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Universal features of the order-parameter fluctuations: Reversible and irreversible aggregation
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2Grand Acce´lérateur National d’Ions Lourds (GANIL), CEA/DSM–CNRS/IN2P3, Boıˆte Postale 5027, F-14021 Caen Cedex, France

~Received 3 April 2000!

We discuss the universal scaling laws of order-parameter fluctuations in any system in which a second-order
critical behavior can be identified. These scaling laws can be derived rigorously for equilibrium systems when
combined with a finite-size scaling analysis. The relation between the order parameter, the criticality, and the
scaling law of fluctuations has been established, and the connection between the scaling function and the
critical exponents has been found. We give examples in out-of-equilibrium aggregation models such as the
Smoluchowski kinetic equations, or at-equilibrium Ising and percolation models.

PACS number~s!: 05.70.Jk, 24.60.Ky, 64.60.Ak, 64.60.Fr
t
ta
ng
a
n

n
t o
y

si
i-
n
t

on
a

he
r
u
es

ca

er
ac
pl
io
a

da
pli

c
on
u-
g
ld
a
a
ar
s

in
ed.
the
the

n.
er-
zed,
the

is
ed
,
ses

of
nd

on-
the
the
d to
the

nd
tice
tion
sed
c.

he
the

ve
,

d to
f it.
ort

ari-
I. INTRODUCTION

Fluctuations in many physical processes are difficult
analyze because they develop dynamically and often re
the memory of initial conditions. On the other hand, stro
fluctuations are ubiquitous, as shown by examples like h
ronization in a strong interaction physics, polymerizatio
colloid aggregation, aerosol coalescence, or the formatio
large scale structures in the Universe. With the adven
recently developed advanced detection systems, the stud
large fluctuations in physical observables became acces
in ‘‘small systems’’ such as formed in ultrarelativistic coll
sions of hadrons, leptons, and nuclei, in heavy-ion collisio
at intermediate energies, or in collisions of atomic aggrega
@1#.

In theoretical studies, it is often assumed that fluctuati
are irrelevant. In this spirit, many aggregation processes h
been studied in the mean-field approximation@2#. This prob-
lem was recently revisited@3#. It was shown that, contrary to
the usual belief, fluctuations in the size distribution of t
largest cluster are generally large in the aggregation p
cesses. Large fluctuations in the cluster multiplicity distrib
tion were also reported in the binary fragmentation proc
with the inactivation mechanism@4#.

This paper deals with features of fluctuations of physi
quantities in anN-body,d-dimensional system, withN essen-
tially finite. Moreover, the system is not necessarily at th
modynamic equilibrium. Both these aspects of our appro
are important in many areas of physics where, for exam
small and strongly fluctuating systems are produced in v
lent collision processes. Consequently, these systems
short lived, and the typical time scales are such that stan
methods of equilibrium statistical physics may not be ap
cable.

We are particularly interested in self-similar systems su
as fractal objects or thermodynamic systems at a sec
order phase transition. ‘‘Self-similarity’’ means, in partic
lar, that one is unable to define the characteristic len
;(N* )1/d, whereN* is the characteristic size, which cou
be associated with the disappearance of fluctuations. Our
in this work is to discuss universal scaling laws of fluctu
tions of different observables in self-similar systems. In p
ticular, we shall consider the order-parameter fluctuation
PRE 621063-651X/2000/62~2!/1825~17!/$15.00
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any system, both equilibrium and nonequilibrium ones,
which the second-order critical behavior can be identifi
These considerations will provide an understanding of
relation between the order parameter, the criticality, and
scaling law of fluctuations. The notion ofthe relevant vari-
able ~the relevant observable! for a discussion of critical
behavior in finite systems will appear from this discussio

The paper is organized as follows. In Sec. II, the ord
parameter fluctuations in statistical systems are analy
and the relation with the finite-size scaling analysis and
Widom’s hypothesis is developed in details@5# ~Sec. II B!.
The generic features of the tail of the scaling function
addressed in Sec. II C. In Secs. II E – II H, the generaliz
scaling of observable quantities , theD scaling, is discussed
and the reasons for the deviations from the limiting ca
D51 and 1/2 are presented.

Sections III–VI are devoted to the detailed discussion
several well known generic models, using the results a
methods of analysis proposed in Sec. II. In Sec. III, the n
critical fragmentation model is discussed which exhibits
power-law cluster size distribution. Results obtained in
Potts model are discussed in Sec. IV. Section V is devote
a discussion of the reversible aggregation, as modeled by
percolation model. Both realistic three-dimensional bo
percolation and mean-field percolation on the Bethe lat
are considered. Irreversible aggregation and the fluctua
properties in the Smoluchowski kinetic model are discus
in Sec. VI. Finally, the main conclusions are given in Se
VII @6,7#.

II. ORDER-PARAMETER FLUCTUATIONS

A. Correlation function argument

Let us callm the observable under investigation. For t
reason of a presentation, we shall restrict ourselves to
case wherem is a scalar quantity and takes real positi
values.~In fact, this restriction is not a true limitation and
generally, one can considerumu2 as well.! Fluctuations of the
order parameter in thermodynamic systems are expecte
have different properties at the critical point and outside o
Far from the critical behavior, the correlations are sh
ranged. Fluctuations of the extensive order parameterm in
this case resemble the ergodic Brownian motion of this v
1825 ©2000 The American Physical Society
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1826 PRE 62ROBERT BOTET AND MAREK PŁOSZAJCZAK
able in its proper configuration space. Consequently,Š(m
2^m&)2

‹/^m& is roughly a constant, meaning it is indepe
dent of the number of constituents in the sample. Convers
close to the second-order transition point, the fluctuations
correlated throughout the whole system and the correla
length j for the infinite system becomes infinite as well.
such a system let us now define the deviatione of the driven
parameter from its critical value@e.g., in thermodynamica
systemse5(T2Tc)/Tc , whereTc is the critical tempera-
ture#, such thate,0 ande.0 in the ordered and disordere
phases, respectively. Moreover, let us define the local va
of the order parameterm and the fieldh conjugated tom. The
following isotropic correlation function is introduced:

sn~e,h,rW1 , . . . rWn21!5^m~rWo!m~rWo2rW1!•••m~rWo2rWn21!&.
~1!

Notation ^•••& in the above expression denotes the therm
dynamic average at a givene and over the positionrWo . For
vanishinge, all the length scales disappear and the corre
tion lengthj diverges algebraically as

j;e2n,

with a universal exponentn, which depends only on the
universality class of the transition. Moreover, the scaling
scription of second-order critical phenomena leads to
fundamental postulate that the thermodynamic potentiaG
verifies

G~le,l22a2bh!;l22aG~e,h!, ~2!

and this defines the two universal exponentsa andb. Let us
now go back to the correlation functionsn defined in Eq.
~1!. The integral of sn over the n21 space variables
rW1 , . . . ,rWn21, is equal to thenth derivative ofG with respect
to the fieldh. Hence, to be consistent with Eq.~2!, we must
obtain the scaling relation

sn~le,l22a2bh,l2nrW1 , . . . ,l2nrWn21!

;lnbsn~e,h,rW1 , . . . ,rWn21!. ~3!

For n51, we recover the well-known scaling behavior of t
averaged order parameter with the critical exponentb. For
any integern, setting all the space variables equal to 0W in the
formula ~3! leads to the scaling of powers of the local ord
parameter :

^mn&~le,l22a2bh!;lnb^mn&~e,h!. ~4!

As a consequence, if we leth50 andl51/e, one finds that
the quantitieŝmn&/^m&n are independent ofe, when close to
the transition. This means, by the finite-size analysis, t
this ratio is independent of the sizeN of the system at the
transition point.

