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A characteristic functional approach is suggested foryldiffusion in disordered systems with external
force fields. We study the overdamped motion of an ensemble of independent particles and assume that the
force acting upon one particle is made up of two additive components: a linear term generated by a harmonic
potential and a second term generated by the interaction with the disordered system. The stochastic properties
of the second term are evaluated by using Huber's approach to complex relgktigm Rev. B 31, 6070
(1985]. We assume that the interaction between a moving particle and the environment can be expressed by
the contribution of a large number of relaxation channels, each channel having a very small probability of
being open and obeying Poisson statistics. Two types of processes are investigategyvy diffusion with
static disorder for which the fluctuations of the random force are frozen and last forevé) aliffusion with
strong dynamic disorder and independenty @uctuations(Lévy white noise. In both cases we show that the
probability distribution of the position of a diffusing particle tends towards a stationary nonequilibrium form.
The characteristic functional of concentration fluctuations is evaluated in both cases by using the theory of
random point processes. For large times the fluctuations of the concentration field are stationary and the
corresponding probability density functional can be evaluated analytically. In this limit the fluctuations depend
on the distribution of the total number of particles but are independent of the initial positions of the particles.
We show that the logarithm of the stationary probability functional plays the role of a nonequilibrium ther-
modynamic potential, which has a structure similar to the Helmholtz free energy in equilibrium thermodynam-
ics: it is made up of the sum of an energetic component, depending on the external mechanical potential, and
of an entropic component, depending on the concentration field. We show that the conditions for the existence
and stability of the nonequilibrium steady state, which emerges for large times, can be expressed in terms of
the stochastic potential. For g white noise the average concentration field can be expressed as the solution
of a fractional Fokker-Planck equation. We show that the stochastic potential is a Lyapunov function of the
fractional Fokker-Planck equation, which ensures that all transient solutions for the average concentration field
tend towards a unique stationary form.

PACS numbd(s): 05.40—a, 64.60.Ht, 05.70.Ln, 68.35.Fx

[. INTRODUCTION the moments of the position are generally finite. This type of
process has been extensively investigated in the literature. A
The study of Ley diffusion in condensed matter started second type of process corresponds to a random walk for
over 20 years ago with the classical papers by Eliot Montrollwhich the length of an individual jump obeys \yestatistics
and his co-workers on disordered systdrbk In the mean- and the moments of the displacement vector are infinite. In
time the study of this subject has become an active area dhis second case, it has been pointed out in the literqfiiie
applied statistical physics. The study ofuyediffusion is of  that for a particle with a finite mass the \ye picture is
interest in connection with a large class of phenomena fromwvrong for most physical transport models, for which a par-
physics, chemistry, and biology, ranging over the study ofticle must have a finite velocity of propagation. With a few
vortex motion in high-temperature superconductors, movingxceptiong11], until recently little attention has been paid to
interfaces in porous media, random field magnets, spitthis second type of process. A systematic study of random
glasses, the propagation of electromagnetic or acoustiwalks with individual jumps obeying lwy statistics has been
waves in random medig2—4]|, random-phase modulation in initiated by Fogedby12]. He pointed out correctly that for
spectroscopy{5], reaction kinetics in disordered systems these processes the classical approach for studying diffusion
[6,7], the structure of biological orgar8], or the growth of in terms of the Langevin-Einstein approach breaks down be-
a population in a random environme. cause both the second moment of the position of a moving
There are two different types of kg diffusion; both  particle as well as its average kinetic energy are divergent. In
types were introduced in the original papers by Montroll andorder to overcome these difficulties he has developed an al-
collaboratord 1]. The first type corresponds to a continuousternative description based on the use of fractional calculus
time random walk for which the probability density of the and of the renormalization grodyg2,13. An interesting ap-
waiting time between two jumps is of the \yetype and has proach is based on the use of a fractional Fokker-Planck
infinite moments. In this case the probability density of theequation[14].
position of the moving particle is not of the e type and It has been recently pointed out tHa8] in the presence
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of a force field, Ley diffusion leads, in the limit of large inertial term in Eq(1) can be neglected. We also assume that
time, to nonequilibrium stationary profiles, which have athe friction is without delay and that the random foFgg(t)
stable Lery shape and do not obey Maxwell-Boltzmann sta-generated by the random environment is much bigger than
tistics. The emergence of nonequilibrium distributions forthe thermal random forcE(t) responsible for the ordinary
large times seems to be a generic feature of disordered sydiffusion. We also assume that the mechanical potential
tems. A similar nonequilibrium distribution has been foundU(r) is harmonic. Under these circumstances the evolution
by us in the case of reversible rate processes in systems witlguation of a moving patrticle reduces to
dynamic disordef15].

The purpose of the present paper is to investigate the pos- d P
sibilities of building a thermodynamic formalism for these y=—=X(t) =Fg(t) — —=U(x), (2
types of nonequilibrium states based on the study of concen- dt X
tration fluctuations. We compute the probability density
functional for a system with sy diffusion and define a Wwith
stochastic potential proportional to the logarithm of this
probability density functional. We are going to show that this U(x)=2kx2. ®)
nonequilibrium potential may serve as the basis for develop-
ing a nonequilibrium thermodynamic formalism which is a

generalization of the thermodynamic and stochastic theory qg;y using a generalized Huber approach. The random force
nonequilibrium processes by Ross, Hunt, and Has-20. ,:dis(t) is made up of the additive contribution of a large

Our approach is based on two different mathematicanumberN of individual components. Each individual com-
techniques. The first technique is the random-channel ap- P :

proach for the study of independent fluctuations in systemgonem.gm(t) IS a random function corresponding to a given
with static disorder introduced by Hubgz1] in 1985 in the relaxation channel

context of the theory of relaxation. Huber's approach has

been recently generalized for interacting fluctuations as well N

as for systems with dynamical disord@2-24. The second Fais(t) = m§=:l Im(t). (4)
technique is the characteristic functional approach to the

theory of random point processgzb—27. ) i S )

The structure of the paper is the following. In Sec. Il we The physical model for the lwy diffusion is essentially a
give a general formulation of the problem of\yediffusion _modgl of Brownian mqtlpn for which the contrlbutllon of an
based on the use of the Huber approach. Sections 11l and I{pdividual event(a collision to the random force is a sto-
deal with the one-particle formulation for systems with staticCh"_"St'_C _functlon, which obeys fracta_\l statistics. The s_tatlsncs
disorder and for systems with' i¢ white noise, respectively. of individual events can be convemently_ expresse_d |n.terms
In Secs. V and VI many-body formulations of the theory areOf the Huber’s theory of complex relaxati¢p1-24; in this
presented both for static disorder and for systems withyLe context we formally attach a channel to each individieal-
white noise. In Sec. VII the many-body approach is used fofision) event. Both the numbeM of channels and the contri-
extending the thermodynamic and stochastic theory of nonPutionsgs(t),....gn(t) of the different channels are random;
equilibrium processes by Ross, Hunt, and Hunt to the case dheir stochastic properties can be described by a set of grand

The fluctuations of the random forég((t) are described

Lévy diffusion. canonical probability density functionals
Il. FORMULATION OF THE PROBLEM Qo,Q1[9:1(D]D[g1(D)],....QN[G1(1),....ON(D)]
We study the motion of a large number of identical par- XDlg1(t) ] - Dlgn(t)], (5)

ticles in a disordered system and assume that these particles
do not interact with each other. They only interact with the,\nere Dlg(t)] is a suitable integration measure over the

environmt_ant and wi;h an externe_ll potential field. In generagpame of functiong(t). These probability density function-
the equation of motion of a particle can be expressed by g4 obey the normalization condition

generalized Langevin equation of the type

d? t d o1
magr O+ || vt g ot 3, wr [+ [ entanw . aww)

=Fun(t) + Faig(t) = VU(r), &) XDla1(H]--Dlon(h]=1, (6)

wherer (t) is the position vector of the particle at timemis
the mass of the particley(t—t") is the tensor of friction
coefficientsFy(t) is a thermal random force responsible for
ordinary diffusion,Fg4(t) is a random force expressing the
interaction of the particle with the random medium ang)

is a potential field. For simplicity in this article we limit
ourselves to the study of one-dimensional diffusion and as-

sume that the motionyof particles is overdamped, that is, the QO_EXP[ —ﬂpg[gl(t)]D[gl(t)] ’ @)

where [ denotes the operation of path integration. In this
paper we assume that all relaxation channels are independent
and thus the grand canonical probability density functionals
are Poissonian
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Qn[91(1), ... gn(D DL g1(t) ]~ DLgn(1)]

:exp{ - [[odauvinta

X pgl91(1)ID[g1 (1) ]+ pgl IN(D) ID[gN(D) ],
€S

wherepg[g(t) D[ g(t)] is the average functional density of

states corresponding to a relaxation channel.

