generalized
at intermediate energies, or in collisions of atomic aggregategcaling of observable quantities , thescaling, is discussed,
[1]. and the reasons for the deviations from the limiting cases
In theoretical studies, it is often assumed that fluctuationg =1 and 1/2 are presented.
are irrelevant. In this spirit, many aggregation processes have Sections llI-VI are devoted to the detailed discussion of
been studied in the mean-field approximati@h This prob- ~ several well known generic models, using the results and
lem was recently revisitef8]. It was shown that, contrary to methods of analysis proposed in Sec. II. In Sec. Ill, the non-
the usual belief, fluctuations in the size distribution of thecritical fragmentation model is discussed which exhibits the
largest cluster are generally large in the aggregation propower—law cluster size distribution. Results obtained in the
cesses. Large fluctuations in the cluster multiplicity distribu-Potts model are discussed in Sec. IV. Section V is devoted to
tion were also reported in the binary fragmentation procesg discussion of the reversible aggregation, as modeled by the
with the inactivation mechanisifi]. percolation model. Both realistic three-dimensional bond
This paper deals with features of fluctuations of physicalpercolation and mean-field percolation on the Bethe lattice
quantities in arN-body, d-dimensional system, witN essen- ~ are considered. Irreversible aggregation and the fluctuation
tially finite. Moreover, the system is not necessarily at ther{roperties in the Smoluchowski kinetic model are discussed
modynamic equilibrium. Both these aspects of our approaci Sec. VI. Finally, the main conclusions are given in Sec.
are important in many areas of physics where, for exampleY!l [6,7].
small and strongly fluctuating systems are produced in vio-
lent collision processes. Consequently, these systems are Il. ORDER-PARAMETER FLUCTUATIONS
short lived, and the typical time scales are such that standard
methods of equilibrium statistical physics may not be appli-
cable. Let us callm the observable under investigation. For the
We are particularly interested in self-similar systems suchreason of a presentation, we shall restrict ourselves to the
as fractal objects or thermodynamic systems at a secondase wherem is a scalar quantity and takes real positive
order phase transition. “Self-similarity” means, in particu- values.(In fact, this restriction is not a true limitation and,
lar, that one is unable to define the characteristic lengtlyenerally, one can considen|? as well) Fluctuations of the
~(N*)Y whereN* is the characteristic size, which could order parameter in thermodynamic systems are expected to
be associated with the disappearance of fluctuations. Our aitmave different properties at the critical point and outside of it.
in this work is to discuss universal scaling laws of fluctua-Far from the critical behavior, the correlations are short
tions of different observables in self-similar systems. In par+anged. Fluctuations of the extensive order paramtén
ticular, we shall consider the order-parameter fluctuations inthis case resemble the ergodic Brownian motion of this vari-

A. Correlation function argument
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able in its proper configuration space. Consequen{ym

ROBERT BOTET AND MAREK PLOSZAJCZAK

PRE 62

Expanding the left-hand side of the above expression in the

—(m))2)/{m) is roughly a constant, meaning it is indepen- Power series iru, and comparing corresponding powers on
dent of the number of constituents in the sample. Converselyhe left- and right hand-sides, one derives the relations be-
close to the second-order transition point, the fluctuations aréveen ordinary moments dP[m] and the cumulant mo-
correlated throughout the whole system and the correlatioments :

length ¢ for the infinite system becomes infinite as well. In

such a system let us now define the deviataof the driven
parameter from its critical valuge.g., in thermodynamical
systemse=(T—T.)/T., whereT, is the critical tempera-

ture], such thate<0 ande>0 in the ordered and disordered
phases, respectively. Moreover, let us define the local value

of the order parameten and the fielch conjugated tan. The
following isotropic correlation function is introduced:

Ta(€NT1, T ) =(M(T)M(Fo=T1) - M(Fo=Tp_1)).
(1)

k1=(m),
Ko=(m?)—(m)?,
kg =(m°) —3(m*)(m) +2(m)?,
rg=(m*)—4(m°)(m)—3(m?*)? ©
+12(m?){(m)y2—6(m)*, . ..

In the case of a second-order phase transition, as a result of
scaling relationg4), all cumulant moments scale like

Notation(- - -) in the above expression denotes the thermo-

dynamic average at a givanand over the positioﬁo. For

kg~ (M)A,

vanishinge, all the length scales disappear and the correla-

tion length¢ diverges algebraically as

E~e7,

with a universal exponent, which depends only on the
universality class of the transition. Moreover, the scaling de-

Consequently, the generating function of timgprobability
distribution[Eq. (5)] is only a function of the reduced vari-
able(m)u. This can be written as

1 2m .
P[m]zEJ'O G(iu)exp—imu)du, @)

scription of second-order critical phenomena leads to the
fundamental postulate that the thermodynamic potei@ial \\hereG is the generating function :

verifies

G(Ae, N2~ ¥ Bh)~N\272G(¢,h), 2
and this defines the two universal exponemtand 8. Let us
now go back to the correlation functiam, defined in Eq.
(1). The integral of o, over the n—1 space variables:
F1,....Fn_1, is equal to theth derivative ofG with respect
to the fieldh. Hence, to be consistent with E@), we must
obtain the scaling relation

a(NEANT BRI N )

~\"Ba (e, ... o). (3)

Forn=1, we recover the well-known scaling behavior of the

averaged order parameter with the critical expon@ntor
any integem, setting all the space variables equalatmahe

é(u)=m§=:0 P[m]expmu).

In the case whegm) tends to~ but m/{m) remains finite,
we can rewrite formuld7) in a more compact form,

m

(myprmi=a .

m ®
which is valid at the critical pointdb is the scaling function
of the single reduced variabl®/(m). As stated above, we
can express this scaling as

mE=O Py[m]expmu) =¥ ((mju), 9)

formula (3) leads to the scaling of powers of the local orderWhich is the necessary and sufficient condition for the appli-

parameter .
(MM (x e, A2 2" Ph)~\"B(m")(e,h). (4

As a consequence, if we let=0 and\ = 1/e, one finds that
the quantitiegm™)/(m)" are independent of, when close to

cability of scaling law(8) [8]. This result also implies that if
this scaling occurs for fluctuations of the parametethen it
holds also for fluctuations of any power

X=N2mP

the transition. This means, by the finite-size analysis, thaff this parameter as well. This is a consequence of (B.

this ratio is independent of the si2¢ of the system at the
transition point.
Let us now introduce the cumulanis, from the general

and

formula for the moment expansion of the order—parameteUp to now, we did not specify reasons for changifrg).

probability distributionP[ m]:

“

In( 20 P[m]exp(mu)) => !

— Kg -
q
§=0 Q!