Let us now introduce the cumulantskq from the general
formula for the moment expansion of the order-parame
probability distributionP@m#:

lnS (
m50

`

P@m#exp~mu!D 5 (
q50

`
uq

q!
kq . ~5!
ly,
re
n

e

-

-

-
e

r

at

r

Expanding the left-hand side of the above expression in
power series inu, and comparing corresponding powers
the left- and right hand-sides, one derives the relations
tween ordinary moments ofP@m# and the cumulant mo-
ments :

k15^m&,

k25^m2&2^m&2,

k35^m3&23^m2&^m&12^m&3,
~6!

k45^m4&24^m3&^m&23^m2&2

112̂ m2&^m&226^m&4, . . .

In the case of a second-order phase transition, as a resu
scaling relations~4!, all cumulant moments scale like

kq;^m&q.

Consequently, the generating function of them-probability
distribution @Eq. ~5!# is only a function of the reduced vari
able ^m&u. This can be written as

P@m#5
1

2pE0

2p

Ĝ~ iu !exp~2 imu!du, ~7!

whereĜ is the generating function :

Ĝ~u!5 (
m50

`

P@m#exp~mu!.

In the case when̂m& tends to` but m/^m& remains finite,
we can rewrite formula~7! in a more compact form,

^m&P@m#5FS m

^m& D , ~8!

which is valid at the critical point.F is the scaling function
of the single reduced variablem/^m&. As stated above, we
can express this scaling as

(
m50

`

PN@m#exp~mu!5C~^m&u!, ~9!

which is the necessary and sufficient condition for the ap
cability of scaling law~8! @8#. This result also implies that if
this scaling occurs for fluctuations of the parameterm, then it
holds also for fluctuations of any power

X5Namb

of this parameter as well. This is a consequence of Eq.~4!
and

PN@X#dX5PN@m#dm.

Up to now, we did not specify reasons for changing^m&.
Indeed, under the condition that the scaling framework of
second-order phase transition holds, the scaling relation~8!
is valid independently of the explicit reasons for changi
^m&, and independently of any phenomenological details
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other words, an explicit relation between the sizeN of the
system and̂m& need not be known at this stage. In Sec. I
we shall show how to derive supplementary informati
aboutF when the system is at a pseudocritical point.

B. Widom’s hypothesis and the finite-size scaling argument

The hypothesis of Widom states that, in the thermo
namic limit of a system at thermal equilibrium, the free e
ergy density close to the critical point scales as@5#

f ~lbh,le!;l22a f ~h,e!, ~10!

where a, and b are the usual critical exponents,h is the
intensive order parameter, andl is the scale parameter. Eve
though finite systems do not exhibit critical behavior, th
properties may nevertheless resemble those of infinite
tems if the correlation lengthj is larger than or comparabl
to the typical lengthL of the system. In this case, one spea
about the pseudocritical point in a finite system at a dista

e;cN21/nd ~11!

from the true critical point@9#. The quantityN in Eq. ~11! is
the size of thed-dimensional system, andc is some dimen-
sionless constant which can be either positive or negat
This constantc is negative if a maximum of the finite-siz
susceptibility or of any other divergent macroscopic quan
in the thermodynamic limit lies in an ordered phase, whilc
is positive if this maximum is in a disordered phase. One
then derive the finite-size scaling of the total free energy

F~h,e,N!5N f~h,e!

at the pseudocritical point

Fc~h,N!; f ~hNb/(22a)!. ~12!

In deriving Eq.~12!, we used the hyperscaling relation

22a5nd.

The canonical probability density of the order parame
PN@h# is given by@10#

PN@h#5
1

ZN
exp@2bTF~h,e,N!#, ~13!

where the coefficientbT([1/T) is independent ofh (T is
the temperature of the system!. Using Eq. ~13!, one may
calculate the most probable value of the order parame
which is the solution to the equation

]PN@h#

]h
50,

as well as the average value of the order parameter and
partition function

ZN;N2b/(22a);^h&;h* . ~14!

h* in Eq. ~14! denotes the most probable value of the ord
parameter. The average value of the order parameter
ishes for large values ofN, since bothb and 22a52b
-
-

r
s-

s
e

e.

y

n

r

r,

the

r
n-

1g are positive. The probability densityPN@h# then obeys
the scaling law, which is formally identical to Eq.~8!,

^h&PN@h#5FS h

^h& D[F~z!, ~15!

where, in addition,

F~z!;exp@2bTf ~az,c!#. ~16!

In the above formula, we have omitted the temperatu
dependent multiplicative factor which can be determined
the normalization ofPN@h#. Coefficientsa andc may both
depend onbT . We can then rewrite scaling~15! in a stan-
dard form for the extensive order parameterm5Nh,

^m&PN@m#5F~z(1)!, ~17!

with the scaling variablez(1) defined by

z(1)5
m2m*

^m&
. ~18!

m* denotes the most probable value of the extensive o
parameter. We call Eqs.~17! and ~18! the first-scaling law.
The scaling domain is defined by this asymptotic behavio
PN@m# whenm→` and^m&→`, butz(1) has a finite value.
The normalization of the probability distributionPN@h# and
the definition of the average value ofm provide the two
constraints

limE
2m* /^m&

`

F~z(1)!dz(1)51,

limE
2m* /^m&

`

z(1)F~z(1)!dz(1)50.

The first-scaling law@Eq. ~15!# is a consequence of the sel
similarity of the statistical system. Self-similarity here mea
that the fluctuations of thereducedorder parameterh/^h& at
different scales characterized by different values of the
tensive order parameter^h&, haveidentical properties. This
is a qualitative explanation for this scaling.

The logarithm of scaling function~16! corresponds to the
noncritical free energy density at the renormalized dista
e5c from the critical point. If it happens that the order p
rameter is related to the number of fragments, as in
fragmentation-inactivation-binary~FIB! process @11,12#,
then Eq.~15! can be written in an equivalent form to Koba
Nielsen-Olesen~KNO! scaling@13#, proposed some time ag
as an ultimate symmetry of theS matrix in relativistic field
theory @14# . The multiplicity distribution of produced par
ticles has been intensely studied in strong interaction ph
ics, where the simple behavior of much of the data on
hadron-multiplicity distribution seems to point to some un
versality which is independent of the particular dynamic
process.

If, instead of a real positive scalar, the parameter un
investigation is a vector of dimensionalityn, mW
5@m1 , . . . ,mn#, then the first-scaling law@Eqs. ~17! and
~18!# takes a more general form :
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^umW u&nPN@mW #5F~zW (1)!, ~19!

with

zW (1)5
mW 2mW *

^umW u&
. ~20!

The scaling limit in Eq.~19! is defined by the asymptoti
behavior ofPN@mW # when mi→` ( i 51, . . . ,N) and ^umW u&
→`, but zi (1) ( i 51, . . . ,N) have finite values.

C. Tail of the scaling function

The scaling functionF introduced in the first-scaling law
~17! has some typical features which are reminiscent o
non-Gaussian critical distribution of the order parameter
this section, we are interested in the behavior of the sca
function for large values of the reduced parameterm/^m&, so
we have to study the system subject to a small fieldh con-
jugated to the order parameter. This breaks the symmetr
the distribution by shiftingm and ^m& toward larger values
More precisely, let us write the probability of obtaining th
valueh of an intensive order parameter at a distancee from
the critical point as

PN@h,e,h#5PN@h,e,0#exp~bThNh!. ~21!

up to now, we have studied the behavior ofPN@h,e,0# for
which the first-scaling law holds whene50 ~the critical
point! or e5cN21/nd ~the pseudocritical point!. Substituting
Eq. ~15! and using Eq.~14!, we obtain

PN@h,0,h#5Nb/(22a) exp@ ln F~hNb/(22a)!1bThNh#.

The most probable value

h* ;h1/d

of the order parameter, in the limit of a small external fieldh,
is given by the maximum of the term in the exponenti
Since

d5
22a2b

b
,

we obtain

ln F~h1/dN1/(d11)!;2bTh1/dNh. ~22!