In this paper we are interested in two different problems.
The first problem is the evaluation of the probability g,,g,,...
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extreme cases. The first case corresponds to systems with
static disorder for which the fluctuations of the random force
are frozen, that is, a fluctuation once it occurs, lasts forever.
The second case corresponds to the other extreme, of rapid
independent fluctuations of the random force; that is, to fluc-
tuations with Lery white noise.

lIl. SYSTEMS WITH STATIC DISORDER.
ONE-PARTICLE DESCRIPTION

For systems with static disorder the contributions
of different relaxation channels to the random

P(x;t)dx that a moving particle is at a position between force are random numbers, rather than random functions, and
andx+dx at timet. The second problem is the evaluation of the grand canonical probability density function&® are
the stochastic properties of the concentration of particles atplaced by probability densities

position x and timet. Solving these problems involves the
evaluation of ensemble averages in terms of the grand ca-

nonical probability densitie&7) and(8).

Q0.Q1(91)dg1,....ON(91,....9n)d0r - -day,  (14)

The probabilityP(x;t)dx can be expressed as the averagewith the normalization condition

of a é function

P(x;t) = (8(x—X[X(to);Fais])), 9

whereXx[ X(tg); Fq4is] is the solution of the Langevin equation
(2) for a given realization of the random forég;((t) and the

* 1 +o +o0
Qo"‘NZl mJim "‘Jim On(g1,..-,.9n)dgy--dgy=1.
(15

average--) is computed by using the grand canonical prob-The grand canonical probability densiti€s4) describe the

ability density functionalg7) and (8).

statistics of the individual event&hannels Later on, we

The probabmty density functional of the concentration shall introduce a different set of grand canonical probablllty

field C(x;t),

PLC(x;)]DIC(x;t)] with ﬂP[C(X;t)]D[C(X;t)]=1
(10

can be expressed as the ensemble averagesdtiactional
S[C(x;t) — CIx;tF (L), F(t)), .. 11
XDIC(x;1)], (11

where C[x;t;F{(t"),F2)(t"),...] is one realization of the
concentration field, which can be expressed as the sué of

functions, eachd function corresponding to one particle,

CIxtFR(),FR(t),...]= 2 8(x—X[X(to);FE2T).

(12
We have
PLC(x; 1) ]DLC(x;1)]
=< 5( C(x;t)— X S(x—xX[xy(to);F4o])
XD[C(x;t)]>, (13

where, once again, the average) is computed by using the

grand canonical probability density functiond® and(8).
The evaluation of the ensemble averag@®sand (13) for

densities, which describe the concentration fluctuations.
These two sets of probability densities are distinct and
should not be mistaken. For independent relaxation channels
the probability densitie®;,Q-,... arePoissonian

Qo=exp( - f:pg(g)dg), (16)

On(g1,.--,9n)d0p - -dgy

= eXF{ - j_:pg(g)dg) Pg(gl)dgl' ' 'pg(gN)dgN )

17

where py(g)dg is the average number of channels with a
contribution to the random force betwegrandg+dg. For
Lévy fluctuations the distribution of the numbers of channels
with respect to their contribution to the random force is
given by a self-similar law of the negative power-law type.
For the case of relaxation theory the contribution of a chan-
nel is a positive number. A random force, however, can be
either positive or negative and its distribution is usually sym-
metrical. For this reason we assume that the average distri-
bution of the number of channels is given by a negative
power law in the absolute value of the contributigto the
random force

k>0,

pg(9)dg=«|g| " dg, 2>a>0 (19

where k>0 is a positive proportionality coefficient and 2

>a>0 is a positive fractal exponent. For the particular case

arbitrary fluctuations of the environment is in general veryof the harmonic potential3) the Langevin equatiol2) be-
difficult. In this paper we limit ourselves to two different comes
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d k
'}’ax(t)+kx(t):|:dis(t)- (19 X(t):X(to)eXl{—;(t_to)}

1
Equation(19) has the solution * k

k
1_eXF<_;(t_to))}Fdis. (21)

We use the notation

k o
X(t)=X(to)eXF{— ;(t—to)} G(q;t)= JU; P(x;t)exdixq]dx (22

+ 1 ft ex;{ - E(t—t’)}Fdis(t’)dt’. (20)  for the Fourier transfornithe characteristic functiorof the
to Y

Y probability densityP(x;t) of the positionx of a particle at
time t. We assume that the fluctuations of the initial position
of a particlex(ty) are independent of the fluctuations of the

For static (quenchedl disorderF 45 is independent of time random forceF s and use Eqs(9) and (22) for expressing
and G(q;t) as a grand canonical average

G(qg;t)=(exdix(t)q])

= < ex;{iq[ x(to)ex;{ - ;(t—to)

= Gyansient 3 1) Gromal Oi 1), (23

k k
X(to)eXF( - ;(t_to))H> :GO(QEXF{_ ;(t_to)}), (24)

k N
1—exp( - —(t—to)” > gm}, (25)
Y 1

m=

1 1_exp( _ g(t—to)”“‘sm

K

where

Grransientd:t) = < eXF{ iq

N 1
Gnorma(q;t)=Q0+z mf j QN(gla---vgN)dgl"'dgNeX 'qE
N=1 . — o0 — o
and
+ 00
Go(Q)=J expigx) P(x;to)dx (26)

is the Fourier transfornficharacteristic functionof the probability densityP(x;t) of the initial position of the particle at time
to. For a Poissonian process described by Etf). and(17) the sum in Eq(25) over the numbeN of channels can be easily

evaluated, resulting in
+oo o1 k
Grormal d;t) =ex _Jl ‘Pg(g) 1-ex 'qE 1-ex _;(t_to) g |dg

If the distribution of the average number of channels is given by the self-similafll@athen the integral in the exponent of

Eq. (27) can be computed analytically. We have
k « T
1—ex —;(t—to) I'(l-a)co -/ (28

k @ Ta
1—ex;{ — ;(t—to)”] F(l—a)co{T) )dq

(29

. (27)

2 1
Ghormald;t) =exp — ;K |q|E

The inverse Fourier transform @& ;ma(d;t)
1 1 (+= ] 2 1
g(X;t_tO):F Gnorma(q;t): E . exr[—qu]ex - ;K |q| E
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is a Green function(propagator for the diffusion process, lim P(x;t)=lim G(x;t—tg)
which can be expressed in terms of the symmetric stable t—« t—oo
Lévy probability density with a fractal exponent[28]

1 X
=§—\Ifa(§—) independent ofP(x;tg).

+

1 oo
‘Pa(y)zﬂﬁw exd —iqy—|y|*]dy with 2>a>0.
(30)

(37

In conclusion, in this section we have shown that for sys-
We have tems with static disorder and a harmonic potential, the prob-
ability density P(x;t) of the position of a moving particle
1 [+ can be represented by a convolution product between the
g(xt=to)=5— Lw exf —igx] initial probability densityP(x;t,) at timet, and a propagator
G(x;t—tp), which is given by a time-dependent stable prob-
xexp{—[|q|Z(t—te)]%}dq ability density of the Ley type. For large times both the
state probability densityP(x;t) and the propagato(x;t
—1t) tend towards a time-independent nonequilibrium prob-
ability density of the Ley type which is independent of the
initial state of the system.