©)

Indeed, under the condition that the scaling framework of the
second-order phase transition holds, the scaling reld8pn

is valid independently of the explicit reasons for changing
(m), and independently of any phenomenological details. In
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other words, an explicit relation between the sief the  +v are positive. The probability densifyy[ »] then obeys
system andm) need not be known at this stage. In Sec. Il B the scaling law, which is formally identical to E¢(B),
we shall show how to derive supplementary information
about® when the system is at a pseudocritical point. 7

g b b <n>PN[n]=d>(m)zcb<z>, (15
B. Widom'’s hypothesis and the finite-size scaling argument

The hypothesis of Widom states that, in the thermody-Where’ in addition,

namic limit of a system at thermal equilibrium, the free en- ®(2)~exd — B-f(az.c 16
ergy density close to the critical point scales[&p @ - Aif(azo)l. (16)

_ In the above formula, we have omitted the temperature-
B —~ 2—«a H
FO" .\ e) =N (7€), (10 dependent multiplicative factor which can be determined by

where @, and 8 are the usual critical exponents, is the ~ the normalization oPy[ 7]. Coefficientsa andc may both
intensive order parameter, ahds the scale parameter. Even depend ongr. We can then rewrite scalind.5) in a stan-
though finite systems do not exhibit critical behavior, theirdard form for the extensive order parametes N7,
properties may nevertheless resemble those of infinite sys- B

tems if the correlation lengt is larger than or comparable (M) PnIm] =D (7)), (17)
to the typical length of the system. In this case, one speaks

about the pseudocritical point in a finite system at a distancé’ ith the scaling variable,,) defined by

*

emoN e a1 Z(l)=m<mr; 19
from the true critical poinf9]. The quantityN in Eq. (11) is
the size of thed-dimensional system, antlis some dimen- m* denotes the most probable value of the extensive order
sionless constant which can be either positive or negativeparameter. We call Eq$17) and (18) the first-scaling law
This constant is negative if a maximum of the finite-size The scaling domain is defined by this asymptotic behavior of
susceptibility or of any other divergent macroscopic quantityPy[ m] whenm— c and(m)—o, butz,, has a finite value.
in the thermodynamic limit lies in an ordered phase, while The normalization of the probability distributid?y[ »] and
is positive if this maximum is in a disordered phase. One carthe definition of the average value aofi provide the two
then derive the finite-size scaling of the total free energy constraints

F(7,,N)=Nf(7,€) -
lim f_ */<m>(D(Z(1))dZ(1)= 1,

at the pseudocritical point

Fc(n,N)~f(7]NB’(27”‘))- (12 |imfm 2(1)®(z(1))dz;,=0.
sy WP E) A2

In deriving Eq.(12), we used the hyperscaling relation
The first-scaling lawEq. (15)] is a consequence of the self-
2—a=vd. similarity of the statistical system. Self-similarity here means
that the fluctuations of theeducedorder parametefy/{ z) at
'different scales characterized by different values of the in-
tensive order parametér), haveidentical properties This
1 is a qualitative explanation for this scaling.
Pul77]= Z—exli—ﬁTF( 7,6,N)], (13 Th_e_logarlthm of scaling fl_mctlom6) correspo_nds to_ the
N noncritical free energy density at the renormalized distance
e=c from the critical point. If it happens that the order pa-
rameter is related to the number of fragments, as in the
fragmentation-inactivation-binary(FIB) process [11,12,
fhen Eq.(15) can be written in an equivalent form to Koba-
Nielsen-OleseriKNO) scaling[13], proposed some time ago

The canonical probability density of the order paramete
Punl 7] is given by[10]

where the coefficienB+(=1/T) is independent ofy (T is
the temperature of the systgnJsing Eq.(13), one may
calculate the most probable value of the order paramete
which is the solution to the equation

PN 7] as an ultimate symmetry of th® matrix in relativistic field
N , theory[14] . The multiplicity distribution of produced par-
an ticles has been intensely studied in strong interaction phys-

as well as the average value of the order parameter and ti%s’ where the simple behavior of much of the data on the
artition function 9 P rF1adron—mu|tip|icity distribution seems to point to some uni-
P versality which is independent of the particular dynamical
Z ~N-B@2=a) (e ¥ 14 process. N

N (m)~n a4 If, instead of a real positive scalar, the parameter under
7* in EqQ. (14) denotes the most probable value of the orderinvestigation is a vector of dimensionalityn, m
parameter. The average value of the order parameter var=[m,, ... ,m,], then the first-scaling laWEqgs. (17) and
ishes for large values df, since bothg and 2-a=28  (18)] takes a more general form :
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<|n3|>“PN[rﬁ]=<D(Z(1)), (19) One_can see that C-IL-]e to both Ed4) and the Rushbrooke
relation between critical exponents,
with a+2B+vy=2,
. rﬁ_ rﬁ* . . .
Zay (20) the anomalous dimension is
(Imi)
B B
o : : : g=1- : (29
The scaling limit in Eq.(19) is defined by the asymptotic y+2p8
behavior OfPN[.m] when my— oo ('.:.1’ .. N) and (|m]) Since botha and B are positiveg is contained between 1/2
—o0, butzqy (i=1, ... N) have finite values.

and 1 for equilibrium systems at the critical point of the
_ _ _ second-order phase transition . Because of these additional
C. Tail of the scaling function relations between critical exponents, one may note that the

The scaling functionb introduced in the first-scaling law Pehavior of a tail of scaling functio(3) is governed by the
(17) has some typical features which are reminiscent of &Xxponent
non-Gaussian critical distribution of the order parameter. In 1
this section, we are interested in the behavior of the scaling y=——=5+1=——, (26)
function for large values of the reduced parametéfm), so 1-g B
we have to study the system subject to a small ffeltbn- o o R )
jugated to the order parameter. This breaks the symmetry a¥hich is always larger than 2. The limiting case-2, i.e.,
the distribution by shiftingn and(m) toward larger values. the Gaussian taflsee Eq.(23)], corresponds in this frame-

More precisely, let us write the probability of obtaining the WOrK to the noncritical system.

value 7 of an intensive order parameter at a distaadeom _ Finally, let us mention in passing that whenever cluster
the critical point as size can be defined in a system exhibiting the second-order
phase transition, as e.g., in the cases of percolation, the Ising
P\l 77, €,h]=Py[ 7,€,0lexp BrnNh). (21 model, or the Fisher droplet model, the exponemf the

power-law cluster-size distribution
up to now, we have studied the behaviorRy[ 7,€,0] for -
which the first-scaling law holds whea=0 (the critical ng~s "
oint) or e=cN~ "4 (the pseudocritical poiit Substitutin - . .
Eq. ()15) and using E(q(14)p, we obtain poin g satisfies additional relatiof4.5]:

Pl 7,0h]= NP9 ex In &( nNA~9) 4+ L pNh]. gt
o

The most probable value

T
+ = —
n*~h1/5 ')’ ZB o ]

of the order parameter, in the limit of a small external field which yields
is given by the maximum of the term in the exponential.

