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Thermal, nonequilibrium phase space for networked computers
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It is shown that networks of computers can be described by concepts of statistical physics. Computers in a
network behave like systems coupled to a thermal reservoir. The role of thermal fluctuations is played by
computing transactions. A thermal Kubo-Martin-Schwinger condition arises due to the coupling of a computer
to a strong periodic source, namely, the daily and weekly usage patterns of the system.

PACS numbegps): 05.70.Ln, 05.45.Tp, 07.05.Tp

Computer networks are cooperative systems, composed pfter programmers deal mainly with exact, microscopic logi-
many interacting elements. The entirety of a computer syseal states and transitions with Boolean thresholds. On the
tem depends upon the successful interaction of many sephasis of their complexity of multiple tasks and interactions,
rate information systems, via client-server transactions. Irone would expect computer systems to be fluctuating, statis-
actual use, servers play the role of reservoirs of informatiortical systems. Computers operate by performing microscopic
and clients tap into these reservoirs with fluctuationliketransactions, which play the same formal role as fluctuations
transactions. These analogies reveal a thermodynamical statistical physics. The exchange of controlling informa-
quality, rooted in information theory, that is not merely of tion between computer processes is directly analogous to the
philosophical interest; it has practical uses in both computeexhange of particles between heat baths.
science and physics. There is also the attractive notion of having an experi-

The intriguing possibility of understanding the behavior mentally accessible system available to theoreticians in the
of computers as dynamical systems is now starting to béeld of finite temperature field theory and nonequilibrium
appreciated1,4]. It is motivated mainly by the possible physics. Although computer systems are relatively small in
practical rewards, which could be exploited in anomaly dethe sense of many-body systems, their behavior over time
tection and security intrusion detection. In Ré3], it was  averages out to forms that can be approximated by infinite
argued that computer systems ought to behave like physicaleat baths and the usual machinery of thermodynamics, in
models of statistical mechanics, for the reasons above. In thide space of weeks and months. This is a reasonable period
present paper, drawing on recent meaurementgtinthis  of time over which to gather data, and it is a viable experi-
view is confirmed and amplified with both empirical and mental arena for examining the influence of slowly varying
theoretical considerations. change from a purely equilibrium situation.

There are two primary reasons for wanting to make a Measurements show that the periodic topology of time
comparison between computers and physical models: firsgvolution in computer networks places them in the same
practical knowledge, essential for building computerclass of statistical systems as open thermodynamical ideal
anomaly detectors, demands an understanding of the dgased4], i.e., systems that display Planckian statistics. Al-
namical parametrization of the system; second, empiricalhough thermal systems are far from unique in having these
knowledge about system dynamics arms us with methods faignatures, they are the most well known. The theoretical
modeling networks of computer systems in a way that iseason linking computer networks with thermal physics is
readily accessible to researchers in both computer sciendbat any randomlyfluctuatingsystem whose average behav-
and physics. ior is constrained periodicallfor, in this case, approximately

Anomaly detection in computer systems means identifyperiodically will exhibit a Planck spectrum of fluctuations.
ing patterns of unusual activity. Unusual patterns of resourc@his depends only on the periodic constraint. It is therefore
consumption or unusual trends in system variables point topossible to summarize the averages in terms of a tempera-
ward activities that could signify a fault in the system, or ature, resulting in a considerable compression of information.
potential attempt to abuse the system. The automatic detec- Two influences dominate the average behavior of com-
tion of such “anomalies” would allow automated responses,puter systems over human time scales; these are the external
like immune systems to respond with countermeasuresgservoirs of users and network clients, which undergo trans-
where necessary. A considerable amount of effort is curactions with the system, but these are accompanied by a sea
rently being invested in this type of technology. It has per-of fluctuations, which arise from the many interacting back-
haps more in common with physics than with traditionalground processes that comprise modern computer systems.
computational models. Many variables might be considered to characterize the be-

