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Slip pulses at a sheared frictional viscoelasticÕnondeformable interface

C. Caroli
Groupe de Physique des Solides,* 2 Place Jussieu, 75251 Paris Cedex 05, France

~Received 23 February 2000!

We study the possibility for a semi-infinite block of linear viscoelastic material, in homogeneous frictional
contact with a nondeformable one, to slide under shear via a periodic set of ‘‘self-healing pulses,’’ i.e., a set of
drifting slip regions separated by stick ones. We show that, contrary to existing experimental indications, such
a mode of frictional sliding is impossible for an interface obeying a simple local Coulomb law of solid friction.
We then discuss possible physical improvements of the friction model which might open the possibility of such
dynamics, among which slip weakening of the friction coefficient, and stress the interest of developing sys-
tematic experimental investigations of this question.

PACS number~s!: 46.50.1a, 46.35.1z, 62.20.Mk, 81.40.Pq
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I. INTRODUCTION

A few recent qualitative observations@1,2# on the fric-
tional motion of sheared gels sliding along smooth glass
faces point towards the existence of inhomogeneous mo
of frictional sliding. Namely, in some limited range of value
of small shearing rates, sliding seems to occur via propa
tion of a quasiperiodic pattern of sliding zones of fin
width, separated by nonmoving regions, where the interf
sticks. These ‘‘slip pulses’’ drift at velocitiesc.mm/s, while
the remote average~pulling! velocity lies in the 1 –10mm/s
range. Their width is typically tens of micrometers. Anal
gous observations have been made by Anooshehpoor
Brune@3# on a sliding rubber foam, and by Mouwakeh, V
lechaise, and Godet@4# on the elastomer polyurethane.

The topology of such sliding modes is reminiscent of th
of Schallamach waves@5#, which have been documented@6#
in the case of some very compliant transparent rubbers
ing on smooth glass. They consist of quasiperiodic zones
width typically l .100 mm, with space periods roughl
;10l @7#, where the rubber buckles, so that the two surfa
separate by a distance comparable withl. These separation
waves have drift velocities;mm/s, for remote velocities
;mm/s.

However, the slip pulses in gels do not seem to be as
ciated with any interface separation. In this respect, they
more comparable with the so-called ‘‘self-healing s
pulses,’’ on which the attention of mechanicians has b
focusing recently@8#, following the suggestion by Heaton@9#
that some major seismic events may have occurred, no
quasisimultaneous sliding of the whole rupture zone, but
fast propagation of localized sliding zones of small exten

These observations all point toward a common ques
about the nature of frictional sliding, which can be schem
tized as follows. Consider two very thick blocks of sol
materials with dissimilar elastic properties, in frictional co
tact along a planar interface of infinite lateral extent~Fig. 1!.
This system bears a remote homogeneous compressive
t22* , normal to the interface. Assume that, under the rem

* ‘‘Associé au Center National de la Recherche Scientifique et
Universités Paris 6 et Paris 7.’’
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shear stresst12* , the upper block~I! slides towardx1.0 at a
remote point velocityv0 with respect to the lower one~II !.
Such motion can of course occur in a homogeneous mo
where stresses are uniform. Along the~homogeneous! inter-
face, the friction law, which we assume to obey t
Amontons–Coulomb proportionality between shear and n
mal loads, imposes that

t12* 52 f d~v0!t22* . ~1!

If such is the case, givent22* andv0, the remote shear sliding
stress is fixed. In the Coulomb approximation, where fi
variations of the dynamic friction coefficient are ignored,f d
reduces to a constant.

The question then arises as to whether or not this ho
geneous sliding mode is stable with respect to small non
mogeneous perturbations of the stress and strain fields lo
ized in the surface region. In other words, do deformat
waves exist along a sliding frictional interface? If so, a
they damped, or amplified, or neutral? This question
been studied extensively, for dissimilar linear elastic mate
als, with Coulomb friction, by several authors, in particula
Weertmann@10#, Adams@11#, and Martins, Guimaraes, an
Faria@12#, whose results are synthetized in a recent article
Ranjith and Rice@8#. They find that, whenmdÞ0 and when

x
FIG. 1. Schematic representation of the sliding system.
1729 ©2000 The American Physical Society
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1730 PRE 62C. CAROLI
such interface waves exist@13#, the corresponding sliding
velocity field along the interface has, for a mode of wav
lengthk, the form

v~x1!5vk exp@ ik~x12ct!1aukut#. ~2!