Since 1
9= —1 (27)
2—a—p
o= 5 and
we obtain s_Td 28)
T—2
In & (hHNYCD) ~ — grh N, 22 o o
Sinceg at the second-order equilibrium phase transition is
Relation(22) is valid for any value oN if and only if contained between 1/2 and 1, the allowed values of exponent
7 at the critical point are  7<3, and the normalized
®(2)~exp(—az’ ) =exp — az;) (23) cluster-size distribution
N
with the coefficienta which depends on the temperature 2 sn=N
regularly. s=1

One can express this relation in a different way. The
anomalous dimension for an extensive quamityx N» can IS
be defined as

ng=Ns "
g= lim gy= lim L(In(m)). (24) Consequently, wheneveris defined, we obtain whether the
N—oe N—e dINN studied equilibrium system is at a second-order phase transi-
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tion and whether the considered extensive quantity can bg is defined by the normalization d®\[m]. To remain
identified with the order parameter of this transition. consistent with other sections of this paper and without loss
Let us define, for example, the multiplicity as the total of generality, we now consider the case wherés positive.
number of clusters(The definition of clusters also includes we will admit thatN is so large that the first two terms in the
the monomers.The cluster multiplicity cannot be an order free energy expansion are sufficient to study the phase tran-
parameter of these kind of equilibrium phase transitions besition. At the critical pointe=0, the leading term of the free

cause with 2<7<3, energy density is proportional tm*. Standard integrations
N yield the values for the partition functidfy, and the average
E n~N value of the order parametém), both proportional taN 34,
&8 Introducing there into Eq(30), one finds
which means that the average multiplicity scales as the total - 4 r{ T2 m \4
mass of the system at the transition point, igg=,1. On the m)Py[m]= exg — <—) , (3D
other hand, the size of the largest cluster is a natural order r?[1/4] /4] {m)
parameter for these kinds of phase transitions. In this case we ] ]
have which has the form of Eq.8). Note that the scaling function
®(2)~exp(—2') decreases very quickly as one moves away
(Smay ~NY(~1), (299  from the most probable value. This result is consistent with
the analysis done in Sec. Il C.
which is a direct consequence of The pseudocritical point is the value effor which the
N finite-size thermal susceptibility reaches its maximum. Writ-
ing that the inverse of this susceptibility is the second deriva-
E ns~1, tive of the free energy with respect to the order parameter,
s=(Smax) one finds

i.e., that there is in the average only one largest cluster.
Moreover, relation27) derived for the second-order critical _
phenomenon is correctly recovered. One should emphasize, rry4
that relation(29) is very general, and its derivation does not

depend on the assumption of thermodynamic equilibrium. IfThis result is correct at first order i~ 2. Replacinge in
other words, relatiorf29) between the anomalous dimension Eq. (30) by Eq. (32) leads to the scaling form d®\[ m]:
and the exponent, is also valid for the off-equilibrium

1/2
62 r[3/4]( b ) @

Y

second-order phase transitions. We shall return to this point [3/4]2

in Sec. VI. (m)PN[m]=Aex;{ - ((m/{m))*—6(m/{m))?) |,
The cluster multiplicity could be the order parameter r[1/4)?

whenever r<2, though this cannot occur in equilibrium (33

phase transitions. Note that this argument, to sort among o )
different candidates for the order parameter, requires only ¥here A denotes a normalization constant. We recover in-
knowledge of 7, i.e., the complete information about the deed the first-scaling law, with the exponential tail
critical process is superfluous. We shall use this argumerfXP(-aZ), for the large arguments.

later in the case of percolation model and Smoluchowski Outside of the critical point in the disordered phage (
model of gelation. Finally, we shall see below in the Mekjian>0). the leading term of the free energy is proportional to
model that we may have a power-law size distribution withm”, and the probability distributiorP\[m] is essentially

7<2, in the absence of a phase transition governed by th&aussian. Deriving, as previously, the valueZgfand(m)
multiplicity, as the order parameter. (both behave likeN? in this casg we obtain the scaling

form
D. Landau-Ginzburg theory of phase transitions

4 4/ m)\?
Let us consider the Landau-Ginzbu@igG) theory as an (myPy[m]= —exp{— —(—) } (34)
exactly solvable example of a second-order phase transition. m ™\ (m)

The homogeneous LG free energy density is

which is still under the form of Eq.15) but with a Gaussian
f(p)=en’+bn*+---, scaling function which is reminiscent of the Gaussian fluc-
tuations.

whereb is a positive constant. The most probable value of Finally, in the low temperature regime<0), the most
the order parametey in the disordered phas&$0) isim-  probable value of the order parameter is positive:
plicitly set to 0. It is more convenient to work with the ex-

tensive order parametean=N2 when dealing with finite €
systems. The probability of a statefor a givene is [10] m*=-/— %N.

2 4
€ﬂ+bm_3_ .. ) . (30 DevelopingPN[m] in Eq. (30) around this point leads to the
N N expression

1
PnIm]= Z_Nexl{ —Br
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S\ €(m—m*)?
* 1/2 _| —— -
m* Y“Py[m] ( 2b772> expl e 2b o ,
(35
which is no longer in the standard forf&q. (15)]. In this
case, the average value of the order parameteris of the

same order of magnitude as its most probable veltie and
one can rewrite Eq(35) in the scaling form

(m—m*)z)

(m) %

(myY2P[m]~ exr{ —-a

wherea is a positive constant. This particular scaling form

will be discussed later in detail.

E. A-scaling law
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which are consistent with <1, because the scaling function
® is positive. The scaling functio®(z,,) in Eq. (39) has a
form identical to®(z)), except for the inversion of the
abscissa axis. In particular, its tail for largg, has the same
form

(z(0)~expl ~ 2y =exp(~ZHD)  (4)
as given in Eq(23). One should mention in passing that if
a;<gta,—1
in Eq. (37), then
(m)~N2( 7)

andA=1, following the remark of Sec. Il A.
According to Eq.(16), the logarithm of scaling function

One may ask what happens if the observable quantity i&)(z(A)),

not the order parameter but &idependent function of the

order parameter like
m=N21— N2, (37
where

The latter condition ensures that the order parameter does not

determine the leading behavior ot For largeN,
(m)y~ N2z,

Writing Eq. (17) with m instead of#, and taking into ac-
count that

Pnl 7]dn=Py[m]dm,

one finds the generalized law:

(MAPN[M]=D(Z(4)) =P (39

m—m*)
(my* )

where

+a,—1
A:g—2<1
aj

This generalized law will be called iihe A-scaling lawwhat

follows. The scaling functiorb(z,)) depends only on one

scaled variable:

m—m*

2=

The normalization of the probability distributid?y[ m] and
the definition of the average value of provide two con-

straints
lim f
—(m?

Iimf
—(my1-

7Aq)(ZA)dZA: 1,

AZA(I)(ZA)dZA: O,

In @(Z(A)): _BTf(aZ(A) ,C),

is related to thenoncritical free energyf, in either ordered
(c>0) or disordered¢<0) phases.

As an important example, we see from E(&7) and(39)
that theA scaling of the extensive variable

m=N(1-7)=N7

can be used to determine the anomalous dimension, since in
this casel =g. For this reasom is a very useful variable in

all phenomenological studies. The importanceﬁu)ﬁn the
percolation studies is well establish¢d0]. At the phase
transition,

(N7)~N,
but the finite-size corrections aedgebraic

F. Off-critical scaling

A=1/2, with a nearly Gaussian functioh(zg,,), is a
particular case of & scaling associated with noncritical sys-
tems[16]. This limit,

*

(m)¥%Py[m] = %%;;;

) =D (Z179), (42

which is calledthe second-scaling lavihas been found in the
shattering phase of the non-equilibrium FIB procgsand

in the “gaseous” phase of the equilibrium percolation pro-
cess[16]. We should also recall that this form of scaling
function has been seen for a LG model in the low-
temperature regimgsee Eq.(36)].

