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Short-time dynamics of a metamagnetic model

M. Santos and W. Figueiretio
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We studied a layered metamagnetic Ising model with competing ferromagnetic and antiferromagnetic inter-
actions on a square lattice. The model is formed of ferromagnetic chains coupled by an antiferromagnetic
interaction. Using Monte Carlo simulations we have determined the phase diagram of the model, which
exhibits a tricritical point. By exploring the short-time scaling dynamics, we have found the dynamic and static
critical exponents along the continuous transition line between the antiferromagnetic and paramagnetic phases.

PACS numbes): 64.60.Ht

[. INTRODUCTION point. Next, we directed our simulations to exploring the
short-time dynamics of the model. From an initial state, cho-
The study of the critical properties of physical systemssen to be the ground state of the model, we left the system to
continues to be a topic of current interest in equilibrium sta-€volve in time at its critical point, which is given by the
tistical physics[1]. Among the various methods of analysis values of temperature and magnetic flel_d on the continuous
that are employed to determine phase diagrams and criticRnase boundary. We calculated the static and dynamic criti-
exponents, the most important are high- and low-temperatur al exponents of the model from the short-time scaling rela-
series expansiof2], real space renormalization gro[g, e tions. In.the next section, we present the quel and the scal-
expansior{4], and numerical simulations, such as the Montemg re_Iatlons used in our shqrt-tlm_e calculations. In S_ec. I,
’ > we give our Monte Carlo simulations, the phase diagram,
Carlo method5]. However, when we wish to study the non- 54%the values of the critical exponents. Finally, in Sec. IV,
eqwhbnum behavior of_physmal systems, we have only a,,o present our conclusions.
few techniques at our disposal. In all cases, we need to con-
sider the gain and loss master equation, which is an equation Il. MODEL
for the time evolution of the state probabiliti€]. In this ) ) )
formalism it is necessary to establish the transition rates W€ have considered an Ising spin system on a square

among the states, and this defines a dynamical model. ARticé, formed by two alternating sublattices 1 and 2. The
exact solution for the state probability of an interacting par-£Xchange interaction between first neighboring spins on the
same sublattice is of the ferromagnetic type, while the cou-

ticle system is not possible. The linear Ising model is an i iahbori ins belonai diff b
exception to this general rule, because we know the exa ng be'tween neighboring spins belonging to different sub-
values of the one-point and two-point correlation functions tices 1s o_f the antiferromagnetic type. T_he l—!amﬂtoman of
. . . “the model in the presence of an applied field is
[7]. In order to decouple the hierarchy of equations of motion
we can use approximate methods, such as, for instance, the
site approximation or the dynamical pair approximation H=—2, 0;(310111)= o011+ H), 1)
[8,9]. Another way to find the critical properties of nonequi- "
librium systems is to include momentum-space renormalizawhere o j=*1 are the spin variabled{ is the external
tion group arguments into the master equation formalismmagnetic field, and, andJ, are the ferromagnetic and an-
Janssen, Schaub, and Schmittmfh®| showed, through the tiferromagnetic exchange interactions, respectively. The
€ expansion, that the usual universal behavior observed ghase diagram and the critical properties of this model were
large time scales, very near equilibrium, can also be inferregiresented by Kincaid and Coh¢h3] in an interesting re-
at the early initial stages of the evolution of the systemyiew concerning its mean-field properties. They showed that
which is in a state far from equilibrium. In recent years, the phase diagram of the metamagnetic model, in the plane
some numerical simulations have been applied to spin sysf temperature versus magnetic field, displays a variety of
tems to test the idea of universality in the short-time regimecritical points, depending on the ratio between the ferromag-
[11,12. netic and antiferromagnetic exchange couplings. If the value
In this work we consider a layered metamagnetic Isingof this ratio is higher than a critical value, the phase diagram
model on a square lattice, with competing ferromagnetic anéxhibits a tricritical point connecting a continuous transition
antiferromagnetic couplings. Using Monte Carlo simulationsline to a discontinuous one. Both lines describe transitions
for the equilibrium states of the model, we were able to findbetween an ordered antiferromagnetic phase and a disordered
the phase transition between the ordered antiferromagnetjgaramagnetic phase. On the other hand, if this ratio is
and disordered paramagnetic states. We showed that tignaller than the same critical value, the tricritical point splits
phase diagram of the model displays discontinuous and corinto a critical and a double critical end points. However, this
tinuous transition lines, which are separated by a tricriticalatter result is not supported by experimejitd] and numeri-
cal simulationd 15]. Only the tricritical point appears in the
phase diagram. In recent wofk6] we found the phase dia-
*Email address: wagner@fisica.ufsc.br gram of this model. We employed the master equation ap-
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FIG. 1. Distribution probability for the values of the staggered ) ) ) o

magnetization, at the discontinous phase transitibr.0.6, H FIG. 2. Residence time as a function of the magnetic tg|or
=2.04, andL=16. T is in units of J/kg andH in units of J. the temperaturd =0.6 andL=16. The continuous line gives the

residence time for the antiferromagnetic states, while the dotted line

proach and used the dynamical pair approximation to breal® t.he r.esider)ce time for the paramagnetic states. The residence time
the chain of the equation of motion for the pair probabilities. ™ is dimensionless.
Although the pair approximation includes only nearest- ) o )
neighbor correlations, it gives only a tricritical point for any Wherec,= g/vz. Taking the derivative of Eq(2) with re-
value of the ratio between the ferromagnetic and antiferroSpect tor and choosing the same scaling factor as before, we
magnetic couplings, in accordance with the experimental angan write the following relation at the critical point:
simulation results.