Given the elastic moduli, the drift velocityc and amplifica-
tion coefficienta are real positive constants. That is, wav
drifting along ~respectively against! the direction ofv0 are
amplified ~respectively damped!. Homogeneous sliding is
thus linearly unstable against perturbations of all wa
lengths.

These results are derived under the assumption that
interface is sliding everywhere. As amplification procee
the sliding velocity necessarily vanishes at some points. T
suggests that sliding might occur via a periodic set of s
healing slip pulses, separated by stick regions. A family
such pulses has been built by Adams@11# for dissimilar elas-
tic solids. Their drift velocityc, which depends on the value
of elastic moduli is, roughly speaking, on the order of
sound velocity. So, their dynamics is controlled by inert
However, such self-sustaining~stationary! dynamical pat-
terns are singular in the following sense. Since perturbati
of all wavelengths, however small, are amplified, any i
tially localized perturbation gives rise to diverging oscill
tions at arbitrary small time: Adams’s pulses have zero m
sure attractors. This so-called ‘‘ill-posedness’’ most like
signals that the Coulomb friction law misses some of
physical processes which control the fast dynamics of fr
ture at frictional interfaces between elastic materials, i
their high frequency response—a problem which is curren
under study@8#.

Slip pulses in gels or rubbers, on the contrary, are s
dynamical objects whose velocities, comparable with th
of Schallamach waves, are much too low for inertia to
relevant. Their dynamics is certainly controlled by the dis
pation associated with the viscoelasticity of these materi

We therefore concentrate, in this paper, on the follow
question. Let block~I! be an incompressible linear viscoela
tic material with, for simplicity, a single viscous relaxatio
time. It slides slowly on a smooth nondeformable mater
and interface friction obeys a simple local Coulomb la
Under such conditions, are noninertial periodic slip puls
stationary in the drifting frame, a possible mode of motio

In Sec. II we formulate the corresponding mathemati
problem, and derive the form of its analytical solutions. W
show in Sec. III that none of these is compatible with t
stick conditions to be satisfied in the nonmoving parts of
interface. Hence, in this as well as in the inertial regime
Coulomb law with a constant dynamical friction coefficie
is incompatible with the existence of such modes of moti
We discuss in Sec. IV possible physical tracks toward
provements of the simple Coulomb model, which might
relevant to the problem of inhomogeneous sliding, and st
the interest of corresponding experimental investigations

II. GENERAL FORMULATION

We follow closely the approach of Adams@11# and of
Comninou and Dundurs@14# restricted to the case where~see
Fig. 1! block ~II ! (x2,0) is nondeformable. Block~I! is
submitted to the uniform remote stressest22* ,0 andt12* . It is
-
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infinitely extended alongx1, and made of an incompressib
material, with a linear viscoelastic shear response descr
by

t12~ t !5E
2`

t

dt8m~ t2t8!u̇12~ t8!, ~3!

wheret12 andu12 are the shear stress and deformation, c
fined to the (x1 ,x2) plane, and we model the time depende
shear modulus as a single time Kelvin one, namely,

m~ t !5m`1~m02m`!e2t/t. ~4!

We will moreover assume that the relaxed modulusm` is
much smaller than the short time one,m0. To fix ideas, for
compliant rubbers, values ofm` /m0&1023 are typical.

We want to study dynamic patterns, where~I! slides to-
wardx1.0 with the uniform remote velocityv0, with space
periodl52p/k, and drift velocityc in the frame of~II !. The
corresponding form of the displacementsu1 ,u2 reads

u15v0t1 (
m>1

Dm1~x2!eimk(x12ct), ~5!

u25D021 (
m>1

Dm2~x2!eimk(x12ct). ~6!

