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Slip pulses at a sheared frictional viscoelastioondeformable interface
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We study the possibility for a semi-infinite block of linear viscoelastic material, in homogeneous frictional
contact with a nondeformable one, to slide under shear via a periodic set of “self-healing pulses,” i.e., a set of
drifting slip regions separated by stick ones. We show that, contrary to existing experimental indications, such
a mode of frictional sliding is impossible for an interface obeying a simple local Coulomb law of solid friction.
We then discuss possible physical improvements of the friction model which might open the possibility of such
dynamics, among which slip weakening of the friction coefficient, and stress the interest of developing sys-
tematic experimental investigations of this question.

PACS numbes): 46.50+a, 46.35+2, 62.20.Mk, 81.40.Pq

I. INTRODUCTION shear stress},, the upper blocKl) slides towardk;>0 at a
remote point velocity o with respect to the lower onél).

A few recent qualitative observatiori4,2] on the fric-  Such motion can of course occur in a homogeneous mode,
tional motion of sheared gels sliding along smooth glass suwhere stresses are uniform. Along ttl@mogeneoysinter-
faces point towards the existence of inhomogeneous moddace, the friction law, which we assume to obey the
of frictional sliding. Namely, in some limited range of values Amontons—Coulomb proportionality between shear and nor-
of small shearing rates, sliding seems to occur via propagamal loads, imposes that
tion of a quasiperiodic pattern of sliding zones of finite
width, separated by nonmoving regions, where the interface
sticks. These “slip pulses” drift at velocities=mm/s, while 1= —f4(vo) 755- (1)
the remote averagg@ulling) velocity lies in the 1-10um/s
range. Their width is typically tens of micrometers. Analo-
gous observations have been made by Anooshehpoor aidsuch is the case, giver, andv,, the remote shear sliding
Brune[3] on a sliding rubber foam, and by Mouwakeh, Vil- stress is fixed. In the Coulomb approximation, where fine

lechaise, and Godé#] on the elastomer polyurethane. variations of the dynamic friction coefficient are ignorég,
The topology of such sliding modes is reminiscent of thatreduces to a constant.
of Schallamach wavd$], which have been documentfg] The question then arises as to whether or not this homo-

in the case of some very compliant transparent rubbers slidgeneous sliding mode is stable with respect to small nonho-
ing on smooth glass. They consist of quasiperiodic zones, ahogeneous perturbations of the stress and strain fields local-
width typically =100 um, with space periods roughly ized in the surface region. In other words, do deformation
~ 10l [7], where the rubber buckles, so that the two surfacegvaves exist along a sliding frictional interface? If so, are
separate by a distance comparable WitiThese separation they damped, or amplified, or neutral? This question has
waves have drift velocities-mm/s, for remote velocities been studied extensively, for dissimilar linear elastic materi-
~um/s. als, with Coulomb friction, by several authors, in particular,
However, the slip pulses in gels do not seem to be assdVeertmanr{10], Adams[11], and Martins, Guimaraes, and
ciated with any interface separation. In this respect, they aréaria[12], whose results are synthetized in a recent article by
more comparable with the so-called “self-healing slip Ranjith and Ricg8]. They find that, whenwy#0 and when
pulses,” on which the attention of mechanicians has been
focusing recently8], following the suggestion by Heat$f] e Xo Vo
that some major seismic events may have occurred, not by 22 A —
guasisimultaneous sliding of the whole rupture zone, but via \1/
fast propagation of localized sliding zones of small extent.
These observations all point toward a common question
about the nature of frictional sliding, which can be schema-

tized as follows. Consider two very thick blocks of solid )

materials with dissimilar elastic properties, in frictional con-

tact along a planar interface of infinite lateral extéFig. 1). >
This system bears a remote homogeneous compressive stress X4
75,, normal to the interface. Assume that, under the remote (1

