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Dynamics of fractal dimension during phase ordering of a geometrical multifractal
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A simple multifractal coarsening model is suggested that can explain the observed dynamical behavior of the
fractal dimension in a wide range of coarsening fractal systems. It is assumed that the minorityfgrhase
ensemble of dropletsatt=0 represents a nonuniform recursive fractal set, and that this set is a geometrical
multifractal characterized by af{«) curve. It is assumed that the droplets shrink according to their size and
preserve their ordering. It is shown that at early times the Hausdorff dimension does not change with time,
whereas at late times its dynamics follow thr) curve. This is illustrated by a special case of a two-scale
Cantor dust. The results are then generalized to a wider range of coarsening mechanisms.

PACS numbd(s): 64.60.Ak, 61.43.Hv

Fractal growth phenomena have been under extensive iring, while others[15] reported a significant change of the
vestigation during the past two decadés-3]. The inverse fractal dimension with time. Other evidence for a significant
process of fractal coarsening occurs in many physical sysdecrease of fractal dimension with time was found in experi-
tems. It has been discussed in the context of sintering ofents on thermal annealing of ferroelectric thin films of lead
fractal matter{4]. Coarsening of fractal clusters by surface zirconate titanat¢16]. In this experiment, the fractal dimen-
tension in bulk-diffusion-controlled [5,6], interface- sion remained constant at early times, and decreased to its
controlled [7], and edge-diffusion-controllefb,8] systems final value at intermediate times. Numerical simulations of a
has been investigated. Additional examples include thermalariety of coarsening systems with different growth laws
relaxation of rough grain boundari¢8] and smoothing of showed that the fractal dimension does not change with time.
fractal polymer structure in the process of polymer collapserhese simulations include bulk-diffusion-controll¢8,6],

[10]. Two-dimensional fractal fingering, observed in a Hele-edge-diffusion-controlled [5,8], and interface-controlled
Shaw cell with radial symmetrgfor a review, see Refl11]), [7,14] systems.

exhibits coarsening at a late stage of the experiment. All It is remarkable that in so many systems with widely dif-
these systems are quite different, as they involve noncorferent coarsening mechanisms the fractal dimension remains
served or conserved order parameters, different transpoconstant during the dynamics. Therefore, one is tempted to
mechanisms, etc. look for a general scenario that would explain this fact and

A crucial issue related to any phase ordering process ithat would be insensitive to specific coarsening mechanisms.
the presence or absence of dynamical scale invariéd8®  The simple multifractal coarsening model developed in this
[12]. DSI assumes that there is a single dynamical lengtipaper has this property. In addition, this model is an attempt
scale\(t) such that the coarsening system logksatisti-  to address the multifractal properties of fractal coarsening.
cally) invariant in time when lengths are scaled hyt). We shall consider a very simple model of a coarsening
Does a fractal cluster or a fractal interface exhibit D& a  fractal system. In this model, the initial condition for the
shrinking interval of distancgsn the process of coarsening? minority phase is an ensemble of droplets that represents a
Early scenarios of fractal coarsening in systems with noncongeometrical multifractal We will then assume that the
served 13] and conservef4] order parameters did rely upon smaller droplets shrink and disappear independently, accord-
the hypothesis of DSI. However, numerical simulationsing to their sizes, and consider discrete time dynamics. Using
showed that DSI breaks down during the coarsening of fraca well-known theorem of multifractal geometry, we will es-
tal clusters in edgd-8] and bulk-diffusion-controllei6] sys-  tablish the dynamical behavior of the Hausdorff dimension
tems. On the other hand, recent simulations of smoothing abf this simple coarsening system. This result will be illus-
a fractal polymer during collapsgl0O], and of interface- trated in a special case, when the droplets are distributed in
controlled fractal coarsening under a global conservation lavthe form of a two-scale Cantor dydt,2]. Employing the size
[14], do support DSI. Therefore, a question arises about podistribution function of this fractal sdtl7], we will follow
sible universality classes of fractal coarsening. the dynamical behavior of thé measure in two characteris-

