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Dynamics of fractal dimension during phase ordering of a geometrical multifractal

Avner Peleg* and Baruch Meerson
The Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem 91904, Israel

~Received 22 November 1999; revised manuscript received 27 March 2000!

A simple multifractal coarsening model is suggested that can explain the observed dynamical behavior of the
fractal dimension in a wide range of coarsening fractal systems. It is assumed that the minority phase~an
ensemble of droplets! at t50 represents a nonuniform recursive fractal set, and that this set is a geometrical
multifractal characterized by anf (a) curve. It is assumed that the droplets shrink according to their size and
preserve their ordering. It is shown that at early times the Hausdorff dimension does not change with time,
whereas at late times its dynamics follow thef (a) curve. This is illustrated by a special case of a two-scale
Cantor dust. The results are then generalized to a wider range of coarsening mechanisms.

PACS number~s!: 64.60.Ak, 61.43.Hv
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Fractal growth phenomena have been under extensive
vestigation during the past two decades@1–3#. The inverse
process of fractal coarsening occurs in many physical s
tems. It has been discussed in the context of sintering
fractal matter@4#. Coarsening of fractal clusters by surfa
tension in bulk-diffusion-controlled @5,6#, interface-
controlled @7#, and edge-diffusion-controlled@5,8# systems
has been investigated. Additional examples include ther
relaxation of rough grain boundaries@9# and smoothing of
fractal polymer structure in the process of polymer collap
@10#. Two-dimensional fractal fingering, observed in a He
Shaw cell with radial symmetry~for a review, see Ref.@11#!,
exhibits coarsening at a late stage of the experiment.
these systems are quite different, as they involve nonc
served or conserved order parameters, different trans
mechanisms, etc.

A crucial issue related to any phase ordering proces
the presence or absence of dynamical scale invariance~DSI!
@12#. DSI assumes that there is a single dynamical len
scalel(t) such that the coarsening system looks~statisti-
cally! invariant in time when lengths are scaled byl(t).
Does a fractal cluster or a fractal interface exhibit DSI~on a
shrinking interval of distances! in the process of coarsening
Early scenarios of fractal coarsening in systems with nonc
served@13# and conserved@4# order parameters did rely upo
the hypothesis of DSI. However, numerical simulatio
showed that DSI breaks down during the coarsening of fr
tal clusters in edge-@8# and bulk-diffusion-controlled@6# sys-
tems. On the other hand, recent simulations of smoothin
a fractal polymer during collapse@10#, and of interface-
controlled fractal coarsening under a global conservation
@14#, do support DSI. Therefore, a question arises about p
sible universality classes of fractal coarsening.

Even if DSI holds, the fractal dimension may or may n
change with time. Early fractal coarsening scenarios@13,4#
assumed that it remains constant~again, on a shrinking in-
terval of distances!. Experiments on sintering of silica aero
gels ~a convenient way of investigating fractal coarsenin!
have been inconclusive. Some of them@4# gave evidence in
favor of constancy of the fractal dimension during coars
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ing, while others@15# reported a significant change of th
fractal dimension with time. Other evidence for a significa
decrease of fractal dimension with time was found in expe
ments on thermal annealing of ferroelectric thin films of le
zirconate titanate@16#. In this experiment, the fractal dimen
sion remained constant at early times, and decreased t
final value at intermediate times. Numerical simulations o
variety of coarsening systems with different growth law
showed that the fractal dimension does not change with ti
These simulations include bulk-diffusion-controlled@5,6#,
edge-diffusion-controlled @5,8#, and interface-controlled
@7,14# systems.

It is remarkable that in so many systems with widely d
ferent coarsening mechanisms the fractal dimension rem
constant during the dynamics. Therefore, one is tempte
look for a general scenario that would explain this fact a
that would be insensitive to specific coarsening mechanis
The simple multifractal coarsening model developed in t
paper has this property. In addition, this model is an attem
to address the multifractal properties of fractal coarsenin

We shall consider a very simple model of a coarsen
fractal system. In this model, the initial condition for th
minority phase is an ensemble of droplets that represen
geometrical multifractal. We will then assume that the
smaller droplets shrink and disappear independently, acc
ing to their sizes, and consider discrete time dynamics. Us
a well-known theorem of multifractal geometry, we will e
tablish the dynamical behavior of the Hausdorff dimens
of this simple coarsening system. This result will be illu
trated in a special case, when the droplets are distribute
the form of a two-scale Cantor dust@1,2#. Employing the size
distribution function of this fractal set@17#, we will follow
the dynamical behavior of thed measure in two characteris
tic limiting cases and show that the Hausdorff dimensio
dynamics in this example are consistent with the gene
result. Then we will relax the discrete time assumption. F
thermore, we will show that the results are essentially in
pendent of the details of the coarsening dynamics as lon
the minority-phase droplets do not merge or break up.