*“Associe au Center National de la Recherche Scientifique et aux
Universites Paris 6 et Paris 7.” FIG. 1. Schematic representation of the sliding system.
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such interface waves exi$i 3], the corresponding sliding infinitely extended along,, and made of an incompressible
velocity field along the interface has, for a mode of wave-material, with a linear viscoelastic shear response described
lengthk, the form by

v(Xy)=vexgik(x;—ct)+alk|t]. (2 t )
le(t)=f dt’ w(t—t")ug(t’), )
Given the elastic moduli, the drift velocity and amplifica- e
tion coefficienta are real positive constants. That is, waves )
drifting along (respectively againsthe direction ofv, are vyhererlz andu, are the shear stress and dgformatlon, con-
amplified (respectively damped Homogeneous sliding is fined to the k;,x,) plane, and we model the time dependent
thus linearly unstable against perturbations of all wavesShear modulus as a single time Kelvin one, namely,
lengths. _ —tr

These results are derived under the assumption that the PO= ot (o= p)e 7. (4)
interface is sliding everywhere. As amplification proceeds . .
the sliding velocit)g neceZ;varily vanishespat some pF())ints. Thigve will moreover assume that the relaxed modylus is
suggests that sliding might occur via a periodic set of selftuch smaller than the short time one,. To fix ideas, for
healing slip pulses, separated by stick regions. A family ofcOmpliant rubbers, values gf../uo=10 " are typical.
such pulses has been built by Adaft4] for dissimilar elas- We want to study dynamic patterns, whefeg slides to-
tic solids. Their drift velocityc, which depends on the values Wardx;>0 with the uniform remote velocity, with space
of elastic moduli is, roughly speaking, on the order of aPeMod\=2m/k, and drift velocityc in the frame of(ll). The
sound velocity. So, their dynamics is controlled by inertia.corresponding form of the displacements u, reads
However, such self-sustainingtationary dynamical pat-
terns are singular in the following sense. Sincglperturbat_io.ns Up=vot+ 2 Dy (x,)€mkxa—c, (5)
of all wavelengths, however small, are amplified, any ini- m=1
tially localized perturbation gives rise to diverging oscilla-
tions at arbitrary small time: Adams’s pulses have zero mea- imk(x - ct)
sure attractors. This so-called “ill-posedness” most likely Uz=Dozt mzl Dma(xz)€ v (6)
signals that the Coulomb friction law misses some of the -

physical processes which control the fast dynamics of fracgg|ying the wave propagation equation together with the
ture at frictional interfaces between elastic materials, i.€.condition of nonseparation at the interfaea{x, ,x,=0y)

their high frequency response—a problem which is currently:0, one obtains straightforwardigee Appendix A in the

unde_r stud){B]._ incompressible limi{Poisson coefficienty=1/2) for the in-
Slip pulses in gels or rubbers, on the contrary, are SIOV\ferfaciaI sliding velocity () = au, /dt], _o
dynamical objects whose velocities, comparable with those *2=

of Schallamach waves, are much too low for inertia to be
relevant. Their dynamics is certainly controlled by the dissi- v =vo+cRe >, B,eM, 7)
pation associated with the viscoelasticity of these materials. m=1

We therefore concentrate, in this paper, on the following
question. Let blocKl) be an incompressible linear viscoelas- Where 7=Kk(x;—ct) while the interfacial shear and vertical
tic material with, for simplicity, a single viscous relaxation stresses read
time. It slides slowly on a smooth nondeformable material,
and interface friction obeys a simple local Coulomb law.
Under such conditions, are noninertial periodic slip pulses,
stationary in the drifting frame, a possible mode of motion?