In order to detect anomalous and hence potentially threatiavior of a computer system over long times. Of all the
ening behavior, one first needs to characterize what is nowariables one might record, some prove to be relevant and
mal. Software for anomaly based intrusion detection hasome to be irrelevant to computer behavior at the time scales
proved to be a difficult problem, mainly because the author®n which humans interact with them. For instance, the num-
of such software do not have a sufficient concept of whaber of independent processes running, the number of network
characterizes normal behavior in a statistical sense. Coniransactions to particular services, and the amount of free
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disk space are three types of variable that are found to havi sz |
a direct bearing on the state of the system and its long-terrr
behavior. On the other hand, variables like CPU load, paging !
rates, and free random access mem@yM) turn out to o
affect only the short-term behavipt]. This is found empiri- | |
cally. i ‘C‘

Computers, like other complex systems, are characterize it l L‘w‘.‘l" I
by qualitatively different behaviors at multiple scales. It is § '° 'y
appropriate to refer to these as microscopic, mesoscopic, an "“:.:
macroscopic. Microscopic behavior refers to exact mecha- '
nisms or atomic operations; mesoscopic behavior looks a8}
small conglomerations of microscopic processes and exam
ines them in isolation; macroscopic processes concern thi
long-term average behavior of the whole system. At the mi- , , , , . ‘
croscopic level we have individual system cdthe the order 0 24 48 2 % 120 144 160
of milliseconds. At the mesoscopic level we have clusters Time in hours
and patterns of system calls including algorithms, proce- FIG. 1. The weekly average of nonprivilegédse) processes
dures, and even viral activitfon the order of secongsFi- shows a constant daily pulse, quiet at the weekends, strong on Mon-
nally, there is the macroscopic level at which one views allday, rising to a peak on Tuesday, and falling off again toward the
the activities of all the users over scales at which they typiweekend. This graph also shows a conspicuous anomalous point,
cally work and consume resourcésinutes, hours, days, well outside the statistical tolerances of the error bars. Xlagis
week$. Since it is users who cause the most significantmeasures time in hours over a weekly period, whileytlzis is a
changes and problems in computer systems, the macroscoﬁféquency count. The solid line is the average value for a given time
scale is of special interest for the detection of anomalies. of week, while the error bars show the standard deviation of fluc-

Consider now the relationship between computer systemi/ations about the mean.
and statistical systems. Statistical systems may either be
steady state(in equilibrium) or change appreciably over Fig. 1, taken from Refl4]. This shows how, over a 24 hour
times longer than the rate of statistical fluctuatiomsnequi-  period, one aspect of computer activity peaks during working
librium). They are characterized by the existence variabletiours. One sees also a strong weekly rhythm, characterized
that exhibit fluctuations, i.e., they vary randomly about anby a peak in activity around midweek, and a quiescent time
average value, on a time scale that is much shorter than thduring weekends. These are the unambiguous signatures of
time over which one observes the system. The fluctuatiofmuman work patterns. Data collected over several months are
scale has no effect on measured values, since no microscopdesplayed in the figures. There are insufficient data, at
dynamics are visible at the scale of observation. When agresent, to infer seasonal rhythms, but there are compelling
system is close to equilibrium it can be thought of as being irreasons to suppose that these would also follow a periodic
a quasiequilibrium, with a superposed pattern of adiabatigattern in a stable environment. It is the existence of the
changes. This situation has been analyzed using many diffedaily pattern that is probably of greatest interest, since it is a
ent technique$5—8] in statistical field theory. Such systems short period whose repeating topology allows us to average
have some specific model-dependent properties, but alsaver periodically identified points.
many universally applicable properties. It is the latter that are The magnitude of these periodic influences affects differ-
interesting here. Such a slowly varying statistical system int measurements in different ways. Some activities, particu-
the model with which we hope to explain the behavior oflarly network transactions, originate from many different
networked computers. physical locations around the world and are thus a superpo-