More generally, let us now suppose that the extensive
parameterm is not critical, i.e., either the system is in a
critical state but the parameteris not critical, or the system
is outside the critical region. The value of at the equilib-
rium is obtained by minimizing the free energy. The free
energy F is analytical in the variablen close to its most
probable valuen*:

F~N"Y(m-m*)=2. (43
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Using Eq.(43), one obtains cide. This is because the exponential weight term in(&6).
diverges as-exp(€N/4b) when
(m)~u*N,
1/2__nj(4g'—3)/2
whereu* is a positive(finite) number which is independent eN N @7
of N, and becomes large with increasing. As a consequence, the
Zy~NY2~(m)y¥2 (44) ~ common behavior ofm) andm* is ~N¢'. The scaling form

[Eqg. (35)] in this case is
The probability density?y[ m] verifies the second-scaling

. _m*\2
law [Eq. (39)]: <m>APN[m]~exp< —C% , (48)
N ) [m—qm)\? (m)
(m)“*PN[m]=expg — Bru (myz with ¢ a positive constant, and
= (Z(12)- (45) A= ;9’ -1

This is a particular case of th&-scaling law A =1/2) and

the scaling function is now Gaussi@h7]. This scalinglEQ.  Here we recover the two cases previously discussed in Sec.
(42)] holds for(m)~N, but now withexponentiafinite-size | B. When g’=1, i.e., whene=const, then this is the
corrections. This is a principal difference from the finite-sizesecond-scaling law. Wheg’ =3/4, then this is the first-
corrections and/or tha scaling. The above arguments apply scaling law, since the finite system is still in the critical re-
to any _second—order phase transition. In par_t|_cular, they argion (g’ =g). In between these two limiting case$s scaling

not limited to the LG theory of phase transitiofsee Eq.  holds, with 1/2<A<1. Note also that the scaling function in
(36)]. Eq. (48) has a Gaussian form, even far>1/2, which is

quite different from the casgeqg. (23)] of Sec. II C.
G. Finite-size crossover effects

The discussion of Sec. Il F is valid for systems at a critical H. Summary: panorama of the A-scaling
(and pseudocriticalpoint, or far from a critical point in an for thermodynamic systems
ordered phase. Let us suppose now that the system is pre- geyera| features of finite systems are important if one
pared such that wants to study either the criticality of the corresponding in-
finite system or the distance from the critical point. Here one
should point out the\ scaling(this includes the first-scaling

andg’ is not an anomalous exponent. Here we would like toIawA= 1 as wel), the form of the tail of the scaling function

study how the finite system evolves when the control paramfp’ and the anomalous exponent. Al these fea_ltures are
eter e tends slowly to 0, namely, closely related to the properties of the scaling function which

characterizes the finite system at the equilibrium. If the infi-
e~N29' 2 nite system experiences a second-order phase transition, and
' if mis the scalar order parameter or the shifted scalar order

We shall address this question in the mean-field approximaPrarametefEq. (37)], then:

tion using the LG theory. Let us first write down the average At the critical point, the corresponding finite system ex-
value hibits the first-scaling law ifn is an order parameter, or the

A-scaling law ifmis a shifted order parameter. In both cases,
the tail of the scaling function-exp(—2") is characterized by

a large value of the exponent=1/(1—g)>2, with g being
w (46)  the anomalous exponent, i.e., the exponent characterizing the
f exp(— em?/N—bm?/N®)dm decrease of the extensive order parameter with thelsiak
0 the finite system. The values d are restricted to &A
=<1, and the anomalous exponentakes values in between
1/2 and 1 for a second-order at-equilibrium phase transition.
Far from the critical point, finite system exhibits the
second-scaling law with the Gaussian tail of the scaling func-

(my~N9', g'<1

f mexp( —em?/N—bm*/N3)dm
0

(m)=

Hence, writing this definition with the new driving parameter
€'=eN'? and using the rescaled variahie =m/N®* the
average value afm can be put into the form

<m> — N3/4¢/(6N1/2), tion.
Close to the critical point, whea— 0 if N— o, the finite
while its most probable value is system exhibits a crossover phenomenon from the first-
scaling law to the second-scaling law by the continuous
- | iN A-scaling law with a Gaussian shape of the scaling function.
- 2b One should remember here that the precise dependence of

€(N) is irrelevant provided thay<g’'<1, i.e., that the con-
If the exponeng’ is not too small, i.e., ife does not vanish ditional point does not approach 0 move quickly than the
too quickly, the two quantitiesim) and m* have to coin- pseudocritical point. This last remark is important in phe-
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nomenological applications of scaling theory to situations * .
where theN dependence of the conditional point is governed >, Py[m]e™i=NxE""1), (51
by the external control parameter, with an unknown relation m=0

to the system size. Last but not least, if the parametés The latter approximation is known to be correct for finite
not singular at the transition, then all properties of its prob- | f [chg Thi thal . imatel
ability distribution are the same as in the case of noncritica‘éa ues ofu 4], This means nLm] is approxima €y a
oissonm distribution with parametexIn N. In the leading
systems. h : )
order we then havém)=m*. Inverting Eq.(50) to obtain

In phenomenological applications, it is often difficult to . _ X
obtain the probability distribution with sufficient accuracy Pn[m] as a Fourier transform, and makinglarge, yields
the scaling formula

for values of scaling variable which are far from the most

probable value, since this corresponds to very small prob- 2

abilities. It is then more judicious to work with moments of )\ 12p | )= iexp{— (m—(m)
v

the distribution instead of with the distribution itself. For J 2(m)

example, when the system undergdescaling, the properly (m) 1

normalized cumulant momenfgqg. (6)] (x—1)[ m—({m

— (= Dly= 90— +0| s | |.
(m) (m)
Kq
~const 49 (52)
(Kl)qA 49

This is nothing else but the second-scaling I&g) for the
are independent of the size of the system. An important conmultiplicity distribution whenN becomes large enough, be-
sequence is that the generating function ofrtheistribution,  cause/m)=m*. When(m) is large enough, the second term

é(u) = Ep[m]exp(mu), is a function of the reduced variable in Eq (52) is aIWayS very small Compared to the first one for

(m)2u only, generalizing a remark of Sec. Il A for the gen- a finitex [21]. .
erating function in the first-scaling case. Different fixed values of the control parametemimic

different situations of the fragmentation. Fok1, one has
the situation of a fused system. Por-0.5, the fragmenta-
tion resembles the evaporation of light fragments. The limit
The Mekjian fragmentation model is an equilibrium x>1 corresponds to a complete dissociation of the mass into
model which describes the decomposition of system into atight fragmentsdmonomerg Each of these situations is char-
ensemble of fragments. The statistical weights for every conacterized by a different fragment-size distribution. The case
figuration of fragments are given explicitly in this model. If x=1 is particular in this model, since it leads to a power-law
ns denotes the number of fragments of siwith the size  size distributionEq. (27)] with an exponent-=1. Follow-
conservationN=2Xng, the weight function for the con- ing discussion in Sec. Il C, the cluster multiplicity could be