Relation~22! is valid for any value ofN if and only if

F~z!;exp~2azd11![exp~2azn̂ !, ~23!

with the coefficienta which depends on the temperatu
regularly.

One can express this relation in a different way. T
anomalous dimension for an extensive quantitym5Nh can
be defined as

g5 lim
N→`

gN5 lim
N→`

d

d ln N
~ ln^m&!. ~24!
a
n
g

of

.

e

One can see that due to both Eq.~14! and the Rushbrooke
relation between critical exponents,

a12b1g52,

the anomalous dimension is

g512
b

g12b
. ~25!

Since botha andb are positive,g is contained between 1/2
and 1 for equilibrium systems at the critical point of th
second-order phase transition . Because of these additi
relations between critical exponents, one may note that
behavior of a tail of scaling function~23! is governed by the
exponent

n̂5
1

12g
5d115

22a

b
, ~26!

which is always larger than 2. The limiting casen̂52, i.e.,
the Gaussian tail@see Eq.~23!#, corresponds in this frame
work to the noncritical system.

Finally, let us mention in passing that whenever clus
size can be defined in a system exhibiting the second-o
phase transition, as e.g., in the cases of percolation, the I
model, or the Fisher droplet model, the exponentt of the
power-law cluster-size distribution

ns;s2t

satisfies additional relations@15#:

g1b5
1

s
,

g12b5
t21

s
,

which yields

g5
1

t21
~27!

and

n̂5
t21

t22
~28!

Sinceg at the second-order equilibrium phase transition
contained between 1/2 and 1, the allowed values of expon
t at the critical point are 2,t,3, and the normalized
cluster-size distribution

(
s51

N

sns5N

is

ns5Ns2t.

Consequently, whenevert is defined, we obtain whether th
studied equilibrium system is at a second-order phase tra
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tion and whether the considered extensive quantity can
identified with the order parameter of this transition.

Let us define, for example, the multiplicity as the to
number of clusters.~The definition of clusters also include
the monomers.! The cluster multiplicity cannot be an orde
parameter of these kind of equilibrium phase transitions
cause with 2,t,3,

(
s51

N

ns;N,

which means that the average multiplicity scales as the t
mass of the system at the transition point, i.e.,g51. On the
other hand, the size of the largest cluster is a natural o
parameter for these kinds of phase transitions. In this cas
have

^smax&;N1/(t21), ~29!

which is a direct consequence of

(
s5^smax&

N

ns;1,

i.e., that there is in the average only one largest clus
Moreover, relation~27! derived for the second-order critica
phenomenon is correctly recovered. One should empha
that relation~29! is very general, and its derivation does n
depend on the assumption of thermodynamic equilibrium
other words, relation~29! between the anomalous dimensio
and the exponentt, is also valid for the off-equilibrium
second-order phase transitions. We shall return to this p
in Sec. VI.

The cluster multiplicity could be the order parame
whenevert,2, though this cannot occur in equilibrium
phase transitions. Note that this argument, to sort am
different candidates for the order parameter, requires on
knowledge oft, i.e., the complete information about th
critical process is superfluous. We shall use this argum
later in the case of percolation model and Smoluchow
model of gelation. Finally, we shall see below in the Mekji
model that we may have a power-law size distribution w
t,2, in the absence of a phase transition governed by
multiplicity, as the order parameter.

D. Landau-Ginzburg theory of phase transitions

Let us consider the Landau-Ginzburg~LG! theory as an
exactly solvable example of a second-order phase transi
The homogeneous LG free energy density is

f ~h!5eh21bh41•••,

whereb is a positive constant. The most probable value
the order parameterh in the disordered phase (e.0) is im-
plicitly set to 0. It is more convenient to work with the ex
tensive order parameterm5Nh when dealing with finite
systems. The probability of a statem for a givene is @10#

PN@m#5
1

ZN
expF2bTS e

m2

N
1b

m4

N3
2••• D G . ~30!
e

l

-

al

er
we

r.

e,
t
n

nt

r

g
a

nt
i

e

n.

f

ZN is defined by the normalization ofPN@m#. To remain
consistent with other sections of this paper and without l
of generality, we now consider the case wherem is positive.
We will admit thatN is so large that the first two terms in th
free energy expansion are sufficient to study the phase t
sition. At the critical pointe50, the leading term of the free
energy density is proportional tom4. Standard integrations
yield the values for the partition functionZN and the average
value of the order parameter^m&, both proportional toN3/4.
Introducing there into Eq.~30!, one finds

^m&PN@m#5
4Ap

G2@1/4#
expF2

p2

G4@1/4#
S m

^m& D
4G , ~31!

which has the form of Eq.~8!. Note that the scaling function
F(z);exp(2z4) decreases very quickly as one moves aw
from the most probable value. This result is consistent w
the analysis done in Sec. II C.

The pseudocritical point is the value ofe for which the
finite-size thermal susceptibility reaches its maximum. W
ing that the inverse of this susceptibility is the second deri
tive of the free energy with respect to the order parame
one finds

e526
G@3/4#

G@1/4# S b

bTND 1/2

. ~32!

This result is correct at first order inN21/2. Replacinge in
Eq. ~30! by Eq. ~32! leads to the scaling form ofPN@m#:

^m&PN@m#5A expF2
G@3/4#2

G@1/4#2
„~m/^m&!426~m/^m&!2

…G ,

~33!

where A denotes a normalization constant. We recover
deed the first-scaling law, with the exponential ta
exp(2az4), for the large arguments.

Outside of the critical point in the disordered phasee
.0), the leading term of the free energy is proportional
m2, and the probability distributionPN@m# is essentially
Gaussian. Deriving, as previously, the values ofZN and^m&
~both behave likeN1/2 in this case!, we obtain the scaling
form

^m&PN@m#5
4

p
expF2

4

p S m

^m& D
2G , ~34!

which is still under the form of Eq.~15! but with a Gaussian
scaling function which is reminiscent of the Gaussian flu
tuations.

Finally, in the low temperature regime (e,0), the most
probable value of the order parameter is positive:

m* 5A2
e

2b
N.

DevelopingPN@m# in Eq. ~30! around this point leads to th
expression
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m* 1/2PN@m#.S 22
e3

bp2D 1/4

expS eA22
e

b

~m2m* !2

m*
D ,

~35!

which is no longer in the standard form@Eq. ~15!#. In this
case, the average value of the order parameter^m& is of the
same order of magnitude as its most probable valuem* , and
one can rewrite Eq.~35! in the scaling form

^m&1/2PN@m#;expS 2a
~m2m* !2

^m& D , ~36!

wherea is a positive constant. This particular scaling for
will be discussed later in detail.

E. D-scaling law

One may ask what happens if the observable quantit
not the order parameter but anN-dependent function of the
order parameter like

m5Na12Na2h, ~37!

where

a1.g1a221. ~38!

The latter condition ensures that the order parameter doe
determine the leading behavior ofm. For largeN,

^m&;Na1.

Writing Eq. ~17! with m instead ofh, and taking into ac-
count that

PN@h#dh5PN@m#dm,

one finds the generalized law:

^m&DPN@m#5F~z(D)![FS m2m*

^m&D D , ~39!

where

D5
g1a221

a1
,1.

This generalized law will be called intheD-scaling lawwhat
follows. The scaling functionF(z(D)) depends only on one
scaled variable:

z(D)5
m2m*

^m&D
. ~40!

The normalization of the probability distributionPN@m# and
the definition of the average value ofm provide two con-
straints

limE
2^m&12D

`

F~zD!dzD51,

limE
2^m&12D

`

zDF~zD!dzD50,
is

ot

which are consistent withD<1, because the scaling functio
F is positive. The scaling functionF(z(D)) in Eq. ~39! has a
form identical toF(z(1)), except for the inversion of the
abscissa axis. In particular, its tail for largez(D) has the same
form

F~z(D)!;exp~2z(D)
n̂ !5exp~2z(D)

1/(12g)! ~41!

as given in Eq.~23!. One should mention in passing that i

a1,g1a221

in Eq. ~37!, then

^m&;Na2^h&

andD51, following the remark of Sec. II A.
According to Eq.~16!, the logarithm of scaling function

F(z(D)),

ln F~z(D)!52bTf ~az(D) ,c!,

is related to thenoncritical free energyf, in either ordered
(c.0) or disordered (c,0) phases.