In Sec. Il we formulate the corresponding mathematical ,
problem, and derive the form of its analytical solutions. We 7oA 1) = 75,+Re 2, Bpum(l—oy)em?, 9
show in Sec. Il that none of these is compatible with the m=1
stick conditions to be satisfied in the nonmoving parts of th%ith
interface. Hence, in this as well as in the inertial regime, a
Coulomb law with a constant dynamical friction coefficient
is incompatible with the existence of such modes of motion. Om=
We discuss in Sec. IV possible physical tracks toward im-
provements of the simple Coulomb model, which might be, . .
relevant to the problem of inhomogeneous sliding, and stres e restrict our attention to the very slow modes observed

the interest of corresponding experimental investigations. exgerlmentally for which, whatever the frequenandk),
pC°<um, SO that

T ) = Ti,+ Rele —iBupm(ltome™,  (8)

1/2

pc?
Reo,,>0. (10

1— —
Mm

Il. GENERAL FORMULATION 2
5 (11)

on=1-

We follow closely the approach of Adani4l] and of
Comninou and Dunduig 4] restricted to the case whefgee
Fig. 1 block (II) (x,<0) is nondeformable. BlocKl) is  wherep is the mass density of materid), andu,, its (com-
submitted to the uniform remote stressgg<0 andr},. Itis  plex) elastic modulus at frequencynck)
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. _ o ot Using Egs.(15) and(16) together with Egs(8) and(9), and
Hm=p(mek) = —leO dtu(t)e'” (120 with the help of the relation
w=mck
- ; . 1 - i X
The unknown coefficient®,, must be determined from elmx— _ — 4 S(x—2nm) + —F{Cot— 19
the second boundary condition along the interface, in which m=1 2 an—oo ( ™ 2 2] 19

we describe a set of slipping regions of lengthseparated

by sticking ones. (where P designates the Cauchy principal valoee finally
We assume friction to be described by a simple local Cougets, for the interfacial “sliding stress’t,

lomb law, with a constant dynamic friction coefficieft

equal to the static one, that is f o2
(i) slip regions:— a+2pm<p<a+2pw To(m) =718 + T[V( 7)— Vo]
7s(7) =71 ) +F12(1)=0 v>0, (13 1 (e » d n—E+ckt
o [ aevief dtn 5 e
(ii) stick regions:— a+2pr<y<—a+2(p+1)m T -a 0

[ 0 f 7'22< ’le< —f T92. (14) (20)

This description of interface friction calls for a few com- Where we have set(7)=v(n)/c, and/fdx=PV/[fdx. _
ments. Indeed, it assumes tacitly—as is common in contact 'Ntégrating by parts the last term on the right hand side

mechanic§15]—that one can legitimately define a local and ("-N-S) of Eq. (20), the condition Eq(13) for frictional slid-
space-independent friction coefficient. Since solid friction re- N9 Within the slip pulses provides us with the integral equa-

sults from the average effect of dissipative flips of bistablelion to be satisfied by the interfacial reduced velocity field in

pinned elastic units, this can be true only on a scale much™ @<7<a), namely,
larger thani(i) the sizeb of the basic unit, andii) the scale
L of interface inhomogeneities. The detailed analy$g of
the Rice—Ruina phenomenological law of dynamic friction
[17] has shown thab is of nanometric order. So, our as-
sumption is justified for interfaces with homogeneous inti- 1 (e
mate contact. Such is indeed the case for the gels or very + ;J de(é)f
compliant rubbers which we have in mind here, as long as o
elastic deformations vary on scales much larger than (22)
nanometers—which sets a lower limit on the size of
Dugdale—Barenblatt-like fracture head regions. with
Note, however, that the situation is different when dealing
with multicontact Greenwood-like interfacgk3]. These pre- N
vail with stiff materials, such as metals, glasses or rocks, f dév(€)=2mV,. (22)
which are not polished down to nanometric roughness. Then, —a
the small scale cutoff is provided by the average distance
between contacting asperities, commonly lying in the Once Egs(21) and(22) are solved foV( %), interfacial
100 um/s range. This, in our opinion, should be kept instresses in the stick regions should be calculated from Eq.
mind when attempting, for such interfaces, to regularize th€20), Eq. (14) then providing the final condition for slip
above mentioned ill-posedness problem since, on spaqaulses to exist.
scales <L, pinning strength fluctuations become non- Expression(21) separates explicitly the instantaneous
negligible. elastic shear effectshird term from the contribution of vis-
Taking condition(11) into account, following Comninou coelastic relaxatior{fourth term). The second term, which
and Dundurg14] we set, for the periodic functions(7), in  derives from the perturbation of the normal stregs is, for

