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Generalized Langevin equation and recurrence relations
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The generalized Langevin equati@8LE) is a reformulation of the Heisenberg equation of motion, and
hence, an exact equation. It is the basis of the memory function approach, a very widely used method for
studying dynamics of classical and quantum fluids. The GLE was first derived by Mori in a very formal way.
A much simpler and more physically motivated derivation was given by us some years later. In this work we
provide perhaps the simplest possible derivation of the GLE. The simplicity of the derivation helps to bring out
the subtleties present in this important dynamical relationship.

PACS numbegs): 05.40—a, 05.60—k

I. INTRODUCTION where(,) denotes an inner product to be decided later. The

. . . coefficientsa, are time dependent functions representing the
The generalized Langevin equatiéBLE) has played an projection of A(t) onto the basis vectors at tinte Hence,

important role in contemporary studies of the time and fre—a (1)=0 also ift<0
guency dependent behavior in many particle systgbhslt k Iif we choosef =A(t=0)=A exercising one dearee of
's the basis of the very widely applied memory function AP freedom always (é\vailable irTar,w ortho onglization gthere re-
proach to dynamics. The GLE was first derived by M&ij it the foll Y bound diti 9 i ’

and an equivalent version by Zwan4ig|. Although highly sult the Toflowing boundary conditions @

formal—it is in fact atour de forcein formal analysis— 1 if k=0
Mori’s derivation is one that is still almost solely relied upon =0)=
[4]. Y P at=0=19 it k=123.... @

Several years later we gave a much simpler, more physi-_. .
cally motivated derivation of the GLE5]. In this paper we Given Egs.(3) and (4)’. the recurrence relations T"ethOd
present yet another derivation but one that is simple enougﬁs(a)] rests on the following fact. If the inner product is taken

to be regarded as almost elementary. It uses rather little dP be the.Kubc.) scalar produf(b)], bOthfk’s anda,’s sat-
the recurrence relations formalism. The simplicity, we be_lsfy certain unique recurrence relations. They are three-term

lieve, brings out the underlying process of converting the €Currence relations except the basal ones which have two
Heisenberg equation into the GLE. terms only. For deriving the GLE we mostly need the two-

term ones:

Il. HEISENBERG EQUATION AND RECURRENCE fi= fo. (5)
RELATIONS SOLUTION

Let A be a dynamical variable at timte=0. ThenA(t), Aay(D)==a(1), ©)
the_ time evolutlon ofA, may be obtained by solving the \;nare Ay=(f,,f1)/(fo,f0)>0, a static quantity, relating,
Heisenberg equation of motion, e.g., thef sum rule to the susceptibility. 1A;=0, A(t)
=A, i.e.,,d=1. We assume thatA(A) <o,
A(t):i[H’A(t)]Ei{HA(t)—A(t)H}’ (1) The recurrence relations method is now well established.
It has been applied to many problems, contributing to recent
advances in nonequilibrium statistical mechanics. For some

whereH the Hamiltonian is assumed to lbéermitian We .
representative examples, J68.

are concerned withb=0 only. Hence, it is convenient to take
A(t)=0 if t<0 as in the Laplace transform theory.

We regardA(t) as a vector in a-dimensionalrealized
spaceS. Then one may give a formal solution of E@) in

Ill. LANGEVIN EQUATION AND RECURRENCE
RELATIONS FORMALISM

the form of an orthogonal expansion as shown below: If Eq. (2) is differentiated with respect to time,
d-1 P . :
= +> :
A(t):kzo a(tfy. 2) A(t)=ao(t)fo P a(t)fy 0

For Hermitian systems, the length or magnitude of this vec-
Here thef,’s are a complete set of basis vectors that span theor A(t) remains constant fort=0, i.e., (A(t),A(t))

spaceS. That is, =(A,A). HenceA(t) can change only its direction as the

time evolves. That is to say(t) has a component that re-
(fr,f)=0 if k' #K, 3 mains orthogonal tof;=A(t=0) always, which may be
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called anormal component ofA(t). At t=0, there is only  B(t) is the time evolution oB=f,=A(t=0) [see Eq(5)],

the normal component. But as time evolves, there appeajast asA(t) is the time evolution ofA=f,. But B(t) is a

another component, not orthogonalftng which may thus be vector in a subspace, s&, spanned byfq,f,,..., i.e,,

called aninducedcomponent Ofb\(t). (B(t),A):O for t=0. One can further shovsee Appendix
To show this decomposition @(t), we introduce a sec- B) thatb,(t) have a recurrence relation of exactly the same

ond set of coefficientd,(t) for t=0 [by(t)=0 if t<0 alsg, oM (13 but operative in the subspag.