As an important example, we see from Eqs.~37! and~39!
that theD scaling of the extensive variable

m̂5N~12h![Nĥ

can be used to determine the anomalous dimension, sinc
this caseD5g. For this reason,m̂ is a very useful variable in
all phenomenological studies. The importance ofm̂ in the
percolation studies is well established@20#. At the phase
transition,

^Nĥ&;N,

but the finite-size corrections arealgebraic.

F. Off-critical scaling

D51/2, with a nearly Gaussian functionF(z(D)), is a
particular case of aD scaling associated with noncritical sy
tems@16#. This limit,

^m&1/2PN@m#5FS m2m*

^m&1/2 D [F~z(1/2)!, ~42!

which is calledthe second-scaling law, has been found in the
shattering phase of the non-equilibrium FIB process@8# and
in the ‘‘gaseous’’ phase of the equilibrium percolation pr
cess@16#. We should also recall that this form of scalin
function has been seen for a LG model in the lo
temperature regime@see Eq.~36!#.

More generally, let us now suppose that the extens
parameterm is not critical, i.e., either the system is in
critical state but the parameterm is not critical, or the system
is outside the critical region. The value ofm at the equilib-
rium is obtained by minimizing the free energy. The fr
energyF is analytical in the variablem close to its most
probable valuem* :

F;N21~m2m* !2. ~43!
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Using Eq.~43!, one obtains

^m&;m* N,

wherem* is a positive~finite! number which is independen
of N, and

ZN;N1/2;^m&1/2. ~44!

The probability densityPN@m# verifies the second-scalin
law @Eq. ~39!#:

^m&1/2PN@m#5expF2bTm* S m2^m&

^m&1/2 D 2G
[F~z(1/2)!. ~45!

This is a particular case of theD-scaling law (D51/2) and
the scaling function is now Gaussian@17#. This scaling@Eq.
~42!# holds for^m&;N, but now withexponentialfinite-size
corrections. This is a principal difference from the finite-si
corrections and/or theD scaling. The above arguments app
to any second-order phase transition. In particular, they
not limited to the LG theory of phase transitions@see Eq.
~36!#.

G. Finite-size crossover effects

The discussion of Sec. II F is valid for systems at a criti
~and pseudocritical! point, or far from a critical point in an
ordered phase. Let us suppose now that the system is
pared such that

^m&;Ng8, g8,1

andg8 is not an anomalous exponent. Here we would like
study how the finite system evolves when the control para
etere tends slowly to 0, namely,

e;N2g822.

We shall address this question in the mean-field approxi
tion using the LG theory. Let us first write down the avera
value

^m&5

E
0

`

m exp~2em2/N2bm4/N3!dm

E
0

`

exp~2em2/N2bm4/N3!dm

. ~46!

Hence, writing this definition with the new driving paramet
e85eN1/2 and using the rescaled variablem85m/N3/4, the
average value ofm can be put into the form

^m&5N3/4c~eN1/2!,

while its most probable value is

m* 5A2
e

2b
N.

If the exponentg8 is not too small, i.e., ife does not vanish
too quickly, the two quantities:̂m& and m* have to coin-
re

l

re-

o
-

a-
e

cide. This is because the exponential weight term in Eq.~46!
diverges as;exp(e2N/4b) when

eN1/2;N(4g823)/2 ~47!

becomes large with increasingN. As a consequence, th
common behavior of̂m& andm* is ;Ng8. The scaling form
@Eq. ~35!# in this case is

^m&DPN@m#;expS 2c
~m2m* !2

^m&2D D , ~48!

with c a positive constant, and

D5
3

2
g821.

Here we recover the two cases previously discussed in
II B. When g851, i.e., whene5const, then this is the
second-scaling law. Wheng853/4, then this is the first-
scaling law, since the finite system is still in the critical r
gion (g85g). In between these two limiting cases,D scaling
holds, with 1/2,D,1. Note also that the scaling function i
Eq. ~48! has a Gaussian form, even forD.1/2, which is
quite different from the case@Eq. ~23!# of Sec. II C.

H. Summary: panorama of the D-scaling
for thermodynamic systems

Several features of finite systems are important if o
wants to study either the criticality of the corresponding
finite system or the distance from the critical point. Here o
should point out theD scaling~this includes the first-scaling
law D51 as well!, the form of the tail of the scaling function
F, and the anomalous exponent. All these features
closely related to the properties of the scaling function wh
characterizes the finite system at the equilibrium. If the in
nite system experiences a second-order phase transition
if m is the scalar order parameter or the shifted scalar o
parameter@Eq. ~37!#, then:

At the critical point, the corresponding finite system e
hibits the first-scaling law ifm is an order parameter, or th
D-scaling law ifm is a shifted order parameter. In both cas
the tail of the scaling function;exp(2zn̂) is characterized by
a large value of the exponentn̂51/(12g).2, with g being
the anomalous exponent, i.e., the exponent characterizing
decrease of the extensive order parameter with the sizeN of
the finite system. The values ofD are restricted to 0,D
<1, and the anomalous exponentg takes values in betwee
1/2 and 1 for a second-order at-equilibrium phase transit

Far from the critical point, finite system exhibits th
second-scaling law with the Gaussian tail of the scaling fu
tion.

Close to the critical point, whene→0 if N→`, the finite
system exhibits a crossover phenomenon from the fi
scaling law to the second-scaling law by the continuo
D-scaling law with a Gaussian shape of the scaling functi
One should remember here that the precise dependenc
e(N) is irrelevant provided thatg,g8,1, i.e., that the con-
ditional point does not approach 0 move quickly than t
pseudocritical point. This last remark is important in ph
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nomenological applications of scaling theory to situatio
where theN dependence of the conditional point is govern
by the external control parameter, with an unknown relat
to the system size. Last but not least, if the parameterm is
not singular at the transition, then all properties of its pro
ability distribution are the same as in the case of noncrit
systems.

In phenomenological applications, it is often difficult
obtain the probability distribution with sufficient accurac
for values of scaling variable which are far from the mo
probable value, since this corresponds to very small pr
abilities. It is then more judicious to work with moments
the distribution instead of with the distribution itself. Fo
example, when the system undergoesD scaling, the properly
normalized cumulant moments@Eq. ~6!#

kq

~k1!qD
;const ~49!

are independent of the size of the system. An important c
sequence is that the generating function of them distribution,
Ĝ(u)5(P@m#exp(mu), is a function of the reduced variabl
^m&Du only, generalizing a remark of Sec. II A for the ge
erating function in the first-scaling case.

III. A NONCRITICAL MODEL: MEKJIAN MODEL

The Mekjian fragmentation model is an equilibriu
model which describes the decomposition of system into
ensemble of fragments. The statistical weights for every c
figuration of fragments are given explicitly in this model.
ns denotes the number of fragments of sizes with the size
conservation,N5(ssns , the weight function for the con
figuration$ns% is given by@18#:

WN~$ns%,x!5)
s51

N
sxns

ns!s
ns~x1s21!

,

with x a real control parameter. Many exact results can
obtained in this simple model. Here we are interested in
multiplicity distribution PN@m#, where the fragment multi-
plicity is m5(sns . We can show that@19#:

PN@m#5xmuSN
(m)u

G~x!

G~N1x!
,

where uSN
(m)u are signless Stirling numbers of the first kin

Then knowing the generating function for these Stirli
numbers,

(
m50

`

PN@m#emu5
G~x!G~xeu1N!

G~xeu!G~x1N!
, ~50!

one obtains the average value ofm:

^m&5x(
s51

N
1

x1s
5x ln N1~x21!g2c~x!1O~1/N!.