The justification for assuming this model of computer dy-sition of work practices from several parts of the globe, i.e.,
namics is rather interesting: there are strong periodiclaily rhythms which are time shifted with respect to one
rhythms in the dynamics which are disposed around threanother. This tends to smear out the observed periodicity,
scales. The presence of fluctuations with this causal structudepending on the relative numbers of transactions from dif-
leads directly to a thermal interpretation. The three macroferent sources. Some variables are not directly coupled to
scopic time scales over which the system changes may hgser habits and do not exhibit periodicity at all. Such vari-
represented as separate, periodic driving forces. ables are not thermal in nature. It is the periodic variables

(1) Daily. Users’ daily work patterns exhibit the strongest that can be modeled using the notions of thermal physics.
influences on system periodicity. This is typically a nine to  The periodic nature of the influences on the system has a
five rhythm which follows the general level of human activ- profound effect on the average behavior of the variables to
ity. which it applies. If we consider the average over many

(2) Weekly The pattern of activity over a week tends to weeks(Fig. 1) and the average over daily perio@sg. 1),
peak around midweek and fall to a minimum at weekends. we find stable patterns, within the tolerances expressed by

(3) SeasonalSeasonal changes in work patterns dependtandard deviation error bars. These data were collected by a
on the type of site. For instance, universities have periods afonitoring process which measured values every two min-
low activity during summer vacation. utes over several months; the measurement process itself was

Of the above, the most important period for the definitionshown to have no biasing effect on the measured values. The
of statistical variation is the daily rhythm, as seen in exampleaverage behaviorfollows a predictable periodic pattern,
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TABLE I. The correspondence between thermal physics and;(t) is the time-dependent standard deviation, or error bar in
computer metricspi(t). An arbitrary scalgthe temperatujfemust  the figure. This rescaling is the identical procedure to the
be introduced in each case, on dimensional grounds. This charagg|q theoretical method described in RE8), applied at a
terizes_the size and magnitude of the fluctuations from the meag,ore pedestrian level. It shows how small deviations from
valuesd;. An energy can be defined in each case. In the case ogquilibrium can be viewed as a dynamical transformation
radiation, energy is inversely proportional to the wavelength of the(not unlike a gauge transformatig8]) that is, as perturba-
radiation. In the computer case, an energy can be defined as beigg s around a simpler equilibrium model. The gradients that
inversely proportional to the deviation from the mean. The effect of ide the evolution of the distribution therefore follow the
increasing the temperature in each case is to increase the width a rm of a conformal or pseudogauge connection to the time
height of the Planck distribution about the mean, i.e., to increase thaerivative as described in R4B], owing to the local res-
fluctuations. caling by o(t). In field theoretical language, the effect of a
derivative ony is to make the effective change

Planck law Networked computer
KMS periodic imaginary time Daily real time period o
Dt_) é’t__' (5)
Temperaturel Temperaturel a(t)
Eocn~! ExA¢;*

This reproduces the scaling connections described in Ref.
[8].

within the tolerances. The distribution of these data will be  The fact that fluctuations or transactions take place with
discussed below. Any relevant system variablg) that is ~ réspect to a periodic background topology in time gives the
strongly affected by periodicity can be expressed as an aveRhase space of this dynamical system the special character of

: e : : _an idealized black body. This might strike one as being pe-
ﬁ]ggei()seitr)tvgl();)\./a[%mg part) plus a fluctuatiortrapidly vary culiar at first; in fact, it is only a consequence of the quasi-

periodic boundary conditions together with the presence of

— — fluctuations. The periodicity itself associates a special wave-

B(t+B)= (1) +5¢(1). (1 length in phase space with each level of excitation. Assum-

i . ing that all excitations are equally likely, a general superpo-
This expresses the fact that, after an elapsed period, the S¥§iion generates a Bose-Einstein fluctuation spectrum.

tem returns to the same state, up to a stafistical fluctuatioperindic systems and their relationships to statistical physics
d¢. Both the averages and their fluctuations are dynamical e well known in physic§10-17.