Now we present the equations that govern the relaxation DM(t)~t%, )
of the spin system from an initial state that is completely
ordered. In this spin model the order parameter is the stagvherec,=1/vz, andDM(t) is the logarithmic derivative of
gered magnetization. We choose a point on the continuouls!(t, ) with respect tor, at the critical point where=0. As
transition line of the phase diagram where the critical valueshe staggered magnetization is different from zero in the ini-
of temperature and magnetic field afg andH., respec- tial stages of the evolution, we can also define a time depen-
tively. For a fixed value of the fieldH.), considering a dent second-order cumulant. It is given by
value of temperature very near this critical point, and taking
the valueMy=1 for the order parameter at tinte=0, we M@
can write the following scaling forrfiL 7] for the kth moment U(t)=
of the order parameter:

M)2—1~tc3, (6)

M®(t,7,L)=b *¥"M®(b~2t,b™7b7L), (20  wherec;=d/z anddis the spatial dimensionality of the spin
) _ system. Therefore, by measuring the three independent ex-
whefe r=(T—_TC)/TC is the r_educed t(_empe_raturb,|s the ponentsc,, ¢,, andcs, we can obtain the statigg(») and
spatial rescaling factor, and is the lattice size. The expo- the dynamicalz) critical exponents. This procedure is easier
nentsB and v are the well known equilibrium exponents, {4 jmplement than the usual one, where we need to prepare
andzis the dynamical critical exponent. This scaling relatione system to have, at the initial time, a very small value of

for the order parameter is similar to the one used in longipe magnetization and of the correlation length.
time regime studies. Here, it is used to investigate the mac-

roscopic short-time regime, as in the work of Jaseal.
[17] For k=1, we have the proper staggered magnetization,

and, choosing the scaling factor to be=t*, we obtain Before we consider the application of short-time dynam-
_—Blvz Uvz ics, as briefly explained in the last section, we first need to
M(t,7)=t ML), © determine the critical parameters of the model. In order to
where it is assumed that the linear dimensiois very large. ~ attain this goal, we performed Monte Carlo simulations in
At the critical point7=0, the staggered magnetization dis- this model. We considered a two-dimensional lattice, with

plays the following power-law behavior: linear length ranging fromh. =16 toL =128. We have taken,
for the transition probability rate among states, the following

M(t)~t~ ¢, (4) one-spin-flip Glauber prescriptidi’]:

IIl. SIMULATIONS
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FIG. 3. Staggered magnetization versus magnetic field for three selected values of temperature near the tricritical point. Open circles are
for increasing values of the field and closed circles are for decreasing values of the field. The latticd_siZe2& (a) T=0.870,(b) T
=0.875, andc) T=0.880.

1 after we discarded the initial #0MCS. For the continuous
1—0i,jtan|‘(ﬁ[31(0i1,j+0i+1,j) transition the critical point was determined, as usual, by the
B point where all the fourth-order cumulants cross themselves.

In general, we applied this procedure by fixing the valu@& of
' @) and changing the value &f for every lattice size.. We also

checked the results by fixing and changingr. In the case
wherekg is the Boltzmann constant arflis the absolute Of the discontinuous transition, we determined the staggered
temperature of the heat bath. In the actual simulation, wenagnetization curve as a function of the field, for a fixed
choosel;=J,=J. For a fixed pair of values ¢f andH, we  value of temperature. This procedure is not an efficient one,
have considered 20Monte Carlo stepsMCS) to calculate  because it is difficult to distinguish a continuous from a dis-
the mean values of the sublattice magnetizatimpsandm,,  continuous curve, especially near the tricritical point, but it
from which we obtain the magnetizatiom=(m;+m,)/2  gives an idea of the range of values of the field where the
and the staggered magnetizatibh=(m;—m,)/2, which is  transition is of first order. With the purpose of improving the
the order parameter. We have also determined the fourttdetermination of the transition field, we have also con-
order cumulant of the staggered magnetization, in order tatructed a histogram of the probability distribution of the
better locate the critical point. Thermalization was achievedstaggered magnetization. For example, we show in Fig. 1 a

1
wij(o)=5

—Ja(oij-1F04j+1)TH]




1802 M. SANTOS AND W. FIGUEIREDO PRE 62

2.5

2.0 b P >-tag,
1.5 \

10| AF

0.5 |

0.0 . 1 . ] . ] . ]
0.0 0.5 1.0 1.5 2.0 2.5

FIG. 4. Phase diagram in the plane magnetic fidldsersus
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FIG. 5. Plot of IfM(t)] versus In{) at T.,=1.647 andH,

temperaturel. Continuous phase transitions are represented by the=1.50. The straight line gives the best fit to the data points.
open diamonds, while the discontinuous transitions are given by the

closed circles. The open circle indicates the tricritical point. AF and
P are the antiferromagnetic and paramagnetic phases, respective.