C2

2

Vi -vol+ 2f  aevigrco”

*
Ts T+

-

* — &+ ckt
dt co77 ¢
0 2

du
dt|

—nT<nys<mw our very slow pulses, smaller than the integral ones by a
factor (c/cs)?, wherecs is some sound velocity. We will
vd(p)=0 a<|y|<m (stick), (15  therefore neglect it from now on.
The cot form of the elastic kernels results from imposing
v =v(n) —a<gy<a (slp). (16)  space periodicity to the patterns. Equati@d) can be rewrit-
ten in a form more standard in fracture mechanics by setting
Hence, from Eq(6) in (—a<np<m)
Br=— [ dev@e ™ (m=1) 1D et yetat o= Y ol —an
mc)_, u= ani y= ané (u)= T a= ani— anf.
1 (23)
vo=5—| dév(§). 18
0 277]*01 ¢o(8) (18 Some elementary algebra then leads, ia<u<a), to
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T, 2uof® | P(y) (2 d, (u)y=H,_(u)
1Tsz=7f dyﬂ+f dy @ (y)k(u,y) : : B
-a a Ap 2 exg2tan “u/ckr) [a
— K 2 fdz¢+,(z)
2Vou— 7% o 0 mo  Ckr(1+uf) u
1+uz X exp(—2 tan 1z/ckr), (29
with with
a Z, (u) C*u+D*
f dy ®(y) =V, (25) Hoo(u)=-=5 .
—a Mo 1+u
and we have set Ap W, _|Z, _(u)
uo ckr T G(u)
ckt Ho
2 (= 1+yta >
K(u,y)=— f dtu’(t) . (26) + exp(2 tan *u/ckr) |, (30)
o 0 ckt +u2
u—y-+(1l+uy)ta >
a 2tan 'z
The singular integral equatiot4) belongs to a class W+,=2Jladz<b(z)ex T T ckr ) (31)

which was studied extensively by Mushkelishyili9]. In his
terminology, the first two terms on the left hand sitlé.s)
constitute the “dominant” part. The viscoelastic kernel
k(uy) satisfies the regularity condition: Ijm[(u
—y)k(u,y)]=0. This entails that it plays no role in the
strength of the singularities of the solutions, i.e., as is intu-
itively reasonable, these are ruled by the instantaneous elas-
tic response of the deformable medium.

o : fxd\l, eZtan’l\P/ckr \/m
u:_
A, (uU—W)(1+w?) V¥+a
—a e2 tar 1w/ckr \/TH
[ Cav ,
) (U—¥)(1+w?) V-¥-a

Following Ref.[19], there are four families of solutions of (32
Eq. (24), each of which is associated with one of the basic . omlckr 1 _
functions, characteristic of the dominant part p=(e 17 Au=po e, (33

€ € o o
Z o (Y)=(y+a)Ha—y)n?, 27) C* =2Vop.. cos; — 74 siny, (34)

where the indices¢; ) =(+1,—1) control the convergent
or divergent behavior oZ at the tail and head edges of the D* = — 2Vou sint — * cos. (35)
slip zone. 0F==T s ¥

One can then transform, for each family, E&4) into an ] ] ] ) .
equivalent nonsingular Fredholm integral equation. It moreEXpression(32) for G(u) is valid for solutions whose slip
over turns out that, when we specialize to the single relaxZone length P satisfies the condition|2\/2. We assume
ation time model foru(t) [Eq. (4)], analytical expressions thl§ to_ho.ld in accordance with experimental observations,
for the solutions of these equations can be obtained explic¥hich indicate values of [ZA<1. _ _
itly, thus allowing us to draw explicit conclusions about their ~ Equation(29) is a first order differential equation for the
existence. function [3dz®, (z)exd—2tan ‘z/ckr], which is
In view of the heaviness of théotherwise straightfor- straightforwardly solved in
ward) algebra involved, we will exemplify the method in full
detail only for one of the families, namely the-() one. 2 Ap 1
Y v e T e
CKT po 1+u

F{Mm 2(tan” tu—tan 1z)
Xexg— .