1
= m‘l’a[X/é(t—to)]. (31)

where )

IV. SYSTEMS WITH LE VY WHITE NOISE.
2 i1 ma\ )Y ONE-PARTICLE DESCRIPTION
a ( @) 2

= p(—ft—t )
ex ’y( 0)

{(t=tg)=
° For systems with [ey white noise the grand canonical

probability density functionals can be expressed as the con-
. (320  tinuous limit of a product of static probability densities of the
type (14). We divide the time interval of length—t, into
small slices of lengthAt. For Levy white noise the fluctua-
tions of ag variable attached to one channel at a given time
is independent of the fluctuations at other times; we have

X K 1o
k

For large times this propagator tends towards a nonequili
rium stationary form. We have

fim G t—tg) = gi\p(g> @3 QM1 Gn(DIDIGy(D)]- - DLgn(D)]
t—oo © * +
= lim { exp{—J' pg(g(”);At)dg(W)
with At—o{ U -
2 Ve q WydgW- -5 (qW)dgW
§m= —F(l—a)co E _Klla. (34) ng(gl )dgl pg(gN )dgN }]a (38)
a 2 k
. . . where
The probability densityP(x;t) of the position of a par-
ticle at timet can be computed from Eq2)—(24) and(28). gW=g"(tg+uAt), n=1,...N. (39
We obtain
The average density of channelg(g; At) is given by a scal-
p(x;t)=F {G(q;t)] ing law similar to Eq.(18), where now the proportionality
, , coefficientx is a function of the lengtiAt of the time inter-
e Lo ML= E(t 1)}

pg(9;At)dg=k(At)|g|~***dg,

=f+x Poly') |, [ xex (t—to)k/y] -y’ ]dy,

o Lo Lexd (t—to)k/y]—1} k>0, 2>a>0. (40)
(39 In order that the averages computed in terms of the grand
canonical probability density functiona{88) are physically
where consistent it is necessary thafAt) obeys the scaling con-
dition
E(t—to)=exd — (t—to)k/y]. (36)

k=rKo(At)1™¢ with xko>0. (41)
From Eq.(35) it is easy to check that for large times the
probability densityP(x;t) tends towards a nonequilibrium The evaluation of the Fourier transform of the state prob-
stationary form which is independent of the initial probabil- ability density is straightforward. For averaging we dis-
ity density P(x;ty) of the position of a particle at timg. cretize the expression aft;x(ty)) compute the average and
We have then pass to the limiAt—0. We have
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= Xp[i +Ef x;{—Et—t’}F- t/ dt’“
={ exp iq 5 toe 7,( ) [Fais(t")
(ofa xwen{ 50|
={ exp iq| X(tg)exp — —(t—tgp)
Y
ikt k , i ner
XI;[ <exp‘|q ;ex;{—;(t—tu))Fd,s(tu)At H>

=Gtransien(q;t)1;[ Ginfi(q;t;ta)y (42

G(g;t)=(exdix(t)q])

k
X(to)eXF{ - ; (t—=to)

where

Ginﬁ(q;t;tfj)=<eXP{ iq %exp( - ;(t—tﬂ)) Fdis(tLlj)At,H > (43

andGyansienfd; ) is given by Eq(24). By comparing Eqs(24) and(43) we notice thaG,;;(q;t;t,) has a structure similar to
Ghomald;t) for systems with static disorder given by HE5). If in Eq. (43) we make the replacements

Ginfi(q;t;tL’J)_’Gnorma(q;t)u (44)
! K 1) |At ! 1 K y 45
;ex —;(t—tu) t HE —eX —;(t—tu) , ( )
we get Eq.(25). By making use of this observation we can easily eval@jg(q;t;t,) from Eq.(28). We get
’ 2 1 k ’ , @ T
Gini(Q;t;t,) =ex LK q;ex —;(t—tu) At'| T'(1—a)co <[ (46)
The next step is to evaluat®,q;ma(d;t)
Gnorma(q;t):E[ Ginfi(q;t;ta) (47)

by passing to the continuous limit. From E@41l) and(46) and (47) we come to

ft ex;{—a—k(t—t’)}dt’f‘ 1- )cos(ﬂ)
to Y ( “ 2

2kg ak Ta
=eX| —|Q|am 1—ex —7(t—t,) I'(l—a)co N

=exp{—[q[“[{*(t—to) ]}, (48)

2K0
ay”®

Gnorma(q;t):ex% - |q|a

where

& (t=to) = ZH{1-exd — w(t—to) I}

ma

2KO 1/a
= azk—yalr(l—a)COi{T){l—eXF{—V(t—to)]} , v=akly (49

. 2K0 T 1l
ng(wr(l—a)cos(T)J : (50
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The propagator of the diffusion proces§(x;t—tg) the numbeM and the positiong;,...,xy of the particles at
=F 1G(q;t) and the state probabilitP(x;t) is given by a  timet,
relationship similar to Eq94.31) and (35), respectively,

Co,CM(Xl,...,XM;t)dxl'"dXM (54)

W [xIf*(t=tg)],  (5D)

1
Q(X:t—to)zm

with the normalization condition
and

P(x;t)=F '[G(q;1)] o L[ [
q CO+|\/|E—1WJ f CM(Xl,...,XM;t)dxl"'dXle,

[t Poly’)
T (55
xexgv(t—to)/a]—y’ dy'. (52 and assume that these functions are known for the initial
“| lexdv(t—to)]- 137 Y time to

The time dependence of the propagaifx;t—t,) and of
the state probabilityP(x;t) is different for systems with
stat|c_d|sorder and fqr systems with whiteWenoise, re- =C&(X1.---,Xm)dX1"'dXM- (56)
spectively. However, in the long run, they both tend towards
the same type of nonequilibrium stationary profile. In the

CM(XJ_,-..,XM ;t=to)dxl. ..dXM

case of white Ley noise, we have As mentioned in the preceding section the grand canonical
probability densities(y,Cq, ... which describe the concentra-
lim P(x;t) = lim G(x;t—to) tion fluctuations, are different from the probability densities
e e Q0,Q1,... which describe the fluctuations of the random
1 X force. We introduce the characteristic functiog@lC(x";t)]
= —*\Pa(—*) independent ofP(x;tg). attached to the probability density functional
g g PLC(x;t)]D[C(x;t)] of concentration fluctuations,
(53
Equation(53) is similar to Eq.(37) derived in the preceding Q[K(x"t)]=ﬂ exﬁ’ i jMC(x"t)IC(x"t)dx’]
section for systems with static disorder. ' o ’ ’
We mention that the results derived in this section are
consistent with the results presented in R&8]. Our equa- XPCH]IDLCx )]

[13] because in our derivations we have assumed arbitrary

tions are slightly more general than the ones derived in Ref. o
<exp[ f C(x";t)K(x";t)dx ]>
initial conditions.