(time-dependentquantities. This is not typical of a strict e relationship between periodic systems and finite tem-
equilibrium system, but of a system that varies on approXiperatyre statistical mechanics is neatly summarized by the
mately the same time scale as the perdtself (note the kg relation in statistical mechani¢&0]. The KMS condi-
time-evolution error bars in the figureThe variableg(t) is tion is really a group theoretical restatement of the equilib-

driven by a pseudoperiodic sourdét), rium condition for a two-level system, as used originally by
Einstein to derive hisA and B coefficients for a two-level
J(t+ B)=J(1). (2 system. The KMS relation states that the ratio of absorption

to emission(R) should be given by a Boltzmann probability:
In dynamical language, this coupling would be expressed by o .
a kernel or Green functioB(t,t') satisfying a Kubo-Martin- R(emission/absorption- e
Schwingen(KMS) condition, in a linear response approxima-
tion:

AE/KT (6)

for some energy spacing and temperaturd. When ex-
pressed in terms of linear response theory, using Green func-
tions, this statistical assertion can be recast as

¢(t):f dt’G(t,t,)J(t,) (3) G(t‘f‘lB,t,):eiﬁEG(t,t,), (7)

(See Table )l The fact that the error barg¢(t) are not  which expresses the periodicity of the system up to a thermal
constant in time means that the fluctuations themselves havkictuation. This, in turn, leads to the observed finite tem-
slow variations. Thus the system is not in a perfect steadyerature behavidrl3].
state: it is only an approximately thermal, nonequilibrium  For computer networks, the appearance of a thermal spec-
system. trum also arises from a periodicity arising from the comput-
From studies of general nonequilibrium field theories, it is€r’s being strongly coupled to its pseudoperiodic source of
possible to relate the nonequilibrium system to the equilib-users and network activity. The average transactions of many
rium system they resemble. This is achieved using a locallglays make system activity approach the smooth envelope of
varying scale, oconformal transformationThis transforma- @ temperature distribution. For small times one sees jagged
tion is a mapping that relates the actual time-varying distrifeatures due to the small numbers involved.
bution of fluctuating values to an idealized static or thermal In natural units, the thermal distribution of an
distribution. The scaling is single-valued reparametrization: n-dimensional blackbody system is

(1) A

lﬁ(t):m- (4) E()\)“m, (8)
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where \=1/w is the wavelength of light emitted or ab- 40000 . . . .
sorbed. This can be derived from the fluctuation energy for
any noninteracting gas or free field on a periodic Euclidean
space. Why choose a free field theory to model a computel
system? Because it is the simplest physical model exhibiting
Gaussian fluctuations about a mean, and it is well known in
the literature. Any universal features that owe their existencez
to the causal structure of the system should already be ap8 20000
parent here. One need not dream up detailed interactions i\s_g
order to identify such a basic concept as a temperature fo

the system. It remains then only to compare the model to the

30000

measured data. The effective action or free energy for a sys 19000 | 1
tem is the sum over fluctuatiorni$ransaction bubblésand
may be used to determine the distribution signature. The en
ergy due to such random fluctuations on a periodic space is 0 . ol TS J
Gaussian functional integral: 0 20 4 60 80 100
Deviation
F=— |nf d¢(t)e—fd”x¢>(—qu$). (9) FIG. _2. The distributic_)n of fluctuations in networ_k sockets from
world wide web connections averaged over the daily period.Xhe