The minority phase of our model represents, at zero tim
a big but finite ensemble of droplets that form a nonunifo
recursive fractal@2# with a constant density distribution in
theE-dimensional space. Let us index the droplets in themth
1764 ©2000 The American Physical Society
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generation of the fractal according to their radii. Thus, all
droplets with indexk have radiusRm(k) and form a subset o
the whole fractal, which we denote bySm(k). The smallest
droplets have indexk50 and radiusRm(0), which is the
lower cutoff of the fractal. The largest droplets have ind
k5m and radiusRm(m), which is the upper cutoff. One ca
work with a size distribution functionnm(k), which is sim-
ply the number of droplets with radiusRm(k), and use it to
compute the Hausdorff dimension of the fractal~see Ref.
@17#, where this was done for a two-scale Cantor dust!.

Any nonuniform recursive fractal with a constant dens
distribution can be described as multifractal in the geome
cal sense~see Ref.@2#, p. 66!. In this case one can introduc
the measure of the subsetSm(k) in the following way:

mm~k!5
Rm

E~k!

Sk50
m nm~k!Rm

E~k!
, ~1!

whereRm(k) are the radii of the droplets divided by the si
of the system. The Ho¨lder exponent of the elements of th
subsetSm(k) is defined by@18#

am~k!5
ln mm~k!

ln Rm~k!
. ~2!

The f (a) curve for the fractal is constructed in the followin
way @1,2,19#:

f ~a!52
ln nm~k!

ln Rm~k!
~1!k!m!, ~3!

wherek is supposed to be expressed througha with the help
of the equationam(k)5a. ~We assume that this equatio
gives a one-to-one correspondence betweena andk.! f (a) is
assumed to have a single maximum that is attained foa
5a0, so thatf (a0) is the Hausdorff dimension of the whol
fractal. We also assume thatf „a(k)… is the Hausdorff dimen-
sion of the subsetSm(k). This assumption, widely used i
the physical literature, was rigorously proved in the case o
two-scale Cantor dust@20#, and also for a class of othe
multifractal measures@21#.

We now turn to describe the dynamics. We assume
that the droplets shrink and disappear independently, acc
ing to their radius only, and also simplify the governing d
namics by introducing a discrete timet ~later we will relax
these two assumptions!. In the first time stept50 the small-
est droplets with radiusRm(0) disappear,while the sizes of
the other droplets do not change. In the next time stept
51 the elements with radiusRm(1) disappear, and so on
The set of droplets that survive after each step of these
namics obviously remains self-similar~on a shrinking inter-
val of distances!. The main result of this paper is the follow
ing behavior of the Hausdorff dimensionD as a function of
the discrete timet. For t<k(a0) D does not change
D(t)5D0, whereD0 is the Hausdorff dimension of the ini
tial condition. For t.k(a0) D(t)5 f „a(kmin)… where
kmin(t) is thek value of the smallest droplets that have n
yet disappeared by timet. This dynamical behavior is illus
trated in Fig. 1.

The proof of this result is based on the following theore
the Hausdorff dimension of a union of two fractal sets S1 and
e
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S2 with fractal dimensions DS1
and DS2

, respectively, is D

5max(DS1
,DS2

). ~See, for example,@2#, p. 17.! In the last

time step of the dynamics,t5m, the coarsening object con
sists of the subsetSm(m) alone, and its Hausdorff dimensio
is f „a(m)…. In the previous time stept5m21 the object
consists of two subsets:Sm(m) with Hausdorff dimension
f „a(m)…, andSm(m21) with Hausdorff dimensionf „a(m
21)…. It follows from the shape of thef (a) curve of the
initial fractal that f „a(m21)…. f „a(m)…. Using the theo-
rem, we getD(t5m21)5 f „a(m21)….

More generally, consider timet5k01s, where s is a
positive integer andk0[k(a0). At this time we can regard
the object as a union of two fractal subsetsSm(k01s) and
Sm(m>k>k01s11). Here, Sm(m>k>k01s11) is the
union of all subsetsSm(k) with k5s11, . . . ,m. It is also
the whole coarsening object at timet5k01s11. Assume
by induction that D(t5k01s11)5D„Sm(m>k>k01s
11)…5 f „a(k01s11)…. It follows from the shape of the
f (a) curve thatf „a(k01s)…. f „a(k01s11)…. Hence, us-
ing the theorem, we conclude thatD(t5k01s)5 f „a(k0
1s)…. Sincek01s is the index of the smallest droplets th
have not yet disappeared, we can write this result as

D~t>k0!5 f „a~kmin!…. ~4!