(57)
V. SYSTEMS WITH STATIC DISORDER. MANY-BODY

DESCRIPTION . . .
whereC(x;t) is a test function conjugated to the concentra-

In order to study the dynamics of concentration fluctua-tion field C(x;t). By using Egs.(13) and (57) G[K(x';t)]
tions we introduce a set of grand canonical probabilities forcan be expressed as

o] M
gK(X';t)]= <M20M—1,J e, xl,...,xoM)dx(l)---dxoMexp{i i 2 S(x—x(x%;t))K(x’ t)dx]>
o 1 M
<2 Wf f X3, xopdxd---dxy T 1 exp[iIC(X(X?n;t);t)}>, (58)
M=0 M=1
where
1
Xy, (Xg 1) =Xy E(t=to)+ L [1=&(t—10)IF s (59

and &(t—tg) is given by Eq.(36).
We use the mathematical identity
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1
f(x(t))=zf exp[—ibx(t)]dbf f(p)exp(iby)dy (60)

which can be easily derived by using a pair of direct and inverse Fourier transforms. By combinir{§8tasd (60) we get

GLE(X)]=(ZLK(x")]), (62)
with

~ 1 + o + o
I[/C(x')]=M2:0Wf_ f_ Co(x9,... xS dx®---dxS,

Xﬁfﬁo...f“c exp{—iz qu(XS;t)

Now we change the order of the integrals and express the average with respect to the random force in terms of the grand
canonical probability densities. After lengthy calculations we obtain

T [+ oo [+ +oo
ZI’C(X'”:MZOWL”'L f ---waﬁA(x%...,xmexr{—ig byX(to)é

M
+ +
abyaby [ oo [ TT exdlixmidmydnu. (62

0 0
Xm‘ "dXM

1
X(Zﬂ.)MeX[{ '2 buk[l &§]F gis|dby - dbe f H expli K(npm) tdny--dyy

oM'f f Mu(—bié,....,—by&;to)dby---dby

M

1 1 + oo
X—(Zﬂ_)MeXF{—i; b“F[l_g]Fdis“_m'” _xnl‘_[ expli K(7m) +ibnymidy---dyy, (63)
where
+ o0 + o M
M&(ql,...,qM)=f_m f_m exp(iME1 xuqu)C&(xl,xz,...,xM) (64)

is the multiple Fourier transform of the grand canonical probability demgmxl,xz,...,x,w). In Eq. (63), for simplicity, we
have used the notatiohfor £(t—ty). The next step is to evaluate the average over the random force, resulting in

* 1 +o0 +oo
Q[’C(X’)]=ME:O Wﬁw ---ﬁw My(—b&,...,—by&te)dby:--dby,

1 M + oo + o M
X—(Zw)mexp{—[é(t—to)]“rgl Ibmla] LC---LC nl':[l exp(i K(9m) +ibmymbdny--dyy . (65)

Equation(65) is the main result of this section; it contains all information concerning the fluctuations of the concentration
field C(x;t), expressed in terms of the different momef®(x;;t)C(x,;t)---) or cumulants((C(xy;t)C(x,;t)--+)), the
grand canonical densiti&€g, (X1 ,X»,...,.Xy ;t) as well as the corresponding multiparticle product densftigs, ,X,,... X t)
and the correlation functiong,,(x1,X,,....Xm;t). The main steps of the mathematical derivations are outlined in Appendixes
A and B. In the following we give only the results.

The momentgC(x4;t)C(x,;t)--+) and the cumulant§ C(x;;t)C(x,;t)--+)) can be expressed as functional derivatives of
GLE(X") ]:

5./\/
Y.L . _ (N ’.
(G b+ CONN =)™ G e A0 (66)
((C(Xq; 1)~ C(xp51))) = (i) KD~ S0 InGLE(X";1)] I (67)

For moments we have managed to derive a general formula
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% 1 M
C(Xq;t) - C(Xpit))= — B0, . ...0,...7b, &...0,.,
(COouit - Clouat)= 2 gy 2, ° w—f f u( né £rn0n)
1 M N
X——exp —| {((t—tg)]* >, |bml® exp(iE b, xu)dbvmdb,,. (68)
(277) m=1 u=1 u 1 X

The cumulants are more difficult to evaluate. A general formula similar to(&R]).is not available; however, they can be
computed step by step,

(69

+°°<<Co(X)>> (xexr[(t—to)k/y]—y’]d ,

(Coat))= f “| C{ex (t—tok/y] -1}

+2 ((Co(y1)Co(Y3 Sy, —y{(Coly}
({C(x4:1)C(x:))) = f f {(Co(y1)Coly )>>(§m)(2y ~y5){(Coly1)))

X, expl (t—to)k/ y] -y,
XUQ,Z‘I’“{ L Aexd (t—tokly]- 1}

- ’ —to)kly]— Y,
XZ)wa <<C0(yl)>>\lf [XleXF{(t to)k/y] yl}dy’

]dyidyé

+ 8(X1— (70

“L Eo{exd (t—=to)k/ y] -1}
whereCy(x) =C(X;tp).

Equation (68) for the moments of the concentration field can be used for computing the grand canonical probability
densities, for the numbers and the positions of the particles atttimeAppendix A we show that

CoYS oY) Xy XA (t—tg)k/ W
Culrsr o= [ f Vi Y H«P[ ROt Y]~ y]dyi Ayl (71)

@M {Aexd (t—to)k/y]—1}

Following Carrutherg29] we introduce the product den- Zm(X1see e X b)
sities, corresponding to different numbers of distinct par-
ticles placed at different positions as the averages of products I +2 gm(Y10---Ymito)
of & functions, ). (L))"
Ton (X1 X i) =(8(%1 =X, ) 8(Xa =% ), (72) H ’ el (t—tok Y=y, |
» | 1o fexpl(t—tok/y]—13 | 1P
where all labelsB4,...,8, are distinct. These functions can 75

be computed by means of a chain of relationships similar to

Eq. (7D, In particular, the correlation function of first order is equal to
the average value of the concentration field

f fﬂl"(yl,--.,ym) 6D =((C(x;1)))
(&7 _ J+w<<co<x>>>

Xy EXE (1 to) K/ Y]~ y,, DR
| Cfex - oKyl -1y M D < [Xex‘i“‘t")k’”‘y' dy. (79
- o| Z{exi(t—to)k/y]—1}

By comparing the results of the many-body approach pre-
where sented in this section with the one-particle description pre-
sented in Sec. lll, we notice that these two different descrip-
ToY1 oY) = In(Y1 - Ymito)- (74 tions are consistent with each other. In the first place(&9).
for the first cumulant of the concentration fieldC(x;t))),
The correlation functiong,,(Xy,Xz,....Xn;t) are defined is similar to Eq.(35) for the probability density(x;t) of the
as the cumulants corresponding to the product densitiegosition of a moving particle at timig derived in Sec. Ill. By
Im(Xq,...Xm;t) and can be computed starting from E@3)  comparing Eqs(35) and (69) and taking into account that
(see Appendix B We have the first cumulant of the concentration field is equal to the
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average valu¢C(x;t)) we notice that the two equations are
equivalent to each other if we assume that DC(x;t)]= j C(x;t)In

Coa }d 84
Cxyx ©Y

POGO=(COGONIM)=(COY M), (77 s a stochastic potential and the integration measure
Po(x)=((CoN/{(M)=(Co(0)(M), (78  PLECGD]Is given by

A[C(Xy;t)AX

where poxcol= iim TI { [ClxyiDAX,] ] 5

+ o0 + oo VAXUHO u \/27T<C(Xu,t)>AXu

(M)zf <C(x;t))dx:f (Co(x))dx (79

- - The field described by Eq$82)—(85) is Poissonian, and,

is the average number of particles in the system. as expected for a Poissonian field, all cumulants of order
For computing the probability density functional of con- bigger than one aré correlated,

centration fluctuations we need more information concerning ((C(x1;1)C(Xp;5t)" *C (X))

the initial distribution of particles in the system. In the fol-
lowing we consider a particular case, a grand canonical en-
semble of noninteracting particles, for which the initial prob- =(CxtN T sxy=xy). (86)
- e . . u=2
ability densities are given bisee Appendix €
0 _ _ The product densities are factorizable and all correlation
Cu(X1.--- Xm) = €xp( = ((M)))(Colx1)) <C°(XM)>’(80) functions of order bigger than one are equal to zero

m m
the probabilityP(M) of the total number of particleM is Y Y )
Boesonan Tin(Xgsev X ) u[[l Ty(xit) ull {Cxa;D)),
1 o[+ [+, (87)
P(M):Wf,wmf% Cru(Xq,y oo Xm)dXg: - d Xy n(Xe e, Xp:t)=0, mMm=2. (88)
<< >>M In conclusion, in this section we have developed a general
exp(—((M))), (81) method for computing the characteristic functional of the

o _ , _ concentration field, the grand canonical joint probability den-
the characteristic functiona}{ £(x")] of the concentration sities, product densities, and correlation functions fovyLe

field is given by diffusion in systems with static disorder. The results derived
+oo in this section are going to be used in Sec. VII for developing
Q[K(x’)]zex;( f {exdi(x")]—1HC(x";t))dx" |, a thermodynamic theory for g diffusion.
(82