Solving the wave propagation equation together with
condition of nonseparation at the interface:u2(x1 ,x250,t)
50, one obtains straightforwardly~see Appendix A!, in the
incompressible limit~Poisson coefficientn51/2) for the in-
terfacial sliding velocityvs(h)5]u1 /]tux250

vs~h!5v01c Re (
m>1

Bmeimh, ~7!

whereh5k(x12ct) while the interfacial shear and vertica
stresses read

t12~h!5t12* 1Re (
m>1

2 iBmmm~11sm!eimh, ~8!

t22~h!5t22* 1Re (
m>1

Bmmm~12sm!eimh, ~9!

with

sm5F12
rc2

mm
G1/2

Resm.0. ~10!

We restrict our attention to the very slow modes observ
experimentally for which, whatever the frequency (mck),
rc2!mm , so that

sm.12
rc2

2mm
, ~11!

wherer is the mass density of material~I!, andmm its ~com-
plex! elastic modulus at frequency (mck)
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mm5m̂~mck!5F2 ivE
0

`

dtm~ t !eivtG
v5mck

. ~12!

The unknown coefficientsBm must be determined from
the second boundary condition along the interface, in wh
we describe a set of slipping regions of length 2l separated
by sticking ones.

We assume friction to be described by a simple local C
lomb law, with a constant dynamic friction coefficientf
equal to the static one, that is

~i! slip regions:2a12pp,h,a12pp

ts~h!5t12~h!1 f t22~h!50 vs.0, ~13!

~ii ! stick regions:2a12pp,h,2a12(p11)p

vs50 f t22,t12,2 f t22. ~14!

This description of interface friction calls for a few com
ments. Indeed, it assumes tacitly—as is common in con
mechanics@15#—that one can legitimately define a local an
space-independent friction coefficient. Since solid friction
sults from the average effect of dissipative flips of bista
pinned elastic units, this can be true only on a scale m
larger than:~i! the sizeb of the basic unit, and~ii ! the scale
L of interface inhomogeneities. The detailed analysis@16# of
the Rice–Ruina phenomenological law of dynamic fricti
@17# has shown thatb is of nanometric order. So, our as
sumption is justified for interfaces with homogeneous in
mate contact. Such is indeed the case for the gels or
compliant rubbers which we have in mind here, as long
elastic deformations vary on scales much larger th
nanometers—which sets a lower limit on the size
Dugdale–Barenblatt-like fracture head regions.

Note, however, that the situation is different when deal
with multicontact Greenwood-like interfaces@18#. These pre-
vail with stiff materials, such as metals, glasses or roc
which are not polished down to nanometric roughness. Th
the small scale cutoff is provided by the average dista
between contacting asperities, commonly lying in t
100 mm/s range. This, in our opinion, should be kept
mind when attempting, for such interfaces, to regularize
above mentioned ill-posedness problem since, on sp
scales &L, pinning strength fluctuations become no
negligible.

Taking condition~11! into account, following Comninou
and Dundurs@14# we set, for the periodic functionvs(h), in
2p<h<p

vs~h!50 a,uhu,p ~stick!, ~15!

vs~h!5v~h! 2a,h,a ~slip!. ~16!

Hence, from Eq.~6!

Bm5
1

pcE2a

a

djv~j!e2 imj ~m>1!, ~17!

v05
1

2pE2a

a

djv~j!. ~18!
h

-

ct

-
e
h

-
ry
s
n
f

g

s,
n,
e

e
ce

Using Eqs.~15! and~16! together with Eqs.~8! and~9!, and
with the help of the relation

(
m>1

eimx52
1

2
1 (

n52`

`

d~x22np!1
i

2
PFcot

x

2G , ~19!

~where P designates the Cauchy principal value!, one finally
gets, for the interfacial ‘‘sliding stress’’ts

ts~h!5ts* 1
f rc2

2
@V~h!2V0#

2
1

pE2a

a

djV~j!«
0

`

dtm~ t !
d

dt Fcot
h2j1ckt

2 G ,
~20!

where we have setV(h)5v(h)/c, and « f dx[PV* f dx.
Integrating by parts the last term on the right hand s

~r.h.s.! of Eq. ~20!, the condition Eq.~13! for frictional slid-
ing within the slip pulses provides us with the integral equ
tion to be satisfied by the interfacial reduced velocity field
(2a,h,a), namely,

ts* 1
f rc2

2
@V~h!2V0#1

m0

p «2a

a

djV~j!cot
h2j

2

1
1

pE2a

a

djV~j!«
0

`

dt
dm

dt Fcot
h2j1ckt

2 G50,

~21!

with

E
2a

a

djV~j!52pV0 . ~22!