IlI. A NONCRITICAL MODEL: MEKJIAN MODEL

figuration{ng} is given by[18]: the order parameter. On the other hand, the second-order
N equilibrium phase transition is associated with< 2<3,
sX's which implies that the equilibrium model of Mekjian is a

Wi({ngtx) =11

1 gl S"s(x+5— 1) noncritical model. Indeed, that is what can also be seen in the

cluster-multiplicity scaling lawEq.52)]. Hence the power-
with x a real control parameter. Many exact results can pdaw cluster-size distribution alone does not guarantee that the
obtained in this simple model. Here we are interested in th&yStem exhibits a critical behavior of any kiptL].

multiplicity distribution Py[m], where the fragment multi-
plicity is m=Xng. We can show thdtl9]: IV. EXAMPLE: POTTS MODEL

T'(x) A generalization of the magnetic Ising spin model was
—_— proposed by Domp22], and studied in details by Pofta3].
T'(N+x) In this model, one considers a system Nf sites in
d-dimensional space. The magnetic state of each isite
characterized by a quantity called a spsay,s;). Each spin
is of the same constant modulus, and points to one ofjthe
equally spaced directions, labeled from Oge 1. The fer-
romagnetic short-ranged Potts Hamiltonian is then

PuLm]=x"S{")

where|S\"| are signless Stirling numbers of the first kind.
Then knowing the generating function for these Stirling
numbers,

I'(x)T'(xe"+N)

: (50)
I'(xe"I'(x+N)

> Py[mle™=
m=0 He=—J3, a(si.5)), (53
one obtains the average valuerof o

N where § is the Kronecker symbol, anidlis the positive cou-
ling constant. The sum is restricted to the nearest-neighbor
my=x2, ——=xXINN+(x—1)y—(x)+O(1/N). PIIT . .
{m) 521 X+s ( )7~ 9(x) (IN) pairs. The site percolation corresponds to tirel Potts
model, and the ferromagnetic Ising model to the?2 case.
Moreover, making an asymptotic development of E8))  This model is one of the simplest nontrivial critical thermo-
for largeN and smalls, one obtains dynamicN-body systems, and many exact or accurate results
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which is correct in the first-scaling form, with a Gaussian
shape and the trivial anomalous expongrt1/2 [see Eq.
T=T (39)]. _ o

c On the other hand, if the system is in the ordered phase,
the average value of the individual spins is finite, $ay)
=m, and the same reasoning can be used for the variable
(M—Nm)/N. This variable is of zero mean and finite vari-
ance, and is short range correlated. Thus, its fluctuations are
Gaussian, and can be put in a second-scaling form:

(M>1/2P[M]=Lexr<—(M2_<i/lM>>)2

V2w

(I)(z(l))
3

(56)

\ ‘ Of course, the most interesting case corresponds to the criti-

-1.0 -0.5 0.0 0.5 cal temperature. At this point, the spins are correlated
Z(l) throughout the system, and the magnetization cannot be

evaluated by the central limit theorem. Instead, we can re-
FIG. 1. Scaledm distribution for the three-state Potts model mark that the spin-correlations are a power law,

(g=3) on a two-dimensiondl X L square lattice, at a critical tem-

perature. Three sizes are shown: 32 (starg, L =48 (circles, and 1

L=64 (squares The thermalization is achieved afterx4(® (S Sr+r, BETEr T

Monte Carlo steps, starting from the initial disordered system. r

with # a critical exponent whose value should be between

are known for standard values ddg). In particular, there 2—d and 2. Looking at the total magnetization as the sum of
exists a valueqc(d) [for example,qc(2)=4], for which,  \ orrelated variables, one obtains
when g=<q.(d), such an interacting system experiences a

second-order phase transition at a finite critical temperature ) 5 L o1
[for example, BJ=In(1+q) at d=2], while for g (M >:Z <Sisj>:2i (s >+NL (sgspyr® dr, (57)
>q.(d) the transition is a first-order one. !

Here let us consider the case of a second order phasgi | ~ N the typical macroscopic lenath of the svstem
transition. All the scalings described above should hold. Werhis means that yp P g y '
first have to define the order parameter for the system. If, for

a given configuration of the system, we chll} the number (M?)~ N[ nrd]
of sites in the statk, wherek varies from 0 toq—1, then the
order parametem is given by as the leading behavior. This nontrivial anomalous exponent
1 2-
(Nmax/N)—1 _ 7
m= J0max™)~ 2 (54) 9=5+—>g

g—1
) ) i ) , between 1/2 and 1, is here the sign of the criticality. The
Nmax in Eq. (54) is defined as the maximum of aN's.  first-scaling law should hold in this case, as for thkq)
Figure 1 shows then distribution at the critical temperature =(2,3) Potts model discussed above, but the scaling func-
in the (d,q) =(2,3) case, in the first-scaling form. The scal- tijon should be different since it depends on the precise form

ing is recovered very precisely, even for such small systenaf the interactions. Only the tail can be linked to another
sizes such as 6464. Note also the complicated shape of thecyitical exponent, as it has been written in Sec. 11 C.

scaling curve 24,25.

We can discuss this scaling here in the slightly different
context of correlated variabl¢26]. Let us consider, for sim-
plicity, the Ising modeli.e., (d,q)=(d,2) casé The exten-
sive order parameter is just the sum Méfcorrelatedvari- The percolation model can be defined as follows. In a box
ables:M =ZXs;. When the system is disordered, the spins arda part of the regular lattige each site corresponds to a
correlated at a short distanée(é/N—0 at the thermody- monomer, and a proportignof active bonds is set randomly
namic limit), and their mean value is zero. The central limit between sitegsthe bond percolation modelSuch a network
theorem tells then that the distribution of the random variableesults in a distribution of clusters defined as an ensemble of
M/+/N is Gaussian whelN becomes large, with zero mean occupied sites connected by active bonds. For a definite
and finite variance. This can also be expressed by thegalue ofp, sayp.,, a giant cluster almost surely spans the
asymptotic law whole box. The sol-gel transition corresponds to the appear-

ance of “infinite” cluster(gel) at a finite time. Infinite in this
D) 2 context means that the gel contains a finite fraction of the
(M%) M
(M2)P[M?]= —exp( -
2mM? 2(M?)

V. REVERSIBLE AGGREGATION
PROCESS-PERCOLATION MODEL

(55) total mass of the system. The sol-gel transition in finite sys-
tems can be suitably studied using moments of the number-
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size distributionng, i.e., the number of finite clusters of a p*(1—p*)Z 2=p(1—p)? 2.
sizes,
Let us define
M= > s*ng, (58
S<Sma>< 1
where the summation is performed over all clusters with the P2 1

exception of the largest clustee=s,, .. The superscript
recalls this constraint on summation in E§8). The mass of  For p<p,,, the only solution of the above equationp

the largest cluster is the—M 7, with =p, but whenp is larger thanp,,, then there is a smaller
nontrivial solution which behaves @s,—|p— p¢,| nearpg; .
- Above this threshold, the moment; is smaller than 1, and
N= >, sn. :
arms behaves approximately as
In infinite systems, one works with the normalized moments 2(p—Per)
of the concentration-size distributiany, i.e., the concentra- m=1-—"

tion of clusters of sizes, Per

The marginal case=2 corresponds to the linear-chain case.

mLZZS s“cs, (59 Coming back to the concentrations, we can see that for
large values of the sizg the following Stirling approxima-
where the summation in E¢59) runs over all finite clusters, tion holds:
Generally, concentrations are normalized such that .
Cs~S “exp — as),
. nS
Cs= '\lllﬂl N’ with « given by
The probability that a monomer belongs to the infinite cluster —in 1 1-p|*?
(the ge) is equal to -m;, with “« Per \ 1—Per ‘
My For this model, a power-law behavior of the concentrations

P
my= lim —.