Mo ckr

fuadzHJ,_(z)

Ill. FOUR FAMILIES OF SOLUTIONS : V FIELDS AND
EXISTENCE CONDITIONS

(36)

A. The (+—) family
The corresponding basic function This defines a family of slip velocity fields, each of which
is labeled by the four dimensionless parametarg
_lyta) =volc, 75l mo,lIN=2al27, and c7/\. Two of the physical
Z+-(y)= (a—y) parametersyo and 75 , are “external”: in an experiment,
one imposes in general an average sliding velocity—hence
The implementation of Mushkelishvili's method is per- v is fixed—and measures . I, c, and\ are the internal
formed in Appendix B. Fou(t) as specified by Eq4), the  parameters of the family. This defines a problem of dynami-
nonsingular equation equivalent to HQ4) reads cal selection, namely if sliding patterns exist, &re, A, and

(28)
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hencer, uniquely defined when, is fixed, or not? In order B. The (—+) and (—) families
to clear up this important question, it is necessary to listthe £q he C +) family
relations between them, or alternately, the conditions to bg"p zone tail only, the analysis parallels completely the

satisfied by® . _ as given by Eq(36). These are: above one, the _ . fields obey a set of equations with ex-

(i) _Two consistency conditions, expressing that the remot%wﬂy the same structure as that of E629)—(32), differing
velocity and stresses are simply tke 0 components of the only in the detailed algebraic expressionsGfu), C*, and

corresponding fields. This is expressed by relat@® and  » The regularization condition analogous to E26), now

by an analogous equation fag to be imposed ati— —a, is again immediately shown to
have no solutions.
L L (t= 7s(u) Z__ diverges at both slip edges, hence two regularization
STh) . u1+ u?’ (37) conditions, and one shows similarly that the condition ob-
tained from their difference cannot be satisfied. Note, how-
. ) - ever, that the counting argument tells us that,-if at-
where 7(u) is related to® .. _(u) by the first of equalities, gng coyIq exist, onegonl?/ of the five parameteé)vfould be

Eq. (24). f . . ;
h . . . . . free, i.e., there could exist at most one dynamical pattern at a
(ii)The interfacial stress field must also satisfy the stick Y P

inequality Eq.(14). One easily determines, with the help of given sliding velocity.
Eqg.(24), that a divergence @b at an edgei= =+ a of the slip
zone results in a diverging at the corresponding stick zone
edge, and therefore in the violation of the stick condition. As Z, . vanishes at both slip zone edges, no regularity
Z,_ [Eq. (28] diverges at the slip head=a. Foru—a condition has to be imposd@0]. (+ +) solutions, if any,
form a two parameter family. The analysis of Appendix B

whoseZ function diverges at the

C. The (++) family

% % again leads to an expression®f, , with the same structure
O, _(u)= Z.-(W) _ C’a+D + 28p W, - G(a) as EQgs.(29—(32). One can then write explicitly the self-
2o 1+a? m  Cckr consistency equatiof25) for V,. Here we will skip the cor-
+Re(u) (38) responding tedious but straightforward algebra, and only

quote the final form of Eq(25), which can be written as

B o1 1 a\? o« 41
_Z;Lom- cosE cosz. (41)

with lim ,_,, Re(u)=0.

A necessary condition fo® . _ to be acceptable is that
the coefficient ofZ, _ in Eq. (38) vanishes, i.e., using Egs.
(29—(35 For the systems we are interested in, as already mentioned,
Mol mo<<1l. Then, again, under the stick restriction which
imposes thatz <0, condition(29) cannot be fulfilled.

1+0

Vo &)

Mo

. a ZA W, _G(a)
SO T ok

(39
IV. DISCUSSION

So, for solutions of the{ —) class, the five pattern param-
eters are linked by three relations. That is, for a givgnthis
class of patterns, if they exist, form a one parameter family
We will comment further on this conclusion in Sec. IV.