The dynamical behavior of the Hausdorff dimension
timest<k0 can be found in a similar way. Fort5k021 the
object can be considered as a union of two fractal sub
Sm(m>k>k0) andSm(k021). It follows from Eq.~4! that
D(t5k0)5D„Sm(m>k>k0)…5D0. From the shape of the
f (a) curve we getD05 f „a(k0)…. f „a(k021)…. Therefore,
D(t5k021)5D0. More generally, for any timet5k02s
the coarsening object can be considered as a union of the
fractal subsetsSm(m>k>k02s11) with Hausdorff dimen-
sion D0 and Sm(k02s) with Hausdorff dimensionf „a(k0
2s)…. From the shape of thef (a) curve we deduce
f „a(k02s)…,D0. Hence, by using the above theorem, w
conclude thatD(t5k02s)5D0. More generally, we can
write:

FIG. 1. Hausdorff dimensionD of the ensemble of droplets
versus discrete timet ~solid curve!. The dashed curve is the
f „a(k)… curve att50. D0 is the Hausdorff dimension att50,
while k0[k(a0) is the value ofk for which f „a(k)… has its maxi-
mum.
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D~t<k0!5 f „a~k0!…5D0 . ~5!

Let us now turn to the particular case when the ensem
of droplets at zero time represents a two-scale Cantor d
Recall that the initiator of this fractal is anE-dimensional
cube of unit side length. The generator consists ofn1 cubes
of side l 1 andn2 cubes of sidel 2 wherel 2. l 1. In each step
of the fractal construction every full cube is replaced by
properly rescaled generator. After the last step of the c
struction, which is themth step, all the cubes are replaced
spherical droplets with the same size as the cubes.

Now assume that this two-scale Cantor dust undergoes
simple coarsening dynamics described earlier. For con
nience, we will compute the time-dependentd measure of a
two-scale Cantor dust that consists of cubes~the ones that
were replaced by the spheres after themth generation of the
construction!. The only difference in the computedd mea-
sure will be in ad-dependent prefactor. Since this prefac
is independent ofk and m, it will not affect the dynamical
behavior of thed measure and the Hausdorff dimension.

The d measure of themth generation of a two-scale Can
tor dust can be written as@17#

Md5E
0

m

nm~k!Rm
d ~k!dk

5S m

2pk~m2k! D
1/2E

0

m

exp@g~k!#dk, ~6!

where

g~k!52k lnS k

mn2l 2
dD 2~m2k!lnS m2k

mn1l 1
dD , ~7!

and Rm(k)5 l 1
m2kl 2

k is the size of the cubes in the subs
Sm(k). The function exp@g(k)# has a~sharp! maximum at

k̃0~d!5
n2l 2

dm

n1l 1
d1n2l 2

d
. ~8!

For d5D0 one can show thatk̃0(D0)5k(a0)[k0. At time
t5kmin the d measure of the object is

Md~t!5E
kmin(t)

m

nm~k!Rm
d ~k!dk. ~9!

As long askmin(t)! k̃0(d), one can apply the saddle poin
argument used in Ref.@17# and conclude that

Md„t! k̃0~d!….Md~t50!5~n1l 1
d1n2l 2

d!m. ~10!

This implies that during the early stages of the dynamics
d measure remains, with an exponential accuracy, cons
Correspondingly, the Hausdorff dimension, which is co
puted by solving the same equation

n1l 1
d1n2l 2

d51 ~11!
le
st.
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for d, does not change with time. This is in agreement w
Eq. ~5! obtained in the general case.

On the other hand, whenk̃0(d)!t5kmin!m, the behav-
ior of Md(t) is quite different. Since fork. k̃0(d) g(k) is a
decreasing function ofk, the main contribution to the integra
in Eq. ~9! comes from a close neighborhood ofk5kmin(t).
Therefore, in Eq. ~9! we can expandg(k) around k
5kmin(t) to the first order and get

Md.
nm~kmin!Rm

d ~kmin!

ug8~kmin!u
5

h~jmin ,d!@y~jmin ,d!#m

m1/2
,

~12!

wherejmin5kmin /m,

y~jmin ,d!5S 12jmin

n1l 1
d D jmin21S jmin

n2l 2
dD 2jmin

, ~13!

and

h21~jmin ,d!5@2pjmin~12jmin!#
1/2U lnS ~12jmin!n2l 2

d

jminn1l 1
d D U .

~14!

The Hausdorff dimension of the subset labeled byjmin is
given by

f ~a~jmin!!

5
jmin ln~jmin /n2!1~12jmin!ln@~12jmin!/n1#

~12jmin!ln l 11jmin ln l 2
.

~15!

It follows that

Rm~kmin!
2 f „a(kmin)…5

nm~kmin!