to be justified later. They are defined in a convolution rela- YSing Ed.(15), we put Eq.(11) in the final form,

tion to a,(t) as shown below. Fdk=1,

] t
. A(I)IB(I)—fo(p(t’)A(t—'[’)dt', (16)
a(t) = fobkw)ao(t—t')dt'. ®

where ¢(t)=Ab4(t), sometimes known as the memory
If Eq. (8) is differentiated, function[1]. We can show that if Eq16) is integrated in the
interval (0t), the rhs yieldsA(t) —A(0) [8]. Equation(16)

, Lo e is known as the GLE. It really is a reformulation of the
() =be(t)+ Lbk(t Jao(t—t)dt’. © Heisenberg equatiofl). Hence the two are exactly equiva-
lent.

We replace th&, term in the above integral by E¢) and
rearrange it using EJ8) as V. CONCLUDING REMARKS

t t This work differs from our earlier derivatiofb] in that
f bk(t,)al(t_t/)dt’:f a(t)by(t—t")dt’” (100  the coefficients{b,} are introduced in the beginning. The

0 0 derivation of the GLE is thereby made very simple. It is
accomplished without the use of continued fractions. See
Appendix C, where different approaches are briefly com-
pared. The simplicity of our present approach also helps to
reveal the intricacies in the hierarchy of subspaces in which
the GLE is structured. As discussed below, we find that the
¢ GLE represents a spatial relationship.
A=, bk(t)fk—Alf b(t")A(t—t)dt’. (1) AlthoughA(t) andB(t) are both vectors of constant mag-

k=1 0 nitude or length, they are not in the same space. We can shed

some light on the relationship between the two vectors by
taking an inner product of Eq16) with A,

(see Appendix A In the first and second terms on the right-
hand sidgrhs) of Eq. (7), we substitute Eqg6) and(8) with
k=1, and Egs.9), (10), and (2), respectively, and finally
obtain

Observe that the first term on the rhs of H@l) is the
normal component, orthogonal fg=A for t=0. The sec-
ond term is the induced component since it vanishes when t

t=0. It is not orthogonal td for t>0. ay(t)= —Alfobl(t’)ao(t—t’)dt’. (17)

IV. RECURRENCE RELATION . .
v ONS Observe that the above is also obtained from &j.as a

It now remains to show the boundary conditiong(t  special case ik=1, therein remembering E¢6). The GLE

=0). We can obtain them from E) by settingt=0, i.e., thus expresses the relationship betwegnand b;, and
hence ultimately between the two spa&andS,; .

b (t=0)=a,(t=0), k=1, (12 As by, were defined with respect @, [see Eq.(8)], we

can introduce another set of coefficients, sgy, k=2, now

and by using the recurrence relation &(t), usually known  jth respect tdb,. Their spaceS, is a subspace d;. The

as RR2[6], relationship between these two spa&sandS, is yet an-
_ other GLE.
Arrggra(t)=—ad(+a1(t), k=0, (13 The above interspatial relationships are different from in-

traspatial ones such as betwegpnanda,, both of the space
S This particular relationship, given by E¢f), is known as
the (first) fluctuation dissipation formula. A second fluctua-
tion dissipation formula can be found from the relationship
betweenb; andb,, which is about the subspa&. Higher
ones can be found similarly, e.g., betwemnandc; of the
_ (14) subspaces;. Remarkably, the existence of these fluctuation
if k=23,... . dissipation formulas was already anticipated by K{i&p
] . Although Eq. (16) is purely formal, being an operator
Hence, if we define equation, the structure of the GLE makes it rather natural for
d—1 studying certain physical problems. For exampléA i the
2 b(t)f =B(t), (15) charge densityA(t) is proportional to the longitudinal cur-
k=1 rent by the continuity equation. According to Ed.6), the

where a_;=0 and A= (f,,f)/(fx_1,fx_1). Note that
whenk=0 in Eq.(13), we recover Eq(6), the basal relation.
Settingt=0 in Eq. (13) and using Eq(4), we establish at
once that

1 if k=1
bu(t=0)=1),
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total current is composed of the normal and induced parts. t

They correspond to the intrinsic and diffusive curreri§]. ak(t):j be(t—t")ao(t")dt'={bxXas}.  (BI1)
For another example, led now be the number density of 0

neutral particles. If the long time behavior A{t) is sought, Then

as in certain physical laws, e.g., Fick’s law, then the induced .