Moreover, making an asymptotic development of Eq.~50!
for largeN and smalls, one obtains
s

n

-
l

t
b-

n-

n
n-

e
e

(
m50

`

PN@m#emu.Nx(eu21). ~51!

The latter approximation is known to be correct for fini
values ofu @20#. This means thatPN@m# is approximately a
Poissonm distribution with parameterx ln N. In the leading
order we then havêm&.m* . Inverting Eq.~50! to obtain
PN@m# as a Fourier transform, and makingN large, yields
the scaling formula

^m&1/2PN@m#5
1

Ap
expF2

~m2^m&!2

2^m&

2~x21!@g2c~x!#
m2^m&

^m&
1OS 1

^m& D G .
~52!

This is nothing else but the second-scaling law~42! for the
multiplicity distribution whenN becomes large enough, be
causê m&.m* . When^m& is large enough, the second ter
in Eq. ~52! is always very small compared to the first one f
a finite x @21#.

Different fixed values of the control parameterx mimic
different situations of the fragmentation. Forx!1, one has
the situation of a fused system. Forx;0.5, the fragmenta-
tion resembles the evaporation of light fragments. The lim
x@1 corresponds to a complete dissociation of the mass
light fragments~monomers!. Each of these situations is cha
acterized by a different fragment-size distribution. The ca
x51 is particular in this model, since it leads to a power-la
size distribution@Eq. ~27!# with an exponentt51. Follow-
ing discussion in Sec. II C, the cluster multiplicity could b
the order parameter. On the other hand, the second-o
equilibrium phase transition is associated with 2,t,3,
which implies that the equilibrium model of Mekjian is
noncritical model. Indeed, that is what can also be seen in
cluster-multiplicity scaling law@Eq.~52!#. Hence the power-
law cluster-size distribution alone does not guarantee that
system exhibits a critical behavior of any kind@12#.

IV. EXAMPLE: POTTS MODEL

A generalization of the magnetic Ising spin model w
proposed by Domb@22#, and studied in details by Potts@23#.
In this model, one considers a system ofN sites in
d-dimensional space. The magnetic state of each sitei is
characterized by a quantity called a spin~say,si). Each spin
is of the same constant modulus, and points to one of thq
equally spaced directions, labeled from 0 toq21. The fer-
romagnetic short-ranged Potts Hamiltonian is then

Hq52J(
i , j

d~si ,sj !, ~53!

whered is the Kronecker symbol, andJ is the positive cou-
pling constant. The sum is restricted to the nearest-neigh
pairs. The site percolation corresponds to theq51 Potts
model, and the ferromagnetic Ising model to theq52 case.
This model is one of the simplest nontrivial critical therm
dynamicN-body systems, and many exact or accurate res
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are known for standard values of (d,q). In particular, there
exists a valueqc(d) @for example,qc(2)54#, for which,
when q<qc(d), such an interacting system experiences
second-order phase transition at a finite critical tempera
@for example, bcJ5 ln(11Aq) at d52#, while for q
.qc(d) the transition is a first-order one.

Here let us consider the case of a second order ph
transition. All the scalings described above should hold.
first have to define the order parameter for the system. If,
a given configuration of the system, we callNk the number
of sites in the statek, wherek varies from 0 toq21, then the
order parameterm is given by

m5
q~Nmax/N!21

q21
. ~54!

Nmax in Eq. ~54! is defined as the maximum of allNk’s.
Figure 1 shows them distribution at the critical temperatur
in the (d,q)5(2,3) case, in the first-scaling form. The sca
ing is recovered very precisely, even for such small sys
sizes such as 64364. Note also the complicated shape of t
scaling curve@24,25#.

We can discuss this scaling here in the slightly differe
context of correlated variables@26#. Let us consider, for sim-
plicity, the Ising model@i.e., (d,q)5(d,2) case#. The exten-
sive order parameter is just the sum ofN correlatedvari-
ables:M5(si . When the system is disordered, the spins
correlated at a short distancej (j/N→0 at the thermody-
namic limit!, and their mean value is zero. The central lim
theorem tells then that the distribution of the random varia
M /AN is Gaussian whenN becomes large, with zero mea
and finite variance. This can also be expressed by
asymptotic law

^M2&P@M2#5A ^M2&

2pM2
expS 2

M2

2^M2&
D , ~55!

FIG. 1. Scaledm distribution for the three-state Potts mod
(q53) on a two-dimensionalL3L square lattice, at a critical tem
perature. Three sizes are shown:L532 ~stars!, L548 ~circles!, and
L564 ~squares!. The thermalization is achieved after 43106

Monte Carlo steps, starting from the initial disordered system.
a
re

se
e
r

m

t

e

e

e

which is correct in the first-scaling form, with a Gaussi
shape and the trivial anomalous exponentg51/2 @see Eq.
~34!#.

On the other hand, if the system is in the ordered pha
the average value of the individual spins is finite, say^si&
5m, and the same reasoning can be used for the vari
(M2Nm)/AN. This variable is of zero mean and finite var
ance, and is short range correlated. Thus, its fluctuations
Gaussian, and can be put in a second-scaling form:

^M &1/2P@M #5
1

A2p
expS 2

~M2^M &!2

2^M & D . ~56!

Of course, the most interesting case corresponds to the c
cal temperature. At this point, the spins are correla
throughout the system, and the magnetization cannot
evaluated by the central limit theorem. Instead, we can
mark that the spin-correlations are a power law,

^srWo
srW1rWo

&;
1

r d221h
,

with h a critical exponent whose value should be betwe
22d and 2. Looking at the total magnetization as the sum
N correlated variables, one obtains

^M2&5(
i , j

^sisj&5(
i

^si
2&1NE

1

L

^s0WsrW&r
d21dr, ~57!

with L;N1/d the typical macroscopic length of the system
This means that

^M2&;N11[(22h)/d]

as the leading behavior. This nontrivial anomalous expon

g5
1

2
1

22h

2d
,

between 1/2 and 1, is here the sign of the criticality. T
first-scaling law should hold in this case, as for the (d,q)
5(2,3) Potts model discussed above, but the scaling fu
tion should be different since it depends on the precise fo
of the interactions. Only the tail can be linked to anoth
critical exponent, as it has been written in Sec. II C.

V. REVERSIBLE AGGREGATION
PROCESS-PERCOLATION MODEL

The percolation model can be defined as follows. In a b
~a part of the regular lattice!, each site corresponds to
monomer, and a proportionp of active bonds is set randoml
between sites~the bond percolation model!. Such a network
results in a distribution of clusters defined as an ensembl
occupied sites connected by active bonds. For a defi
value of p, say pcr , a giant cluster almost surely spans t
whole box. The sol-gel transition corresponds to the appe
ance of ‘‘infinite’’ cluster~gel! at a finite time. Infinite in this
context means that the gel contains a finite fraction of
total mass of the system. The sol-gel transition in finite s
tems can be suitably studied using moments of the num
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size distributionns , i.e., the number of finite clusters of
sizes,

Mk85 (
s,smax

skns , ~58!

where the summation is performed over all clusters with
exception of the largest clusters[smax. The superscript8
recalls this constraint on summation in Eq.~58!. The mass of
the largest cluster is thenN2M18 , with

N5 (
all s

sns .

In infinite systems, one works with the normalized mome
of the concentration-size distributioncs , i.e., the concentra
tion of clusters of sizes,

mk85(
s

skcs , ~59!

where the summation in Eq.~59! runs over all finite clusters
Generally, concentrations are normalized such that

cs5 lim
N→`

ns

N
.

The probability that a monomer belongs to the infinite clus
~the gel! is equal to 12m18 , with

mk85 lim
N→`

Mk8

N
.