@m/„2pkmin~m2kmin!…#
1/2

. ~16!

Hence, we obtain the following expression forMd in the
limit of k̃0(d)!t!m:

Md.S h~jmin ,d!

m1/2 D Rm~kmin!
d2 f „a(kmin)…. ~17!

We see that, up to logarithmic corrections resulting from
factor h(jmin ,d), the d measure obeys a power law o
Rm(kmin) with a time-dependent exponent.

Equations~12!–~14! allow one to calculate the Hausdor
dimension of the ensemble of droplets in the limit ofk̃0(d)
!t!m. Taking the logarithm of both sides of Eq.~12! and
dividing by m, we get

ln Md

m
.

1

m
lnS h~jmin ,d!

m1/2 D 1 ln@y~jmin ,d!#. ~18!
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As m@1, the first term on the right hand side of Eq.~18! can
be neglected. Therefore, the Hausdorff dimension is de
mined by solving the equation

y~jmin ,d!51 ~19!

for d. The solution is just the Hausdorff dimension of th
subset jmin given by Eq. ~15!. Therefore, D(t)
5 f „a(kmin)… for k0!t!m, in agreement with the genera
result ~4!.

We now show that the assumptions of a discrete time
of the independent shrinking of the droplets can be relax
It is sufficient to assume only that the dynamics of ea
droplet are determined by its radius~and possibly by a time-
dependent ‘‘critical radius,’’ characterizing some mean-fie
interaction between droplets!. We should also assume th
the droplets do not merge or break up. Under these assu
tions the number of droplets in each subset is constant~until
the droplets disappear! and all the droplets belonging to th
same subset have the same~time-dependent! radius. In addi-
tion, we forbid nucleation, which is a standard assumpt
for a coarsening stage@12#.

Let us denote the radii of the droplets belonging to thekth
subset at timet by Rm(k,t). Thed measure of thekth subset
at time t is given by

Md~m,k,t !5nm~k!Rm
d ~k,t !. ~20!

This can be rewritten as

Md~m,k,t !5Md~m,k,0!S Rm~k,t !

Rm~k,0! D
d

, ~21!

whereRm(k,0) andMd(m,k,0) are the initial values of the
radii andd measure. Since the initial condition is a geome
cal multifractal,Md(m,k,0) can be expressed in the follow
ing manner:

Md~m,k,0!5FYS k

m
,d,$Pi% D Gm

, ~22!

where the functionY and the parameters$Pi% characterize
the initial fractal condition considered.~In our example of
the two-scale Cantor dust the role of the functionY was
-

.

r-

d
d.
h

p-

n

-

played by y, while the set of parameters$Pi% included
n1 ,n2 ,l 1, andl 2.! Substituting Eq.~22! into Eq.~21!, taking
the logarithm of both sides, and dividing bym we get

ln Md~m,k,t !

m
5 lnFYS k

m
,d,$Pi% D G1

d

m
lnS Rm~k,t !

Rm~k,0! D .

~23!

For typical coarsening mechanismsRm(k,t) grows with time
more slowly than exponentially. For example, this is true
nonconserved dynamics~model A! and for the Lifshitz-
Slyozov theory of conserved dynamics~model B! @12#.
Therefore, whenRm(k,t).Rm(k,0) the second term on th
right side of Eq.~23! is negligible atm@1. Similarly, it is
negligible whenRm(k,t),Rm(k,0) as long asRm(k,t) is not
exponentially smaller thanRm(k,0). Equation~23! becomes
inconvenient in the case of shrinking droplets at the mom
of their disappearance. Equation~21! shows, however, tha
the d measure of such droplets vanishes. Hence, thed mea-
sure of thekth subset does not change during the coarsen
dynamics until the droplets belonging to this subset dis
pear. Consequently, the Hausdorff dimension of this sub
does not change until its disappearance. We have there
shown that the results of our simple discrete time coarsen
model apply to a wide range of coarsening mechanisms
should be noted that for a system with weak multifrac
properties our model predicts that the fractal dimension
mains approximately constant at all times. Therefore, t
model provides a simple explanation for the observation t
the fractal dimension does not change in a wide range
coarsening processes@4–10#.

In summary, we have considered a simple model of coa
ening disconnected droplets forming a geometrical multifr
tal. We have shown that at early times the Hausdorff dim
sion of the system does not change, whereas at late time
dynamics follow thef (a) curve of the initial multifractal
distribution. These results are insensitive to the particu
coarsening mechanism. We hope that they will motivate
perimental investigation of multifractal aspects of frac
coarsening.

This work was supported in part by a grant from the Isr
Science Foundation, administered by the Israel Academ
Sciences and Humanities.
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