Once Eqs.~21! and ~22! are solved forV(h), interfacial
stresses in the stick regions should be calculated from
~20!, Eq. ~14! then providing the final condition for slip
pulses to exist.

Expression ~21! separates explicitly the instantaneo
elastic shear effects~third term! from the contribution of vis-
coelastic relaxation~fourth term!. The second term, which
derives from the perturbation of the normal stresst22, is, for
our very slow pulses, smaller than the integral ones b
factor (c/cs)

2, where cs is some sound velocity. We wil
therefore neglect it from now on.

The cot form of the elastic kernels results from imposi
space periodicity to the patterns. Equation~21! can be rewrit-
ten in a form more standard in fracture mechanics by set
in (2p,h,p)

u5tan
h

2
y5tan

j

2
F~u!5

V~u!

11u2
a5tan

a

2
5tan

kl

2
.

~23!

Some elementary algebra then leads, in (2a,u,a), to
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ts

11u2 5
2m0

p «
2a

a

dy
F~y!

u2y
1E

2a

a

dy F~y!k~u,y!

2
2V0u2ts*

11u2 50, ~24!

with

E
2a

a

dy F~y!5pV0 , ~25!

and we have set

k~u,y!5
2

p «0

`

dtm8~ t !

11y tanS ckt

2 D
u2y1~11uy!tanS ckt

2 D . ~26!

The singular integral equation~24! belongs to a class
which was studied extensively by Mushkelishvili@19#. In his
terminology, the first two terms on the left hand side~l.h.s.!
constitute the ‘‘dominant’’ part. The viscoelastic kern
k(u,y) satisfies the regularity condition: limu→y@(u
2y)k(u,y)#50. This entails that it plays no role in th
strength of the singularities of the solutions, i.e., as is in
itively reasonable, these are ruled by the instantaneous
tic response of the deformable medium.

Following Ref.@19#, there are four families of solutions o
Eq. ~24!, each of which is associated with one of the ba
functions, characteristic of the dominant part

Ze t ,eh
~y!5~y1a!e t/2~a2y!eh/2, ~27!

where the indices (e t,h)5(11,21) control the convergen
or divergent behavior ofZ at the tail and head edges of th
slip zone.

One can then transform, for each family, Eq.~24! into an
equivalent nonsingular Fredholm integral equation. It mo
over turns out that, when we specialize to the single rel
ation time model form(t) @Eq. ~4!#, analytical expressions
for the solutions of these equations can be obtained exp
itly, thus allowing us to draw explicit conclusions about the
existence.

In view of the heaviness of the~otherwise straightfor-
ward! algebra involved, we will exemplify the method in fu
detail only for one of the families, namely the (12) one.

III. FOUR FAMILIES OF SOLUTIONS : V FIELDS AND
EXISTENCE CONDITIONS

A. The „¿À… family

The corresponding basic function

Z12~y!5A~y1a!

~a2y!
. ~28!

The implementation of Mushkelishvili’s method is pe
formed in Appendix B. Form(t) as specified by Eq.~4!, the
nonsingular equation equivalent to Eq.~24! reads
-
as-

c

-
-

c-

F12~u!5H12~u!

1
Dm

m0

2 exp~2 tan21u/ckt!

ckt~11u2!
E

u

a

dzF12~z!

3exp~22 tan21z/ckt!, ~29!

with

H12~u!52
Z12~u!

2m0

C* u1D*

11u2

1
Dm

m0

W12

ckt FZ12~u!

p
G~u!

1
b

11u2
exp~2 tan21u/ckt!G , ~30!

W1252E
2a

a

dzF~z!expS 2
2 tan21z

ckt D , ~31!

