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Thermal, nonequilibrium phase space for networked computers

Mark Burgess
Oslo College, Cort Adelers Gate 30, 0254 Oslo, Norway

~Received 22 February 2000!

It is shown that networks of computers can be described by concepts of statistical physics. Computers in a
network behave like systems coupled to a thermal reservoir. The role of thermal fluctuations is played by
computing transactions. A thermal Kubo-Martin-Schwinger condition arises due to the coupling of a computer
to a strong periodic source, namely, the daily and weekly usage patterns of the system.

PACS number~s!: 05.70.Ln, 05.45.Tp, 07.05.Tp
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Computer networks are cooperative systems, compose
many interacting elements. The entirety of a computer s
tem depends upon the successful interaction of many s
rate information systems, via client-server transactions
actual use, servers play the role of reservoirs of informat
and clients tap into these reservoirs with fluctuationl
transactions. These analogies reveal a thermodynam
quality, rooted in information theory, that is not merely
philosophical interest; it has practical uses in both compu
science and physics.

The intriguing possibility of understanding the behav
of computers as dynamical systems is now starting to
appreciated@1,4#. It is motivated mainly by the possibl
practical rewards, which could be exploited in anomaly d
tection and security intrusion detection. In Refs.@2,3#, it was
argued that computer systems ought to behave like phys
models of statistical mechanics, for the reasons above. In
present paper, drawing on recent meaurements in@4#, this
view is confirmed and amplified with both empirical an
theoretical considerations.

There are two primary reasons for wanting to make
comparison between computers and physical models: fi
practical knowledge, essential for building compu
anomaly detectors, demands an understanding of the
namical parametrization of the system; second, empir
knowledge about system dynamics arms us with methods
modeling networks of computer systems in a way that
readily accessible to researchers in both computer scie
and physics.

Anomaly detection in computer systems means ident
ing patterns of unusual activity. Unusual patterns of resou
consumption or unusual trends in system variables point
ward activities that could signify a fault in the system, or
potential attempt to abuse the system. The automatic de
tion of such ‘‘anomalies’’ would allow automated respons
like immune systems to respond with countermeasu
where necessary. A considerable amount of effort is c
rently being invested in this type of technology. It has p
haps more in common with physics than with tradition
computational models.

In order to detect anomalous and hence potentially thr
ening behavior, one first needs to characterize what is
mal. Software for anomaly based intrusion detection
proved to be a difficult problem, mainly because the auth
of such software do not have a sufficient concept of w
characterizes normal behavior in a statistical sense. C
PRE 621063-651X/2000/62~2!/1738~5!/$15.00
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puter programmers deal mainly with exact, microscopic lo
cal states and transitions with Boolean thresholds. On
basis of their complexity of multiple tasks and interaction
one would expect computer systems to be fluctuating, sta
tical systems. Computers operate by performing microsco
transactions, which play the same formal role as fluctuati
in statistical physics. The exchange of controlling inform
tion between computer processes is directly analogous to
exhange of particles between heat baths.

There is also the attractive notion of having an expe
mentally accessible system available to theoreticians in
field of finite temperature field theory and nonequilibriu
physics. Although computer systems are relatively smal
the sense of many-body systems, their behavior over t
averages out to forms that can be approximated by infi
heat baths and the usual machinery of thermodynamics
the space of weeks and months. This is a reasonable pe
of time over which to gather data, and it is a viable expe
mental arena for examining the influence of slowly varyi
change from a purely equilibrium situation.

Measurements show that the periodic topology of tim
evolution in computer networks places them in the sa
class of statistical systems as open thermodynamical i
gases@4#, i.e., systems that display Planckian statistics. A
though thermal systems are far from unique in having th
signatures, they are the most well known. The theoret
reason linking computer networks with thermal physics
that any randomlyfluctuatingsystem whose average beha
ior is constrained periodically~or, in this case, approximatel
periodically! will exhibit a Planck spectrum of fluctuations
This depends only on the periodic constraint. It is theref
possible to summarize the averages in terms of a temp
ture, resulting in a considerable compression of informati

Two influences dominate the average behavior of co
puter systems over human time scales; these are the ext
reservoirs of users and network clients, which undergo tra
actions with the system, but these are accompanied by a
of fluctuations, which arise from the many interacting bac
ground processes that comprise modern computer syst
Many variables might be considered to characterize the
havior of a computer system over long times. Of all t
variables one might record, some prove to be relevant
some to be irrelevant to computer behavior at the time sc
on which humans interact with them. For instance, the nu
ber of independent processes running, the number of netw
transactions to particular services, and the amount of
1738 ©2000 The American Physical Society
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disk space are three types of variable that are found to h
a direct bearing on the state of the system and its long-t
behavior. On the other hand, variables like CPU load, pag
rates, and free random access memory~RAM! turn out to
affect only the short-term behavior@4#. This is found empiri-
cally.