) ) ) ) axis shows the deviation about the scaled mean value &0
The exponent is the Lagrangian density for a free Euclideagng they axis shows the number of points measured in class inter-
scalar field. This is the simplest physical system that exhibitgals of a halfo. The solid line shows that the distribution of values
a dynamical evolution in time and whose fluctuations can bebout the mean is an almost pure Planckian black-body distribution.
summed. It makes no assumptions about the nature of thehe dotted line shows the theoretical Planckian fit Witk 0.
field, other than the fact that fluctuations are free to com- o )
mute. This reflects the fact that the occupation of a particulaf®(t,x), of the type well known in field theories, how shall
value is not limited to a maxmimum number, as it would beWe assign meaning to the positiaft How many dimensions
in Fermi-Dirac statistics. Since the labels that characteriz&r€ appropriate? The effective dimensionality of a configu-
each special event are irrelevant to the total count over timdation space would determine the nature of any phase transi-
the fluctuations are bosonic, i.e., the order in which equivatlons that could occur in the statistical system. Far from be-
lent events actually occurred is irrelevant to the count. Thdng of purely whimsical interest, phase transitions in system

free energy functional integral is a known functional integralvariables could be an important phenomenon as network in-
[12]: teractions increase, forcing us to think of multiple host con-

glomerates as large virtual machines with potentially un-
® stable behavior.
F”T””(_D)“f deZJ dwE(w), One should not be tempted to think of a position variable
(100  in terms of the physical location of different computer sys-
tems, or the connectivity of the network, since we have al-
and yields the integral of the Planck formula, on changingready partitioned into local system and external reservoir
variablesw=1/\. The overall constant of proportionality is (sourceg there is no relevant position variable in this model.
uninteresting and must be fitted to the data. This fluctuatioriintercomputer positions refer to an equally valid but differ-
distribution may be seen fitted to the measured example datnt problem. Rather, the configuration space refers to the

n

in Fig. 2, using the formula witm=1: number of ways the system can change, i.e., its number of
internal degrees of freedom, as viewed by each host. The

D()\):Ae‘“‘;)z’z‘fzﬂt B dimensionality will have to be understood in each case sepa-
(A—Ng)3(eY 2T 1) ' rately, from the set of relevant parameters that controls the

(12) dynamics(this is different in different computer system#
is unclear whether a continuous variable or a lattasdlular
The values of the constangs B and\y are chosen to fit the automaton model would be more appropriate at present. A
data. Their absolute values have no significance, since thewareful group theoretical analysis of the variables would re-
is no “standard candle” computer system to compare to, busolve this.
changes relative to the local norm could be interpreted as There are many problems remaining for a long-term prac-
anomalies. Nonzerd allows for the presence of additional tical anomaly detection scheme and physicists can contribute
Gaussian noise in some measurements. Although there sgnificantly to this discussion. One is how to compute the
room for only one graph here, the result has been reproduceaelevant averages without storing large quantities of data.
across many machines and for many variables at two widehAnother is how to analyze the time series with respect to the
different network sites. averages in real time. With the present work, one has a par-
The question remains, however, as to precise identificatial parametrization of the expected behavior in terms of a
tion of a suitable detailed model. Would a more detailedtemperaturel and a scaler(t) that summarize the full sta-
statistical field theory be an adequate model? What thefistical data set, i.e., a framework in which to make predic-
would be the correct configuratigposition space for such a tions. As far as physics is concerned, it is gratifying to see
theory? If we consider every variable as a generic fieldvell-established theory validated in such an experimentally
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accessible system. The analogy goes deeper than it has be@macrostate The system rescales, approximately confor-
possible to present here, and there is room for additionaally, as one would expect of an envelope described by a
work which clarifies the issue of entropy production. Thisnonequilibrium field theory. The observations thus confirm
will be presented in a more detailed paper presently. and link two separate pieces of wdi&,3]. This should be of

In summary, computer systems are open thermodynaminterest both to computer scientists and to physicists alike.
cal systems, exchanging information with reservoirs of users The empirical analyses supporting this work were col-
and network clients. The methods and notions of statisticalected in collaboration with Sigmund Straumsnes andeKa
physics can be applied to understand their average behaviétaugerud in Ref[4], and Tim Bower.
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