Let us now come back to the“regularization condition,
Eq. (39). From conditiong15) and(16), the interfacial slid-
ing stressrs must be nonpositive everywhere. Hence, Uts
averagers must be strictly negative.

On the other hand, thes and thus theD field must, by
Eq. (13), be positive everywhere in the slip zone. Then defi-
nition (31) entails thatW, _>0. Finally, using Eq(32), one

The above analysis leads us to a strong statement, which
seems to contradict existing qualitative observations.
Namely, an interface with Coulomb friction between a vis-

,, coelastic and a nondeformable material cannot sustain slow
sliding via a periodic set of alternating noninertial slip pulses
and stick regions.

We believe that the reason for this contradiction must be
traced to the fact that the Coulomb model of friction which
we have assumed misses some physical elements which
probably play a crucial role in the dynamics of patterns with
fracture-like singularities. This may appear more clearly

gets when one notices that this model, which describes the inter-
face as infinitely rigid below the friction threshold, then,

2 4 once this is reached, sliding under constant stress, is the ex-
o SN kA 2 —tan v act two-dimensional 2D equivalent of the Hill model of bulk
G(a)= —f dw <0. (400  ideal plasticity[21], well known to generate numerous arti-

(1472 W2—aZsh

l) fact instabilities due to its highly singular character.
ck Clearly, the main weakness of the Coulomb model lies in
its overschematic description of the transition between stick

Therefore, conditiori39) can never be satisfied. No solu- and slip, i.e., for our patterns, in the details of interface

tion of type (+ —) exists. In other words, viscous relaxation boundary conditions at the edges of a slip zone. In the case

and pulse—pulse interaction effects can never be sufficient tof the analogous mode-I problem—the Griffith crack—it is

cancel the square-root singularity due to the instantaneousell known that discontinuous boundary conditidmanish-

elastic response. ing normal stresses and displacements in, respectively, the
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>

T12 4

a 2ApuW,_G(a) I(a
75 €085 + WM +ck7( ) _ U ). (46)

&\ The Ihs of Eq(46) must, as shown above, be negative. From
fTop -——=—= = Eqg. (45), 1(a)<0. So, the introduction of a “cost for incipi-

<> ent sliding” via d7y is sufficient to lift the incompatibility

8o which we found to hold for the Coulomb friction model.
Clearly, the same formal result applies for the ) and
(——) classes. That is, the localized incremental sti@gs
plays a role comparable to that of the cohesive stress in
FIG. 2. Schematic representation of the slip-weakening frictionygge-| fracture, namely it smooths out the stress singularity

\J

law. by spreading it over a zone of incipient sliding of small but
_ . finite extent.
cracked and uncracked regions of the crack plangss a However, once this formal remark has been made, one

major physical ingredient, namely the finite range of atomicshould come back to the possible physical interpretation of
decohesion and its associated energy cost. Taking this int§Q,ch a modification of the friction model. A decrease in the
account regularizes the stress field at the fracture head, Byictional stress with the slip distance is likely to be associ-
smearing its square root singularity over the Dugdale—ted with a change upon sliding of the internal structure of
Barenblatt cohesive zorj@2]. the nanometer-thick adhesive interfacial junction. Moreover,
In analogy with this, and based upon the nature of then order for the peaked structure of,(5) to reproduce itself
stress—strain characteristics of overconsolidated clayst each successive slip zone head, the structure of the junc-

Palmer and Ric¢23] proposed a model for sliding along a tjon must relax non-negligibly on the duratioh7g=(\
concentrated slip surface in which the sliding shear stress is. 2)/¢ of a stick (typically, A7 lies in the range of sec-

assumed to decrease with relative displacement as shown gqg.
problem of shear band propagation in such materials. long molecules—either because a molecular layer of lubri-