VI. SYSTEMS WITH LE VY WHITE NOISE. MANY-BODY
and the probability density functional of concentration fluc- DESCRIPTION

tuations,P[ C(x;t) ]D[C(x;t)], can be expressed as ) ) )
For systems with ey noise the computations follow es-

PLC(x;t) ]DLC(x;1)] sentially the same steps as for systems with static disorder.
[(C(x, 1)) Ax,]C0u I8 The expression(58) for the characteristic functional
= lim J] { u u GLIC(x';t)] of the concentration field remains valid with the

VAx,—0 U [C(Xu3t) Axy]! difference that the functiorusgp(xgp;t) are given by
. 1t
XeXF[_<C(Xuat)>AXu]] x(x% ;t)=x° g(t—t0)+;f E(t—t)F(t)dt'. (89
P P t
=exp{ = P[COx; ) [}D[C(x;1)], (83 0

By following the same steps as in Sec. V we can derive an
where expression for the ensemble average in &),

~ 1 + % + o0
qcxn= 3w [ [ Mut-b bty doy b

1 2kq ak , 5(77'(1) EM: N
X(ZW)Mex ~ Tk 1—ex —7(t—t) I'(1—a)co > m=1|bm|

f H expli K(7m) +ibynmidn,--dyy . (90)

—wom=1

By using the notations introduced in Sec. [Egs.(49) and (50)], Eq. (90) can be rewritten in the form
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*© 1 + o0 + o0
g[’C(Xl)]:ME:OW,ff J;i MM(_blg,,_ng,to)dbldbM

1 M . oM
xmexpf IR |bm|“] [ [T TL extliknm +ibpmaldne g, (@1

where* (t—t,) is given by Eq.(49).

From Eq.(91) we can compute all stochastic properties of the concentration field. The mof@dmist)---C(x,;t)) are
given by Eqgs(68) where/(t—ty) is replaced by™* (t—ty). The cumulants of first and second order of the concentration are
given by

”((Co ) ‘ xexd v(t—to)/al—y’ }d ) @

((C(x;t)))= f | Z{exd v(t—to)]— 1}

+2 ((Cp(y1)Coly, Sy, —y){({Coly}
((C(x1:1)C(Xp:))) = f f ({Coly1)Col Y3 )>>(§x)(§/ —¥2){(Co(y1))

Xy exdg v(t—to)/a]—y, o
8 ug,z \P“[ siexdv(t—to)]— 1}1’“} dyady,

+oo <<C0(Y1)>> x; exd v(t—to) a] -y, ’
Z)J \I’ar g;{exp[vu_to)]_l}l,a]d

Similarly, the grand canonical joint probability densiti€g,(X4,...,.Xu ;t), the product densitied,,(Xy,....Xy;t), and the
correlation functiong,(Xy,... Xy ;t) are given by

+occo(y D "!y ) XWeXF[ (t_t )/ ]_y\;v
Cu(Xq, ... xm)—f f SRA H \P[ S o ]dyimdy’N, (94)

+ 8(xq— (93

@O | {edrt-ty] -1
yl.---,ym) xw X v(t—to)/a]l=yy| ,
T mity= [ [ il ‘I’“( Cex (- tg -1y M %
= Om(Y1,--Yimito) T xwexd v(t—to) al=yy| ., .,
onliaseonity= | o | I G 1 0 %9
|
The interpretation of the result derived in this section for lim G K(x")]
systems with Ley white noise is similar to the interpretation t—oo
of the results derived in Sec. V for systems with static dis- "
order. The many-body approach is consistent with the one- -y P(M;t=to) f f
particle theory developed in Sec. IV. The relationship® — e ri)M - L Lo

(88) for the probability density functional of concentration
fluctuations for an initial Poissonian distribution remain % i Ay --d
valid, with the difference that for lyyy white noise the aver- exfiK(7m)]|d oy --d oy
age concentration field{ C(x;t))) is given by Eq.(92).
* n
4
[Teld

M

, 97

=2_ (M;t=to)

VII. THERMODYNAMIC AND STOCHASTIC
THEORY FOR LE VY DIFFUSION IN A FORCE FIELD

dn
XexdgiK —
In this section we use the results of the many-body ap- HiK(7)] 2m{

proach derived in Secs. V and VI for developing a nonequi-

librium thermodynamic approach for g diffusion. We where we have used the obvious identity

start out by investigating the large time behavior for an en-

semble of Ley particles in systems with static disorder. For 1 (iw .

large times the characteristic functiodlC(x") ] of the con- _ = _
centration field tends toward a stationary form. For IargePO( ! f f Mu(0.....,01=to)dbydbu,
times Eq.(65) leads to (98



1754 VLAD, ROSS, AND SCHNEIDER PRE 62

and Po(M) is the probability that the system contaiivs P[C(X)]D[C(X)]
particles fort=t,. ]
We introduce the one-particle stochastic fractal potential — exol — fﬂoC(x)In £=C(x) dx
V(X), —® <<M>>‘IIQ(X/§W)
v ( X>dx—ex;{ V(x)]—x XD[C(X)]
e e p{ [ coom 24 ]D[C( )
=exp — X X X
. ( X —® <C >
that i Yoo==in el 7 ©9 —exp ~ PLCOOTIDIC(0)], (108
and the generating function of the initial number of particlesyhere
G(Z)=ME:O MP(M;t=ty). (100 <C(x)>=<<|v|>>§i\1fa(§i)— (M >>exp[ V(x)]
(107

From Egs.(97) and (100 we obtain
is the nonequilibrium stationary concentration profile corre-
sponding to the one-particle stationary probability density

+ o
t“f;g[’c(x,)]:b f_ exiik(n)— V(”)]z gm (37) derived in Sec. IV,
(101 C(x)
We denote by(M™) the cumulants of different orders PLCOO]= J COdin (C(x ))}
of the initial number of particles. These cumulants are de-
fined by the expansion f coon £.C(X)
UMW (XIZ..) x/é.“oc)

InG[z=exp(ib)]= In{ expibM) (M)]

{C(X)
(M) }dx

™). (102 =UC(X)]=5[C(X)] (108

:ﬁm C(X)V(x)dx+ fj C(x)In

DR

In this section we limit ourselves to systems for which the!S & Many-body stochastic potential, which is made up of the

initial fluctuations of the number of particles are nonintermit-2dditive contribution of an energetic term
tent. For this type of system the relative fluctuations of dif-

+ o
ferent orders L{[C(x)]:f C(x)V(x)dx, (109
pm={(M™/{((MN™, m=23,... (103
which depends on the one-particle nonequilibrium potential
tend towards zero in the thermodynamic limit V(x), and on an entopic term
pm=((MT)/((M))"—0, .
" S[C(x)]= —f C(x)In §<<|v|(>>) x. (110
m=23,... as{{M)), L—oww -
. B We notice that the many-body stochastic poterfiglC(x)]
with ((Co))=((M))/L constant, (104 has a structure similar to Helmholtz or Gibbs free energies in

equilibrium thermodynamics. Since concentration profile for
large times corresponds to a nonequilibrium distribution, the
one-particle stochastic potential(x), which enters Eg.
(109, is different from the harmonic mechanical potential
j exdiK(»n) defined by Eq(3)
- The many-body stochastic potenti@[ C(x)] may serve
q as the basis for the development of a nonequilibrium thermo-
V()] 7 -1 as ((M))—co. Qynamic forma!ism for Ilgy diffusi-on- in external force
fields. We consider an arbitrary variatiéiC(x) of the con-
centration field. The conservation of the total number of par-
(105 . .
ticles requires that