Computers, like other complex systems, are character
by qualitatively different behaviors at multiple scales. It
appropriate to refer to these as microscopic, mesoscopic,
macroscopic. Microscopic behavior refers to exact mec
nisms or atomic operations; mesoscopic behavior look
small conglomerations of microscopic processes and ex
ines them in isolation; macroscopic processes concern
long-term average behavior of the whole system. At the
croscopic level we have individual system calls~on the order
of milliseconds!. At the mesoscopic level we have cluste
and patterns of system calls including algorithms, pro
dures, and even viral activity~on the order of seconds!. Fi-
nally, there is the macroscopic level at which one views
the activities of all the users over scales at which they ty
cally work and consume resources~minutes, hours, days
weeks!. Since it is users who cause the most signific
changes and problems in computer systems, the macrosc
scale is of special interest for the detection of anomalies

Consider now the relationship between computer syst
and statistical systems. Statistical systems may either
steady state~in equilibrium! or change appreciably ove
times longer than the rate of statistical fluctuations~nonequi-
librium!. They are characterized by the existence variab
that exhibit fluctuations, i.e., they vary randomly about
average value, on a time scale that is much shorter than
time over which one observes the system. The fluctua
scale has no effect on measured values, since no microsc
dynamics are visible at the scale of observation. Whe
system is close to equilibrium it can be thought of as being
a quasiequilibrium, with a superposed pattern of adiab
changes. This situation has been analyzed using many di
ent techniques@5–8# in statistical field theory. Such system
have some specific model-dependent properties, but
many universally applicable properties. It is the latter that
interesting here. Such a slowly varying statistical system
the model with which we hope to explain the behavior
networked computers.

The justification for assuming this model of computer d
namics is rather interesting: there are strong perio
rhythms in the dynamics which are disposed around th
scales. The presence of fluctuations with this causal struc
leads directly to a thermal interpretation. The three mac
scopic time scales over which the system changes ma
represented as separate, periodic driving forces.

~1! Daily. Users’ daily work patterns exhibit the stronge
influences on system periodicity. This is typically a nine
five rhythm which follows the general level of human acti
ity.

~2! Weekly. The pattern of activity over a week tends
peak around midweek and fall to a minimum at weekend

~3! Seasonal. Seasonal changes in work patterns depe
on the type of site. For instance, universities have period
low activity during summer vacation.

Of the above, the most important period for the definiti
of statistical variation is the daily rhythm, as seen in exam
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Fig. 1, taken from Ref.@4#. This shows how, over a 24 hou
period, one aspect of computer activity peaks during work
hours. One sees also a strong weekly rhythm, character
by a peak in activity around midweek, and a quiescent ti
during weekends. These are the unambiguous signature
human work patterns. Data collected over several months
displayed in the figures. There are insufficient data,
present, to infer seasonal rhythms, but there are compe
reasons to suppose that these would also follow a perio
pattern in a stable environment. It is the existence of
daily pattern that is probably of greatest interest, since it
short period whose repeating topology allows us to aver
over periodically identified points.

The magnitude of these periodic influences affects diff
ent measurements in different ways. Some activities, part
larly network transactions, originate from many differe
physical locations around the world and are thus a supe
sition of work practices from several parts of the globe, i.
daily rhythms which are time shifted with respect to o
another. This tends to smear out the observed periodic
depending on the relative numbers of transactions from
ferent sources. Some variables are not directly coupled
user habits and do not exhibit periodicity at all. Such va
ables are not thermal in nature. It is the periodic variab
that can be modeled using the notions of thermal physic

The periodic nature of the influences on the system ha
profound effect on the average behavior of the variables
which it applies. If we consider the average over ma
weeks~Fig. 1! and the average over daily periods~Fig. 1!,
we find stable patterns, within the tolerances expressed
standard deviation error bars. These data were collected
monitoring process which measured values every two m
utes over several months; the measurement process itsel
shown to have no biasing effect on the measured values.
average behaviorfollows a predictable periodic pattern

FIG. 1. The weekly average of nonprivileged~user! processes
shows a constant daily pulse, quiet at the weekends, strong on M
day, rising to a peak on Tuesday, and falling off again toward
weekend. This graph also shows a conspicuous anomalous p
well outside the statistical tolerances of the error bars. Thex axis
measures time in hours over a weekly period, while they axis is a
frequency count. The solid line is the average value for a given t
of week, while the error bars show the standard deviation of fl
tuations about the mean.
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1740 PRE 62MARK BURGESS
within the tolerances. The distribution of these data will
discussed below. Any relevant system variablef(t) that is
strongly affected by periodicity can be expressed as an a
age~slowly varying partf̄) plus a fluctuation~rapidly vary-
ing partdf): @9#

f̄~ t1b!5f̄~ t !1df~ t !. ~1!