G~u!52bE
a

`

dC
e2 tan21C/ckt

~u2C!~11C2!
AC2a

C1a

2~11b!E
2`

2a

dC
e2 tan21C/ckt

~u2C!~11C2!
A2C1a

2C2a
,

~32!

b5~e2p/ckt21!21 Dm5m02m` , ~33!

C* 52V0m` cos
a

2
2ts* sin

a

2
, ~34!

D* 522V0m` sin
a

2
2ts* cos

a

2
. ~35!

Expression~32! for G(u) is valid for solutions whose slip
zone length 2l satisfies the condition 2l ,l/2. We assume
this to hold in accordance with experimental observatio
which indicate values of 2l /l!1.

Equation~29! is a first order differential equation for th
function *u

adzF12(z)exp@22 tan21z/ckt#, which is
straightforwardly solved in

F12~u!5H12~u!1
2

ckt

Dm

m0

1

11u2Eu

a

dzH12~z!

3expFm`

m0

2~ tan21u2tan21z!

ckt G . ~36!

This defines a family of slip velocity fields, each of whic
is labeled by the four dimensionless parametersV0

5v0 /c,ts* /m0 ,l /l5a/2p, and ct/l. Two of the physical
parameters,v0 and ts* , are ’‘external’’: in an experiment,
one imposes in general an average sliding velocity—he
v0 is fixed—and measurests* . l, c, and l are the internal
parameters of the family. This defines a problem of dyna
cal selection, namely if sliding patterns exist, arel, c, l, and
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hencets , uniquely defined whenv0 is fixed, or not? In order
to clear up this important question, it is necessary to list
relations between them, or alternately, the conditions to
satisfied byF12 as given by Eq.~36!. These are:

~i! Two consistency conditions, expressing that the rem
velocity and stresses are simply thek50 components of the
corresponding fields. This is expressed by relation~25! and
by an analogous equation forts

ts* 5
1

pE2`

1`

du
ts~u!

11u2 , ~37!

wherets(u) is related toF12(u) by the first of equalities,
Eq. ~24!.

~ii !The interfacial stress field must also satisfy the st
inequality Eq.~14!. One easily determines, with the help
Eq. ~24!, that a divergence ofF at an edgeu56a of the slip
zone results in a divergingts at the corresponding stick zon
edge, and therefore in the violation of the stick conditio
Z12 @Eq. ~28!# diverges at the slip headu5a. For u→a

F12~u!5
Z12~u!

2m0
F2

C* a1D*

11a2
1

2Dm

p

W12

ckt
G~a!G

1Re~u! ~38!

with lim u→a Re(u)50.
A necessary condition forF12 to be acceptable is tha

the coefficient ofZ12 in Eq. ~38! vanishes, i.e., using Eqs
~29!–~35!

ts* cos
a

2
52

2

p
Dm

W12G~a!

ckt
. ~39!

So, for solutions of the (12) class, the five pattern param
eters are linked by three relations. That is, for a givenv0, this
class of patterns, if they exist, form a one parameter fam
We will comment further on this conclusion in Sec. IV.

Let us now come back to the‘‘regularization condition
Eq. ~39!. From conditions~15! and~16!, the interfacial slid-
ing stressts must be nonpositive everywhere. Hence, itsu
averagets* must be strictly negative.

On the other hand, thevs and thus theF field must, by
Eq. ~13!, be positive everywhere in the slip zone. Then de
nition ~31! entails thatW12.0. Finally, using Eq.~32!, one
gets

G~a!52E
a

`

dC

sinhF 2

ckt S p

2
2tan21C D G

~11C2!AC22a2shS p

ckt D ,0. ~40!

Therefore, condition~39! can never be satisfied. No solu
tion of type (12) exists. In other words, viscous relaxatio
and pulse–pulse interaction effects can never be sufficien
cancel the square-root singularity due to the instantane
elastic response.
e
e

te

k

.

.

-

to
us

B. The „À¿… and „À… families

For the (21) family, whoseZ function diverges at the
slip zone tail only, the analysis parallels completely t
above one, theF21 fields obey a set of equations with ex
actly the same structure as that of Eqs.~29!–~32!, differing
only in the detailed algebraic expressions ofG(u), C* , and
D* . The regularization condition analogous to Eq.~39!, now
to be imposed atu→2a, is again immediately shown to
have no solutions.