For example, in the thermodynamic limit when the size
the box becomes infinite, a finite fraction of the total numb
of vertices belongs to this cluster. Therefore, we obtain
resultsm1851 for p,pcr andm18,1 for p.pcr . Moreover,
m18 is a decreasing function of the occupation probabili
This typical behavior is commonly~and incorrectly! called
‘‘the failure of mass conservation,’’ but, as stated before,m18
is more simply the probability for a vertex to belong to som
finite cluster.

A. Percolation on the Bethe lattice

The bond percolation on the Bethe lattice with a coor
nation numberẑ, has been solved by Fisher and Essam@27#.
Here the main result we are interested in, is t
concentration-size distribution@27#

cs5 ẑ
@~ ẑ21!s#!

@~ ẑ22!s12#!s!
ps21~12p!( ẑ22)s1 ẑ,

and the first normalized moment

m185S 12p

12p*
D 2ẑ22

,

with p* being the smallest solution of the equation:
e

s

r

f
r
e

.

-

e

p* ~12p* ! ẑ225p~12p! ẑ22.

Let us define

pcr[
1

ẑ21
.

For p,pcr , the only solution of the above equation isp*
5p, but whenp is larger thanpcr , then there is a smalle
nontrivial solution which behaves aspcr2up2pcru nearpcr .
Above this threshold, the momentm18 is smaller than 1, and
behaves approximately as

m18.12
2~p2pcr!

12pcr
.

The marginal caseẑ52 corresponds to the linear-chain cas
Coming back to the concentrations, we can see that

large values of the sizes, the following Stirling approxima-
tion holds:

cs;s25/2exp~2as!,

with a given by

a5 lnF p

pcr
S 12p

12pcr
D ẑ22G .

For this model, a power-law behavior of the concentratio
is seen at the thresholdpcr , namely,cs;s2t, with t55/2.
Outside this threshold, an exponential cutoff is alwa
present@28#. This sort of critical behavior at an equilibrium
is analogous to the thermal critical phenomena, and in p
ticular, there exist two independent critical exponents,
example,t ands. The latter one is the exponent of the me
cluster-size divergence. Together, the two critical expone
t55/2 ands51 completely describe the critical features.

This singular behavior is due to the appearance of a g
cluster, the so-called percolation cluster, at the transit
point. More precisely, in the infinite system the probabil
for a given site to belong to this infinite cluster is zero belo
the critical thresholdpcr , and positive above it. This prob
ability is nonanalytical at the critical point. Because of th
behavior, the extensive order parameter defined for fin
systems is just the size of the largest clustersmax.

As discussed in Sec. II C, the corresponding finite-s
order parameter scales as

smax;N2/3.

Even though the system experiences a second-order cr
phenomenon, fluctuations of the multiplicity distribution r
main small and the KNO scaling does not hold. Of cour
m08 is not in this case an order parameter sincet.2 even
though there is some irregularity in its behavior passing
threshold. This nonanalyticity can be illustrated by an ex
result for the bond percolation on the Bethe lattice. In t
mean-field case, the normalized zeroth-moment is
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m085S 12
ẑ

2
p* D S 12p

12p*
D 2ẑ22

.
ẑ22

2~ ẑ21!
2~ ẑ21!e1S 12

ẑ

2
D ueu,

with e5p2pcr and e!1. There is a jump of the first de
rivative of m08 with respect top: 2 ẑ/2 for p→pcr

2 and (4

23ẑ)/2 for p→pcr
1 .

B. Three-dimensional percolation

As shown by Botetet al. @16#, the multiplicity distribution
for the three-dimensional bond percolation model on the
bic lattice at the infinite-network percolation threshold exh
its a D scaling withD51/2, and hence the fragment mult
plicity is not related to the order parameter in this proce
This is shown in Fig. 2~c! as a typical example of noncritica
parameter scaling. Note that the multiplicity distributions
Fig. 2~c! are plotted in a semi-logarithmic form to sho
clearly the Gaussian behavior~a parabolic shape on the fig
ure!. The proper order parameter for this model is the n
malized mass of the gel phase, i.e., the mass of the lar
cluster divided by the total mass of the systemsmax/N. Dif-
ferent probability distributionsPN@smax/N# for different sys-
tem sizesN can be all compressed into a unique characte
tic function @see Fig. 2~a!#

K smax

N L PNFsmax

N G5FS smax2^smax&

^smax&
D ,

FIG. 2. ~a! The first scaling ofsmax distributions at the percola
tion threshold (p5pcr50.2488) of the three-dimensional bond pe
colation for lattices of different sizes:N5143 ~diamonds!, N5203

~squares!, andN5323 ~circles!. The data correspond to 105 events.
~b! TheD scaling of the distributions ofM185N2smax for the same
conditions as in ~a!. ~c! The second scaling of the multi
plicity distributions plotted on a log-linear scale„i.e.,
log(̂ M0&

1/2P@M0#) vs z(1/2)… for the same conditions as in~a!.
-
-

s.

-
st

-

which is analogous to the KNO scaling function. As an a
plication of the results developed in Sec. II E, Fig. 2~b!
shows theD scaling for the shifted order parameterM185N
2smax. The value ofD ~5 0.8! is consistent with the value
of the anomalous dimension@Eq. ~25!#, g50.8435, for the
accepted values of the critical exponentsb,g in the three-
dimensional percolation@15#. One should also remember th
D has been extracted from a small size (N5143, 203, and
323) percolation network calculations at theinfinite-network
percolation threshold. This explains a small difference
tween the value forD from the scaling analysis, and th
expected valueD5g in the infinite network.

According to the results derived above for the seco
order phase transition, the second scaling should hold out
of the critical point. This is correctly realized with the thre
variablessmax, M18 , andM0 for large or small values of the
probability p. Figure 3 shows such results for the valuep
50.35.

Finally, it is instructive to see how the first scaling
disappearing when the value ofp is slightly shifted away
from its critical value. Fig. 4 illustrates the deviations fro
the first scaling for the values of a parameterp close topcr ,
on both sides ofpcr . Even very close to the critical point
these deviations are quite significant, and can easily be s
in this representation.

VI. IRREVERSIBLE AGGREGATION PROCESS — AN
EXAMPLE OF THE SMOLUCHOWSKI KINETIC MODEL

The irreversible sol-gel transition can be modelled us
the coupled nonlinear differential equations in distributio

FIG. 3. ~a! The second scaling ofsmax distributions above the
percolation threshold (p50.35) of the three-dimensional bond pe
colation for lattices of different sizes:N5143 ~diamonds!, N5203

~squares!, andN5323 ~circles!. The calculated data correspond
105 events.~b! The second scaling of the distributions ofM185N
2smax for the same conditions as in~a!. ~c! The second scaling o
the multiplicity distributions plotted on a log-linear scale„i.e.,
log(̂ M0&

1/2P@M0#) vs z(1/2)… for the same conditions as in~a!.
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cs of clusters of masss per unit volume~the Smoluchowski
equations@29#!:

dcs

dt
5

1

2 (
i 1 j 5s

Ki , j cicj2(
j

Ks, j cscj . ~60!

CoefficientsKi , j represent the probability of aggregation p
unit of time between two clusters of massi and j . The
Smoluchowski equations are derived from the master eq
tion in the mean-field approximation@30#:

^ckcl&5^ck&^cl&.

The time t includes both diffusion and reaction times@31#.
Equations~60! suppose the irreversibility of the aggregatio
i.e., the cluster fragmentation is excluded. One should n
however, that the sum overj in Eq. ~60! does not include the
infinite cluster~gel!, because

cj 5`51/̀ 50.

Experimentally known aggregation kernelsKi j are homo-
geneous functions@32#,

Kai,a j5alKi , j ,

with l being the homogeneity index. Perhaps the simp
physically relevant example of the homogeneous kerne
Ki , j5( i j )m. It has been shown in this case that ifm is larger

FIG. 4. ~a! The smax distributions are plotted in the first-scalin
form for parametersp close to the percolation threshold of th
three-dimensional bond percolation:~a! p50.252, ~b! p5pcr

50.2488, and~c! p50.245. The calculations are done for lattic
of different sizes:N5143 ~diamonds!, and N5323 ~circles!. The
calculated data correspond to 105 events.
a-

,
e,

st
is

than 1/2, then there exists a timetcr (tcr,`) such thatm18
51 for t<tcr but m18,1 for t.tcr @33,34#.