This expresses the fact that, after an elapsed period, the
tem returns to the same state, up to a statistical fluctua
df. Both the averages and their fluctuations are dynam
~time-dependent! quantities. This is not typical of a stric
equilibrium system, but of a system that varies on appro
mately the same time scale as the periodb itself ~note the
time-evolution error bars in the figure!. The variablef̄(t) is
driven by a pseudoperiodic sourceJ(t),

J~ t1b!.J~ t !. ~2!

In dynamical language, this coupling would be expressed
a kernel or Green functionG(t,t8) satisfying a Kubo-Martin-
Schwinger~KMS! condition, in a linear response approxim
tion:

f̄~ t !5E dt8G~ t,t8!J~ t8! ~3!

~See Table I!. The fact that the error barsdf(t) are not
constant in time means that the fluctuations themselves h
slow variations. Thus the system is not in a perfect ste
state: it is only an approximately thermal, nonequilibriu
system.

From studies of general nonequilibrium field theories, i
possible to relate the nonequilibrium system to the equi
rium system they resemble. This is achieved using a loc
varying scale, orconformal transformation. This transforma-
tion is a mapping that relates the actual time-varying dis
bution of fluctuating values to an idealized static or therm
distribution. The scaling is single-valued reparametrizatio

c~ t !5
f~ t !

sf~ t !
. ~4!

TABLE I. The correspondence between thermal physics
computer metricsf i(t). An arbitrary scale~the temperature! must
be introduced in each case, on dimensional grounds. This cha
terizes the size and magnitude of the fluctuations from the m

valuesf̄ i . An energy can be defined in each case. In the cas
radiation, energy is inversely proportional to the wavelength of
radiation. In the computer case, an energy can be defined as b
inversely proportional to the deviation from the mean. The effec
increasing the temperature in each case is to increase the width
height of the Planck distribution about the mean, i.e., to increase
fluctuations.

Planck law Networked computer

KMS periodic imaginary time Daily real time period
TemperatureT TemperatureT
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s(t) is the time-dependent standard deviation, or error ba
the figure. This rescaling is the identical procedure to
field theoretical method described in Ref.@8#, applied at a
more pedestrian level. It shows how small deviations fro
equilibrium can be viewed as a dynamical transformat
~not unlike a gauge transformation@8#! that is, as perturba-
tions around a simpler equilibrium model. The gradients t
guide the evolution of the distribution therefore follow th
form of a conformal or pseudogauge connection to the ti
derivative, as described in Ref.@8#, owing to the local res-
caling bys(t). In field theoretical language, the effect of
derivative onc is to make the effective change

Dt→] t2
] ts

s~ t !
. ~5!

This reproduces the scaling connections described in R
@8#.

The fact that fluctuations or transactions take place w
respect to a periodic background topology in time gives
phase space of this dynamical system the special charact
an idealized black body. This might strike one as being
culiar at first; in fact, it is only a consequence of the qua
periodic boundary conditions together with the presence
fluctuations. The periodicity itself associates a special wa
length in phase space with each level of excitation. Assu
ing that all excitations are equally likely, a general superp
sition generates a Bose-Einstein fluctuation spectru
Periodic systems and their relationships to statistical phy
are well known in physics@10–12#.

The relationship between periodic systems and finite te
perature statistical mechanics is neatly summarized by
KMS relation in statistical mechanics@10#. The KMS condi-
tion is really a group theoretical restatement of the equi
rium condition for a two-level system, as used originally
Einstein to derive hisA and B coefficients for a two-level
system. The KMS relation states that the ratio of absorpt
to emission~R! should be given by a Boltzmann probability

R~emission/absorption!5eDE/kT ~6!

for some energy spacingE and temperatureT. When ex-
pressed in terms of linear response theory, using Green f
tions, this statistical assertion can be recast as

G~ t1 ib,t8!5e2bEG~ t,t8!, ~7!

which expresses the periodicity of the system up to a ther
fluctuation. This, in turn, leads to the observed finite te
perature behavior@13#.

For computer networks, the appearance of a thermal s
trum also arises from a periodicity arising from the comp
er’s being strongly coupled to its pseudoperiodic source
users and network activity. The average transactions of m
days make system activity approach the smooth envelop
a temperature distribution. For small times one sees jag
features due to the small numbers involved.

In natural units, the thermal distribution of a
n-dimensional blackbody system is

E~l!}
l2(n12)

e1/lT21
, ~8!
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where l51/v is the wavelength of light emitted or ab
sorbed. This can be derived from the fluctuation energy
any noninteracting gas or free field on a periodic Euclide
space. Why choose a free field theory to model a comp
system? Because it is the simplest physical model exhibi
Gaussian fluctuations about a mean, and it is well known
the literature. Any universal features that owe their existe
to the causal structure of the system should already be
parent here. One need not dream up detailed interaction
order to identify such a basic concept as a temperature
the system. It remains then only to compare the model to
measured data. The effective action or free energy for a
tem is the sum over fluctuations~transaction bubbles! and
may be used to determine the distribution signature. The
ergy due to such random fluctuations on a periodic space
Gaussian functional integral:

G52 lnE df~ t !e2*dnxf(2hf). ~9!