The corresponding probability density functional of concen- e
gﬁ(tji(()gzgluctuations has a Poissonian form similar to E§%) f SC(x)dx=0. (111

wherelL is the linear dimension of the system.
In this limit Eq. (101) becomes

lim g[lC(x’)]=expr((M))
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By taking the constrain{l11) into account we can compute 9 _
the first and the second variations of the stochastic potential, - & C(X;t)= —F [C(a;1)[q]*]
resulting in
—_ 1 +oo_ )
- cx) = Ef_x C(a;t)]al“exp( —igx)dq
5‘1’[C(X)]=J SC(x)In W dx,
- F(1+ a) J+°° C(x";t) q
sin 7 —w [x—=x[FL X
+o [ §C(X
S?P[C(x)]= f ([ ( ))>] ]dx. (112 (118

In Appendix D we show that the stochastic potential

From Eqgs.(112) it follows that the average concentration +oo
profile given by Eq(107) corresponds to a minimum of the OLC(x;t)]= J:w C;HIN[C(x;1)/Cu(x)]dx, (119
stochastic potentiab[ C(x)]. We have

where

SP[C(x)=(C(x))]=0, &*P[C(x)]>0. (113

C(x)= _ 1 X\ oMy
w(X)—<C(X)>—<<M>>§—*‘1’a§—* = exd —V(x)]

Equationg113) are similar to the conditions of existence and * (120
stability of thermodynamic equilibrium for norméFickian)
diffusion in an external force field. is a Lyapunov function for the stochastic evolution equation

We can also introduce a field-chemical potential, which is(115); that is, it satisfies the following conditions:
made up of the additive contributions of the one-particle po-

tential V(x) and of a “pure chemical contribution” ®[C(x;t)]>0 for C(x;t)#C.(X)
~ and 121
ALC(x)]= 80[C()1/5C(X) (129
=In[C(x)/{C(x))] P[C(x;t)]=0 for C(x;t)=C..(X),
=V(X)+IN[£.C0/(MY)]. (114  and
d
All these results can be easily extended to the case of dtCI)[C(X t)]<0 for C(x;t)#C.(x)
diffusion in systems with Ley white noise. Equation7)—
(114 remain valid, with the difference that the length scale and (122

£, must be replaced by the length scdfe defined by Eq.

(50). An interesting feature of the diffusion with izg white d

noise is that in this case the average concentration field is the a(b[C(x;t)]zO for C(x;t)=C.(x).
solution of a fractional Fokker-Planck equation

It follows that all transient solutions of the fractional diffu-
9% sion equation115) tend towards the stationary nonequilib-
+ Dtracty @ C(x;t), (119  rjum form (120.
We conclude this section by investigating the possibilities
of introducing a nonequilibrium temperature for the station-
where the fractional diffusion coefficient ary states, which emerge in the limit of large times. We start
by considering the equilibrium limit, which corresponds to
2k o a—2. For a—2 the one-particle probability density of the
Dfract 1“(1 a)ggg( > ) (116  position of a moving particle has a Gaussian behavior, which
corresponds to the equilibrium Maxwell-Boltzmann statis-
tics. For both types of processes studied in this paper we

is related to the characteristic length sc&leby the relation- have
shi
i Ped(x)=1lim P(x;t) K ;{ o
x)=Ilim P(x;t)= exp —
la 1« eQ( t—ow \/2’7TkBT 2kBT
g*: Df_ract = Ar(l_ )co E
* v a’ky* ! @ 2 '
(117

7 et = —| L xemt
ot CED= G @ XCan

} (123

and then

+oo kgT
. - . . . G zf PdX)expligx)dx=exp — —— 2].
and the fractional derivative®/9x“ is defined by an inverse ed @) — ed X)EXRIGX) p{ 2k d
Fourier transformation (129
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For an arbitrary value of the fractal exponenthe Fourier  build a fully developed thermodynamic formalism in terms
transform of the stationary one-particle probability density isof W[C(x)],#[C(x)],G[C(x)], and of the nonequilibrium
given by a stretched exponential. We have temperatureT.

+

Gst(Q)zf Ps(x)expligx)dx=exq —(Z..)*|a|“], VIIl. CONCLUSIONS

(129 In this paper we have suggested a method for studying
Levy diffusion in an external force field. We have used the

for systems with static disorder and i ;
Y Huber approach to multichannel parallel relaxation for de-

+oo scribing the stochastic properties of the random force acting
Gst(q):f Ps(x)exp(igx)dx=exd — (£Z)“q|*] on a particle moving in a disordered system. Although the
- (126 underlying physical mechanisms for multichannel parallel

relaxation and Ley diffusion are different, the correspond-

for dynamic disorder with [ey white noise. By comparing ing evolution equations have a similar mathematical struc-
Eq. (14) with Egs. (125 and(126) we notice that the factors turé and the Huber approach can be easily extendedvyp Le
(£.)% and (*)® play a role similar to the temperature in diffusion. We have investigated two extreme situations, a

equilibrium thermodynamics. By considering suitable pro_“frotzen” Tf‘h”dfm er(ljvwonmer(ljt_ W't(T sfcanc ﬁ_lsr?rflher f?n(: a
portionality factors we can introduce a nonequilibrium tem-SYStEM with strong dynamic disorder for which the fluctua-

peratureT oneqwhich is proportional to {..)® or (%) and tions of t.he environment can be described in terms o{yLe
: o white noise. For each case we have developed two different
which, fora— 2, reduces to the equilibrium temperature. We

h approaches, a one-particle description and a multiparticle de-
ave . : . .
scription, respectively. Although the averaging techniques
4k 8kl ek o used and the detailed structure of the evolution equations are
F(l—a)cos( —) (127  different for systems with static and dynamic disorder, the
2 qualitative physical behavior is the same for both types of
processes. In both cases the one-particle probability density
of the position of the moving particle tends towards a non-
equilibrium stationary form which is independent of the ini-
tial conditions and which reduces to an equilibrium
Maxwell-Boltzmann distribution in the particular case where
the Levy fluctuations of the random force become Gaussian.

for dynamic disorder with white e/ noise. In terms of the [N Poth cases the many-body approach makes it possible to
nonequilibrium temperaturd we can introduce modified COMPUte the probability density functional of concentration
stochastic potentials which, far— 2, reduce to the thermo- fluctuations and to introduce a stochastic potential which is

dynamic functions of equilibrium thermodynamics. We haveMade up of the difference of an energetic and an entropic
component. This stochastic potential extends the thermody-

namic and stochastic theory of nonequilibrium processes by
DIC(x)], Ross, Hunt, and Huntl6—20 to Levy diffusion. For sys-
tems with fractal Ley noise it is possible to introduce a
(129 ' o X : .
fractional diffusion equation for which the stochastic poten-