Let us now consider the caseKi , j5( i j )m with m51 in
more details. It was shown in this case@33# that the critical
gelation time is :tcr51, and the solutions for the size dis
tribution of Smoluchowski equations with the monodispe
initial condition are@35#.

cs5
ss22

s!
e2stts21 for t<1,

cs5
ss22

s!

exp~2s!

t
for t.1.

The asymptotic solutions for larges are

cs;
1

tA2p
s25/2exp@2s~ t211 ln t !# for t<1,

cs;
1

tA2p
s25/2 for t.1. ~61!

Note that the power-law behavior (t55/2) is present fort
.1, and not only at the threshold. The whole distribution
finite-size clusters evolves self-similarly, and the appeara
of a power-law behavior is not a sign of a critical behav
but a specific characteristics of the gelation phase.

The solutions for the first normalized moment are

m1851 for t<1,

m185
1

t
for t.1.

With those asymptotic forms ofcs , one can calculate the ge
fractions in the infinite system before and after the critic
point:

mG50 for t<1,

mG512
1

t
for t.1.

It has been shown that the gelation is analogous to
dynamical critical phenomenon with@36#:

mG5 lim
N→`

1

N
^smax&

as the order parameter. For one realization,smax corresponds
to the mass of the gel abovetc51.

For finite sizes, one makes the usual assumption that t
exists a characteristic size which diverges at the transit
say

Nc;ut21u21/sN, ~62!

such that for the mass gel in a finite system one has

1

N
^smax&;~ t21! f S N

Nc
D for t>1.
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In particular, at the gelation time one has

^smax&;N12sN;Ng. ~63!

Using formula~29!, which is valid both for equilibrium and
nonequilibrium systems, one can calculate the anomalou
mension. Given the value oft @see Eq.~61!#, one findsg
52/3. HencesN51/3 can be deduced from Eq.~63!. The
average value of the order parameter^smax& increases loga-
rithmically for t,1, and becomes a finite portion of th
system size whent.1.

The illustration of the above discussion is shown in Fi
5 and 6. Figure 5 shows the distribution ofsmax in the first-
scaling variables for systems of different sizes. The res
have been obtained in the Smoluchowski model with
kernel Ki j 5 i j , at the critical timet5tcr51. Fluctuation
properties ofsmax, outside of the critical timet52tcr , are
shown in Fig. 6. The remaining parameters of the Smo
chowski calculations are the same as used in the calcula
shown in Fig. 5. In this case, the data for different syst
sizes collapse into the universal curve in the scaling varia

FIG. 5. The first scaling of thesmax variable in the Smolu-
chowski kinetic model with the kernelKi j 5 i j at the critical time
t5tcr51. The calculations are performed for two system sizesN
5210 ~diamonds! andN5214 ~circles!. Each data set corresponds
105 independent events.

FIG. 6. The second scaling of thesmax variable in the Smolu-
chowski kinetic model with the kernelKi j 5 i j above the critical
time t52tcr52. The calculations are performed for two syste
sizes:N5210 ~diamonds! and N5214 ~circles!. Each data set cor
responds to 105 independent events.
di-

.

ts
e

-
ns

s

with D51/2. One should keep in mind that in both cases,
fragment-size distribution is a power law witht55/2 @see
Eq. ~61!#.

The relation between the form of tail of the scaling fun
tion and the anomalous dimension@Eq. ~26!# was derived
analytically in Sec. II C for equilibrium systems at th
second-order phase transition. For nonequilibrium syste
we do not have an equally rigorous derivation~also see Sec
VI A !. On the other hand, one may expect that the relat
between theN dependence of the average value of the or
parameter and the asymptotic form of the scaling function
the limit N→`, i.e., betweenn̂ and g, is connected to the
asymptotic stability of the limit distributions. Actually, ther
is a very close connection between the renormalization gr
ideas and the limit theorems in the probability theory@37#. If
true, then relation~26! could be valid in a more genera
framework than the one provided by the equilibrium statis
cal mechanics. To check this assertion, in Fig. 7 we show
plot of a logarithm of the scaling functionF(z(1)) ~see Fig.
5! versusz(1)

3 for large values ofz(1) . If relation ~26! is also
valid for the nonequilibrium sol-gel second-order phase tr
sition, thenF(z(1));exp(2z3), and the tail of the scaling
function should be a straight line in Fig. 7. That is indeed
case.

Figures 8 and 9 show theD scaling for the shifted order
parameter variableM185N2smax. Results of the Smolu-
chowski calculations, with the kernelKi j 5 i j , are shown at
t5tcr ~see Fig. 8!, and att52tcr ~see Fig. 9!. One sees tha
theM18 distribution exhibits a qualitative change while goin
from the critical timet5tcr , whereD50.67, tot52tcr for
which D51/2. At t5tcr , the value ofD obtained by super-
imposing differentM18 distributions in the scaling plot@Eq.
~39!#, agrees perfectly with the value of the anomalous
mensiong (52/3).

By comparing Figs. 5 and 6 and 8 and 9, one may also
that the effect of changing the variablesmax→M18 is seen
only at the critical time~compare Figs. 5 and 8! where (D
51)→(D50.67), and is absent above the critical tim
~compare Figs. 6 and 9! whereD(51/2) remains unchanged

Finally, in Fig. 10 we show the size-dependence of

FIG. 7. The plot of the largez(1) tail of a decimal logarithm of
the scaling function, logF(z(1)), againstz(1)

3 for the system sizeN
5212. The calculated data correspond to 105 independent events
The solid line shows the dependenceF(z(1);exp(2z(1)

3 ), which is
expected from the value of the anomalous dimensiong52/3.
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M18 distributions att5tcr , when the distributions are plotte
in the ‘‘wrong’’ variables of the second-scalingD51/2. The
distributions for two system sizes are clearly displace
showing the sensitivity of the scaling analysis and the fail
of the second scaling.

A. Origin of fluctuations and the argument of Van Kampen

V expansion is a systematic expansion of the ma
equations in powers of 1/N @2#. Lushnikov was the first to
express the generating functions as the contour integrals
quantities like the momentsMk8 @38#. Then Van Dongen and
Ernst @39# used anV expansion to calculate these integra
explicitly for the momentsMk8 in some simple cases lik
Ki j 5 i j . For example, the result forM18 can be expressed i
terms of the generating function for thesmax-distribution
PN@smax#, as

FIG. 8. TheD scaling of the distributions of theM18 shifted
order parameter in the Smoluchowski kinetic model with a ker
Ki j 5 i j at the critical timet5tcr51. Two system sizes are consid
ered:N5210 ~diamonds! andN5214 ~circles!. The calculated data
correspond to 105 independent events.

FIG. 9. The second scaling of the distributions ofM18 shifted
order parameter in the Smoluchowski kinetic model with the ker
Ki j 5 i j above the critical time, att52tcr . Two system sizes are
considered:N5210 ~diamonds! and N5214 ~circles!. The calcu-
lated data correspond to 105 independent events.
,
e

er

or

(
smax

PN@smax#e
smaxu5

N!

2ip
e2Nu R dz

zN11

3expF (
s51

N
cs

Ns21
es(N2s)/(2N)~ze2u!sG

Then using then the identity,

]n

]un FexpS (
s

ase
suD G

5(
n!

1!a1a1! •••n! anan!

3F(
s

ass
1esuGa1

•••F(
s

ass
nesuGan

3expS (
s

ase
suD ,

where the sum runs over different sets$a1 , . . . ,an% with the
constraint :a11•••1an5n, and the particular result writ-
ten down by Van Dongen and Ernst for theKi j 5 i j -case
@39#,

expF (
s51

N
cs

Ns21
expFs~N2s!