Z22 diverges at both slip edges, hence two regularizat
conditions, and one shows similarly that the condition o
tained from their difference cannot be satisfied. Note, ho
ever, that the counting argument tells us that, if (22) pat-
terns could exist, one only of the five parameters would
free, i.e., there could exist at most one dynamical pattern
given sliding velocity.

C. The „¿¿… family

As Z11 vanishes at both slip zone edges, no regula
condition has to be imposed@20#. (11) solutions, if any,
form a two parameter family. The analysis of Appendix
again leads to an expression ofF11 with the same structure
as Eqs.~29!–~32!. One can then write explicitly the self
consistency equation~25! for V0. Here we will skip the cor-
responding tedious but straightforward algebra, and o
quote the final form of Eq.~25!, which can be written as

V0F11OS m`

m0
D G5

ts*

2m0

1

ckt S 12cos
a

2 D 2

cos
a

2
. ~41!

For the systems we are interested in, as already mentio
m` /m0!1. Then, again, under the stick restriction whic
imposes thatts* ,0, condition~29! cannot be fulfilled.

IV. DISCUSSION

The above analysis leads us to a strong statement, w
seems to contradict existing qualitative observatio
Namely, an interface with Coulomb friction between a v
coelastic and a nondeformable material cannot sustain s
sliding via a periodic set of alternating noninertial slip puls
and stick regions.

We believe that the reason for this contradiction must
traced to the fact that the Coulomb model of friction whi
we have assumed misses some physical elements w
probably play a crucial role in the dynamics of patterns w
fracture-like singularities. This may appear more clea
when one notices that this model, which describes the in
face as infinitely rigid below the friction threshold, the
once this is reached, sliding under constant stress, is the
act two-dimensional 2D equivalent of the Hill model of bu
ideal plasticity@21#, well known to generate numerous art
fact instabilities due to its highly singular character.

Clearly, the main weakness of the Coulomb model lies
its overschematic description of the transition between s
and slip, i.e., for our patterns, in the details of interfa
boundary conditions at the edges of a slip zone. In the c
of the analogous mode-I problem—the Griffith crack—it
well known that discontinuous boundary conditions~vanish-
ing normal stresses and displacements in, respectively,
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1734 PRE 62C. CAROLI
cracked and uncracked regions of the crack plane! miss a
major physical ingredient, namely the finite range of atom
decohesion and its associated energy cost. Taking this
account regularizes the stress field at the fracture head
smearing its square root singularity over the Dugda
Barenblatt cohesive zone@22#.

In analogy with this, and based upon the nature of
stress–strain characteristics of overconsolidated cl
Palmer and Rice@23# proposed a model for sliding along
concentrated slip surface in which the sliding shear stres
assumed to decrease with relative displacement as show
Fig. 2. This enabled them to analyze the ‘‘mode-II fractur
problem of shear band propagation in such materials.

Let us assume for the moment that we can modify
Coulomb model in a similar manner. That is, let us assu
that the shear stress in the sliding state is given by

t1252 f t221dt0@d~x1 ,t !#, ~42!

wheredt0 is maximum ford50 and has a small ranged0
!2l . We defined(x1 ,t) as the displacement at the interfa
point x1 from its position when it was in the preceding stic
zone, i.e., up until the head of the slip zone under consid
ation reached it. So

d~x1 ,t !5u1~x1 ,t !2u1S x1 ,t2
a2x1

c D
5E

h

a

dh8V~h8!

[d~h!. ~43!

In Eq. ~21! for the velocity field,ts* must now be substituted
by ts* 2dt0@d(h)#.

In order to fix ideas, let us concentrate on (12) solu-
tions. Repeating the analysis of Appendix B leads again
expression~36!, with

H12~u!→H12~u!2
Z12~u!

2m0
I ~a!, ~44!

I ~a!52
1

p «2a

a

dy
dt0@d~y!#

~11y2!~a2y!Z12~y!
. ~45!

The regularity condition then becomes

FIG. 2. Schematic representation of the slip-weakening frict
law.
c
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by
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e
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is
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r
e

r-

to

ts* cos
a

2
1

2Dm

p

W12G~a!

ckt
5

I ~a!

p
. ~46!