Let us assume for the moment that we can modify ourcant is present or because the junction is formed by molecu-
Coulomb model in a similar manner. That is, let us assumegyy tajls from the sliding material itself. Then, sliding is

that the shear stress in the sliding state is given by likely to give rise to a slip weakening of friction associated
with molecular elongation and restrengthening by structural
T15= — f 1ot 87o[ 6(Xq, 1) ], (42)  relaxation during stick. These are precisely the physical in-

gredients invoked to explain the hysteretic frictional dynam-
where 61y is maximum for§=0 and has a small rang#, ics observed in a number of boundary lubrication experi-
<2l. We definesd(x4,t) as the displacement at the interface ments[24—-26.
point x; from its position when it was in the preceding stick  However, inclusion of slip weakening of dynamical fric-
zone, i.e., up until the head of the slip zone under considertion is not the only possible improvement on the Coulomb
ation reached it. So model susceptible to allow for slip pulses. Indeed, a series of
recent works by Langeet al. [27,28 on the viscoplasticity
a—x; of amorphous solids point very convincingly toward the cru-
) cial importance of a realistic description—of the rate and
state type—of the gradual crossover of the mechanical shear
a response from mainly elastic to mainly dissipative. As al-
=f dn'V(n") ready pointed out, solid friction along a continuous interface
K is nothing but 2D interfacial viscoplasticity, to which the
=5(7). (43 bulk analysis should be transposable. Hence the need for the
elaboration of a phenomenolgy which can bridge realistically
between static and dynamic solid friction. Work in that di-
rection, based upon experimental studies of dynamic interfa-
cial shear response, is presently in progress.
This discussion naturally leads us to emphasize the need
the development of systematic experimental studies of
interfacial slip pulses, and the interest which they present.
The main questions to be elucidated are:

O(Xq,H)=uy(xg,t)— Ul( Xq,t— c

In Eqg. (22) for the velocity field,7s must now be substituted
by 75 — 870l 8(7)].
In order to fix ideas, let us concentrate ott {) solu-
tions. Repeating the analysis of Appendix B leads again t?
. . or
expression36), with

H, (u)—H, (u)- Z-(u) I(a), (44) (i) The precise conditions for frictional sliding to occur in
20 this mode. This includes systematic characterization of the
bulk viscoelasticity of systems which do exhibit this behav-
1 (a Srol 8(y)] ior, and qualification of the relevant range of driving veloci-
I(a):——f dy . (45  tiesuvy.
Tl a T (1+yH)(a-y)Z,_(y) (i) thev, dependence of the apparent friction coefficient

71| 75,, and the question of pattern selection. Namely, is
The regularity condition then becomes the slip pattern unique for a given, or, for example, does it
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depend on the lateral size of the sliding block? In othemwith
words, does injection at the back free edge of the slider play

! . . 2 2
a crucial role in the selection of the pattern wavelengtbr 2 —k2l1- pc 2 —K2l1- pc” Res. >0
not? Further elucidation of these questions would also be of ™ N+2u - m S
value to shed further light on the still largely open question (A8)

of the physics of shear interfacial fracture. ) ) ] )
Then, with the help of Eq(A3), and in the incompressible

ACKNOWLEDGMENTS limit A\—oc0, one _obtains the_: _expressi(_)n for the interface
stresses and the interface sliding velocity

It is a pleasure to thank J. R. Rice for a number of illu- .
minating discussions about this and related subjects. | am _ x 2 Limk(xg—ct
indebted to T. Baumberger for drawing my attention to this Tizbo-0= Tzt wRe 2;:1 mkA“( k )e bamey,
guestion, and for permanent exchange during the course of (A9)
this work, and to O. Ronsin and B. Velicky for fruitful dis-
cussions.

Todx,=0= Tap+ 1 Remzl imkA,
APPENDIX A
We briefly sketch here the derivation of E§8)—(9) for a X

purely elastic system. Let,u be its Lame coefficients, re-
lated to the Young modulug and to the Poisson ratio by {

vs=vg—C Rez imkA,

eimk(xlfct), (AlO)

) k s_
+S_+?