Tis in units ofJ/kg andH in units ofJ. The lines serve to guide the
eyes.

typical histogram forT=0.6, H=2.04, andL=16. As we
can see, the height of the peak Mt=0 is approximately

repared the system to be in a completely ordered state, and
was left to evolve in time at the chosen critical values of
temperature and field. We have considered up to 500 MCS to
evaluate the exponents, and our results represent averages
over 2000 samples of linear lendth=256. For instance, we
exhibit in Fig. 5, forT.=1.647 andH.=1.50, the log-log

equal to the sum of heights of the two nearest peaks. ThiBlot of staggered magnetization versus time. We also show
means that the system exhibits two different states with althe best fit to our data points. From the slope of this curve we

most the same probability. In this case we useck 20°

found thatc;=0.059 6§0). In Fig. 6, we exhibit the log-log

MCS to obtain the histogram, in order to give an opportunityplot of the logarithmic derivative of the staggered magneti-
to the system to visit its most probable states many timeszation with respect to the reduced temperature at the critical
For better location of the transition field, we also found thepoint, versus time. From the slope of the curve, which fits the
residence time for the antiferromagnetic and paramagnetic

states, as exhibited in Fig. 2. During the observation time, we
computed the time spent around the most probable states as
function of the field for a fixed value of temperature. We

expect that the crossing point of the two curves in Fig. 2
gives the desired transition field. However, near the tricritical 1L
point, the determination of the transition field using this pro-
cedure is also difficult. This happens because critical slowing
down is also present even on the magnetization curve for this
first-order transition. In this work the location of the tricriti-

c,=0.498(4)

—

cal point was achieved through the disappearance of hyster8
esis[18]. For a fixed value of temperature, we drew the E
staggered magnetization curves for increasing and decreasirg
values of the magnetic field. In Figs. 3, we show these curve<
for a system of sizé& =128, and for three values of tempera-
ture near the tricritical point. Our estimate for the tricritical
temperature i9,=0.878t0.002. Finally, in Fig. 4, we ex-
hibit the complete phase diagram of the model showing the
continuous and discontinuous transition lines separating the
antiferromagnetic and paramagnetic phases. The tricritica
point, which is indicated by an open circle, joins these two
lines.

Now we present the results we obtained for the critical

In (1)

exponents along the continuous transition line through the FIG. 6. Plot of IADM(t)] versus Inf) at T,=1.647 andH,
formalism of short-time scaling critical dynamics. We have =1.50. The straight line gives the best fit to the data points.
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FIG. 7. Plot of IfU(t)] versus In{) at T.=1.647 andH. FIG. 9. Critical exponeng plotted against the ratio between the
=1.50. The straight line gives the best fit to the data points. critical values of the field and temperatutd {/T..) along the con-

. ) ) ) tinuous phase boundary.
data points, we found,=0.4984). Finally, in Fig. 7, we

show the log-log plot of the second-order cumulant versu
time, and the best fit to the data points. The slope of th
curve in this figure giveg;=0.955(18). With these values,
we can find the critical exponenf3, v, andz For this par-
ticular critical point of the transition line, we have found the

following values: B=0.1206), »=0.963), and ! ;

=2.094). Forother critical points on the continuous transi- cal point. For values of th_e rat'HC/TC.IeSS than 1'0_’ thes

tion line we also found values for these exponents by emgxponznt |sdtr;e same asl!n the two-dlmegsmnal IS|fng m(l)del,
: . predicted by universality arguments. However, for values

ploying the same procedure as above. For instance, we cagr? the ratioH./T. larger than 1, we clearly observe the

see in Fig. 8 the values of the exponentsand z plotted rossover between critical and tricritical behavior
against the ratio between the critical values of the field and '

?emperature. We see that these exponents are well behaved
Sor all values of the ratidH./T., up to the vicinity of the
tricritical point, where this ratio assumes the valde/T,
=2.20. However, as we can observe in Fig. 9, the values of
the exponenp are influenced by the presence of the tricriti-

3.0 IV. CONCLUSIONS

We have studied a two-sublattice layered metamagnetic
25 | model on a square lattice, with competing ferromagnetic and
antiferromagnetic couplings. Using the Monte Carlo method,
we have determined the phase diagram of the model, which
20 - . exhibits continuous and discontinuous phase transitions be-
tween the antiferromagnetic and paramagnetic phases.
Through the short-time scaling critical dynamics, we have
1.5 found the static and dynamic critical exponents along the
continuous transition line of the model. The values of the
exponents andz are almost independent of temperature and
10 o o ° o o o magnetic field along the critical line up to near the tricritical
point. On the other hand, the value of the expongnis
affected by the presence of the tricritical point, showing a
05 crossover between critical and tricritical behavior. To the
best of our knowledge this is the first time that short-time
dynamics has been applied to a model system in the presence
of an external magnetic field.

Critical exponents (z,v)
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