The lhs of Eq.~46! must, as shown above, be negative. Fro
Eq. ~45!, I (a),0. So, the introduction of a ‘‘cost for incipi-
ent sliding’’ via dt0 is sufficient to lift the incompatibility
which we found to hold for the Coulomb friction mode
Clearly, the same formal result applies for the (21) and
(22) classes. That is, the localized incremental stressdt0
plays a role comparable to that of the cohesive stress
mode-I fracture, namely it smooths out the stress singula
by spreading it over a zone of incipient sliding of small b
finite extent.

However, once this formal remark has been made,
should come back to the possible physical interpretation
such a modification of the friction model. A decrease in t
frictional stress with the slip distance is likely to be asso
ated with a change upon sliding of the internal structure
the nanometer-thick adhesive interfacial junction. Moreov
in order for the peaked structure oft12(d) to reproduce itself
at each successive slip zone head, the structure of the j
tion must relax non-negligibly on the durationDtst5(l
22l )/c of a stick ~typically, Dtst lies in the range of sec
onds!.

Such a scenario is plausible for junctions composed
long molecules—either because a molecular layer of lu
cant is present or because the junction is formed by mole
lar tails from the sliding material itself. Then, sliding
likely to give rise to a slip weakening of friction associate
with molecular elongation and restrengthening by structu
relaxation during stick. These are precisely the physical
gredients invoked to explain the hysteretic frictional dyna
ics observed in a number of boundary lubrication expe
ments@24–26#.

However, inclusion of slip weakening of dynamical fric
tion is not the only possible improvement on the Coulom
model susceptible to allow for slip pulses. Indeed, a serie
recent works by Langeret al. @27,28# on the viscoplasticity
of amorphous solids point very convincingly toward the cr
cial importance of a realistic description—of the rate a
state type—of the gradual crossover of the mechanical s
response from mainly elastic to mainly dissipative. As
ready pointed out, solid friction along a continuous interfa
is nothing but 2D interfacial viscoplasticity, to which th
bulk analysis should be transposable. Hence the need fo
elaboration of a phenomenolgy which can bridge realistica
between static and dynamic solid friction. Work in that d
rection, based upon experimental studies of dynamic inte
cial shear response, is presently in progress.

This discussion naturally leads us to emphasize the n
for the development of systematic experimental studies
interfacial slip pulses, and the interest which they prese
The main questions to be elucidated are:

~i! The precise conditions for frictional sliding to occur
this mode. This includes systematic characterization of
bulk viscoelasticity of systems which do exhibit this beha
ior, and qualification of the relevant range of driving veloc
ties v0.

~ii ! the v0 dependence of the apparent friction coefficie
t12* /ut22* u, and the question of pattern selection. Namely,
the slip pattern unique for a givenv0 or, for example, does it

n
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depend on the lateral size of the sliding block? In oth
words, does injection at the back free edge of the slider p
a crucial role in the selection of the pattern wavelengthl or
not? Further elucidation of these questions would also b
value to shed further light on the still largely open quest
of the physics of shear interfacial fracture.
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APPENDIX A

We briefly sketch here the derivation of Eqs.~7!–~9! for a
purely elastic system. Letl,m be its Lame coefficients, re
lated to the Young modulusE and to the Poisson ration by

m5
E

2~11n!
l1m5

E

2~11n!~122n!
. ~A1!

The elastic displacementu5(u1 ,u2) obeys the Lame equa
tion

rü5~l1m!“•div u1mDu, ~A2!

with r the mass density. The stresses are given by

t i j

m
5

]ui

]xk
1

]uk

]xi
1~b222!d ikdiv u, ~A3!

where

b25
2~12n!

122n
. ~A4!

One then sets

ui~x1 ,x2 ,t !5ui* ~x2!1(
m

Uim~x2!eimk(x12ct), ~A5!

with u* the displacement field corresponding to unifor
sliding under the homogenenous stressest* . Solving Eq.
~A2! together with the condition of nonseparation at the
terfaceu2ux25050, one gets

u1~x1 ,x2 ,t !2u1* ~x2!