N— oo

is seen at the thresholal,, namely,cs~s™ 7, with 7=5/2.

Outside this threshold, an exponential cutoff is always
For example, in the thermodynamic limit when the size ofPresen{28]. This sort of critical behavior at an equilibrium

the box becomes infinite, a finite fraction of the total numberiS @nalogous to the thermal critical phenomena, and in par-

of vertices belongs to this cluster. Therefore, we obtain thdicular, there exist two independent critical exponents, for
resultsm; =1 for p<p., andm]<1 for p>p,,. Moreover example,r ando. The latter one is the exponent of the mean

cluster-size divergence. Together, the two critical exponents
7=5/2 ando=1 completely describe the critical features.
This singular behavior is due to the appearance of a giant
cluster, the so-called percolation cluster, at the transition
point. More precisely, in the infinite system the probability
for a given site to belong to this infinite cluster is zero below
the critical thresholdy.,, and positive above it. This prob-
ability is nonanalytical at the critical point. Because of this
The bond percolation on the Bethe lattice with a coordi-behavior, the extensive order parameter defined for finite

nation numbez, has been solved by Fisher and Esga.  SYStems is just the size of the largest clustgr,.
Here the main result we are interested in, is the AS discussed in Sec. IIC, the corresponding finite-size

concentration-size distributio27] order parameter scales as

m; is a decreasing function of the occupation probability.
This typical behavior is commonlyand incorrectly called
“the failure of mass conservation,” but, as stated befoné,

is more simply the probability for a vertex to belong to some
finite cluster.

A. Percolation on the Bethe lattice

~ [(2—1)5]! Smax’szB-

— Zm pS— 1(1_ p)(i— 2)S+AZ'

S
Even though the system experiences a second-order critical
phenomenon, fluctuations of the multiplicity distribution re-
main small and the KNO scaling does not hold. Of course,

1-p 27-2 m; is not in this case an order parameter since2 even
m/ _( ) ’

and the first normalized moment

though there is some irregularity in its behavior passing the
threshold. This nonanalyticity can be illustrated by an exact
result for the bond percolation on the Bethe lattice. In this
with p* being the smallest solution of the equation: mean-field case, the normalized zeroth-moment is

1-p*
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FIG. 2. (a) The first scaling o6, distributions at the percola-
tion threshold p=p.,= 0.2488) of the three-dimensional bond per-
colation for lattices of different sizedi=14° (diamondg, N=20°
(squarel andN=232 (circles. The data correspond to 1@vents.
(b) The A scaling of the distributions d1; =N—s,,, for the same
conditions as in(a). (c) The second scaling of the multi-
plicity distributions plotted on a log-linear scalgi.e.,
log(Mo)"?P[Mg]) Vs z(15) for the same conditions as ).

~ 27-2
L z 1-p
m0—<1—§p )(1—p*
22 (z-1)e+| 1 A)| |
= = —(Z— € — = || €|,
2(z—1) 2

with e=p—p,, and e<1. There is a jump of the first de-
rivative of m{ with respect top: —2/2 for p—p. and (4
—32)/2 for p—p,; .

B. Three-dimensional percolation

As shown by Botegt al.[16], the multiplicity distribution
for the three-dimensional bond percolation model on the cu
bic lattice at the infinite-network percolation threshold exhib-
its aA scaling withA=1/2, and hence the fragment multi-
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FIG. 3. (a) The second scaling of,,, distributions above the
percolation thresholdp= 0.35) of the three-dimensional bond per-
colation for lattices of different size®=14° (diamondg, N=20°
(squarel andN=232® (circles. The calculated data correspond to
10° events.(b) The second scaling of the distributions Mf; =N
—Smax fOr the same conditions as {@). (c) The second scaling of
the multiplicity distributions plotted on a log-linear scafgee.,
log((Mg)"P[Mg]) Vs zy5) for the same conditions as ).

which is analogous to the KNO scaling function. As an ap-
plication of the results developed in Sec. IIE, Figbh)2
shows theA scaling for the shifted order parametdr; =N
—Smax- The value ofA (= 0.8) is consistent with the value
of the anomalous dimensiditq. (25)], g=0.8435, for the
accepted values of the critical exponesy in the three-
dimensional percolatiofL5]. One should also remember that
A has been extracted from a small si2é=(14%, 20°, and
32°) percolation network calculations at tiinite-network
percolation threshold. This explains a small difference be-
tween the value forA from the scaling analysis, and the
expected valué\ =g in the infinite network.

According to the results derived above for the second-
order phase transition, the second scaling should hold outside
of the critical point. This is correctly realized with the three
variablessy,,y, M1, andMg for large or small values of the
probability p. Figure 3 shows such results for the valpe

plicity is not related to the order parameter in this process=0-35.

This is shown in Fig. &) as a typical example of noncritical
parameter scaling. Note that the multiplicity distributions in
Fig. 2(c) are plotted in a semi-logarithmic form to show
clearly the Gaussian behavit parabolic shape on the fig-

Finally, it is instructive to see how the first scaling is
disappearing when the value pfis slightly shifted away
from its critical value. Fig. 4 illustrates the deviations from
the first scaling for the values of a paramegperiose topg, ,

ure). The proper order parameter for this model is the nor-on both sides op,. Even very close to the critical point,
malized mass of the gel phase, i.e., the mass of the |arge'gﬁese deviations are quite significant, and can easily be seen

cluster divided by the total mass of the system,/N. Dif-
ferent probability distribution® [ s;,ax/N] for different sys-
tem sizesN can be all compressed into a unique characteris
tic function[see Fig. 23)]

<Smax> PN ) '

Smax™— <Sma><>

(Smax)

Sma

N

X_

_¢<

N

in this representation.

VI. IRREVERSIBLE AGGREGATION PROCESS — AN
EXAMPLE OF THE SMOLUCHOWSKI KINETIC MODEL

The irreversible sol-gel transition can be modelled using
the coupled nonlinear differential equations in distributions
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FIG. 4. (a) The s, distributions are plotted in the first-scaling
form for parameterg close to the percolation threshold of the

than 1/2, then there exists a timg (t,,<%) such thatm;
=1 fort<t,, butm;<1 for t>t., [33,34.