The exponent is the Lagrangian density for a free Euclid
scalar field. This is the simplest physical system that exhi
a dynamical evolution in time and whose fluctuations can
summed. It makes no assumptions about the nature of
field, other than the fact that fluctuations are free to co
mute. This reflects the fact that the occupation of a particu
value is not limited to a maxmimum number, as it would
in Fermi-Dirac statistics. Since the labels that characte
each special event are irrelevant to the total count over ti
the fluctuations are bosonic, i.e., the order in which equi
lent events actually occurred is irrelevant to the count. T
free energy functional integral is a known functional integ
@12#:

G;Tr ln~2h !}E dv
vn

exp~bv!21
5E dvE~v!,

~10!

and yields the integral of the Planck formula, on chang
variablesv51/l. The overall constant of proportionality i
uninteresting and must be fitted to the data. This fluctua
distribution may be seen fitted to the measured example
in Fig. 2, using the formula withn51:

D~l!5Ae2(l2l̄)2/2s2
1

B

~l2l0!3~e1/(l2l0)T21!
.

~11!

The values of the constantsA, B andl0 are chosen to fit the
data. Their absolute values have no significance, since t
is no ‘‘standard candle’’ computer system to compare to,
changes relative to the local norm could be interpreted
anomalies. NonzeroA allows for the presence of additiona
Gaussian noise in some measurements. Although ther
room for only one graph here, the result has been reprodu
across many machines and for many variables at two wid
different network sites.

The question remains, however, as to precise identifi
tion of a suitable detailed model. Would a more detai
statistical field theory be an adequate model? What t
would be the correct configuration~position! space for such a
theory? If we consider every variable as a generic fi
r
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f(t,x), of the type well known in field theories, how sha
we assign meaning to the positionx? How many dimensions
are appropriate? The effective dimensionality of a config
ration space would determine the nature of any phase tra
tions that could occur in the statistical system. Far from
ing of purely whimsical interest, phase transitions in syst
variables could be an important phenomenon as network
teractions increase, forcing us to think of multiple host co
glomerates as large virtual machines with potentially u
stable behavior.

One should not be tempted to think of a position varia
in terms of the physical location of different computer sy
tems, or the connectivity of the network, since we have
ready partitioned into local system and external reserv
~sources!: there is no relevant position variable in this mod
~Intercomputer positions refer to an equally valid but diffe
ent problem.! Rather, the configuration space refers to t
number of ways the system can change, i.e., its numbe
internal degrees of freedom, as viewed by each host.
dimensionality will have to be understood in each case se
rately, from the set of relevant parameters that controls
dynamics~this is different in different computer systems!. It
is unclear whether a continuous variable or a lattice~cellular
automaton! model would be more appropriate at present.
careful group theoretical analysis of the variables would
solve this.

There are many problems remaining for a long-term pr
tical anomaly detection scheme and physicists can contrib
significantly to this discussion. One is how to compute t
relevant averages without storing large quantities of da
Another is how to analyze the time series with respect to
averages in real time. With the present work, one has a
tial parametrization of the expected behavior in terms o
temperatureT and a scales(t) that summarize the full sta
tistical data set, i.e., a framework in which to make pred
tions. As far as physics is concerned, it is gratifying to s
well-established theory validated in such an experiment

FIG. 2. The distribution of fluctuations in network sockets fro
world wide web connections averaged over the daily period. Thx
axis shows the deviation about the scaled mean value of 50df/s
and they axis shows the number of points measured in class in
vals of a halfs. The solid line shows that the distribution of value
about the mean is an almost pure Planckian black-body distribut
The dotted line shows the theoretical Planckian fit withA50.
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1742 PRE 62MARK BURGESS
accessible system. The analogy goes deeper than it has
possible to present here, and there is room for additio
work which clarifies the issue of entropy production. Th
will be presented in a more detailed paper presently.

In summary, computer systems are open thermodyna
cal systems, exchanging information with reservoirs of us
and network clients. The methods and notions of statist
physics can be applied to understand their average beha
. C
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i-
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~macrostate!. The system rescales, approximately conf
mally, as one would expect of an envelope described b
nonequilibrium field theory. The observations thus confi
and link two separate pieces of work@8,3#. This should be of
interest both to computer scientists and to physicists alik

The empirical analyses supporting this work were c
lected in collaboration with Sigmund Straumsnes and Ha˚rek
Haugerud in Ref.@4#, and Tim Bower.
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