Tnoneq:k_B (£a)= aks

for systems with static disorder and

8k T

4k .
Tnoneq:k_B(goo)a: I'(l—a)co >

(129

_V[C(0]
I(BTnoneq

P[C(X)]D[C(X)Fexp[

where tial is a Lyapunov function.
Other theories for Dey diffusion presented in the litera-
W[C(X)]=KgThonedP[C(X)] ture are based on the \g generalization of the central limit
, theorem of probability theory. The transport process is
=/1C)]~ Troned L C(X)], (130 yiewed as a succession of a large number of individual jump

processes and one assumes that the probability density of the
length of a jump has infinite moments. By using thevye
generalization of the central limit theorem it can be shown

y _ that a Levy probability law for the propagatdiGreen func-
#4]C =kgT C 13
/LC001=KeTnoneddl C(x)] (139 tion) of the process emerges for large successions of jumps

is a function which in the equilibrium limit reduces to the @nd that this Ley probability law is independent of the de-

is a stochastic potential which in the equilibrium limit,
—2, reduces to the Helmholtz free energy,

total potential energy of the system and tailed form of the probability densities attached to the indi-
vidual jumps. For these types of modelsviediffusion oc-
GLC(X)]1=kgS[C(X) 1/ Thoneq (1320  curs only asymptotically. In contrast, in the case of our

model, the self-similar probability lad8) for the contribu-
is another function, which in the equilibrium limit reduces to tion g of an individual collision event to the total value of the
the total entropy of the system. We emphasize that for aandom force leads precisely to a propagdt®reen func-
Levy process withe# 2 the analogies between the modified tion) of the Levy type. In our treatment the g behavior of
stochastic potential¥’[C(x)], #[C(x)], andg[C(x)], and  the Green functions is not asymptotic.
their equilibrium limits corresponding tae—2 are rather The many-body approaches developed in the present re-
limited. In the nonequilibrium regime it is not possible to search deal with independent particles for which the correla-
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tions are due to the initial state of the system. Further develmethod can be used is the study of reaction kinetics of a
opments of the theory should consider systems wittsingle molecule. Work on this problem is in progress and
interacting particles. A possible theoretical development maill be presented elsewhere.

involve a perturbation theory for the characteristic functional
for which the startingreference state is a system of inde-
pendent particles like the ones studied in this paper.

In this paper we have introduced a powerful averaging
technique that can be used for the study of a broad class of This research has been supported in part by the Alexander
rate and transport processes in systems with static or dywon Humboldt Foundation and by the Department of Energy,
namic disorder. An interesting type of system for which theBasic Energy Sciences Engineering Program.
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APPENDIX A

By inserting Eq.(65) into Eq.(66) and evaluating the functional derivatives we come to

1 M
<C(X1 t)- C(X/\/’,t)>_2 M' - f Mu(—=bqé,.. ng;t)WeXp|_[g(t_to)]amz_l|bm|a dby---dby,
M
f Y 1 VA; 5(771/1 (”V\_XN’)H equbmnm)dﬂl d77|v| (A1)

We use the identity

+ o + o0 M M M
f f 21 ;1 Ny, — &(7,,— X H exp(ibymm)d 7y -dyy
) —w py= v EL
M M M
=3 .. > e p( E b, x) [T [278by], )
=1 va=1 M vy vy

which is a straightforward consequence of the well-known relationship

+ o

2775(q)=f expligx)dx. (A3)

From Egs.(Al) and(A2) we get

(C(xq;t) - ‘C(XN;t)>

= f f Mu(=bi§,...,—by&t)dby---dby

M
X—1Jvex —[g(t—toﬂ“E bl €x iE b,xe| II  &(bp)dby--dby. (A4)
(277) m=1 u=1 u m#vy,..., Vs

By computing in Eq(A4) M — N integrals in the Fourier variablds,, m=1,..M, m# v, ... ,v,-we come to Eq(68).
For computing the grand canonical probability densiti€s,, . .. Xy ;t) we evaluate the multiple Fourier transforms of
the moments of the concentration field

+o +o N
é‘j\,(ql,...,q/\f;t):J’ioo ---J’iw ex;{iuzl quxu)<C(xl;t)---C(xN;t))dx1---de. (A5)
We have
Clxg3t) Clxpit) = 2 E H 8(X;, = Xu), (A6)
Vl— V/\/— u=1

and thus, if we assume that the ensemble averaging and the Fourier transformation commute, we get
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EMA1,---Anst)

e % M Mo
=<f - dxl---deexp(iZ quxu) > -3 5<x;u—xu>>
— o — o u=1 vi=1 vy=1u=1

v [Cm(XL oo Xy D) dxg ...dXy

M=n M! ) —wv=1 w1 i=1
* 1 e Y M M M N
_ Wf f dxgdxl, > o >, expg >, >, igux, Su,
M=\ LI —o0 =1 vy=1 w=1u=1 u

X
N

q |-
=

ooy
5%
oy
5%
Q
x
P
I

=

v
™
o
=

WX\;\/ MM(bl,...,bM ;t)dbl...dbM

X\;v MM(bl,...,bM;t)dbl"‘dbM. (A?)

The multiple Fourier transforré,{q,,...,q,;t) can be also computed from E8), resulting in

gj\/(QJ_,yqj\/’,t)

0 M M 1
3.2 3 ] ] M b byabe by

N vy

M M N
xexp{ Lt 3, |bm|“] 11 5( 2, O Qut b

:i EM; Vél(Zﬂ')MM'f f dxg-- dXMJ’ J’ dby- - -dby MY (—bié,... byé)

M=N »;=1

Mo N
xexpf —[z(t—tonam; [ “+i 2, <u21 8w, Au b x,’n]. (A8)
By comparing Egqs(A7) and (A8) we notice that we must have
M
Muy(by,...oy ;)= MY (b, .., ng)eX% —[s“(t—to)]“mE:1 |bm|a}- (A9)

If we apply a multiple inverse transform to EGA9) we come to Eq(71).

APPENDIX B

The product densities defined by E¢g2) express the possibility of occurrenceroparticles, the first at a position between
Xq andx;+dxq,..., and thenth at a position betweex,,, andx,,+ dx,,, regardless of the numbers of particles that may exist
at other positions. In Ref30] we have shown that the Carruthers definition of product dengigkis equivalent to the
classical definition of Stratonovidi26] and can be computed by using the following relations:

M ¢

1 © + o
Tokaee k0= 2 iy | B G 2050, ®1

By applying a multiple Fourier transformation to E@®1) we obtain
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P + o0 “+ o0
Im(bl""’bm;t): f ex Z X b ) m(xly---axm;t)dxl“'de
- 1
:MZmWMM(bl ----- Bm,bms1=0,... by=0;t), (B2)

from which, by using Eq(A9), we obtain

—=

Tn(by,... o) =ex —[at—to)]“gllbul“]

XME M—m! m)' Mu(bi, ... Pné b1 = - bm=0;to)

fm(blfv---abmf;to)- (83)

=eXP| —[§(t—to)]“uzl | byl

By applying a multiple inverse transformation to E§3) we get Eq.(73).
For computing the correlation functiong,(X1.Xz,....Xn;t) we introduce the generating function®[ ©(x);t] of the
product densities

“ 1 [+ +oo
R[®(X);t]:1+n§1 Hﬁw ---Jlm ol X 1o X D) O (X)) - O (X)) A X - - A Xy (B4)

where®(x) is a suitable test function. We insert E¢83) into Eq. (B4), resulting in

* 1 +oo +o
Rloct=1+ 3 — [ [T nyi )

m

+2 O (Xy) Xy eXH (t—to)K/ y]— V1, , ,
ngl{Jm Lo w“{zx{eXQ(t—to)k/y]—l}’dXW]dyl d¥m

- B +o @(X) xexg (t—to)k/y]—y .
—R[(@(Y)—Jw 3 ‘I’a{gm{exq(t—to)klﬂ—l}]dx’to}' *

The correlation functiong(X1,X,,....Xy;t) are defined by the cumulant expansion
“ 1 + o0 +
In 72[(6)(x);t]=mZ1 o J_ J_ Zm(X1, X0, X 1) O(Xq) - O (X)) d Xy - A Xy, (B6)
We take the logarithm of each term of E®5) and expand both terms by using the cumulant expan@én We get

* 1 + o0 + o0
mz:lmj_ J_ dxg - A% O (X1)" - O (X

,ym<y1,...,y;n;to>“” X XA (t—to)k/ Y] =Yy,
7m(X1!X2!" Xm t)_J J dyl (gw)m M1_=[1 q’a §x{eXF[(t—to)k/)/]—l}” (B7)

Since the test function® (x,),...,0(x,,) are arbitrary, it follows that the coefficients of the produétéx,)---0(x,,) must
equal zero, resulting in Eq$75).
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APPENDIX C
By inserting Eq.(78) into Eq. (79) we obtain