part of Eq.(16) can be put readily into an asymptotic form ai(t)=by(0)ag(t) +{b X ag}. (B2)
[11]. Finally, the scalar form of the GLEL7) is a widely

used dynamical equation. Many approximate theories ofsiven Eg.(14), there are two possibilities:k=2 and k
classical and quantum fluids have been developed based 6nl-

it, known collectively as the memory function approdéh For k=2, we may substitute Eq¢B1) and (B2) in Eq.
(13) and obtain

APPENDIX A: PROOF OF EQUATION (10), AN IDENTITY -
Q ( Aia{bgsrXagy=—{bXagt+{by_1xas}. (B3)

We take advantage of the property tlag(t), a,(t), and )
be(t), k=1, are defined to be zerot& 0. Hence, the lhs of Thus we obtain

Eqg. (10) may be immediately written as .
q Y g Aeaba(D= b0 +b s(), k=2. (B4

[} o t—t .
f bk(tl)al(t_tl)dt1=J bk(tl)J lbl(tz) Fork=1, with by=0,
0 0 0
Xag(t—t;—t,)dtdt;, (AL) AatbyXag}=—{by X2} (B5)
Hence,
where we have used E@8) on the rhs. Now the second
upper limit may also be taken to, giving Asb,(t)=—by(t). (B6)

“ We can combine EqgB4) and (B6) to obtain the final
|7 pattabitoat-t-tyanat, o f14B4) and (86)

:J:bl(tz)Jot_tzbk(tl)ao(t_tz_tl)dtldtzy (A2) As 1By 1 () ==b () +b_y(t), k=1,  (B7)

with by=0. The above is the recurrence relation fbi(t)},

where on the Ihs we have exchanged the order of integratioffPerative in the subspac®, spanned by ,f5, ... fg-1.
allowed under both limits, and on the rhs we have reduced

the upper limit ont,, allowed sinceay(t)=0 if t<0. Fi- APPENDIX C: COMPARISON OF DIFFERENT
nally, using Eq.(8), APPROACHES: AN OVERVIEW

" . In this Appendix, the main ideas behind Mori’'s and our
J bl(t2)ak(t_t2)dt2=j bi(ty)a(t—ty)dt,. (A3) approaches are described. This will show the progress that
0 0 has led to our finding the latest derivation, which we believe

is thus far the simplest and clearest. There are two essential

QED. . aspects to the existing wofR,5].

One can also obtain the same result by use of the convo- The derivation of Mori is based on the Mori-Zwanzig
lution theorem of the Laplace transform theory. E&(2),  (Mz) projection operator formalism. This is an orthogonal-
a(z), andby(z) denote the Laplace transforms af(t), ization process of abstract Hilbert space. It seems not to have
ai(t), andb,(t), respectively. If we Laplace transform the been recognized that the MZ formalism is a reinvention of
lhs of Eq.(10), by the convolution theorem we obtain the Gram-Schmidt process.

The MZ or Gram-Schmidt process is general, but the gen-
by(2)8,(2) =3(2)b1(2), (A4) erality also diffuses the underlying physi@s.g., subspaces
and dimensionality The resultant analysis necessarily is
where on the rhs we have used heavily formal. It is no surprise that the GLE on occasion has
been incorrectly approximated and even improperly applied.
B (2) =b(2)30(2), (AB5) This approach is made all the more abstruse by the pres-

ence of continued fractions. As given, these continued frac-
obtained by taking the Laplace transform of the defining Eqtions are not tractable, nor is it clear why they should be
(8). The inverse transform of E¢A4) gives the desired re- there. Since the GLE cannot be solved without solving the

sult Eq.(A3). continued fractions, the GLE appeared to some to be an
empty reformulation.
APPENDIX B: RECURRENCE RELATION FOR {b,} The recurrence relations formaligs] removes both dif-

ficulties, the first by taking on realized spaces. Realized
An elementary way to derive the recurrence relation forspaces have unique orthogonalization processes. They are
{by} is to apply Eq.(8) in Eq. (13). We may write Eq(8) in  generally much simpler than the Gram-Schmidt, as has been
an equivalent form. Fok=1, demonstratef6(b)]. One can also trace to this realized space
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the origin of the continued fractions that appear in the timemeaningful—removing the second difficulty.

evolution problem.

The present work recognizes the essentialness of realized

Our earlier work[5] is in effect a reanalysis of the subspace$rom the outset. This idea allows us to transform
Heisenberg equation following Mori, modified by a new or- the Heisenberg equation into the GLE directly. Continued
thogonalization process. The analysis is thus greatly simplifractions are not needed. It suffices to have only an elemen-
fied. Also the continued fractions are made tractable—andary knowledge of the recurrence relations method.
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