Even if DSI holds, the fractal dimension may or may nottic limiting cases and show that the Hausdorff dimension’s
change with time. Early fractal coarsening scenafit4]  dynamics in this example are consistent with the general
assumed that it remains constdagain, on a shrinking in- result. Then we will relax the discrete time assumption. Fur-
terval of distances Experiments on sintering of silica aero- thermore, we will show that the results are essentially inde-
gels (a convenient way of investigating fractal coarsefing pendent of the details of the coarsening dynamics as long as
have been inconclusive. Some of thé#} gave evidence in the minority-phase droplets do not merge or break up.
favor of constancy of the fractal dimension during coarsen- The minority phase of our model represents, at zero time,

a big but finite ensemble of droplets that form a nonuniform
recursive fracta[2] with a constant density distribution in
*Email address: avner@vms.huiji.ac.il the E-dimensional space. Let us index the droplets inrtitle
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generation of the fractal according to their radii. Thus, all the
droplets with indexX have radiusk,(k) and form a subset of

the whole fractal, which we denote 8¢,(k). The smallest o
droplets have indek=0 and radiusR,,(0), which is the
lower cutoff of the fractal. The largest droplets have index
k=m and radiusk,,(m), which is the upper cutoff. One can /
work with a size distribution functiom,(k), which is sim- D /
ply the number of droplets with radiug,,(k), and use it to
compute the Hausdorff dimension of the fractake Ref. I
[17], where this was done for a two-scale Cantor Hust

Any nonuniform recursive fractal with a constant density {

distribution can be described as multifractal in the geometri-
cal sensdsee Ref[2], p. 66. In this case one can introduce
the measure of the subsgt, (k) in the following way:

kO

E T

Rk
Mm(K) = m - (k)RE(k)’ @ FIG. 1. Hausdorff dimensioD of the ensemble of droplets
k=0"'m m versus discrete timer (solid curve. The dashed curve is the

- - . f(a(k)) curve at7=0. Dy is the Hausdorff dimension at=0,
whereR,(k) are the radii of the dropl ivi he siz 0

ereRp(K) are the radii of the droplets divided by the s ewhile ko=k(ay) is the value ok for which f(a(k)) has its maxi-

u

of the system. The Hder exponent of the elements of the mum
subsetS,(k) is defined by[18]
In . (K) S, with fractal dimensions B and Ds,, respectively, is D
am(k)= INR(K)* 2 =maxDs ,Ds). (See, for exampl,2], p. 17) In the last

_ _ ~ time step of the dynamics;=m, the coarsening object con-
Thef(a) curve for the fractal is constructed in the following sists of the subse&,,(m) alone, and its Hausdorff dimension

way [1,2,19: is f(a(m)). In the previous time steg=m—1 the object
| K consists of two subset$,,(m) with Hausdorff dimension

fa)=— ) ), (3  fla(m)), andS,(m—1) with Hausdorff dimensiorf (a(m

In Riy(k) —1)). It follows from the shape of thé(a) curve of the

) ) initial fractal that f(a(m—1))>f(a(m)). Using the theo-
wherek is supposed to be expressed throuagtvith the help o, e geD(r=m—1)=f(a(m—1)).
of the equationay(k)=a. (We assume that this equation ;e generally, consider time=k,+s, wheres is a
gives a one-to-one correspondence betweandk.) f(a) i positive integer andk,=k(ay). At this time we can regard
assumed to have a single maximum that is attainedafor o ghiect as a union of two fractal subs&is(ky+Ss) and
= ag, SO thatf(ay) is the Hausdorff dimension of the whole S, (m=k=ky+s+1). Here, S,(m=k=k,+s+1) is the
fractal. We also assume thieiz(k)) is the Hausdorff dimen- —5ion of all subsetss, (k) with k=s+1,... m. It is also
sion of the subse§,(k). This assumption, widely used in ihe whole coarsening object at time=ko+s+1. Assume
the physical literature, was rigorously proved in the case of %y induction that D(7= ko+S+1)=D(Sy(m=k=ko+s
two-scale Cantor dusgt20], and also for a class of other +1))=f(a(ky+s+1)). It follows from the shape of the

multifractal measuref21]. f(a) curve thatf(a(ko+s))>f(a(ko+s+1)). Hence, us-
We now turn to describe the dynamics. We assume firs (g)th: ;/heorem(avsleo corzzzlud(ea(th(él(q-z k()))J;S):f(a'(EO

that the droplets shrink and disappear independently, accorjcs)). Sinceky+s is the index of the smallest droplets that

ing to their radius only, and also simplify the governing dy- have not yet disappeared, we can write this result as
namics by introducing a discrete timre(later we will relax '

these two assumptiondn the first time steg=0 the small- D(7=kg) = f(a(Kmip)). (4
est droplets with radiui,,(0) disappearwhile the sizes of
the other droplets do not changén the next time stepr The dynamical behavior of the Hausdorff dimension at

=1 the elements with radiuR,(1) disappear, and so on. timesr<Kk, can be found in a similar way. For=k,—1 the