Let us now consider the casg j=(ij)* with u=1 in
more details. It was shown in this casg8] that the critical
gelation time is it,,=1, and the solutions for the size dis-
tribution of Smoluchowski equations with the monodisperse
initial condition are[35].

s—2

Cs= e sl for t<1,
sl
572 exp(—s)

= ——  for t>1.
s! t

The asymptotic solutions for largeare

1
Co~ ——=5 Rexd —s(t—1+Int)] for t<1,
T on A —s( )]
C~LS_5/2 for t>1. (61)
s tv2m

Note that the power-law behaviot€5/2) is present fot
>1, and not only at the threshold. The whole distribution of
finite-size clusters evolves self-similarly, and the appearance
of a power-law behavior is not a sign of a critical behavior
but a specific characteristics of the gelation phase.

The solutions for the first normalized moment are

three-dimensional bond percolatioia) p=0.252, (b) p=p¢,

=0.2488, andc) p=0.245. The calculations are done for lattices m;=1 for t<l1,
of different sizes:N=14° (diamond$, and N=32 (circles. The
calculated data correspond tolévents. 1
m=— for t>1
c, of clusters of mass per unit volume(the Smoluchowski
equationg 29)): With those asymptotic forms af;, one can calculate the gel
de fractions in the infinite system before and after the critical
S

1
at 2|+JZ KijCicj— EKSJCSC]

point:

mg=0 for t=<1,
CoefficientsK; ; represent the probability of aggregation per
unit of time between two clusters of massandj . The 1
Smoluchowski equations are derived from the master equa- me=1- t for t>1.
tion in the mean-field approximatidi30]:

(ckei)=(ci(cy).

The timet includes both diffusion and reaction timg31]. 1
Equationg60) suppose the irreversibility of the aggregation, mg= lim N<Smax>
i.e., the cluster fragmentation is excluded. One should note, N—e
however, that the sum ovgin Eq. (60) does not include the
infinite cluster(gel), because

It has been shown that the gelation is analogous to the
dynamical critical phenomenon wifl36]:

as the order parameter. For one realizat®y,, corresponds
to the mass of the gel abovg=1.
For finite sizes, one makes the usual assumption that there
exists a characteristic size which diverges at the transition,
Experimentally known aggregation kernélg are homo-  say
geneous functiong32],

Cj=o=1/0=0.

Ne~|t—1|~Yon, (62)
Kaiaj=a'K; i, . -

ai.aj ) such that for the mass gel in a finite system one has
with N being the homogeneity index. Perhaps the simplest
physically relevant example of the homogeneous kernel is

1 N
—(Smax ~(t—1 f(—) for t=1.
Ki j=(ij)*. It has been shown in this case thaifis larger N< ma) ~(121) N¢
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FIG. 5. The first scaling of th,,, variable in the Smolu- FIG. 7 The p.Iot of the large .tail %f a decimal Iogarithm of
chowski kinetic model with the kernd{;;=ij at the critical time thelszcallng function, log(zy)), againstz;y) for the system sizél
t=t.,=1. The calculations are performed for two system sikés: =27 T.he. calculated data correspond td” 16dependent ?Vei“s-
=210 (diamonds andN =214 (circles. Each data set corresponds to 1€ Solid line shows the dependenbéz(lpe)_(p(fz?l_)), which is
10° independent events. expected from the value of the anomalous dimengjer2/3.

In particular, at the gelation time one has with A=1/2. One should keep in mind that in both cases, the
L fragment-size distribution is a power law with=5/2 [see
(Smax ~ N7~ “N~N&. (63 Eq.(6D)].

The relation between the form of tail of the scaling func-
Using formula(29), which is valid both for equilibrium and tjon and the anomalous dimensipRq. (26)] was derived
nonequilibrium systems, one can calculate the anomalous danalytically in Sec. IIC for equilibrium systems at the
mension. Given the value of [see Eq.(61)], one findsg  second-order phase transition. For nonequilibrium systems,
=2/3. Henceoy=1/3 can be deduced from E¢3). The  we do not have an equally rigorous derivati@so see Sec.
average value of the order paramefsr,,, increases loga- VIA). On the other hand, one may expect that the relation
rithmically for t<1, and becomes a finite portion of the between thé\ dependence of the average value of the order
system size whet>1. parameter and the asymptotic form of the scaling function in
The illustration of the above discussion is shown in Figs.the |imit N—, i.e., betweerw andg, is connected to the
5 and 6. Figure 5 shows the distribution s, in the first-  asymptotic stability of the limit distributions. Actually, there
scaling variables for systems of different sizes. The resultg 3 very close connection between the renormalization group
have been obtained in the Smoluchowski model with thegeas and the limit theorems in the probability thef8y]. If
kernel K;;=ij, at the critical timet=t,,=1. Fluctuation  {rye, then relation(26) could be valid in a more general
properties ofsyay, outside of the critical imeé=2t.,, are  framework than the one provided by the equilibrium statisti-
shown in Fig. 6. The remaining parameters of the Smoluta| mechanics. To check this assertion, in Fig. 7 we show the
chowski calculations are the same as used in the calculationgot of a logarithm of the scaling functio® (z(,)) (see Fig.
shown in Fig. 5. In this case, the data for different systems) versuszf’l) for large values ofy,. If relation (26) is also
sizes collapse into the universal curve in the scaling variablesaiq for the nonequilibrium sol-gel second-order phase tran-
sition, then(I)(z(l))~exp(—z3), and the tail of the scaling
q?)éZ(I/Z)) ‘ function should be a straight line in Fig. 7. That is indeed the
= ot . case.
# g'% Figures 8 and 9 show th& scaling for the shifted order-
% 1 parameter variableM ;=N—s,,,. Results of the Smolu-
’; chowski calculations, with the kern&l;;=ij, are shown at
% | t=t., (see Fig. 8 and att=2t,, (see Fig. 9. One sees that
‘g the M distribution exhibits a qualitative change while going
%

06 f b

:
04 |
from the critical timet=t.,, whereA=0.67, tot=2t, for
1 whichA=1/2. Att=t.,, the value ofA obtained by super-

s % imposing differentM ; distributions in the scaling pldiEq.
j ‘ N (39)], agrees perfectly with the value of the anomalous di-
-3 o 3 mensiong (= 2/3).

az By comparing Figs. 5 and 6 and 8 and 9, one may also see

FIG. 6. The second scaling of ti,, variable in the Smolu- that the effect of changing the variabig,,,—M; is seen
chowski kinetic model with the kerné{;;=ij above the critical ~ONly at the critical time(compare Figs. 5 and)&vhere @&
time t=2t.,=2. The calculations are performed for two system =1)—(A=0.67), and is absent above the critical time
sizes:N= 2% (diamond$ and N=2'* (circles. Each data set cor- (compare Figs. 6 and @vhereA (= 1/2) remains unchanged.
responds to 10independent events. Finally, in Fig. 10 we show the size-dependence of the

M
¢
§
H
02| 2
2

0.0
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FIG. 8. TheA scaling of the distributions of th; shifted

_ tbution _ FIG. 10. The distributions of th#1; shifted order parameter in
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correspond to 10independent events.