5Re (
m>1

AmF2
k2

s1s2
e2ms1x21e2ms2x2Geimk(x12ct),

~A6!

u2~x1 ,x2 ,t !2u2*

5Re (
m>1

Am

ik

s2
@2e2ms1x21e2ms2x2#eimk(x12ct),

~A7!
r
y

of

m
s
of

-

with

s1
2 5k2S 12

rc2

l12m D s2
2 5k2S 12

rc2

m D Res6.0.

~A8!

Then, with the help of Eq.~A3!, and in the incompressible
limit l→`, one obtains the expression for the interfa
stresses and the interface sliding velocity

t12ux2505t12* 1m Re (
m>1

mkAmS k

s2
2

s2

k Deimk(x12ct),

~A9!

t22ux2505t22* 1m Re (
m>1

imkAm

3F221
k

s2
1

s2

k Geimk(x12ct), ~A10!

vs5v02c Re (
m>1

imkAmF12
k

s2
Geimk(x12ct). ~A11!

Setting

Bm5 imkAmS k

s2
21D ~A12!

and substitutings2 by sm25ksm @Eq. ~A3!# appropriate to
the viscoelastic system directly yields expressions~7!–~11!.

APPENDIX B

Following @19#, the singular integral equation~24!, valid
in 2a,u,a

2m0

p «
2a

a

dy
F~y!

u2y
1E

2a

a

dyF~y!k~u,y!5F~u!, ~B1!

wherek is given by Eq.~26! and

F~u!5
2V0u2ts*

11u2
~B2!

is equivalent for the (12) family of solutions to

F1K!k!F5K!F ~B3!

with

@K! f #~u!52
Z12~u!

2m0p «
2a

a

dy
f ~y!

Z12~y!~u2y!
. ~B4!

Integrating in the complexy plane along the contour show
in Fig. 3, one finds

K!F52
Z12~u!

2m0

C* u1D*

11u2
, ~B5!

whereC* ,D* are given by Eqs.~34! and ~35!.
On the other hand
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~K!k!F!~u!52
Z12~u!

2m0p E
2a

a

dzF~z!J→~y,z!, ~B6!

J→~y,z!5
2

p «2a

a dy

Z12~y!~u2y! «0

`

ds
m8~s!

y2
z2T~s!

11zT~s!

,

~B7!

with

T~s!5tan
cks

2
. ~B8!

Once the order of they and s integrals on the r.h.s. of Eq
~B7! has been interchanged, they integration can be per
formed explicitly. However, care must be exercised wh
performing this interchange, due to the presence of the
principal values. One uses the following identity, which r
sults from the Poincare–Bertrand theorem@19#:

PS 1

x92x8
D PS 1

x92x
D

5PS 1

x2x8
D FPS 1

x92x
D 2PS 1

x92x8
D G

1p2d~x92x8!d~x92x!. ~B9!

FIG. 3. Contour for integrals of typeK!F.
h.

s

n
o

-

One thus obtains

J→~y,z!5«
0

`

dsm8~s!

3«
2a

a dy

Z12~y!~u2y!S y2
z2T~s!

11zT~s! D
1Y,

~B10!

Y52p2 (
p52`

`
m8„sp~z,u!…

u]D/]susp
Z12~u!

u„sp~z,u!…, ~B11!

where the sp are the zeros ofD5u2(z2T(s))/(1
1zT(s)), i.e.,

sp~z,u!5
2

ck
@f~z,u!1pp#, ~B12!

f~z,u!5tan21F z2u

11zuG 2
p

2
,f~z,u!,

p

2
. ~B13!

From this one finally gets

~K!k!F!~u!5
2

m0ck~11u2!
E

2a

a

dzF(~z!m8@s0~z,u!#

3@u~f~z,u!!1b#2
Z12~u!

2m0

3E
2a

a

dzF~z!«
0

`

ds
m8~s!u~c22a2!

Z12
out ~c!~u2c!

,

~B14!

whereb is defined in Eq.~33! and

Z12
out ~c!5u~c2a!Ac1a

c2a
1u~2c2a!A2c2a

2c1a
.

~B15!

Straightforward integration then results in Eqs.~29!–~32!.
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