2N GzsG
5(

s51

N
zs

s!
expF2

1

2
st

12s

N G1O~1/N!,

we can find

(
smax

PN@smax#exp~smaxu!5expFNS (
k51

` mk8~2u!k

k!
1uD G .

~64!

FIG. 10. The distributions of theM18 shifted order parameter in
the Smoluchowski kinetic model with kernelKi j 5 i j , at the critical
time t5tcr51, are plotted in the scaling variables of second sc
ing. Two system sizes are considered:N5210 ~diamonds! and N
5214 ~circles!. The calculated data correspond to 105 independent
events. The failure of the second scaling is clearly visible.
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Having theV expansion of the generating function of th
smax distribution, we can make a conclusion about scaling
the gelation point. The momentsmk8 of the size distribution
for infinite systems are known to diverge near the gelat
time @40# as

mk8;ut21u322k.

For finite systems, usingsN51/3, one obtains

mk8;ut21u22k13f k~Nut21u3!;N(2k23)/3 ~65!

at the gelation time. We have then found the asympto
result

Nmk8.ak^smax&
k, ~66!

where ak’s are some positive constants. Inserting Eq.~66!
into Eq. ~64!, one can show that the generating function
smax is the function of a single variablêsmax&u, which is a
sufficient condition for the validity of the first-scaling law
@Eq. ~9!#.

We can have informations on similar scalings for vario
moment distributions.V expansion leads to the results

^Mk8
2&2^Mk8&

25Nm2k8 2~12t !mk118 2,

^Mk8&5Nmk8 ~67!

for the values ofk when all the quantities are defined. At th
transition (t51), relation ~65! allows one to calculate the
reduced momentsmk8 . The results can be written in the com
pact form

^Mk8
2&2^Mk8&

2

^Mk8&
2D

;const,

with the following values of exponentD :

D51/2 for k<3/4,

D52k/3 for 3/4<k<3/2,

D51 for 3/2<k.

These are indications ofD scaling according to Eq.~49! in
Sec. II H. More precisely, the moments of orderk,3/4 are
not critical ~the second-scaling law!, the moments of orderk
between 3/4 and 3/2 exhibitD scaling with D52k/3. In
particular, for k51, one recovers the correct valueD5g
52/3 corresponding to the general argument of a shif
order parameter@Eq. ~37!# with a15a251. Finally, when
the value ofk is larger than 3/2, we obtain the first-scalin
law for the distribution of momentsMk8 . This is also a con-
sequence of the shifted order-parameter argument, sinc
these cases,

^Mk8&;^smax
k &.

Far from the critical point, all the reduced momentsmk8 are
independent ofN, since the correlation size.
t

n

ic

r

s

d

in

1

t211 ln t

@see Eq.~61!# is finite. Then, for any value ofk, the second-
scaling law holds, as expected from the general theory.

The above results aboutD scaling for various moments o
the size distribution in the Smoluchowski model, with kern
Ki j 5 i j , are not complete, since the arguments involve o
the second cumulant momentk2. In principle, as shown in
Sec. II H, all cumulants should be investigated. So, ev
though many exact results are known in this model, the co
plete analytical solution is not yet available.

The same study as presented above for gelling syste
can be performed also for nongelling systems. An exam
of this kind is obtained forKi j 5 i 1 j . In this case, the size
distribution is a power law with the exponentt53/2 @41#
and, following the discussion in Sec. II C, the cluster mu
plicity can be the order parameter. One can analytically
rive, that the multiplicity distribution is binomial,

PN@M0 ,t#5S N21

M021D @12exp~2Nt!#N2M0

3exp@2~M021!Nt#,

and can be approximated forN→`, and for a finite value of
^M0&/N, by

^M0&
1/2PN@M0 ,t#;

1

A2p~12e2Nt!

3expS 2
1

2~12e2Nt!

~M2^M0&!2

^M0&
D ,

~68!

which corresponds to the second scaling. One may note,
this binomial distribution is exactly equivalent to th
bond percolation on a Bethe lattice with the occupat
probability:

p512exp~2Nt!.

In spite of self-similar features in the fragment-size distrib
tion at an infinite time, one does not see any critical behav
in the cluster multiplicity distribution at any time in the non
gelling aggregation systems. This confirms the observat
made in Sec. III A for the Mekjian equilibrium model, tha
the power-law size distribution alone does not guarantee
the system exhibits a critical behavior.

The insight gained from the numerical simulations
Smoluchowski equations, and the evidence from exact
sults for both gelling and nongelling aggregation system
provide strong hints that the discussion of Sec. II H is va
not only for equilibrium systems but also for nonequilibriu
ones. We see the same significance of theD scaling in non-
equilibrium systems as found in thermodynamic systems,
only at the critical point but also close to the critical point
even far from it. We believe that this universality, which
common to equilibrium and nonequilibrium systems, ha
deeper foundation in the relation between renormalizat
group ideas for self-similar systems and the limit theorems
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probability theory for the asymptotic scaling laws of orde
parameter distributions. The concept of statistical equi
rium does not intervene at this level. One should also
member that the universality discussed in this work
associated with only one critical exponent, and certainly d
not exhaust all the singularity properties of the thermo
namical potential in the second-order thermal phase tra
tion.

VII. CONCLUSIONS

In this paper we have presented a theory of universal s
ing laws of order-parameter fluctuations in any system
which the second-order critical behavior exist. These sca
laws, calledD-scaling laws, are rigorously derived for th
equilibrium systems. Moreover, both analytical and nume
cal evidence is also presented in favor of a general validity
the D-scaling laws for off-equilibrium processes which e
hibit a critical phenomenon of second order. The meth
works very efficiently if the ‘‘observables’’ are known nu
merically, either by means of numerical simulations or e
perimental data.

In this work, we have discussed different aggregat
models, both reversible and irreversible ones, finding
same connection between the scaling function properties
the anomalous dimension~the critical exponents!. These re-
sults can be important in a phenomenological analysis
‘‘the critical behavior’’ in finite systems, where the critica
exponent analysis is dubious and, moreover, the pre
mechanism of the process may be unknown. In these ca
the D-scaling analysis allows one to select both the relev
observable and the interesting initial conditions, which le
to a ‘‘pseudocritical’’ behavior in the studied process. A
other interesting aspect of theD-scaling analysis is the pos
sibility of compressing data and, hence, the elimination
redundant dependences in the data for parameters like
te
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se
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d
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system size, the total energy, the total momentum, etc., T
provides an obligatory intermediate step in any phenome
logical analysis before the laws governing complicated
namics can be found. Finally, one should stress that the s
ing laws discussed in this paper are independent of whe
one deals with an equilibrium process or an off-equilibriu
process. This is a crucial advantage in studies of short-li
systems. Examples of multifragmentation processes in c
sions of atomic nuclei or atomic clusters illustrate this pro
lem well @1#. In the absence of thermal equilibrium, which
a theoretical hypothesis difficult to verify in dynamical
formed short-lived systems, we simply do not have any ot
tool at our disposal to address reliably the question of p
sible ‘‘criticality’’ of the studied process.

As stated above before, theD scaling analysis develope
in this work provides an alternative to critical expone
analysis in equilibrium systems, and is the only tool for t
analysis of the nonequilibrium systems. All essential info
mation can be deduced from the scaling function, the va
of the D parameter, the form of the tail of the scaling fun
tion and the value of the anomalous exponent. With t
information it is possible to find out whether the studi
process is at the critical point, in its neighborhood, or
away from it. The reference point in this analysis is the se
similarity of the system. A generalization of the above sc
ing theory to discontinuous phase-order transitions,
which the characteristic length can be defined, is in progr
Our preliminary experience with systems which exhibit
first-order phase transition show, however, that theD scaling
cannot be defined in these systems@42#.
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