M distributions at=t.,, when the distributions are plotted
in the “wrong” variables of the second-scaling=1/2. The
distributions for two system sizes are clearly displaced

of the second scaling.
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express the generating functions as the contour integrals for
quantities like the momentdl, [38]. Then Van Dongen and
Ernst[39] used an() expansion to calculate these integrals
explicitly for the momentsM in some simple cases like
Kij=ij. For example, the result fovl; can be expressed in
terms of the generating function for the,,,-distribution
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FIG. 9. The second scaling of the distributionsMf shifted
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lated data correspond to Athdependent events.
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Having the() expansion of the generating function of the
Smay distribution, we can make a conclusion about scaling at

the gelation point. The moments,, of the size distribution
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t—1+Int

for infinite systems are known to diverge near the gelatiorjsee Eq(61)] is finite. Then, for any value df, the second-

time [40] as
my~[t—1]37 2K,
For finite systems, usingy=1/3, one obtains

ml’(~|t_1|72k+3fk(N|t_1|3)~N(2k73)/3 (65)

I
at the gelation time. We have then found the asymptotié)

result
N ml’< = ak< Sma><> k7 (66)

wherea,’s are some positive constants. Inserting Ef)

into Eq. (64), one can show that the generating function for

Smax IS the function of a single variabkes,,,,)u, which is a

sufficient condition for the validity of the first-scaling law

[Eq. (9)].

We can have informations on similar scalings for various

moment distributions() expansion leads to the results
(M2 =(M)?=Nmp, — (1= t)my ;%

(ML)=Nm, (67)

scaling law holds, as expected from the general theory.
The above results aboit scaling for various moments of
the size distribution in the Smoluchowski model, with kernel
Kij=1ij, are not complete, since the arguments involve only
the second cumulant momers. In principle, as shown in
Sec. IIH, all cumulants should be investigated. So, even
though many exact results are known in this model, the com-
ete analytical solution is not yet available.
The same study as presented above for gelling systems,
can be performed also for nongelling systems. An example
of this kind is obtained foK;;=i+]. In this case, the size
distribution is a power law with the exponent=3/2 [41]
and, following the discussion in Sec. Il C, the cluster multi-
plicity can be the order parameter. One can analytically de-
rive, that the multiplicity distribution is binomial,

Pn[Mog,t]=

Mo_l) [1—exp(—Nt)]N Mo

X exp — (Mgo—1)Nt],

and can be approximated fbi— oo, and for a finite value of
(Mg)/N, by

for the values ok when all the quantities are defined. At the (Mo)"?Pn[Mo,t]~ oo™

transition ¢=1), relation(65) allows one to calculate the
reduced moments, . The results can be written in the com-

pact form

(M2 —(M)?

~ const,
(M2

with the following values of exponem :

A=1/2 for k=3/4,
A=2k/3 for 3/4<k=<3/2,
A=1 for 3/2<k.

These are indications & scaling according to Eq49) in
Sec. IIH. More precisely, the moments of ordex3/4 are
not critical (the second-scaling lawthe moments of ordek
between 3/4 and 3/2 exhibik scaling with A=2k/3. In
particular, fork=1, one recovers the correct valde=g

(M—(Mg))?
Mgy J°
(68)

X
ex

which corresponds to the second scaling. One may note, that
this binomial distribution is exactly equivalent to the
bond percolation on a Bethe lattice with the occupation
probability:

p=1—exp(—Nt).

In spite of self-similar features in the fragment-size distribu-
tion at an infinite time, one does not see any critical behavior
in the cluster multiplicity distribution at any time in the non-
gelling aggregation systems. This confirms the observation,
made in Sec. Il A for the Mekjian equilibrium model, that
the power-law size distribution alone does not guarantee that
the system exhibits a critical behavior.

The insight gained from the numerical simulations of

=2/3 corresponding to the general argument of a shiftedmoluchowski equations, and the evidence from exact re-

order parametefEqg. (37)] with a;=a,=1. Finally, when

sults for both gelling and nongelling aggregation systems,

the value ofk is larger than 3/2, we obtain the first-scaling provide strong hints that the discussion of Sec. Il H is valid

law for the distribution of moment®1, . This is also a con-

not only for equilibrium systems but also for nonequilibrium

sequence of the shifted order-parameter argument, since, imes. We see the same significance ofhscaling in non-

these cases,
’ k
<M k>~<smax>'

Far from the critical point, all the reduced moment§ are
independent of, since the correlation size.

equilibrium systems as found in thermodynamic systems, not
only at the critical point but also close to the critical point or
even far from it. We believe that this universality, which is
common to equilibrium and nonequilibrium systems, has a
deeper foundation in the relation between renormalization
group ideas for self-similar systems and the limit theorems of
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probability theory for the asymptotic scaling laws of order- system size, the total energy, the total momentum, etc., This
parameter distributions. The concept of statistical equilibprovides an obligatory intermediate step in any phenomeno-
rium does not intervene at this level. One should also relogical analysis before the laws governing complicated dy-
member that the universality discussed in this work isnamics can be found. Finally, one should stress that the scal-
associated with only one critical exponent, and certainly doesg laws discussed in this paper are independent of whether
not exhaust all the singularity properties of the thermody-one deals with an equilibrium process or an off-equilibrium
namical potential in the second-order thermal phase transprocess. This is a crucial advantage in studies of short-lived
tion. systems. Examples of multifragmentation processes in colli-
sions of atomic nuclei or atomic clusters illustrate this prob-
VIl. CONCLUSIONS lem well[1]. In the absence of thermal equilibrium, which is
. ] a theoretical hypothesis difficult to verify in dynamically
~ Inthis paper we have presented a theory of universal scafyrmed short-lived systems, we simply do not have any other
ing laws of order-parameter fluctuations in any system ingg| at our disposal to address reliably the question of pos-
which the second-order critical behavior exist. These scalingijp|e “criticality” of the studied process.
laws, calledA-scaling laws, are rigorously derived for the  ag stated above before, the scaling analysis developed
equilibrium systems. Moreover, both analytical and numeri, this work provides an alternative to critical exponent
cal evidence is also presented in favor of a general validity ofnaysis in equilibrium systems, and is the only tool for the
the A-scaling laws for off-equilibrium processes which ex- analysis of the nonequilibrium systems. All essential infor-
hibit a critical phenomenon of second order. The methognation can be deduced from the scaling function, the value
works very efficiently if the “observables™ are known nu- of the A parameter, the form of the tail of the scaling func-
merlcally, either by means of numerical simulations or ex-tion and the value of the anomalous exponent. With this
perimental data. _ . ~ information it is possible to find out whether the studied
In this work, we have discussed different aggregationsrocess is at the critical point, in its neighborhood, or far
models, both reversible and irreversible ones, finding theyyay from it. The reference point in this analysis is the self-
same connection between the scaling function properties angmilarity of the system. A generalization of the above scal-
the anomalous dimensidithe critical exponenjs These re- jhg theory to discontinuous phase-order transitions, for
sults can be important in a phenomenological analysis Ofyhich the characteristic length can be defined, is in progress.
“the critical behavior” in finite systems, where the critical o preliminary experience with systems which exhibit a
exponent analysis is dubious and, moreover, the precisgst-order phase transition show, however, thatahecaling
mechanism of the process may be unknown. In these cas€synnot be defined in these systeg].
the A-scaling analysis allows one to select both the relevant
observable and the interesting initial conditions, which lead
to a “pseudocritical” behavior in the studied process. An- ACKNOWLEDGMENT
other interesting aspect of the-scaling analysis is the pos-
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