The set of droplets that survive after each step of these dyebject can be considered as a union of two fractal subsets

namics obviously remains self-similéon a shrinking inter-  Sp(m=k=k,) and S(ko—1). It follows from Eq.(4) that

val of distances The main result of this paper is the follow- D(7=kg)=D(Sn(m=k=ky))=Dy. From the shape of the

ing behavior of the Hausdorff dimensidh as a function of f(«a) curve we geDy=f(a(ky))>f(a(ky—1)). Therefore,

the discrete timer. For 7<k(ap) D does not change: D(7=ky—1)=D,. More generally, for any time=ky—s

D(7)=D,, whereD, is the Hausdorff dimension of the ini- the coarsening object can be considered as a union of the two

tial condition. For 7>k(ag) D(7)=f(a(knin)) where fractal subsetS,,(m=k=k,—s+ 1) with Hausdorff dimen-

Kmin(7) is thek value of the smallest droplets that have notsion Dy and S,,(ko—s) with Hausdorff dimensiorf («(kq

yet disappeared by time This dynamical behavior is illus- —s)). From the shape of thd(«) curve we deduce

trated in Fig. 1. f(a(kg—s))<Dy. Hence, by using the above theorem, we
The proof of this result is based on the following theorem:conclude thatD (7=ky,—s)=D,. More generally, we can

the Hausdorff dimension of a union of two fractal seta8d  write:
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D(r=<kg)=f(a(kg))=Dy. (5) for d, does not change with time. This is in agreement with
Eqg. (5) obtained in the general case.
Let us now turn to the particular case when the ensemble On the other hand, wheky(d) < 7=k,,;,;<m, the behav-

of droplets at zero time represents a two-scale Cantor dusfy of M4(7) is quite different. Since fok>k,(d) g(k) is a
Recall that the initiator of this fractal is a-dimensional  gecreasing function d, the main contribution to the integral
cube of unit side length. The generator consista ptubes j, Eqg. (9) comes from a close neighborhood lof K i( 7).

of sidel, andn, cubes of sidé, wherel,>1,. In each step Therefore, in Eq.(9) we can expandg(k) around k
of the fractal construction every full cube is replaced by the_ K.in(7) to the first order and get

properly rescaled generator. After the last step of the con-
struction, which is thenth step, all the cubes are replaced by

spherical droplets with the same size as the cubes. B Nin( Kmin) Rin(Knin) ~ h(&min DY (Emin,d)]™
Now assume that this two-scale Cantor dust undergoes the 9 19’ (Kenin)| - mb/2 '
simple coarsening dynamics described earlier. For conve- (12)

nience, we will compute the time-dependeinmeasure of a
two-scale Cantor dust that consists of culighe ones that \hereg&,,i,=Kmin/m,
were replaced by the spheres after thié generation of the
constructiof. The only difference in the computeti mea- Emin—1 —Emin
sure will be in ad-dependent prefactor. Since this prefactor y(Emin,d) = 1~ &min Emin (13)
is independent ok andm, it will not affect the dynamical min® nyld n,ld ’
behavior of thed measure and the Hausdorff dimension.
The d measure of thenth generation of a two-scale Can- gnd
tor dust can be written d4.7]

™ N~ Emin, ) = [27Ein(1— i) 172 In((l_g”"”)nzlg)
_ d in1d)=[27Emin(1— Emi ||
Md_ fo nm(k)Rm(k)dk min min min fminnllg
e a4
=(m) fo exp g(k)]dk, (6) The Hausdorff dimension of the subset labeled &y, is
given by
where
f(a(&min))
k m—k . . L (1—& —£
g(k):_kln( - —(m—k)ln( ), (7) :gmlnln(gmm/nz) (1 gmm)ln[(l ‘fmm)/nl].
mnyl$ mny|$ (1=&min)Inly+&ninlnl;
m—kik - . . (15
and R (k)=17""15 is the size of the cubes in the subset
Sm(k). The function expg(K)] has a(sharp maximum at It follows that
k (d)= n2|gm_ (8) fla(Kmin) N Kmin)
0\t d d- Ri(Kmin) ~ ¢ min)) = . (16
Mli+nals i) (@ M=k

For d=D, one can show that,(Do) =k(ao)=ko. Attime  Hence, we obtain the following expression fit, in the
7=Kmin the d measure of the object is limit of Ko(d)<r<m:

—_ m d
M= [ RS RdK © Mdz(h@mm,d) R (kb et (17

in\T,
min ml/2

As long askin(7)<ko(d), one can apply the saddle point S ) )
argument used in Ref17] and conclude that We see that, up to logarithmic corrections resulting from the

factor h(&nin,d), the d measure obeys a power law of
Rim(Kmin) with a time-dependent exponent.
Equations(12)—(14) allow one to calculate the Hausdorff

S . . imension of the ensemble of droplets in the IimitT«a(d)
This implies that during the early stages of the dynamics th(i r<m. Taking the logarithm of both sides of E@L2) and

d measure remains, with an exponential accuracy, constané. idina b i
Correspondingly, the Hausdorff dimension, which is com- viding by m, we ge
puted by solving the same equation

Ma(r<ko(d))=Mg(7=0)=(n4l{+n,IH™ (10

|nMd 1

nl%+n,l8=1 (11) m m

h minvd
( s 172 ))+|n[Y(§min.d)]- (18
m
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As m>1, the first term on the right hand side of E§j8) can  played byy, while the set of parameter§P;} included
be neglected. Therefore, the Hausdorff dimension is detem,,n,,l;, andl,.) Substituting Eq(22) into Eqg.(21), taking

mined by solving the equation the logarithm of both sides, and dividing loy we get
Y(&min,d)=1 19 InMgy(m,k,t) k d [Rn(k,t)
——=In|Y E,d’{Pi} +a|n m .

for d. The solution is just the Hausdorff dimension of the
subset ¢, given by Eq. (15. Therefore, D(7)

=f(a(kmin)) for ky<<7<m, in agreement with the general Fo; typical coarsening mechanisiRs(k,t) grows with time
result(4). ) ) ] more slowly than exponentially. For example, this is true for
We now show that the assumptions of a discrete time anggnconserved dynamicémodel A and for the Lifshitz-
of the independent shrinking of the droplets can be relaxeds|yozov theory of conserved dynamid¢sodel B [12].
It is sufficient to assume .only t.hat the dynamics o_f eachrherefore, wherR,,(k,t)>R(k,0) the second term on the
droplet are determined by its raditend possibly by a time- ight side of Eq.(23) is negligible atms1. Similarly, it is
dependent “critical radius,” characterizing some mea”'f'e|dneg|igible wherR(k,t) <Ry (k,0) as long aR,(k,t) is not
interaction between droplgtsWe should also assume that exponentially smaller thaR,,(k,0). Equation(23) becomes
the droplets do not merge or break up. Under these assumpseonyenient in the case of shrinking droplets at the moment
tions the number of droplets in each subset is constanttl o hejr disappearance. Equatié®l) shows, however, that
the droplets disappeland all the droplets belonging to the {he 4 measure of such droplets vanishes. Hencedtheea-
same subset have the saftiene-dependeptradius. In addi-  gre of thekth subset does not change during the coarsening
tion, we forblq nucleation, which is a standard assumonrHynamiCS until the droplets belonging to this subset disap-
for a coarsening stadd2]. _ pear. Consequently, the Hausdorff dimension of this subset
Let us denote the radii of the droplets belonging toktfe  j4es not change until its disappearance. We have therefore
subset at time by R,(k,t). Thed measure of théth subset  ghown that the results of our simple discrete time coarsening

at timet is given by model apply to a wide range of coarsening mechanisms. It
q should be noted that for a system with weak multifractal
Mg(m,k,t)=nm(K)Ry(k,t). (20 properties our model predicts that the fractal dimension re-

mains approximately constant at all times. Therefore, this

model provides a simple explanation for the observation that

d the fractal dimension does not change in a wide range of
(21) coarsening processg4—10.

In summary, we have considered a simple model of coars-

I ening disconnected droplets forming a geometrical multifrac-

whereRp,(k,0) andMq(m,k,0) are the initial values of the Vg\Jle have shown thaF': at early timgesqche Hausdorff dimen-

ra<|j|| ar;‘?‘fd mealtsure. Sane the initial condition is ahgiohnet”'sion of the system does not change, whereas at late times its
cal multifractal,M4(m,k,0) can be expressed in the follow- dynamics follow thef(«) curve of the initial multifractal

This can be rewritten as

Rm(k,t)

Md(m,k,t)= I\/Id(m,k,O) Rm(k 0)

ing manner: distribution. These results are insensitive to the particular
m coarsening mechanism. We hope that they will motivate ex-
Md(m,k,0)=[Y(£,d,{Pi}” , (22) perimen_tal investigation of multifractal aspects of fractal
m coarsening.
where the functiony and the parametersP;} characterize This work was supported in part by a grant from the Israel
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