~ 1 + o0 + o0 _ o
Grex =3 ip | exst= (M o1 Col — byl

M=

1 M ve raw M
X—(27T)M exp{ —[g(t—to)]azl |bm|a] J,x J,x r!_:[l expli K( 7m) + D7t d 71+ - -d 7y

1 too (4o __
=exp(—<M>+5fw L<co<—b§>>exp{iic<n>+ibn—[m—to)]“lbl“}dndb , (CD
where
(Co(a)= f_;exrxiqxxco(x))dx (c2

is the Fourier transform of the average concentration field at initial time. I(@&%).the double integral in the exponent can
be expressed in terms of the average concentration field attfi0@®x;t))=((C(x;t))). We have

1 [+ [+»
%L f,w<Co<—b§>>exp{ii<<n)+ibn—[z(t—to)]“lbla}dndb

- fjxe"p{”c( M}F, H(Col— b)) exp —[£(t—to)1%|b|*}}d 7, (C3)

oo

whereF, ! represents the inverse Fourier transformation from the Fourier space varibttie the real space variable By
using the convolution theorem and comparing the result with(&9). we obtain

1 [+ [+
EJ:OO f,w<C0(_b§)>exp{i/€(77)+ibn—[§(t—to)]“|b|“}dndb

+ o
= [ exptikcmicmuyax 4
We insert Eq(C4) into Eq.(C1) and use Eq(77), resulting in Eq.(80).
APPENDIX D
The derivation of Eq(120) is based on the algebraic inequality
XxInx—=x+1>0 for x#1 and xInx—x+1=0 fpr x=1. (D1)

The fractional diffusion equatiofl15 preserves the conservation of the total number of particles. By usin(LE8), we can
rewrite the fractional diffusion equatiaid15) in the form

fract

D +°° o 4 a /. . ’
- f_w dqf_oc dx’|gl*C(x";t)exdiq(x’ —x)]. (D2)

ety = | Y et
= (X')_é_x X (x;t)

We integrate Eq(D2) term by term, with respect to the position of the particle, resulting in
erOGd & C t _ f+xd ﬂ DfraCtJ’Jrocd f+md erwd ! a/C I.t

Xexgig(x'—x)], (D3)

14
—xC(x;t)
o

from which we come to

J + oo + + o0
ﬁﬁ C(x;t)dx=—DfraCJ7 dqﬁ dx’[g|*C(x’;t)8(q) =0, (D4)
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and therefore

+wC(x;t)dx= +ow(x)dx. (D5)
J |

By using Eq.(D5) we can express the stochastic potenfi@lC(x;t)] in the form

C(x;t)
C.(x)

P[C(x;t)]= f C(x; t)(ln } C(x;t)+C,, (X)J (D6)

From Egs.(D1) and (D6) we come to Eqs(121).
The derivation of Eqs(122) is more complicated. We start by applying the fractional diffusion equat®) to the
stationary concentration profilg..(x) =(C(x)) given by Eq.(120

D fract

0= xC (xX)|— s f_:dqf_:dx’|q|“Cw(x’)ex;{iq(x’—x)]. (D7)

Ix

By using Eqs(D2) and(D7) we can express the time derivative of the stochastic potehfi@l(x;t)] in the following form:

C(x;t) += g
(I)[C(Xt] J’ —[C(x t)]In C.0 dx+ J’in[C(x;t)]dx
[t | C(x;t) +tel g v _ | C(x;t)
—leﬁ[C(x t)]n C.(0 dx= le x ZxC(x,t) n C.(0 dx
Dframf f dqf dx’|g|*C(x;t)
C(x;t)
xexig(x' =x)]in| 5 0 dx. (D8)
The first integral in Eq(D8) can be computed step by step. We have
teo [y _ Cixt)],  w cx;t)]|™™ (+=v N ( C(x;t) )
Jim dy ZxC(x,t) In C.0) dX_ZXC( HIn| —— C.X) _J,xZXC(X’t)& In T(X) dx

—oo

tep _ aXC(x;t) aC(x)
= | e ){ Coxh o)

= Exﬂ (x;t)dx+ _w;x (x;t) Co0) X

— oo

+ o

top C(X t) o
C (x) ax

14
=- —xC(x;t)|i§+f
o

— o

14
EC(x;t)dx+f —C.(x)dx. (D9)

We assume vanishing boundary conditions

lim xC(x;t)=0. (D10

X— F o

Note that for a concentration profile of thé\yetype we haveC(x,t)~|x|~(¢*1) as|x|—o with a>0 and thus this condition
is automatically fulfilled. We get
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C(x;t)

C.(%) dx

In

14
dy ;xC(x;t)

o (x;t)dx+ LT ZX& »(X)dXx

[t ' += C(X;t) v Dtact [+ T e , . ,
—J’im;C(X,t)dX-i- LG —Ecm(X)‘F?Jlm dqfiac dx'[q|“C.(x")exdiq(x' —x)] t dx

Dfact [t~ C(X1)
= watfioc dXC(w(x f f dx’|g|*C..(x")exfdiq(x’ —x)]. (D11)

By combining Eqs(D8) and (D11) we obtain

d et (77 C(x;t
gorcoan= 2 [0 [ [ axjalrc.o0 etian o1
Dfract [+ C(x;t)| [+ +o )
- 2fwtj,w dxin Ci(x) LO dqﬁx dx'|g|“C(x";H)exdlig(x’ —x)], (D12)

from which we come to

d .
el

Dfract a ( )_ g C(X;t)
J' dxf dqf dx’|[q] (C(X)C() Cx30in [Cw(x)

Dfract o C.(x")C(xt)  1C(x;t)
f f dqf dx’|l*C(x t)[C(x’;t)Cw(x)

Nc.x
C(x;t)Cu(X")
C.(x)C(x";t)

]exp[iq(X’—x)]

]exp{iq(x’—x)]. (D13

We use the identity

C(x;t)
Nc.

_ G5 Ca(X")
T C.()C(X5t)

C(x;1)Cu(x)
" C.00cx;0)

—1+In (D14)

C(x";t)

Cw(x,)}+1

By combining Eqs(D13) and(D14) we can express the time derivative of the stochastic potential as the sum of two different
terms. We have

%H[C(x;t)]leJrTz, (D15
where
Dfract w «(X")C(x;t) C..(x")C(x;t) . ,
J de dqf dx’|g|*C(x';t ( X DC.(X) —In CXDC. (%) —1]exr{|q(x —X)]
F(1+a) +o C(x;t) C(x;t)C..(x")| C(x;t)C.(x")
=Dfpet—— sm( )J J_w|x—x’|““{ln C.0CX D CoC D) 1lrdxdx (D16)
and
D”a“f dxf dqf dx'|g|“C(x";t) |n(C(°°)f t)) +1lexdiq(x' —x)]. (D17)
In order to compute the teri, we use the identity
1 [+
6(q)=ﬁf_x expliqy)dy. (D18)

We come to
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A A ' a ' Cm(x,)
T4=Dfractjim dqﬁx dx’|g|*C(x';t){ In XD +1¢6(q)=0, (D19
and therefore the time derivative of the stochastic potential is given by
d IOt 1=D I'l+a) |7« f+°°f+w C(x";t) | C(x;t)C(x")| C(x;t)C.(x") + 1) dx dy
at PIEXVI=Dracr———siN -] | | 5o« 1| NG oci 0]~ .08 0 x ax.
(D20)
From Egs.(116) and from the well-known algebraic identity
P(1+ @)l (1- @)= —r D21
(1+a)T( a)_sin(—qm) (D21)
it turns out that
Nli+a) |7« Ko
fract—————SIN 7 = ?>0 (D22
From Egs.(D20) and(D22) and from the algebraic inequality
INnx—x+1<0 for x#1 and Ix—x+1=0 for x=1, (D23)

we come to Eq(122).
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