k
1— —
S_

eimk(xl—ct). (All)
E m=1

M=o ANtu=s—————. (A1)
2(1+vw) 2(1+v)(1-2v) Setting
The elastic displacement=(u,,u,) obeys the Lame equa- K
tion B,= imkAm(S— - 1) (A12)
pu=(\+p)V-divutplu, (A2) and substitutings_ by s,,— =ko, [Eqg. (A3)] appropriate to
with p the mass density. The stresses are given by the viscoelastic system directly yields expressions-(11).
T U due : APPENDIX B
—=—+—"+(B°—2)5divu, (A3)
mo Xy O Following [19], the singular integral equatioi24), valid
where in —a<u<a
_ 2uef@ | P(y) a
o 217Y) (Ad) 7} dyr+f dyd(y)k(u,y)=F(u), (BD)
1-2v -a y J-a
One then sets wherek is given by Eq.(26) and
. 2Vou— 74
Ui(X1, %2, D) =UF (X) + 2 Uim(x2)e™17e0, - (AB) Fuy=———" (82)
m 1+u?

with u* the displacement field corresponding to uniformis equivalent for the ¢ —) family of solutions to

sliding under the homogenenous stressé&s Solving Eq.

(A2) together with the condition of nonseparation at the in- O+ KxkxO=K«F (B3)
terfaceu,|,,—o=0, one gets

with
U3 (X1,X2,t) — U7 (X2) Z. _(u) (a f(
+ - y)
2 [K*f](U)=——f y5—————. (B4
ZRGE g K @ MSi Xz @~ MS_X; eimk(xlfct), 21om -a Zs-(y)(u=y)
=1 S;iS_
" " Integrating in the compley plane along the contour shown
(A6)  in Fig. 3, one finds

Up(Xq,Xp,t) — U3 CoE Z._(u) C*u+D* &5

* = - 1
2m0 1+u?

ZRGE Amﬁ[_e—ms+x2+e—ms,xz]eimk(xl—ct)’
meLSe whereC* ,D* are given by Eqs(34) and (35).
(A7) On the other hand
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P One thus obtains
7 ~
// C.. A \\ o
/ \ L(y,z)=f dsu'(s)
// i¥ (yplane) \\ 0
/ | o o oy
|I —@%—EE%QJ‘:—@-)—»‘I 27, (yu-yy- z—T(s) :
\\ -a u a | = YWY 15 270s)
/
\ - ik / (B10)
/ o0
N / w' (sp(z,u))
\ —_ 2 P
S // Y=—m p;_w 3D7asl. 2. (W) 0(sp(z,u)), (B11)
~ o -

T —

FIG. 3. Contour for integrals of typxF. where the s, are the zeros ofD=u—(z—T(s))/(1

+2zT(s)), i.e.,
Kxkx ——Z+‘(U)qu> J B6 2
( * Kx )(U)— 2/,(,077 Ca YA (Z) H(y,Z), ( ) Sp(zyu):a([¢(z,u)+p77], (812)
_2pr_ Ay M -
J*(y'z)_wfah_(y)(u—y) fo as z=T(9) $(z,u)=tan ¥ -—- —g<¢(z,U)<g- (B13)
Y™ 15 7270s)
(B7) From this one finally gets
with .
T(s)=tan(%s. B8 (K*k*‘b)(u):m f_ad2¢((2)ﬂ [so(z,u)]
Once the order of thg ands integrals on the r.h.s. of Eq. X[ 6(p(z,u))+B]— Z+2_(u)

(B7) has been interchanged, tlyeintegration can be per-
formed explicitly. However, care must be exercised when a - '(5)8(yP—a?)
performing this interchange, due to the presence of the two XJ dch(z)f ds'u—,
principal values. One uses the following identity, which re- -a 0 ZM (y)(u—y)
sults from the Poincare—Bertrand theorghd:

(B14)
1 1 where g is defined in Eq(33) and
P X//_X/ P XH_X
+a —y—a
( 1 ) ( 1 ) ( 1 ) Z¥ ()= 0(h—a) %Jrﬂ(—w—a) —Z+a'
=P P —P)
X_Xr X”—X X/I_X/ (815)
+ w2 8(X"—x") (X" —X). (B9) Straightforward integration then results in E¢29)—(32).
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